
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:18825–18855
https://doi.org/10.1007/s11227-022-04597-y

1 3

Workload characterization and synthesis for cloud using
generative stochastic processes

Korrapati Sindhu1 · Karthick Seshadri1 · Chidambaran Kollengode2

Accepted: 8 May 2022 / Published online: 13 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
In the recent past, we are witnessing a proliferation in the number of web/mobile
applications being hosted on a service provider’s Cloud. This has led to a surge
in the traffic to the data centers hosting Virtual Machines (VM) running the cloud
instances. In a cloud environment, a workload is defined as the requests coming in
for the applications which are hosted on VM instances. Workload characterization
helps in modeling the associations and correlations in the workload. Workload char-
acterization models that are representative of the ground truth, can be leveraged for:
(i) an accurate capacity planning, (ii) better resource utilization, (iii) reducing the
spin-up times of VM instances, and (iv) maintaining compliance with Service Level
Agreement (SLA). We propose a first-of-its-kind generative Dirichlet process-based
model using Latent Dirichlet Allocation (LDA) for workload characterization. The
characterization model is dependency preserving, regularized, and generative in
nature, that relates the workload to the underlying application or user’s behavior that
might have generated the workload. To evaluate the descriptive and predictive accu-
racies of the proposed model, we designed experiments using the Bit Brains Trace
(BBT) and Alibaba Cluster Trace. The descriptive accuracy of the proposed work-
load characterization model is assessed by comparing a synthetic workload against
the real workload using Pearson Correlation Coefficient (PCC) and Akaike Informa-
tion Criterion (AIC) as the metrics. We have also performed statistical tests to assess
the similarity between real workload and synthetic workload.

Keywords Cloud computing · Workload characterization · Virtual machines ·
Dirichlet process · Latent Dirichlet allocation · Gibbs sampling · Resource
requirement prediction · Synthetic workload generation

 * Karthick Seshadri
 karthick.seshadri@nitandhra.ac.in

1 Department of Computer Science and Engineering, National Institute of Technology Andhra
Pradesh, Tadepalligudem, Andhra Pradesh, India

2 Data and AI Platforms, LinkedIn, Bangalore, Karnataka, India

http://orcid.org/0000-0002-5658-141X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04597-y&domain=pdf

18826 K. Sindhu et al.

1 3

1 Introduction

Many organizations have commenced migration of their applications to the cloud,
due to its ability for on-demand provisioning of resources. Besides on-demand
provisioning, other prominent merits of cloud computing include scalability,
elasticity, reliability, minimizing energy consumption, efficient task schedul-
ing, resource management, and security. Cloud provides services to the users
predominantly using virtualization. Virtualization allows to run multiple virtual
machines on a physical machine that helps in efficient resource utilization. How-
ever, predicting the number of virtual machines to be provisioned for an applica-
tion is difficult because of the typical dynamic nature of users interacting with the
application.

Workload characterization is a key enabler in realizing truly elastic cloud com-
puting due to its applicability in the tasks like workload scheduling, workload
prediction, resource planning, synthetic workload generation, and identifying the
kinds of workload that lead to failure conditions. Modeling and analysis of the
property of workloads are essential to ensure a balanced mix of jobs across VMs
with respect to resource utilization and load. Similarly, for predicting the future
workloads and for subsequent resource buffering or planning, an understanding
of the patterns exhibited by workloads across different workload categories is
important.

Workload characterization is the process of modeling resource demands
imposed by workloads to applications hosted on the cloud with respect to key
aspects such as amount of CPU requirement, amount of memory required, num-
ber of I/O operations involved, and network bandwidth consumed. In this paper,
a workload is taken to be the input or requests received by an application hosted
on a VM and the resources used for processing the requests in the cloud. A thor-
ough analysis of workloads helps the data center administrators in estimating the
type and number of resources required to process a request. This estimation will
subsequently help in the efficient mapping or arbitration of requests to Virtual
Machines (VM).

Further, an accurate model for workloads can be applied for (i) capacity plan-
ning, (ii) task scheduling which accounts for efficient resource utilization, (iii)
minimum energy consumption, and (iv) reduction of carbon emissions from data
centers. Workload characterization also plays an important role in meeting the
Service Level Agreements (SLA) and Quality of Service (QoS) requirements.
Any workload characterization model should be capable of encoding the proper-
ties of workloads. Workload characterization can be performed either by analyz-
ing the workload traces using statistical measures or by learning a model which
can perform characterization.

Most of the existing works [1–4] perform workload characterization either by
analyzing statistical properties of incoming requests to a data center or by using
clustering techniques like k-Means and these models are developed for a specific
type of application. The requests arriving for applications at the data center may
be heterogeneous. Heterogeneity is defined in terms of the types of resources

18827

1 3

Workload characterization and synthesis for cloud using…

required for processing the incoming request to an application. Existing research
attempts fail to accurately handle heterogeneity in workloads. Hence, there is a
justifiable need for developing a model which is capable of handling heterogene-
ity in the workloads submitted to a data center. However, developing a model
that can characterize the workloads arriving at a data center is a challenging task
because of the typical temporal variations in workloads.

Since cloud service providers cannot provide access to workload traces due
to confidentiality and security related reasons, there is a justified need to devise
stochastic processes to reverse engineer the latent properties of task domains and
users from the observable workload properties and for generating synthetic work-
loads in domains where getting hold of real workloads for analysis is not feasible.

In this paper, we propose an unsupervised model for characterizing workloads
in a data center, based on a generative probabilistic graphical model called Latent
Dirichlet Allocation (LDA) [5]. The proposed model takes a snapshot of jobs
running in a data center and performs characterization. The model can be easily
generalized into a time-series model when such a characterization is done across
multiple time instants with a common set of applications and tasks across the
snapshots.

In the proposed model, we identify the task domain that generates the work-
load where the workload is modeled as a distribution of task domains, and the task
domain is modeled as a distribution over the features that describe the workload.
This kind of modeling effectively handles heterogeneity in the type of resources
required for processing the workload, as workload is modeled as a distribution over
task domains. Another significant advantage of the proposed model is that there is
no mandatory requirement by the model to learn from a fixed attribute set. The char-
acterization models developed by using the algorithms like k-Means require each
workload to have same set of workload features to describe the workload. Following
are the key contributions of this paper:

 (i) We propose a first-of-its-kind unsupervised model to characterize workloads
in a cloud, that accurately models heterogeneity with respect to resource
demands.

 (ii) This is a novel attempt that proposes to adopt a probabilistic graphical model
based on the Dirichlet stochastic process to characterize cloud workloads.

 (iii) The proposed workload characterization model is empirically observed to
perform well with respect to both descriptive and predictive abilities.

 (iv) We have established the efficiency of the proposed model by generating syn-
thetic workload and AIC criterion is used to quantify the representativeness
between the synthetic workload and the real workload.

The rest of this paper has the following layout: Sect. 2 discusses the existing
methods for workload characterization. In Sect. 3, we explain in detail the proposed
method for workload characterization. In the subsequent section, we present the
experimental results obtained for the two workload traces BBT and Alibaba Clus-
ter Trace, and inferences. In the last section, we summarize the paper with future
research pointers to extend this thread of research.

18828 K. Sindhu et al.

1 3

2 Related work

The efficiency of a data center depends on the execution of user requests while
balancing the load on VMs. Shruti et al. [6] showed the impact of workload char-
acterization in the context of capacity planning and performance management.
In this work, the authors performed workload characterization based on behavio-
ral patterns observed in workload traces. Different kinds of patterns observed are
namely periodicity patterns, threshold patterns, relationship patterns, and vari-
ability patterns. Auto Correlation Function is used to assess the resource utiliza-
tion (CPU, memory, and network) in each Virtual Machine, and it was observed
that behavioral patterns help in capacity planning and identifying SLA violations.

Hani [7] et al. proposed a method for virtual machine characterization by min-
ing hypervisor traces to avoid internal access to each VM. A two-stage clustering
is performed for coarse-grained and fine-grained workload characterization. Ini-
tially, features are extracted from the hypervisor trace using Trace Compass open-
source tool. After extracting the features, a two-stage clustering is performed,
where the VMs are grouped into a set of clusters using k-Means. In the second
stage, the clusters obtained in the first stage are further partitioned to achieve a
fine-grained VM characterization.

Workloads can be classified into different categories based on resource require-
ments, computing environment, and type of application. Based on the resource
requirement, workloads are classified as CPU workload, I/O workload, memory
workload, and database workload [8]. Based on the applications, workloads are
classified as web workload, social network workload, and video service work-
load. The web workload consists of HTTP requests from clients, document types,
transfer size, distinct requests, time between the successive requests for the same
file, and file size distribution [9].

Arijit Khan et al. [10] proposed a method for workload characterization and
future workload prediction. In this work, the authors performed workload charac-
terization at group level instead of a VM-level characterization. While analyzing
the discretized time series data, it is observed that when applications are executed
collaboratively by a set of VMs, then there is a change in workload in a correlated
manner. VMs are grouped by using the co-clustering technique. Experiments
are conducted on 21 days of CPU utilization data collected from an enterprise
customer.

Menasce et al. [11] proposed a method for characterizing workloads of an
e-commerce site. A Customer Behavior Model Graph (CBMG) is constructed
for each session; a session is a sequence of requests by the same customer. The
nodes represent requests and edges represent the transition probabilities between
states. Once the CBMG is constructed, the next task is determining the param-
eters that are used to characterize the workload. Parameters that characterize the
workload are classified into two categories namely, workload intensity parameters
and resource usage parameters. Workload intensity parameters include session
arrival rate and average think time between the requests. Resource usage param-
eters describe the resources used for processing the requests at server side.

18829

1 3

Workload characterization and synthesis for cloud using…

In the literature [1–3], several statistics namely min, max, mean, covariance,
order statistics, and standard deviation are used for workload characterization.
Aragon et al. [12], performed analysis and characterization of workloads of a web
application which is implemented using microservices architecture. Different work-
load features that are considered for characterization are microservice popularity,
variability in request intensity, burstiness in request arrivals, inter-arrival time and
service time of a request. After analyzing the workload features, a workload can be
generated by identifying the statistical distribution characterizing the features.

Shekhawat et al. [13] proposed a method for characterizing workloads based
on resource usage. For workload classification and characterization, two data-
sets namely, Google Cluster Trace (GCT) and Bit Brains Trace (BBT) are used.
The authors used six different machine learning algorithms namely Support Vec-
tor Machine (SVM), Logistic Regression, Stochastic Gradient Descent, K-Nearest
Neighbor, Multi-Layer Perceptron, and k-Means clustering for workload classifi-
cation. Post classification, the significance of attributes in predicting the workload
is identified. For GCT dataset, task duration attribute is remarked to be significant
whereas for the BBT dataset CPU usage is inferred to be significant.

In GCT, based on the attribute values the workloads are characterized into back-
ground tasks, demon tasks and system tasks. System tasks have a high CPU utiliza-
tion and memory, but low disk utilization; Demon tasks uses CPU, memory, and
disk for a relatively long duration, but percentage of utilization is less. Background
processes have a moderate usage of CPU, memory while the disk utilization figures
are observed to be low.

Mishra et al. [3] proposed a method for characterizing resource demands based
on the classification of tasks in the Google’s cloud back end. Different attributes
considered for workload are task duration, CPU, and memory usage. The first step in
the task classification is identifying the dimensions for the workload. In the second
step, k-Means algorithm is used to cluster the tasks into different classes. In the third
step, thresholds for the qualitative dimensions (small, large, and medium) are identi-
fied. In the last step, based on the range of dimensions, the tasks are combined.

Patel et al. [4] performed workload characterization using two clustering algo-
rithms namely k-Means and Gaussian Mixture Model (GMM). Experiments are con-
ducted on BBT and GCT workload traces. From the experiments, it is observed that
GMM model better represents the heterogeneity in resource usage patterns with dis-
tinct cluster boundaries. It is assumed that the workload follows normal distribution,
but there is no guarantee that workload always follows normal distribution. k-Means
does not handle uncertainty when a data point is equi-distant to more than one clus-
ter centroid. If a data point is arbitrarily assigned to a cluster, it was observed that
the model was unable to represent the resource usage patterns properly.

From the literature, it is observed that limited research works exist for cloud
workload characterization. Among the existing methods, most of the methods
model the workloads by analyzing the statistical properties of the workload trace;
however, studying the statistics alone may not be sufficient to model the dynamic
behavior of workloads. Hence, in order to reproduce the dynamic behavior of the
workload trace, we have chosen a double embedded stochastic process for modeling
cloud workloads. Table 1 provides a summary of the existing research attempts in

18830 K. Sindhu et al.

1 3

Ta
bl

e
1

 E
xi

sti
ng

 w
or

ks
 o

n
w

or
kl

oa
d

ch
ar

ac
te

riz
at

io
n

Pa
pe

r
A

pp
ro

ac
h(

s)
W

or
kl

oa
d

Tr
ac

e
D

em
er

its

Ro
be

rt
et

 a
l.

[1
4]

St
at

ist
ic

al
 m

et
ho

ds
G

C
T

(i)
 W

or
kl

oa
d

ch
ar

ac
te

riz
at

io
n

is
 p

er
fo

rm
ed

 a
t t

he
 m

ac
hi

ne
 le

ve
l

(ii
) C

ha
ra

ct
er

iz
at

io
n

is
 d

on
e

us
in

g
ba

si
c

st
at

ist
ic

s l
ik

e
m

ea
n

an
d

st
an

da
rd

 d
ev

ia
tio

n
Pa

te
l e

t a
l.

[4
]

k-
M

ea
ns

 a
nd

 G
M

M
B

B
T,

 G
C

T
(i)

 k
-M

ea
ns

 fa
ils

 to
 h

an
dl

e
he

te
ro

ge
ne

ity
(ii

) G
M

M
 a

ss
um

es
 th

at
 th

e
w

or
kl

oa
d

tra
ce

 fo
llo

w
s n

or
m

al
 d

ist
rib

ut
io

n
w

hi
ch

 is
 n

ot
 a

lw
ay

s t
ru

e
Sh

en
 e

t a
l.

[1
]

St
at

ist
ic

al
 m

et
ho

ds
B

B
T

(i)
 R

es
ou

rc
e

us
ag

es
 a

re
 a

na
ly

ze
d

us
in

g
st

at
ist

ic
s

(ii
) T

he
 p

ro
po

se
d

m
et

ho
d

is
 a

 tr
ac

e-
ba

se
d

m
et

ho
d

an
d

its
 d

ep
en

de
nt

 o
n

th
e

sy
ste

m
 o

n
w

hi
ch

 tr
ac

e
is

re

co
rd

ed
M

is
hr

a
et

 a
l.

[3
]

St
at

ist
ic

al
 m

et
ho

ds
G

C
T

W
or

kl
oa

d
ch

ar
ac

te
riz

at
io

n
is

 p
er

fo
rm

ed
 in

 te
rm

s o
f a

ct
ua

l c
om

pu
ta

tio
na

l w
or

k
bu

t t
he

 u
nd

er
ly

in
g

ta
sk

do

m
ai

n
di

str
ib

ut
io

n
is

 n
ot

 a
na

ly
ze

d
Ju

ng
 e

t a
l.

[1
5]

St
at

ist
ic

al
 m

et
ho

ds
RU

B
iS

Th
e

pr
op

os
ed

 m
od

el
 is

 n
ot

 su
ita

bl
e

fo
r t

he
 a

pp
lic

at
io

ns
 th

at
 a

re
 se

ns
iti

ve
 to

 p
er

fo
rm

an
ce

18831

1 3

Workload characterization and synthesis for cloud using…

cloud workload characterization, approaches used by the existing works, and their
demerits.

3 Proposed method

In this section, we describe the methodology adopted for workload characterization.
The overall architecture of the proposed method is shown in Fig. 1.

3.1 Problem formulation

Let M =
{
VM1,VM2, ..,VMm

}
 be the set of Virtual Machines present in the data

center, R =
{
R1,R2, ..,Rn

}
 be the set of input requests arriving at the data center,

and let each request Ri be described by a set of workload features Fi =
{
f1, f2, .., fw

}
 ,

where w may be different for different requests and ||Fi
|| denotes the number of

resources needed by a specific request. Our objective is to design and evaluate a
model which characterizes the workload based on the resource demands imposed by
the requests to the applications running on the VMs. The model should characterize
the workload generation as a double-embedded stochastic process [16] to capture
the nature of the applications and tasks that have generated the workload. A double
embedded stochastic process is a generative model that models R in two stages. In
first stage, each request is modeled as a distribution over different task domains and
in the second stage each task domain is modeled as a distribution over workload
features Fi . A follow-up research objective is to assess the descriptive and predic-
tive accuracy of the model using tasks such as synthetic workload generation, and
comparing the model-generated task labels with actual task labels from which the
request is generated.

3.2 Phases in the proposed methodology

The proposed workload characterization method broadly involves learning the
model and evaluating the model’s accuracy. The model learning and assessment
steps comprise the following phases:

Workload

Generalized
workload Workload

properties

Discretization
using k-Means

Pre-processing

Workload
characterization

Workload
Generation

Synthetic
workload

Fig. 1 Architecture of the Proposed Model

18832 K. Sindhu et al.

1 3

 (i) Pre-processing: Pre-processing renders the input data to be in the required
format for consumption by the proposed model.

 (ii) K-bin discretization: Discretization groups similar data items into bins and
subsequently aids in learning a generative model which is representative of
the real workloads.

 (iii) Workload characterization: In this phase, we develop an unsupervised model
that characterizes the workload and models the application behavior that gen-
erated the workload.

 (iv) Synthetic workload generation: After characterizing the workload, a workload
can be generated by using the proposed model to assess the model’s repre-
sentativeness.

3.3 Pre‑processing

Pre-processing transforms the workload into a format that a model can process effi-
ciently. In this paper, our aim is to develop a workload characterization model which
models the resource request and usage patterns.

In this paper, we have used two workload traces namely Bit Brains Trace and
Alibaba Cluster Trace. For Bit Brains Trace, pre-processing involves removing inva-
lid and duplicate requests and assigning an identifier for each request. A request is
invalid if most of its features consist of NULL values. All the invalid requests are
identified and removed. In the next step, each request is assigned a unique identifier
for further processing.

For Alibaba Trace, the resource information is maintained across different
tables. Therefore, in this case, we pre-processed the data by removing NULL values
and extracted the required workload features by executing a join operation on the
required tables.

The pre-processing of Alibaba Trace involves the following steps:

 (i) We have removed the NULL values across the tables.
 (ii) The records that are associated with the application name are extracted.
 (iii) To obtain the resource usage at the instance level, a join operation is performed

between the data extracted in step (ii) and the instance table in the workload
trace.

 (iv) From step (iii), the instance IDs are extracted, to get the resource metrics cor-
responding to each instance, the results obtained in step (iii) are joined with
the records in the sensor table.

3.4 k‑bin discretization

Instead of learning a workload characterization model with numerical workload
parameters, we grouped the numerical values into discrete ranges that helps in
avoiding overfitting and ease of inference of higher-order generative patterns. This
discretization renders the model regularized and generalizable to unseen but related
patterns in the workload. The proposed method uses k-Means based discretization

18833

1 3

Workload characterization and synthesis for cloud using…

method for discretizing the workload trace, which assumes a convex-bias and
groups the data based on distance between the data points in the workload trace. In
this work, we have used the Euclidean distance measure to calculate the distance
between data points in a workload trace. Here discretization is applied on each fea-
ture i.e. k-Means is applied on each feature separately. Each workload feature is
divided into k bins where the value of k depends on the data values present in each
feature. Algorithm 1 outlines the discretization process.

To decide the number of bins, we have used the Sturge’s formula [17] as specified
in Eq. (1), as it is suitable for dealing with different data distributions.

where num_of_bins(fi) represents the number of bins for the ith workload feature and
unique(fi) is the number of unique values in the ith feature. After deciding the num-
ber of bins for each feature, the k-Means discretization technique is applied. Subse-
quently, the data points in each workload feature are replaced with their correspond-
ing bin numbers.

3.5 Workload characterization using probabilistic generative model

After discretization, each request in the trace consists of discrete values and some
requests may be redundant because we have grouped the data into bins. The redun-
dant requests are removed before characterizing the workload.

The proposed model is a generative probabilistic model which takes a set of
requests created after applying discretization as an input and identifies the under-
lying task domain that generates a request i.e. whether the task is computationally
intensive, web service-related task, or database related task. For example, a request
to any Software as a Service (SaaS) suite may involve either compute-intensive
or disk-intensive tasks, sometimes requests may be a mix of both compute-inten-
sive and disk-intensive tasks. Disk-intensive tasks are likely to be spawned due to

(1)num_of_bins
(
fi
)
=
⌈
log2 unique

(
fi
)⌉

+ 1

18834 K. Sindhu et al.

1 3

requests initiated from applications like storage, mail, and video streaming portals.
Similarly, compute-intensive tasks are likely to be spawned by applications running
simulations, virtual labs, or analytical models.

In the proposed model, instead of representing the request in terms of workload
features (high dimension), each request is described as mixture of task domains (low
dimension). Resource request and resource utilization may vary according to the
underlying task domain, so, the proposed characterization model handles the hetero-
geneity. The generative model used for workload characterization is shown in Fig. 2.

The generative model shown in Fig. 2 is a plate diagram, which is commonly
used to model the repetition of probabilistic conditional dependencies and independ-
ences between the latent and the observed random variates of the interest. Figure 2
illustrates that each workload feature in every request is analyzed and each request is
expressed in terms of its originating task domain.

In Fig. 2, each circle denotes a latent variable; a shaded circle represents an
observed variable, and each edge denotes the dependency between the variables
connected by the edge. Plate denotes repetition of structures; for instance, |R| in the
plate denotes the cardinality of the repetition of the outer plate in Fig. 2.

The request-task domain distribution (θr) is a multinomial distribution represent-
ing mixture proportion of task domains from which a request ‘r’ is drawn. R denotes
the collection of requests arriving at the data center and ||Fi

|| represents the number
of features that describes a request. Task domain-feature distribution (�Tl

) represents
the feature distribution for a task domain Tl which is drawn from the Dirichlet prior
λ , trn represents the task domain associated with nth workload feature in a request ‘r’
and frn represents the nth workload feature in a request ‘r’.

Let T =
{
T1, T2, ..,Tq

}
 be the set of task domains from which requests arrive at

a data center. From the workload trace, only the workload feature values which
describe the request are observed but task domain is not observed. Workload
(request) is modeled as a distribution over a mixture of the latent task domains
and each latent task domain is modeled as a distribution over the observable
workload features. The assumptions made for this model are: Each request is gen-
erated from few task domains but not from all the task domains, similarly, each
task domain consists of few workload features. In order to model the above-stated
assumptions, we have chosen Dirichlet prior because of the following reasons:

Fig. 2 Workload characterization using a probabilistic generative model

18835

1 3

Workload characterization and synthesis for cloud using…

(i) Dirichlet is a conjugate prior for discrete distributions so that it simplifies the
mathematical calculations. (ii) Dirichlet distribution can encode the sparsity i.e.,
it can encode the intuition that the requests are generated from few task domains.

In Fig. 2, θr represents each request as a proportion of task domains and θr is
sampled from a Dirichlet distribution with a hyperparameter η and the probability
density function is defined as in Eq. (2). Γ () denotes the gamma function [18].

Dirichlet distribution [5] is parameterized by vector η whose length is the same
as θr . Now, the samples drawn are controlled by η . Depending on the workload
trace, the value of η may vary.

For instance, assume that the requests arriving at a data center are generated
from three different task domains. Dirichlet distribution over three dimensions
forms a simplex in 2-Dimensional space. Figure 3, shows how the Dirichlet
parameter encodes sparsity in the underlying distribution. Each corner represents
the task domain and a sample drawn from the simplex represents the proportion
of task domains in a request.

From Fig. 3 it is observed that, for the values of η less than 1, the distribution
has more mass on the corners and edges of simplex than in the center of the sim-
plex. Hence, drawing the samples from a distribution (shown in 3(b)) allows us to
model the request as a mixture of few task domains. Similarly, a task domain is
modeled as a distribution over few workload features. From Fig. 2, it is observed
that �Tl

 denotes the workload feature proportion in the task domain Tl and is given
in Eq. (3).

From Fig. 2 it can be remarked that only workload features are observed and Bayes-
ian inference [19] can be used to estimate the posterior distribution over the latent
variables given workload features as given in Eq. (4). The objective is to learn the

(2)p
�
�r��

�
=

Γ
�∑�T�

i=1
�i

�

∏�T�
i=1

Γ
�
�i
�

�T��
i=1

�
�i−1

ri

(3)p
�
�Tl

��� =
Γ
�∑�F�

i=1
λi

�

∏�F�
i=1

Γ
�
λi
�

�F��
i=1

�
λi−1

Tli

Fig. 3 Samples from the Dirichlet distribution when a � = 0.05 b � = 0.5 c � = 3

18836 K. Sindhu et al.

1 3

distributions namely, request-task domain distribution and task domain-workload fea-
ture distribution.

From the product rule, p(F|T , θ,�) ⋅ p(T , θ,�) is equivalent to the joint distribution
p(T , θ,�,F) . The joint distribution can be factorized as shown in Eq. (5), by observing
the conditional dependencies from the generative model in Fig. 2.

Equation (6), illustrates the generative model presented in Fig. 2. Initially, each
workload feature in each request is assigned with a task domain

(
trn
)
 , task domain is a

sample drawn from request-task domain distribution
(
θr
)
 which is a multinomial distri-

bution (discrete distribution). Once we know the task domain, we can infer the work-
load features that describe the task domain, from the task domain–workload feature dis-
tribution. This can be analogized with topic models [5] where a document is modeled
as a distribution over topics and each topic is a distribution over words in a vocabulary.

Considering the first two terms from the right-hand side of Eq. (5).

Equation (7) represents the number of workload features that are assigned to each
task domain in the workload trace and nrk. represents how often a workload feature is
assigned with a task domain t in the request r . Now, considering the last two terms on
the right-hand side of Eq. (5), we obtain,

(4)p(T , θ,��F) = p(F�T , θ,�)p(T , θ,�)∑∑∑
T p(T , θ,�,F)

(5)p(T , �,�,F) = p(�|�) ⋅ p(T|�) ⋅ p(�|�) ⋅ p(F|T ,�)

(6)

p(T , �,�,F) =

|R|∏
r=1

p
(
�r|�r

) |R|∏
r=1

|F|∏
i=1

p
(
tri|�r

) |T|∏
k=1

p
(
�k|�k

) |R|∏
r=1

|F|∏
i=1

p
(
fri
|||tri,�

)

(7)

p(���)p(T��) =
�R��
r=1

Dir
�
�r��r

� �R��
r=1

�F��
i=1

�T��
k=1

�
trik
rt

=

⎛⎜⎜⎜⎝

⎛⎜⎜⎜⎝

�R��
r=1

⎛⎜⎜⎜⎝

Γ
�∑�T�

k=1
�i

�

∏�T�
k=1

Γ
�
�i
�
⎞⎟⎟⎟⎠

�T��
k=1

�
�rk−1

rk

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

� �R��
r=1

�F��
i=1

�T��
k=1

�
trik
rk

�

=

⎛
⎜⎜⎜⎝

�R��
r=1

⎛
⎜⎜⎜⎝

Γ
�∑�T�

k=1
�i

�

∏�T�
k=1

Γ
�
�i
�

�T��
k=1

�
�rk−1+nrk.
rk

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

18837

1 3

Workload characterization and synthesis for cloud using…

where |F| represents the set of workload features from all the requests in the work-
load trace and n.kv represents the number of times a workload feature is assigned to
a task domain in any request. From Eqs. (7) and (8), the joint distribution in Eq. (5)
can be written as

In order to compute the posterior distribution as specified in Eq. (4), we have
now calculated the joint distribution which is in the numerator in Eq. (4) and now
we need to calculate the marginal likelihood. To calculate marginal likelihood, we
are integrating out the latent variables, but from Eq. (9) it is observed that it is dif-
ficult to integrate out t, because it is hidden in the variable n. This marginalization is
done according to the process mentioned in [5, 22]. From Fig. 2 it is observed that,
when we are conditioning on observed data, then latent variables are conditionally
dependent on each other.

Due to the intractability in calculating the marginal likelihood, estimation of
posterior distribution cannot be done analytically. To overcome this difficulty, the
proposed model uses Gibbs Sampling which is a specific form of Markov Chain
Monte Carlo (MCMC) process. MCMC is a sampling algorithm in which each ran-
dom sample generated is used to generate the next random sample i.e. generating a
sample from the posterior distribution depends on the current random sample [20,
21]. The proposed model uses Gibbs sampling because it is easy to implement with
a low memory requirement, and converges to the posterior distribution. Gibbs sam-
pling preserves the conditional dependencies [22] among the latent variables while
approximating the posterior.

3.5.1 Approximating inference

This section explains how the Gibbs sampling approximates the posterior distribu-
tion. For instance, if we have a task domain-workload feature assignment t , then we
can estimate proportion of task domain in a request (θ) and proportion of workload

(8)

p(���)p(F�T ,�) =
�T��
k=1

Dir
�
�k��k

� �R��
r=1

�F��
i=1

p
�
fri�cri,�

�

=

⎛
⎜⎜⎜⎝

�T��
k=1

⎛
⎜⎜⎜⎝

Γ
�∑�F�

i=1
�ki

�

∏�F�
i=1

Γ
�
�ki

�
�F��
i=1

�
�ki−1

ki

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

� �R��
r=1

�F��
i=1

� �T��
k=1

�
crik
krri

��

=

⎛
⎜⎜⎜⎝

�T��
k=1

⎛
⎜⎜⎜⎝

Γ
�∑�F�

i=1
�ki

�

∏�F�
i=1

Γ
�
�ki

�
�F��
i=1

�
�ki−1+n.kv
ki

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

(9)

p(T , θ,�,F) =

⎛⎜⎜⎜⎝

�R��
r=1

⎛⎜⎜⎜⎝

Γ
�∑�T�

k=1
ηi

�

∏�T�
k=1

Γ
�
ηi
�

�T��
k=1

θ
ηrk−1+nrk.
rk

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

�T��
k=1

⎛⎜⎜⎜⎝

Γ
�∑�F�

i=1
λti

�

∏�F�
i=1

Γ
�
λti
�

�F��
k=1

�
λki−1+n.kv
ki

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

18838 K. Sindhu et al.

1 3

feature in a task domain (�) . Gibbs sampling considers each workload feature from
the workload trace and estimates the probability of assigning workload feature to
each task domain, conditioned on the other workload features.

Initially, each workload feature in each request is randomly assigned to a task
domain. Gibbs sampler estimates the probability of associating the task domain
Ti ∈ T to the ith feature in a request, by assuming that the associations of the remain-
ing features with task domains are fixed. That is, while identifying the task-feature
association, correlation between features in a request are considered. The estima-
tion of the likelihoods of task-feature associations is done using Eq. (10) [23]. Algo-
rithm 2 outlines Gibbs sampling and parameter estimation.

Assigning a task domain to a workload feature depends on the following:

 (i) The likelihood of the task domain j to be assigned to a request r ∈ R , which
can be calculated as the fraction of features in r that are assigned to the task
domain j.

 (ii) The likelihood of observing feature i in the task domain j , which can be esti-
mated using the proportionality given in Eq. (10).

(10)p
�
ti = j�t−i,F, �, �

�
∝

N
(2)

f ,j
+ �

∑�F�
f=1

N
(2)

f ,j
+ �F��

⋅

N
(1)

r,j
+ �

∑�T�
t=1

N
(1)
r,t + T�

18839

1 3

Workload characterization and synthesis for cloud using…

where N(1)andN(2) are the count matrices of dimensions |R| × |T| and |F| × |T|
respectively. N(2)

f ,j
 is the number of times a workload feature f is assigned to the task

domain j and N(1)

r,j
 is the number of times a task domain j is assigned to workload

features in a request r . Algorithm 2 outlines Gibbs sampling and parameter
estimation.

Equation (10) computes a probability vector that represents the likelihood of each
workload feature to belong to each of the task domains. Based on the task domain
associated with each feature in the request, a workload can be characterized.

Each iteration mentioned in the step 2 of the Algorithm 2 generates a sample that
consists of task domain assignment to each workload feature in the workload trace.
Initial samples generated from the Gibbs sampler will not estimate the posterior dis-
tribution. The samples which approximate the posterior distribution are saved and
used to approximate θ and �.

3.6 Synthetic workload generation

Once the characterization model is built, it can be used to generate synthetic work-
loads. After building the characterization model, the model parameters namely num-
ber of task domains (|T|) , η and λ are known. To generate a synthetic workload,
workload feature distribution is drawn for each task domain. Let M be the number
of requests to be generated and N be the length of each request. For each request, a
distribution over task domains is inferred. Subsequently, workload features in each
request can be generated by first sampling a task domain for the feature from the
task-domain distribution and then sampling a specific value for the feature from the
workload-feature distribution. The process of Synthetic Workload Generation is out-
lined in Algorithm 3. We map the workload feature label that is generated to its
original numerical value, using the following method:

 (i) The name of the workload feature can be used to identify the bin from which
this feature is potentially generated.

 (ii) Based on the boundaries of the bin, the values from the workload trace which
fall into the bin are considered.

 (iii) The distribution that the data follows and the parameters of the distribution
are then inferred.

 (iv) A workload value is sampled from the distribution.

18840 K. Sindhu et al.

1 3

4 Experimental setup and evaluation of the proposed algorithm

In this section, we describe the experiments carried out for evaluating the proposed
workload characterization model. Experiments are conducted on a 12-core Intel (R)
Xeon (R) W-2265 series processor with 12 cores running at 3.50 GHz with 32 GB
RAM. We have used free open-source packages like pandas,1 ldamodel,2 stat mod-
els,3 and matplotlib4 available in python for implementing the proposed method.

4.1 Dataset

To perform our experiments, we have used the Alibaba Cluster Workload Trace [24]
and GWA-T-12 Bit Brains [1] workload trace.

In order to fulfill the computing demands of Machine Learning (ML) work-
loads, Alibaba cloud offers Machine Learning Platform for AI (PAI). Alibaba clus-
ter has 1295 2-GPU machines and 519 8-GPU machines. CPU-to-GPU ratio is less
in machines with 8 GPUs when compared to the machines with 2 GPUs. Alibaba
cluster has released three versions of cluster traces. In our work, we have used the
latest version of the workload trace released in the year 2020. PAI provides various
services covering tasks like feature engineering, training, evaluation, and inference.
Figure 4 shows the architecture of the PAI.

1 https:// pandas. pydata. org.
2 https:// radim rehur ek. com/ gensim/ models/ ldamo del. html.
3 https:// www. stats models. org/ stable/ index. html.
4 https:// matpl otlib. org.

https://pandas.pydata.org
https://radimrehurek.com/gensim/models/ldamodel.html
https://www.statsmodels.org/stable/index.html
https://matplotlib.org

18841

1 3

Workload characterization and synthesis for cloud using…

Alibaba Trace comprises the information about the training and inference jobs
running Machine Learning algorithms in various frameworks [25–27]. When the
user submits a job, the user provides an application code along with a request for the
amount of resources required for executing the job. The trace records the resource
requests and resource usage of workload at multiple levels namely at job level, task
level, and instance level. Trace also records the submission and completion time.
From the trace, it is observed that some workloads in the trace are labeled with
application names.

The different applications found in the trace are Bidirectional Encoder Repre-
sentations from Transformers (BERT), Neural Machine Translation (NMT), Clique
Through Rate prediction (CTR), graph learn, inception, and Residual Neural Net-
work (ResNet). Trace also includes the specifications of the machines present in the
cluster. For our experiments, we have used the workloads which are associated with
application names. In the trace, we have 890,755 records that are associated with
application names.

The trace consists of the tables namely pai_job_table, pai_task_table, pai_
instance_table, pai_sensor_table, pai_group_tag_table, pai_machine_spec and
pai_machine_metric_table. From the tables, with the help of a join operation, we
have extracted the necessary workload features that describes resource requests and
resource usage patterns of jobs submitted to PAI.5

GWA-T-12 Bit Brains Trace contains the performance metrics of 1750 Virtual
Machines from a distributed data center. The different features in the workload trace
are CPU cores, CPU capacity provisioned [MHZ], CPU usage [MHZ], CPU usage
[%], Memory capacity provisioned, Memory usage [KB], Disk read throughput
[KB/s], Disk write throughput [KB/s], Network received throughput [KB/s], and
Network transmitted throughput [KB/s]. Table 2 shows the statistics of the workload

Framework (Tensor Flow, PyTorch, RAY)

Job Submission

Parameter
server

Division into
tasks

User 1 User 2 User N

Evaluator Worker

Resource Scheduler and Monitor

Resources (GPU, CPU, Memory and Network)

Fig. 4 Framework of PAI

5 https:// github. com/ sindh u1018/ aliba ba_ workl oad_ trace.

https://github.com/sindhu1018/alibaba_workload_trace

18842 K. Sindhu et al.

1 3

traces used in our experiments and the detailed statistics of Alibaba PAI Trace and
BBT workload trace are shown in Tables 3 and 4.

In Table 3, plan_cpu represents the number of CPU cores requested in percent-
age, plan_mem is the amount of main memory requested in GB, plan_gpu denotes
the number of GPUs requested in percentage, gpu_wrk_util denotes the number of
GPUs used in percentage, cpu_usage denotes the number of CPU cores used in per-
centage, avg_mem represents in GB the main memory used in average, max_mem
represents the maximum main memory used in terms of GB, avg_gpu_wrk_mem
represents in GB the GPU memory used in average and max_gpu_wrk_mem
denotes the maximum GPU memory used in GB.

4.2 Discretization

In this section, we describe the discretization procedure adopted for BBT workload
trace and the same procedure is followed for Alibaba cluster workload trace. In BBT
each request for application is described by ten features. After preprocessing, discre-
tization is performed as described in Algorithm 1. The number of bins and ranges
for each feature for the BBT trace are as shown in Table 5. For the Alibaba trace, the
number of bins created for the features plan_cpu, plan_gpu, plan_mem, cpu_usage,
gpu_wrk_util, avg_mem, and max_mem is 3,4,6,15,9,10, and 9 respectively. From
Table 5, it is observed that the number of bins for the feature CPU core is 3 and
ranges of bins are:

Bin 1: 0 ≤ X < 9.
Bin 2: 9 ≤ X < 24.

Table 2 Workload Trace
Statistics

S.No Workload Trace Period of data
collection

Number of VMs

1 BBT 4 months 1750
2 Alibaba 2 months 1814 (6742 GPUs)

Table 3 Alibaba Cluster Workload Trace

Mean Median Standard Deviation Width of the Range

Plan_cpu 514.29 600 356.91 6399
Plan_mem 18.52 19.53 15.64 292.87
Plan_gpu 59.63 50.00 54.95 799
GPU_wrk_util 11.71 4.84 20.57 423.20
CPU_usage 201.89 96.33 373.19 8673.34
Avg_mem 4.02 2.56 5.90 240.34
Max_mem 7.48 3.49 15.81 2262.83
Avg_gpu_wrk_mem 1.37 0.54 2.66 147.75
Max_gpu_wrk_mem 2.25 0.76 3.31 151.10

18843

1 3

Workload characterization and synthesis for cloud using…

Ta
bl

e
4

 B
B

T
w

or
kl

oa
d

tra
ce C

PU
 c

ap
ac

ity
 p

ro
vi

-
si

on
ed

 [M
H

Z]
C

PU
 u

sa
ge

 [M
H

Z]
M

em
or

y
ca

pa
ci

ty

pr
ov

is
io

ne
d

[K
B

]
M

em
or

y
us

ag
e

[K
B

]
D

is
k

re
ad

 th
ro

ug
h-

pu
t [

K
B

/s
]

D
is

k
w

rit
e

th
ro

ug
hp

ut

[K
B

/s
]

M
ea

n
81

16
.0

8
12

60
.5

4
10

,4
50

,4
38

.2
9

92
23

.3
7

33
5.

58
74

.1
9

M
ed

ia
n

51
99

.9
9

58
.5

2
92

,2
33

.7
2

92
23

.3
7

0
1.

66
St

an
da

rd
 D

ev
ia

tio
n

92
23

.3
7

42
80

.6
9

29
,9

21
,6

29
.6

3
92

23
.3

7
51

80
.4

8
11

09
.7

2
R

an
ge

86
,3

99
.9

8
63

,8
76

.5
5

53
6,

30
9,

76
0

40
2,

65
3,

18
4

92
2.

33
92

2.
33

18844 K. Sindhu et al.

1 3

Ta
bl

e
5

 B
in

s c
re

at
ed

 a
fte

r d
is

cr
et

iz
at

io
n

S.
N

o
W

or
kl

oa
d

Fe
at

ur
e

N
um

be
r

of
 b

in
s

R
an

ge

1
C

PU
 c

or
es

3
[0

, 9
, 2

4,
 3

2]
2

C
PU

 c
ap

ac
ity

 p
ro

vi
si

on
ed

 [M
H

Z]
9

[0
, 1

37
1.

63
, 4

03
9.

96
, 8

04
2.

81
, 1

3,
 1

74
.4

8,
 1

8,
 3

07
.1

2,
 3

1,
 4

84
.2

5,
 6

4,
 1

77
.1

0,
 8

6,
 3

99
.9

5,
 8

6,
 3

99
.9

8]
3

C
PU

 u
sa

ge
 [M

H
Z]

11
[0

, 1
92

4.
85

, 6
97

7.
96

, 1
3,

 2
43

.5
9,

 1
8,

 6
84

.7
4,

 2
2,

 5
25

.2
8,

 2
9,

 2
43

.7
5,

 3
8,

 6
56

.6
7,

 4
8,

 1
85

.0
5,

 5
4,

 5
58

.0
5,

57

, 0
75

.7
3,

 6
3,

 8
76

.5
5]

4
C

PU
 u

sa
ge

 [%
]

12
[0

, 4
.9

7,
 1

5.
39

, 2
9.

45
, 4

5.
09

, 6
1.

11
, 7

6.
64

, 8
9.

72
, 9

9.
09

, 1
06

.3
7,

 1
16

.6
2,

 1
55

.0
1,

 1
86

.6
]

5
M

em
or

y
pr

ov
is

io
ne

d
(K

B
)

15
[0

, 7
.3

14
37

66
9e

 +
 06

, 1
.7

01
44

50
0e

 +
 07

, 2
.8

27
17

79
3e

 +
 07

, 4
.3

46
80

75
0e

 +
 07

, 5
.8

07
76

38
5e

 +
 07

,
6.

56
50

67
53

e +
 07

, 7
.0

90
23

71
6e

 +
 07

, 7
.9

86
63

06
9e

 +
 07

, 9
.3

70
39

70
3e

 +
 07

, 1
.1

72
39

13
6e

 +
 08

,
1.

42
42

40
85

e +
 08

, 1
.9

89
93

87
5e

 +
 08

, 2
.5

69
99

16
3e

 +
 08

, 4
.0

26
38

60
9e

 +
 08

, 5
.3

63
09

e +
 08

]
6

M
em

or
y

us
ag

e
(K

B
)

13
[0

, 7
.4

43
30

54
4e

 +
 05

, 2
.7

87
25

77
6e

 +
 06

, 5
.6

62
02

51
8e

 +
 06

, 9
.0

26
54

16
4e

 +
 06

, 1
.3

08
27

72
8e

 +
 07

,
2.

16
14

40
24

e +
 07

, 4
.1

56
56

50
9e

 +
 07

, 7
.0

93
59

45
0e

 +
 07

, 1
.4

40
34

85
9e

 +
 08

, 2
.4

74
08

01
1e

 +
 08

,
3.

29
48

73
14

e +
 08

, 3
.8

40
69

19
0e

 +
 08

, 4
.0

26
53

18
4e

 +
 08

]
7

D
is

k
re

ad
 th

ro
ug

hp
ut

 (K
B

/s
)

2
[0

, 4
5,

 0
16

.6
6,

 1
, 4

44
, 4

06
.9

3]
8

D
is

k
w

rit
e

th
ro

ug
hp

ut
 (K

B
/s

)
11

[0
, 1

46
4.

81
, 5

41
1.

26
, 1

1,
 8

70
.9

6,
 2

2,
 7

72
.5

4,
 3

5,
 4

50
.7

3,
 4

9,
 8

67
.6

8,
 7

2,
 6

17
.9

6,
 9

8,
 5

65
.7

9,
 1

25
,

74
6.

19
, 1

54
, 9

03
.4

4,
 1

92
, 4

05
.8

0]
9

N
et

w
or

k
re

ce
iv

ed
 th

ro
ug

hp
ut

 (K
B

/s
)

8
[0

, 5
.8

91
5e

 +
 02

, 2
.4

93
49

e +
 03

, 6
.2

62
89

e +
 03

, 1
.2

91
06

23
3e

 +
 04

, 2
.2

19
03

84
1e

 +
 04

, 3
.5

17
83

99
2e

 +
 04

,
4.

61
10

64
61

e +
 05

, 8
.7

91
22

50
0e

 +
 05

]
10

N
et

w
or

k
tra

ns
m

itt
ed

 th
ro

ug
hp

ut
 (K

B
/s

)
8

[0
, 2

.3
46

24
19

7e
 +

 03
, 1

.0
19

01
58

9e
 +

 04
, 2

.5
39

12
43

5e
 +

 04
, 5

.6
21

98
88

1e
 +

 04
, 1

.0
55

72
49

6e
 +

 05
,

1.
79

42
41

92
e +

 05
, 1

.7
47

33
23

6e
 +

 06
, 3

.2
69

59
81

2e
 +

 06
]

18845

1 3

Workload characterization and synthesis for cloud using…

Bin 3: 24 ≤ X ≤ 31.
Here X represents the CPU cores feature from BBT workload trace.

4.3 Workload characterization

4.3.1 Result analysis of BBT trace

After discretization, each value in the input request is replaced with a string “bin
number_workload feature”. Now, each request in the workload trace consists of a
set of strings. The proposed model is trained with 80% of the requests and 20% are
used for evaluating the performance of the model. In order to decide the number
of task domains involved in generating the workload trace, coherence measure is
used. Coherence measures the conditional likelihood of workload features in a task
domain. Coherence score is calculated using Eqs. (11) and (12).

where Tl is the task domain, score is calculated for each task domain and then aver-
age value of score of all the task domains is taken as a coherence value. Coherence
score of a task domain depends on the co-occurrence of workload features.

We have trained the proposed model by varying the values of the parameters
namely η , λ, and |T| , and the corresponding coherence value is measured. The car-
dinality of T at which the coherence score is maximum is considered as number of
task domains. If we have maximum coherence at different values, then to decide the
best value for number of task domains we have calculated the perplexity. Perplexity
measures the generative capability of the trained model and it is the inverse of geo-
metric mean.

where Rtest represents the set of requests in the test data, Fi represents the feature
values in ith request in test data, and ||Fi

|| represents the number of feature values in ith
request. From Eq. (13), it is observed that perplexity is a decreasing function of the
likelihood of unseen requests. The lower the perplexity, the better the model.

4.3.2 Effect of hyperparameters

To limit the number of possible combinations of η, λ, and|T| , we have set a per-
missible range of values for �, � . This section outlines the selection of appropriate
ranges for the hyperparameters � and λ. The parameter � represents request-task

(11)coherence
(
Tl
)
=

∑
(fi,fj)∈Tl

score
(
fi, fj

)

(12)score
(
fi, fj

)
= log

p
(
fi, fj

)
+ ∈

p
(
fi
)
∗
(
fj
)

(13)perplexity
�
Rtest

�
= exp

�
−

∑M

i=1
log p

�
Fi

�
∑M

i=1
��Fi

��

�

18846 K. Sindhu et al.

1 3

domain density and λ represents task domain-workload feature density. When � is
small, it indicates that each request is generated from few task domains. If � is large,
it indicates that more kinds of tasks are involved in generating a request. However,
setting � to a large value may result in overlapped task domains; thereby facilitating
the consolidation of different yet closely-related task domains.

In our experiments, we have chosen � from [0.01, 0.05, 0.1, 0.5] because typi-
cally, each request is generated from only one or two task domains. For instance,
in Alibaba workload trace, each request is from a specific kind of Machine Learn-
ing task. So, we have chosen a small value for � . Figure 5 shows the effect of � , we
have considered three task domains for interpretation. From Fig. 5 it is observed that
when � = 0.01 , the requests are concentrated to the boundaries indicating that each
request is generated from a specific task domain. Similarly, when λ is small, task
domain may consist of few workload feature values and when λ is large, each task
domain contains most of the workload features. It is typically not possible to char-
acterize a task domain with less workload features, and hence in our experiments
we have chosen � from [0.5, 1, 1.5, 2], thereby a request with a minimum workload
feature also can be accurately characterized.

Fig. 5 Effect of the hyperparameter � a � = [0.01, 0.01, 0.01] b � = [1, 1, 1] (c) � = [0.1,0.1,0.1] d
� = [0.02, 0.01, 5.0]

18847

1 3

Workload characterization and synthesis for cloud using…

4.3.3 Identifying the number of task domains

To determine the number of task domains from which workload trace has been gen-
erated, coherence measure is used as given in Eq. (11) and Eq. (12). While trying
to fix the number of task domains, we have varied the values of Dirichlet priors as
explained in Sect. 4.3.1 to determine the influence of the Dirichlet priors on coher-
ence. Finally, the value at which coherence is maximum is set as the number of task
domains. Figure 5 shows the coherence values for different task domains.

From Fig. 6, for BBT it is observed that workload trace is generated from five
categories of tasks and it has a peak value at T = 5, 7 . so, we have validated the
LDA model by calculating the perplexity and results are shown in Table 6. From
Table 6, it is observed that the model with number of task domains as five, yields
a lower perplexity, and the corresponding hyperparameter (η, λ) values are (0.5, 1).

After identifying the number of task domains, each workload feature is associ-
ated with a task domain, and task domains are labeled based on the distribution � .
Virtual Machines in the Bit Brains Trace host the applications related to business
computations for enterprises. Therefore, the requests may be generated from tasks
such as batch tasks, web service tasks, interactive tasks, and Online Transaction Pro-
cessing tasks. Next, each request in the workload trace is assigned to a task domain
based on the number of features assigned to a task domain. For example, if a request

Fig. 6 Deciding the number of task domains for BBT trace

Table 6 Perplexity of BBT trace

S.No (η,λ) perplexity(|T| = 5) Perplexity (|T| = 7)

1 (0.01, 0.01) 226.74 257.86
2 (0.05, 0.1) 185.91 195.32
3 (0.5, 1) 156.46 168.86
4 (0.01, 2) 253.01 312.24
5 (0.3, 1) 170.72 182.20
6 (0.01, 0.1) 209.67 223.54

18848 K. Sindhu et al.

1 3

consists of most of the workload features from the task domain j , then the request is
considered to have been generated from the task domain j . Table 7 shows the task
domains and their resource utilization levels based on workload features associated
with task domains.

Task domain 1, consists of the workload features {0_CPU usage [MHZ], 0_CPU
capacity provisioned [MHZ], 1_CPU capacity provisioned [MHZ], 0_CPU usage
[%], 0_Memory usage [KB], 0_Memory capacity provisioned [KB], 0_Disk read
throughput (KB/s), 0_Network transmitted throughput [KB/s], 0_Network received
throughput [KB/s], 0_Disk write throughput [KB/s]}.

From the workload features present in task domain 1, with respect to CPU uti-
lization it is observed that task domain 1 consists of the requests where the maxi-
mum CPU utilization is 4.97% of the CPU resource provisioned (From Table 4).
Similarly, task domain 1 consists of requests where the maximum CPU utilization
is 106% of the CPU resource provisioned. This kind of characterization of requests
with respect to resource utilization will help in avoiding resource over provisioning
and under provisioning.

From Table 7, it is observed that if a request is generated from the task domain 1,
then the request needs a low volume of the resources namely CPU, Memory, Disk,
and Network. The requests that are generated from the task domain 3 are a mix of
CPU and memory and their utilization levels are high.

Table 7 Task domains and their resource utilization levels

Task Domain Utilization Levels

1 low_CPU usage, low_memory utilization, low_disk utilization, low_network utilization
2 medium_CPU usage, low_memory utilization, low_network utilization
3 high_CPU usage, high_memory utilization
4 low_CPU usage, low_memory utilization, high_disk utilization, high_network utilization
5 low_CPU usage, medium_memory utilization, low_network utilization

Fig. 7 Resource plan and usage of CTR instances a CPU b GPU

18849

1 3

Workload characterization and synthesis for cloud using…

4.4 Result analysis of Alibaba trace

In this section, the characteristics of tasks in the Alibaba trace are studied and com-
pared with the characteristics generated by proposed model. Alibaba trace consists
of resource request and usage patterns of different applications namely BERT,
NMT, CTR, graph learn, inception and ResNet. Figure 7 shows the request and
usage of resources namely CPU and GPU. From Fig. 7a, it is observed that 45% of
CTR instances are using a greater number of CPU cores than requested and from
Fig. 7b it is observed that GPU utilization is low. Figure 8 shows the comparison
between GPU usage levels of CTR and BERT instances. From Fig. 8, it is observed
that BERT instances use higher levels of GPU than CTR instances.

4.4.1 Identifying the task domains for Alibaba Trace

From the Fig. 9, it is observed that coherence value is maximum when the number
of task domains is taken around 6 and 7 . To resolve the tie, we have calculated the
perplexity of the test data. The perplexity values at task domains 6 and 7 are 1004.07
and 1208.66 respectively. Therefore, in our experiments, for Alibaba workload trace
the number of task domains are set to 6 . After deciding the number of task domains,
our model is applied to obtain the workload features in each task domain.

Table 8 shows the task domains and their resource request and utilization. From
Table 8, it is observed that the task domain 1 consists of the workload features
where the GPU utilization is low when compared with CPU utilization and from
the original Alibaba Workload Trace, graphlearn application related instances have
a low GPU utilization and High CPU utilization [28], therefore task domain1 can be
labeled with graphlearn. Similarly, task domains 2, 3, 4, 5, and 6 are labeled with
NMT, BERT, CTR, ResNet and inception respectively. For each feature, the utiliza-
tion levels (low, medium or high) are decided based on the minimum and maximum
values in the workload feature.

Fig. 8 GPU usage levels of CTR
and BERT instances

18850 K. Sindhu et al.

1 3

5 Evaluating synthetic workload

In this section, we present a comparison between the synthetic and real workload.
The goal is to determine whether the synthetic workload reflects the real workload.

5.1 Comparing synthetic and real workload using correlation coefficient

Synthetic and real workloads are compared by calculating Pearson Correlation Coef-
ficient (PCC) between the workload features. PCC results a value in the range [− 1,
1]. If the correlation coefficient between the two features is zero then it indicates the
features are unrelated. For BBT real workload, the correlation coefficient between
CPU capacity provisioned and memory capacity provisioned is 0.68. Synthetic
workload generated using the procedure mentioned in Sect. 3.6 is available in the
GitHub repository.6 The correlation coefficient between CPU capacity provisioned
and memory capacity provisioned is 0.43. For real workload, the correlation coef-
ficient between CPU capacity provisioned and CPU usage is 0.35. For synthetic

Fig. 9 Deciding the number of task domains for Alibaba Workload Trace

Table 8 Task domains and their resource utilization levels

Task Domain Utilization Levels

1 low_GPU utilization, high_CPU utilization, medium_memory utilization
2 high_GPU utilization, high_CPU utilization, high_memory utilization
3 medium_GPU utilization, high_CPU utilization, medium_memory utilization
4 low_GPU utilization, medium_CPU utilization, high_memory utilization
5 high_GPU utilization, high_CPU utilization, medium_memory utilization
6 high_GPU utilization, low_CPU utilization, high_memory utilization

6 https:// github. com/ sindh u1018.

https://github.com/sindhu1018

18851

1 3

Workload characterization and synthesis for cloud using…

workload, the correlation coefficient between CPU capacity provisioned and CPU
usage is 0.39.

From the PCC measure, it is observed that the workload features namely, CPU
capacity provisioned and memory capacity provisioned are positively correlated in
both real workload trace and synthetic workload trace. Similarly, CPU capacity pro-
visioned and CPU usage are also positively correlated in both real workload trace
and synthetic workload trace.

5.2 Comparing synthetic and real workload using distribution fit

To compare synthetic and real workload trace, we have fitted different distributions and
we have selected the distributions that fits the data better, based on Akaike Information
Criterion (AIC) [29]. AIC estimates the relative amount of information loss of a given
model. Therefore, the distribution with a low AIC score will fit the data better. AIC
score is calculated using Eq. (14). Results of distribution fit are shown in Tables 8 and
9.

where d is the number of observations, s is the number of parameters and L is the
maximum likelihood for the estimated model.

Table 9 shows the distributions that generate the BBT workload trace. Different
workload features in the BBT trace follow different distributions. From Table 9 it
is observed that the workload feature CPU capacity provisioned follows an expo-
nential distribution because exponential distribution has the lowest AIC score when
compared with the other distributions.

(14)AIC =
(

2d

d − s − 1

)
k − 2 ln (L)

Table 9 Distribution Fit of real workload trace

Workload Feature Exponential Lognormal Gamma Normal Rayleigh

CPU capacity provisioned 2111 6149 4812 3241 2974
CPU usage 10,380 10,299 10,125 11,470 11,608
Memory capacity provisioned 3925 3526 1836 4850 4648
Memory Usage 18,235 18,089 18,242 19,683 19,359

Table 10 Distribution Fit of synthetic workload trace

Workload Feature Exponential Lognormal Gamma Normal Rayleigh

CPU capacity provisioned 11,650 13,500 11,668 12,092 11,939
CPU usage 11,229 12,503 11,046 11,769 11,202
Memory capacity provisioned 20,750 23,254 20,738 21,215 21,048
Memory Usage 19,505 19,438 19,484 21,354 21,101

18852 K. Sindhu et al.

1 3

From Table 9 and Table 10, it is observed that the workload feature CPU usage
from real workload trace and synthetic workload fits to gamma distribution, sim-
ilarly, memory usage fits to lognormal distribution. From this, it is observed that
workload features in both synthetic and real workload are generated from same
probability distributions. In Tables 9 and 10, the bold values represent the distribu-
tions that model the corresponding workload features well.

5.3 Comparing synthetic and real workload using a statistical test

To prove that the synthetic workload generated by the proposed model is simi-
lar to the real workload trace, we have performed Wilcoxon test [30]. To perform
Wilcoxon test, the null hypothesis (H0) and alternate hypothesis

(
HA

)
 is set-up as

follows:

where MR
fi
 denotes the median of ith workload feature in the real workload trace and

MS
fi
 denotes the median of ith workload feature in synthetic workload trace.
Table 11 shows the statistical test results. Each row in the table describes the

test statistic obtained by performing Wilcoxon’s test between the workload fea-
tures in real workload trace and synthetic workload trace. As seen in Table 11,
the Wilcoxon tests do not provide sufficient evidence to reject the null hypoth-
esis at 99% confidence level and hence there is sufficient statistical evidence to
assert that the synthetic workload generated by the model is representative of
the real workload trace.

H0 ∶ MR
fi
= MS

fi

HA ∶ MR
fi
≠ MS

fi

Table 11 Test Statistics S.No Quantity Under Test Test Statistic

1 CPU capacity provisioned 0.1209
2 CPU usage 0.0581
3 Memory provisioned 0.8829
4 Memory usage 0.0719
5 Disk read throughput 0.0299
6 Disk write throughput 0.2949
7 Network received throughput 0.1933
8 Network transmitted throughput 0.3163

18853

1 3

Workload characterization and synthesis for cloud using…

6 Conclusion and future work

In this paper, we have proposed a workload characterization technique for Cloud
based on a probabilistic graphical model. The proposed model overcomes the
difficulties in handling heterogeneous requests arriving at a data center because
the model can learn from an attribute set of varying lengths. In the proposed
model, Latent Dirichlet Allocation is used and the proposed characterization
model can be used for generating synthetic workloads that are representative of
the real workload. The representativeness of the synthetic workload is quantified
in two ways (i) using correlation metric (ii) identifying a distribution that best
fits the data and (iii) by performing statistical tests. From the experiments it is
observed that the correlation between the workload features in the real-world
workload trace and in synthetic workload trace are similar, and also the distri-
bution that fits real-world trace and that of the synthetic workload are similar.
The proposed model is capable of identifying the properties of task domains
that have generated the workload trace. In future, we are planning to develop a
temporal workload characterization model and investigate its applicability to the
tasks like future workload prediction, and task scheduling.

Acknowledgements The authors would like to thank Mr. Gaurav and Mr. Sukhdev Singh who are under-
graduate students in National Institute of Technology Andhra Pradesh, for their help with dataset collec-
tion and experimental setup.

Funding This work has been sponsored by LinkedIn under a research grant for the project entitled “A
Scalable Resource Requirement Prediction and Provisioning Framework for Elastic Cloud”.

Data availability statement Real workload traces available at Bit Brains [1] and Alibaba cluster traces
[24] have been used. The synthetic workloads generated from the proposed model are available in the
GitHub repository that is accessible through https:// github. com/ sindh u1018.

References

 1. Shen S, van Beek V, and Iosup A (2015) Statistical characterization of business-critical workloads
hosted in cloud datacenters In proc 15th IEEE/ACM Int’l Symp. Cluster, Cloud, and Grid Comput-
ing (CCGRID 15)

 2. Cano I, Aiyar S and Krishnamurthy A (2016) Characterizing private clouds: a large-scale empirical
analysis of enterprise clusters In proc 7th ACM Symposium on Cloud Computing (SoCC 16)

 3. Mishra A, Hellerstein J, Cirne W, Das C (2010) Towards characterizing cloud backend workloads:
insights from google compute clusters. ACM SIGMETRICS Perform Eval Rev 37(4):34–41. https://
doi. org/ 10. 1145/ 17733 94. 17734 00

 4. Patel E, Kushwaha DS (2020) Clustering cloud workloads: K-Means vs Gaussian mixture model.
Procedia Computer Sci 171:158–167. https:// doi. org/ 10. 1016/j. procs. 2020. 04. 017

 5. Blei D, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022
 6. Mahambre S, Kulkarni P, Bellur U, Chafle G and Deshpande D (2012) Workload characterization

for capacity planning and performance management in IaaS cloud In IEEE International Conference
on Cloud Computing in Emerging Markets (CCEM 12) https:// doi. org/ 10. 1109/ CCEM. 2012. 63546
24

https://github.com/sindhu1018
https://doi.org/10.1145/1773394.1773400
https://doi.org/10.1145/1773394.1773400
https://doi.org/10.1016/j.procs.2020.04.017
https://doi.org/10.1109/CCEM.2012.6354624
https://doi.org/10.1109/CCEM.2012.6354624

18854 K. Sindhu et al.

1 3

 7. Nemati H, Azhari SV, Shakeri M, Dagenais M (2021) Host-based virtual machine workload charac-
terization using hypervisor trace mining. ACM Trans Model Perform Eval Comput Syst 6(1):1–25.
https:// doi. org/ 10. 1145/ 34601 97

 8. Shishira S, Kandasamy A and Chandrasekaran K (2017) Workload characterization: survey of cur-
rent approaches and research challenges In proc 7th International Conference on Computer and
Communication Technology (ICCCT17)

 9. Williams A, Arlitt M, Williamson C, Barker K (2005) Web workload characterization: ten years
later. In: Tang X, Xu J, Chanson ST (eds) Web content delivery, vol 2. Springer, New York

 10. Menasct A, D A, Almeida V, Fonseca R, and Mendes MA (1999) A methodology for workload
characterization of E-commerce sites In proc ACM Conference on Electronic Commerce (EC 99)

 11. Khan A, Yan X, Tao S, Anerousis N (2012) Workload characterization and prediction in the cloud: a
multiple time series approach. IEEE Netw Oper Manag Symp. https:// doi. org/ 10. 1109/ NOMS. 2012.
62120 65

 12. Aragon H, Braganza S, Boza EF, Parrales J, Abad CL (2019). Workload characterization of a soft-
ware-as-a-service web application implemented with a microservices architecture In proc World
Wide Web Conference (WWW ’19)

 13. Shekhawat VS, Gautam A and Thakrar A (2018) Datacenter workload classification and characteri-
zation: an empirical approach In proc IEEE 13th International Conference on Industrial and Infor-
mation Systems (ICIIS 18)

 14. Birke R, Chen LY, Smirni E (2014) Multi-resource characterization and their (in) dependencies in
production datacenters In 2014 IEEE Network Operations and Management Symposium (NOMS)
(pp 1–6) IEEE

 15. Jung G, Sharma N, Goetz F, Mukherjee T (2013) Cloud capability estimation and recommendation
in black-box environments using benchmark-based approximation In 2013 IEEE Sixth International
Conference on Cloud Computing (pp 293–300) IEEE

 16. Tsyrulnikov M, Rakitko A (2019) Impact of non-stationarity on hybrid ensemble filters: a study
with a doubly stochastic advection-diffusion-decay model. Q J R Meteorol Soc 145(722):2255–2271

 17. Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21(153):65–66. https:// doi. org/
10. 1080/ 01621 459. 1926. 10502 161

 18. Sebah P, Gourdon X (2002) Introduction to the gamma function. Am J Sci Res. https:// www. csie.
ntu. edu. tw/ ~b89089/ link/ gamma Funct ion. pdf. Accessed 10 June 2022

 19. Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Wiley, USA
 20. van Ravenzwaaij D, Cassey P, Brown SD (2018) A simple introduction to Markov Chain Monte-

Carlo sampling. Psychon Bull Rev 25:143–154. https:// doi. org/ 10. 3758/ s13423- 016- 1015-8
 21. Gilks WR, Richardson S, Spiegelhalter DJ (eds) (1996) Markov chain Monte Carlo in practice.

Chapman & Hall/CRC, Boca Raton
 22. Teh YW, Newman D and Welling M (2006) A collapsed variational bayesian inference algorithm

for latent dirichlet allocation In proc. 19th International Conference on Neural Information Process-
ing Systems Advances in Neural Information Processing Systems

 23. Darling WM (2011) A theoretical and practical implementation tutorial on topic modeling and gibbs
sampling-school of computer science. In: Proc.49th annual meeting of the association for computa-
tional linguistics: human language technologies

 24. Alibaba production cluster data. https:// github. com/ aliba ba/ clust erdata
 25. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M,

Kudlur M et al. (2016) TensorFlow: a system for large-scale machine learning In Proc USENIX
OSDI

 26. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N,
Antiga L et al. (2019) PyTorch: an imperative style, high-performance deep learning library In Proc.
NeurIPS

 27. Zhu R, Zhao K, Yang H, Lin W, Zhou C, Ai B, Zhou J et al. (2019) Aligraph: a comprehensive
graph neural network platform arXiv preprint arXiv: 1902. 08730

 28. Weng Q, Xiao W, Yu Y, Wang W, Wang C, He J, Li Y, Zhang L, Lin W, Ding Y (2022) MLaaS in
the wild: workload analysis and scheduling in large-scale heterogeneous GPU clusters to appear
in the 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’22),
Renton, WA

 29. Hastie T, Tibshirani R, Friedman J (2009) Model assessment and selection In: The elements
of statistical learning Springer Series in Statistics. Springer, New York https:// doi. org/ 10. 1007/
978-0- 387- 84858-7_7

https://doi.org/10.1145/3460197
https://doi.org/10.1109/NOMS.2012.6212065
https://doi.org/10.1109/NOMS.2012.6212065
https://doi.org/10.1080/01621459.1926.10502161
https://doi.org/10.1080/01621459.1926.10502161
https://www.csie.ntu.edu.tw/~b89089/link/gammaFunction.pdf
https://www.csie.ntu.edu.tw/~b89089/link/gammaFunction.pdf
https://doi.org/10.3758/s13423-016-1015-8
https://github.com/alibaba/clusterdata
http://arxiv.org/abs/1902.08730
https://doi.org/10.1007/978-0-387-84858-7_7
https://doi.org/10.1007/978-0-387-84858-7_7

18855

1 3

Workload characterization and synthesis for cloud using…

 30. Wilcoxon F (1992) Individual comparisons by ranking methods. In: Kotz S, Johnson NL (eds)
Breakthroughs in statistics. Springer series in statistics, 1st edn. Springer, New York, pp 196–202

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Workload characterization and synthesis for cloud using generative stochastic processes
	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Problem formulation
	3.2 Phases in the proposed methodology
	3.3 Pre-processing
	3.4 k-bin discretization
	3.5 Workload characterization using probabilistic generative model
	3.5.1 Approximating inference

	3.6 Synthetic workload generation

	4 Experimental setup and evaluation of the proposed algorithm
	4.1 Dataset
	4.2 Discretization
	4.3 Workload characterization
	4.3.1 Result analysis of BBT trace
	4.3.2 Effect of hyperparameters
	4.3.3 Identifying the number of task domains

	4.4 Result analysis of Alibaba trace
	4.4.1 Identifying the task domains for Alibaba Trace

	5 Evaluating synthetic workload
	5.1 Comparing synthetic and real workload using correlation coefficient
	5.2 Comparing synthetic and real workload using distribution fit
	5.3 Comparing synthetic and real workload using a statistical test

	6 Conclusion and future work
	Acknowledgements
	References

