
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:17378–17402
https://doi.org/10.1007/s11227-022-04566-5

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave
radiative transfer scheme on GPU

Fei Li1 · Yuzhu Wang1 · Zhenzhen Wang1 · Xiaohui Ji1 · Jinrong Jiang2 ·
Xiaoyong Tang3 · He Zhang4

Accepted: 26 April 2022 / Published online: 18 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Atmospheric radiation is one of the most important atmospheric physics, and its
expensive computation cost severely restricts the numerical simulation of atmos-
pheric general circulation models. Therefore, it is necessary to study an efficient
radiation parameterization scheme. Due to the powerful computing power of GPU,
more and more numerical models are being transplanted to GPU. The CUDA C ver-
sion (CC-RRTMG_SW) of the rapid radiative transfer model for general circula-
tion models (RRTMG) shortwave radiation scheme (RRTMG_SW) has successfully
run on GPU, but its computing efficiency is not yet very high, and the performance
potential of GPU computing needs to be realized further. This paper is dedicated to
optimizing CC-RRTMG_SW and exploring its maximum computing performance
on GPU. First, a three-dimensional acceleration algorithm for CC-RRTMG_SW is
proposed. Then, some optimization methods, such as decoupling data dependency,
optimizing memory access, and I/O optimization, are studied. Finally, the opti-
mized version of CC-RRTMG_SW is developed, namely CC-RRTMG_SW++. The
experimental results demonstrate that the proposed acceleration algorithm and per-
formance optimization methods are effective. CC-RRTMG_SW++ achieved good
acceleration effects on different GPU architectures, such as NVIDIA Tesla K20,
K40, and V100. Compared to RRTMG_SW running on a single Intel Xeon E5-2680
v2 CPU core, CC-RRTMG_SW++ obtained a speedup of 99.09× on a single V100
GPU without I/O transfer. Compared to CC-RRTMG_SW, the computing efficiency
of CC-RRTMG_SW++ increased by 174.46%.

Keywords Graphics processing unit · Compute unified device architecture
programming · Performance optimization · Shortwave radiative transfer

 * Yuzhu Wang
 wangyz@cugb.edu.cn

 * He Zhang
 zhanghe@mail.iap.ac.cn

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0449-2973
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04566-5&domain=pdf

17379

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

1 Introduction

The weather and climate changes have a significant impact on people’s productiv-
ity and lives. Using climate models to predict future climate conditions plays an
important role in planning social production and formulating disaster prevention
measures [1]. In climate models, whether the distribution and alteration of radi-
ation from the Earth’s surface can be simulated reasonably and accurately will
greatly affect the prediction of future weather and climate changes [2]. Radia-
tive transfer is one of the key issues in atmospheric physics; it consumes a large
amount of computing resources among all atmospheric physical processes [3].
Therefore, developing a high-accuracy and high-speed radiative transfer model
is very meaningful for global atmospheric modeling. The rapid radiative transfer
model for general circulation models (RRTMG) is a related k-distribution model
that calculates the longwave and shortwave radiative flux and heating rate in the
atmosphere [4–6]. Due to the high accuracy of RRTMG, it has been applied in
weather forecasts and climate models [7, 8]. For example, the Institute of Atmos-
pheric Physics of CAS Atmospheric General Circulation Model Version 4.0 (IAP
AGCM4.0) [9] uses RRTMG as its radiation parameterization scheme. Although
RRTMG has a quite fast calculation speed, it still occupies 15% to 25% of the cal-
culation time for the entirety of the atmospheric physics in IAP AGCM4.0. With
the development of high-resolution atmospheric circulation models, the calcula-
tion amount of RRTMG will increase exponentially, which will seriously limit
the performance of large-scale simulation calculations. Thus, it is necessary to
further accelerate RRTMG.

GPUs (Graphics Processing Units) have powerful floating-point comput-
ing capabilities, high memory access bandwidth, and many computing cores.
In today’s era of green high-performance computing, the application of GPU-
accelerated numerical computing is becoming more and more widespread [10].
The original RRTMG is with serial computing. Given the advantages of GPU-
based parallel computing, using GPU to accelerate radiative transfer schemes has
become a quite feasible and valuable research direction [11, 12].

At present, there have been some acceleration algorithms for radiative transfer
scheme. In 2019, Wang et al. developed a GPU version of an RRTMG longwave
radiation scheme (RRTMG_LW) using CUDA Fortran called G-RRTMG_LW,
which achieved a speedup of 30.98× on a Tesla K40 GPU [13]. Later, CUDA
Fortran and CUDA C versions of the RRTMG shortwave radiation scheme
(RRTMG_SW) were developed: CF-RRTMG_SW and CC-RRTMG_SW. Com-
pared with RRTMG_SW running on a single Intel Xeon E5-2680 CPU core,
CC-RRTMG_SW could reach a speedup of 38.88× on a single NVIDIA GeForce
Titan V GPU [14].

Although CC-RRTMG_SW implements GPU-based computing of RRTMG_
SW, its speedup is fairly low and the cost of data transfer between CPU and
GPU is relatively large. To fully utilize the computing performance of GPU, it
is necessary to further optimize CC-RRTMG_SW. The main challenges are how
to perform finer-grained parallelism and apply the optimization techniques of

17380 F. Li et al.

1 3

CUDA [15] programming for CC-RRTMG_SW. To solve these problems, this
paper first proposes two-dimensional (2D) and three-dimensional (3D) acceler-
ation algorithms of RRTMG_SW based on CUDA C and then optimizes them.
This includes decoupling data dependency, reduction of access of global mem-
ory, and optimization of I/O transfer. The optimized CC-RRTMG_SW with 3D
acceleration is named CC-RRTMG_SW++. Experimental results show that com-
pared to RRTMG_SW running on a single Intel Xeon E5-2680 v2 CPU core,
CC-RRTMG_SW++ without I/O transfer can achieve a speedup of 99.09× on
a single NVIDIA Tesla V100 GPU, and it still has a speedup of 24.07× with
I/O transfer. Compared with CC-RRTMG_SW, the computing efficiency of CC-
RRTMG_SW++ is increased by 174.46%.

The main contributions of this paper are as follows.

• A novel 2D acceleration algorithm is proposed for the spcvmc subroutine of
RRTMG_SW and implements its GPU-based computing in the horizontal and
jp-band dimensions. Then, a 3D acceleration algorithm is also proposed and
implemented for RRTMG_SW in the horizontal, vertical, and g-point dimen-
sions. The two algorithms further accelerate RRTMG_SW.

• Some performance optimization methods are also proposed, including effec-
tively decoupling data dependency, using GPU registers to optimize global mem-
ory access, using CUDA streams to reduce I/O transfer time between host and
device. These methods make full use of the computing performance of GPU and
improve the computing performance of CC-RRTMG_SW++.

The rest of this paper is organized as follows. Section 2 presents some excellent
work on accelerated climate models and radiative transfer schemes. Section 3 intro-
duces the RRTMG_SW model and its parallel dimensions. Section 4 describes the
2D and 3D GPU-based acceleration algorithms of RRTMG_SW. Section 5 intro-
duces some optimization methods for RRTMG_SW on GPU. Section 6 analyzes the
results of numerical experiments. The last section summarizes this paper and pro-
poses an outlook for future work.

2 Related work

In recent years, with the wide application of GPU, there has been considerable
research on using GPU to accelerate the parameterization schemes of climate mod-
els. In this section, we will introduce some excellent works on accelerating climate
models in recent years and then focus on the related research on using GPU to accel-
erate the radiation physics process.

Huang et al. implemented a WRF five-layer thermal diffusion scheme using GPU
large-scale parallel architecture. Without considering I/O transfer, the accelerated
WRF five-layer thermal diffusion scheme achieved a speedup of 311× on a Tesla
K40 GPU [16]. Leutwyler et al. implemented a GPU version of the convection-
resolving COSMO model in a climate model and completely transplanted it into a
multi-core, heterogeneous atmospheric model. They demonstrated the applicability

17381

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

of this approach to longer simulations by conducting a 3-month-long simula-
tion [17]. Mielikainen implemented GPU acceleration for a WRF double-moment
6-class microphysics scheme. On a single GPU, a 150× speedup was achieved; if I/O
overhead is not considered, a 206× speedup was achieved [18]. Cao implemented
a highly scalable 3D atmospheric circulation model, AGCM-3DLF, based on leap
format. The experimental results on different platforms showed that the model has
good efficiency and scalability. On the CAS-Xiandao1 supercomputer, a speed of
11.1 simulated years per day (SYPD) was achieved at a high resolution of 25 km
[19].

In terms of using GPUs to accelerate radiative physics, Lu et al. accelerated
RRTMG_LW on GTX470, GTX480, and C2050, and obtained 23.2× , 27.6× , and
18.2× acceleration, respectively. They also performed performance analysis in terms
of GPU clock frequency, execution configuration, use of registers, characteristics
of RRTM_LW, etc. [20]. Mielikainen et al. used GPUs to accelerate the Goddard
shortwave radiation parameterization scheme and achieved a 116× speedup on two
NVIDIA GTX 590 GPUs, and a 259× speedup through a single precision calcula-
tion [21]. Price et al. rewrote the Fortran code of RRTMG_LW in C language and
then implemented the GPU acceleration of RRTMG_LW using CUDA C. In the
performance optimization, 19 optimization schemes were implemented. Regard-
less of I/O overhead, a 127× speedup was achieved on a Tesla K40 GPU compared
to its computing time using an Intel Xeon E5-2603 single-core [22]. Mielikainen
et al. used CUDA C to implement the GPU computation of RRTMG_SW in WRF.
RRTMG_SW achieved a speedup of 202× on a single Tesla K40 GPU [2].

Significantly diverging from previous research, including Wang et al. [14], this
paper applies parallel computing in the g-point dimension to RRTMG_SW for the
first time and then creatively proposes the parallel scheme in the jp-band dimension.
Moreover, this paper further accelerates RRTMG_SW by using certain optimization
methods.

3 Model description and analysis

3.1 RRTMG_SW

The RRTMG model uses the two-stream approximation method to solve the radia-
tion transfer equation and uses the correlation k-distribution method to calculate the
radiation flux in the process of the molecular absorption and scattering. It decom-
poses the radiation spectrum into multiple bands, and the absorption intensity value
of each band is divided into a cumulative distribution intensity function. In order to
obtain the band’s radiant flux, the distribution function is discretized in each band by
g iterative integration. For more details, please refer to [23].

Figure 1 shows the structure of RRTMG_SW. RRTMG_SW consists of two sub-
routines: mcica_subcol_sw and rrtmg_sw. mcica_subcol_sw is used to create Monte
Carlo independent column approximation (McICA) stochastic arrays, enabling
McICA to provide fractional cloudiness and cloud overlap capabilities to RRTMG_
SW. rrtmg_sw is the driver of RRTMG_SW and is also the core computing part of

17382 F. Li et al.

1 3

the model. rrtmg_sw includes four main subroutines: inatm is used to read parallel
plane atmospheric profile data ranging from the Earth’s surface to the top of the
atmosphere. cldprmc is used to select the parameters of the optical depth of cloud
ice and liquid, and it uses cam shortwave cloud optical properties to set the cloud
depth for McICA. setcoef is responsible for calculating the pressure correlation
index and the temperature correlation score under the condition of fixed atmospheric
data. spcvmc is responsible for calculating the spectral loop of shortwave radiative
flux and realizes the overall solution of the two-stream approximation model. In
addition, spcvmc calls taumol, reftra, and vrtqdr. taumol computes the optical depth
and Planck fraction for each spectral band, reftra computes reflectance and atmos-
pheric transmittance for the two-stream approximation model, and vrtqdr computes
the vertical quadrature integral in the two-stream approximation model. Figure 2
shows the proportion of computing time for four subroutines in RRTMG_SW and
CC-RRTMG_SW. As can be seen from Fig. 2, spcvmc accounts for a high propor-
tion of computing time, so further improving its computing efficiency is the key to
optimizing the model.

3.2 Parallelism analysis

RRTMG_SW uses 3D data to represent atmospheric shortwave radiation. The first
dimension is the horizontal layer represented by latitude and longitude, the second
dimension is the vertical layer in 3D space, and the third dimension is the special
g-point dimension [24]. There are fourteen spectral bands in shortwave radiation.

Fig. 1 The structure of RRTMG_SW

17383

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

When calculating the radiant flux of each spectral band, 112 g-point intervals are
used to discretize the distribution function. By analyzing the model, this paper pro-
poses a new parallel scheme in the jp-band dimension. jp-band is used to distinguish
the above fourteen spectral bands. The calculation of radiative flux for each spectral
band can be performed independently, so parallel computing in the jp-band dimen-
sion is workable.

Currently, CC-RRTMG_SW has achieved acceleration in the horizontal layer.
To improve parallel scalability, this paper will tap the parallel potential of CC-
RRTMG_SW in the vertical layer, g-point, and jp-band dimensions by designing
appropriate methods to decouple data dependency.

4 Multi‑dimensional acceleration algorithms

This section introduces the GPU-based 2D and 3D acceleration algorithms of
RRTMG_SW, and their implementations.

4.1 Parallel strategy

The GPU-based acceleration algorithm of RRTMG_SW uses the CUDA program-
ming model. Its main computing element is parallel in kernels. Figure 3 portrays its
execution flow.

Assuming that the global shortwave radiation is divided into 3D grids for cal-
culation, Fig. 4 shows the calculation tasks of rrtmg_sw called each time during
serial calculation and the calculation tasks per thread when using parallel comput-
ing in different dimensions. In Fig. 4a, rrtmg_sw performs computation tasks in
the horizontal, vertical or jp-band, and g-point dimensions in a serial manner. In
Fig. 4b, rrtmg_sw uses ncol threads to calculate horizontal columns in the grids
in a 1D parallel computing manner. In Fig. 4c, rrtmg_sw uses ncol*nlay threads
to calculate the horizontal and vertical layers in a 2D parallel computing manner

Fig. 2 The proportion of computing time for the four subroutines in RRTMG_SW and CC-RRTMG_SW

17384 F. Li et al.

1 3

or uses ncol*nbndsw threads to calculate the horizontal and jp-band dimensions.
In Fig. 4d, rrtmg_sw uses ncol*nlay*ngptsw threads to calculate the horizontal,
vertical, and g-point dimensions in a 3D parallel computing manner. After divid-
ing the computing dimensions, the kernels can be launched for calculation.

4.2 Algorithm implementation

This section mainly describes the 2D and 3D acceleration algorithm imple-
mentation of inatm, cldprmc, setcoef, and spcvmc. Their kernels are inatm_d,
cldprmc_d, setcoef_d, and spcvmc_d, respectively.

4.2.1 inatm_d

Considering data dependency and data synchronization requirements, inatm needs
to be divided into five kernels for parallel computing as fine-grained as possible,
namely inatm_d1, inatm_d2, inatm_d3, inatm_d4, and inatm_d5, respectively. The
computation of inatm_d1 in the horizontal and vertical dimensions has no data
dependency, so it uses 2D parallel computing. inatm_d2 can perform 2D parallel
computing like inatm_d1. inatm_d3 has no data dependency in the horizontal, verti-
cal, and g-point dimensions, so 3D parallel computing is used. In the branch sen-
tences of inatm, the computing component that is not data-dependent on the hor-
izontal and vertical dimensions uses 2D parallel computing. The kernel is named
inatm_d4. Finally, inatm_d5 uses 1D parallel computing for the other part of inatm.

Fig. 3 Execution flow of a par-
allel algorithm based on CUDA

17385

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

4.2.2 cldprmc_d

cldprmc is used to compute 3D arrays of cloud attribute parameters. It has no
data dependency in the horizontal, vertical, and g-point dimensions, so it can
use 3D parallel computing.

4.2.3 setcoef_d

To achieve multi-dimensional acceleration, setcoef is divided into two kernels:
setcoef_d1 and setcoef_d2. setcoef_d1 does not have data dependence in the hor-
izontal and vertical dimensions, so it uses 2D acceleration. setcoef_d2 is with
accumulation operations on the vertical dimension, so it can only be 1D parallel
on the horizontal dimension.

horizontal columns

g-point

layers / jp-band

horizontal columns

g-point

layers / jp-band

horizontal columns

g-point

layers / jp-band

horizontal columns

g-point

layers / jp-band

)b()a(

)d()c(

Fig. 4 The division of computing tasks for rrtmg_sw in serial and parallel computing modes (a. serial
computing, b. 1D parallel computing, c. 2D parallel computing, d. 3D parallel computing)

17386 F. Li et al.

1 3

4.2.4 spcvmc_d

In RRTMG_SW, spcvmc is the most complicated subroutine and accounts for 71.4%
of the computing time of rrtmg_sw. Thus, maximizing the acceleration of this sub-
routine is the key to improving the computing efficiency of RRTMG_SW.

spcvmc calls three sub-functions taumol, reftra, and vrtqdr, which are, respec-
tively, used as three device functions in spcvmc_d. taumol calls fourteen sub-func-
tions to calculate the data of fourteen bands. The calculation of fourteen bands is
completely independent in the horizontal and vertical dimensions, so this paper
considers taumol_d as a single kernel. That is, taumol_d is used for 2D parallel
computing.

After separating taumol_d, there are many accumulation operations in the remain-
ing part of spcvmc_d, so 2D acceleration in the horizontal and vertical dimensions
is difficult. According to the analysis in Sect. 3.2, the front part of spcvmc_d cal-
culates radiative flux for each band of shortwave and the computing for each band
has no data dependency, so the computation for the 14 bands is 2D parallel in the
horizontal and jp-band dimensions, as shown in spcvmc_d1. The remaining part of
spcvmc_d is in spcvmc_d2, and it uses 1D parallel computing. Algorithm 1 shows
2D acceleration computing of spcvmc_d1 in the horizontal and jp-band dimensions.

The 3D acceleration algorithm of rrtmg_sw is shown in Algorithm 2.

17387

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

17388 F. Li et al.

1 3

5 Optimization methods

CC-RRTMG_SW++ has 11 kernels. Each kernel needs to transfer I/O data. When
kernels execute, the data need to be accessed through global memory. The time of
these operations has become a bottleneck in improving computing efficiency, so
further optimizing CC-RRTMG_SW++ is urgent. The optimized methods include
decoupling data dependency to improve parallelism, using temporary registers to

17389

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

improve memory access performance, avoiding unnecessary data transfers, and
using CUDA streams [25] to implement asynchronous data transfer.

5.1 Decoupling data dependency

Data dependency often makes it so that algorithms cannot be parallel. In most cases,
data dependency is inevitable. However, some appropriate methods can be uti-
lized to decouple data dependency. Figure 5 shows the methods of decoupling data
dependency. The initial decoupling method is to separate computing processes by
increasing the number of kernels. However, the increase in the number of kernels
will increase the time of kernels launch. Grid-level synchronization can be used to
eliminate the time cost of kernels launch. Another decoupling method is to set tem-
porary variables and increase the computing processes so that the dependent data
are stored in temporary variables.

In CC-RRTMG_SW++, the calculation dependency in the horizontal dimension
is decoupled by increasing the dimension of arrays so as to achieve the purpose of
1D parallel computing. Then, as shown in Sect. 4.2, by dividing inatm_d, setcoef_d,
and spcvmc_d into smaller kernels, the calculation dependency in the vertical,

Fig. 5 Decoupling data dependency

17390 F. Li et al.

1 3

jp-band, and g-point dimensions is decoupled. Therefore, 2D and 3D parallel com-
puting can be performed on these kernels.

5.2 Optimizing memory access

There are different kinds of memory in GPUs, whose size, access methods, and
memory access speeds are all different. In CUDA programming, if the memory
is not specified, the data of each thread need to be accessed from global memory.
However, the speed of accessing global memory is much lower than that of other
types of memory, such as texture memory, shared memory, and registers. In mod-
ern multi-core accelerators, memory access latency has become the main bottleneck
to improving program performance [26]. Therefore, it is necessary to minimize the
access latency of global memory.

In CC-RRTMG_SW++, spcvmc_d still accounts for more than 90% of the run-
ning time of rrtmg_sw, so it is meaningful to further optimize the kernel. After ana-
lyzing its code structure and different characteristics of GPU memories, in order
to eliminate repeated global memory access, the data depot is used for optimiza-
tion. The data in the global memory are temporarily stored in the data depot before
being involved in the operation. The requirement of the data depot is that its access
efficiency is much higher than that of the global memory, the shared memory and
registers in GPU just meet this requirement. When using shared memory as a data
depot, since shared memory is shared by threads in the same block, it is necessary
to increase the calculation process in CC-RRTMG_SW++ to eliminate the memory
writing conflicts among different threads, which weakens performance improvement
by using the data depot. Therefore, this paper chooses to use registers as a data depot.

The specific method is to set more temporary variables in the kernel, and these
temporary variables are stored in the registers of each streaming multiprocessor in
GPU. Accessing registers is much faster than accessing global memory, but regis-
ters are finite resources. If the thread blocks use too many registers, the GPU kernel
occupation will be reduced, thereby reducing the occupancy rate of the multi-core
processors. Therefore, it is not that more registers being used lead to a more efficient
program [27]. In spcvmc_d2, through many experiments and performance analysis,
considering the best balance between register usage and occupancy, six arrays are
temporarily stored in registers. To make better use of the registers, we reduce the
original 2D arrays to 1D, which means that the unnecessary horizontal dimension
of the arrays is removed when calculating inside the kernel. After finishing com-
putation, their dimensionality will be upgraded. That is, the 1D arrays in the regis-
ters will be reassigned to 2D arrays in global memory. Figure 6 shows the memory
access methods for spcvmc_d2 before and after optimization.

5.3 I/O optimization

CC-RRTMG_SW++ uses heterogeneous hybrid computing, which is a method of
“CPU+GPU” collaborative computing. The logic control is completed by CPU, and
the core computation is completed by GPU, so the data transfer between host and

17391

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

device is inevitable [28]. Due to the limitation of PCIe bus bandwidth, data transfer
takes up a large amount of runtime [29]. In CC-RRTMG_SW, the method of pin-
ning memory has been used to optimize data transfer. However, the data transfer still
occupies rrtmg_sw for nearly 50% of the running time, so further optimization is
required.

5.3.1 Avoiding unnecessary data transfer

In CC-RRTMG_SW, data are transferred among different kernels through the
device-host-device approach, which means that the intermediate data calculated
by a kernel need to be transmitted back to CPU and the data are transmitted to the
next kernel after doing simple calculations in CPU. This approach involves a large
amount of meaningless intermediate data transfer, so data in CC-RRTMG_SW++
are kept in GPU and only the necessary data are transferred back to CPU. The calcu-
lations in CPU are also ported to kernels. In this way, the cost of data transfer can be
effectively reduced.

5.3.2 CUDA stream

A CUDA stream is a series of operations issued by host and executed sequentially
on device. After creating multiple CUDA streams, different tasks can be assigned
to different streams. Each CUDA stream has to complete three processes in turn:
copying the data from host to device, computing the kernel, and copying computing
results to the host. For different streams, as long as the computing and data transfer
do not depend on each other, they can be performed synchronously. In this way, the
computing and data transfer can overlap. When using CUDA streams, pinned mem-
ory and the asynchronous copy function cudaMemcpyAsync need to be used.

(a) (b)

Fig. 6 The optimization strategy of global memory access

17392 F. Li et al.

1 3

This paper uses CUDA streams to optimize the I/O transfer of spcvmc_d1 and
spcvmc_d2, whose computation time and data transfer time account for a large pro-
portion of the entire model. Four CUDA streams are used to divide the calculations
of spcvmc_d1 and spcvmc_d2 in the horizontal grid, 1/4 of the horizontal column
data (ncol/4) is transferred to the GPU’s memory by a stream. The pointer offset
address is set to calculate the horizontal column data, which have currently been
transferred to the GPU. The time of the data transfer can be overlapped by transfer-
ring data at the same time as computing on different streams. Figure 7 illustrates the
difference between using the default stream and using multiple streams in spcvmc_
d1 and spcvmc_d2.

6 Results and discussion

This paper conducts numerical experiments to evaluate the performance of the pro-
posed acceleration algorithms and optimization methods.

6.1 Experimental setup

The experiments use three different GPU clusters: a K20 cluster, a K40 cluster, and
a V100 cluster. The K20 cluster is located in the Computer Network Information
Center of CAS, the V100 cluster is located in the Institute of Atmospheric Physics
of CAS, and the K40 cluster is located in China University of Geosciences (Beijing).
Their hardware configurations are listed in Table 1. The RRTMG_SW runs on a sin-
gle Intel Xeon E5-2680 v2 CPU core of the K20 cluster. The CC-RRTMG_SW++
heterogeneous code runs on a single node of each cluster.

This paper evaluates the performance of CC-RRTMG_SW++ from three per-
spectives: parallel acceleration, memory access, and I/O transfer. The evaluation
criterion is the speedup of CC-RRTMG_SW++ compared to RRTMG_SW and CC-
RRTMG_SW. To make CC-RRTMG_SW++ achieve the best performance on three
kinds of GPU, the block size for the 1D acceleration kernels is 128, and the block

Fig. 7 Execution flow chart of spcvmc_d using multiple CUDA streams

17393

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

size for the 2D and 3D acceleration kernels is 512. RRTMG_SW has 128×256 hori-
zontal grid points when simulating the global shortwave radiation transfer process,
with a resolution of 1.4◦ × 1.4◦ . When the size of ncol is set to 1024, the model
needs to be called repeatedly: (128×256/1024)×24=768 times, for the simulation of
one model day (24 hours). When the size of ncol increases, the number of calls will
decrease accordingly. The following simulation experiments are all carried out for
one model day.

6.2 Evaluation of optimization methods

6.2.1 3D acceleration

First, taking the running time of serial RRTMG_SW as the standard, a compara-
tive experiment is conducted for CC-RRTMG_SW and CC-RRTMG_SW++. The
speedup is the ratio of serial computing time to parallel computing time. The time of
rrtmg_sw (Trrtmg_sw) is calculated with the following formula:

T
inatm

 is the computing time of the subroutine inatm or the accumulation of kernels
inatm_d1, inatm_d2, inatm_d3, inatm_d4 , and inatm_d5 . T

cldprmc
 , T

setcoef
 , T

taumol
 , and

T
spcvmc

 are the corresponding computing times of the subroutines or kernels.
The experiment uses one K20 GPU, and the size of ncol is set to 1024. Table 2

shows the speedup of CC-RRMTG_SW++ optimized with 3D parallelism and
decoupling data dependency. As shown in Table 2, compared with RRTMG_SW, in
the kernels with a higher degree of parallelism, such as inatm, cldprmc, and setcoef,
the speedup increases significantly compared to 1D parallelism. It also has a speedup
of 3.80× for the most time-consuming kernel, spcvmc, so the overall speedup of CC-
RRTMG_SW++ with 3D acceleration computing is 5.05× ; this is 1.84 times faster
than CC-RRTMG_SW. Therefore, the 3D parallel method is very efficient.

Trrtmg_sw = T
inatm

+ T
cldprmc

+ T
setcoef

+ T
taumol

+ T
spcvmc

,

Table 1 Configurations of GPU Clusters

Specification of CPU K20 cluster K40 cluster V100 cluster

CPU Intel Xeon E5-2680
v2@2.8GHz

Intel Xeon E5-2620
v4@2.10GHz

Intel Xeon Gold
6240R @2.40GHz

Operating System CentOS 6.4 Red Hat 4.8.5-36 Red Hat 4.8.5-44
Specification of GPU K20 cluster K40 cluster V100 cluster
GPU NVIDIA Tesla K20 NVIDIA Tesla K40 NVIDIA Tesla V100
CUDA Cores 2496 2880 5120
CUDA Version 6.5 10.0 10.1
Standard Memory 5 GB 12 GB 32 GB
Memory Bandwidth 208 GB/s 288 GB/s 900 GB/s
GFLOPS in double precision 1.17TFLOPS 1.43TFLOPS 7.5TFLOPS

17394 F. Li et al.

1 3

6.2.2 Memory access optimization

Table 3 compares the running time of spcvmc before and after memory access opti-
mization. By using the method described in Sect. 5.2, the overall computing effi-
ciency of spcvmc on one Tesla V100 GPU improves by 30.11%. Given the highly
time-consuming proportion of the spcvmc in the model, this magnitude of perfor-
mance improvement is very meaningful.

6.2.3 I/O optimization

Table 4 shows the time and speedup of I/O transfer before and after optimizing in
CC-RRTMG_SW++. CUDA Memory HtoD represents the data transfer from host
to device, and CUDA Memory DtoH represents the data transfer from device to host.
Through the I/O optimization methods specified in Sect. 5.3, the time of data trans-
fer has been greatly reduced. By avoiding unnecessary data transfer, the transfer
time from device to host is greatly reduced, even negligible. The transfer time from
host to device is 1.62 times faster by using CUDA streams. In addition, the speed of
data transfer is related to the PCIe bus bandwidth between host and device, so the

Table 2 Runtime (s) and speedup of CC-RRTMG_SW and CC-RRTMG_SW++ on a single K20 GPU
when ncol=1024

The bold values are used to represent critical information

Subroutines Serial time 1D acceleration Speedup 3D acceleration Speedup

inatm 131.99 20.5307 6.43 4.2936 30.74
cldprmc 82.76 21.2583 3.89 3.3132 24.98
setcoef 2.76 1.0595 2.61 0.2069 13.34
taumol – 13.2928 2.32 2.2815 3.80
spcvmc 541.38 220.0960 140.1200
rrtmg_sw 758.89 276.2373 2.75 150.2152 5.05

Table 3 The performance of optimizing memory access for spcvmc

The bold values are used to represent critical information

Kernel Original Optimization Improvement Original Optimization Improvement
(K20) (K20) (V100) (V100)

spcvmc 140.1200 119.7340 17.03% 44.7590 34.4013 30.11%

Table 4 The time and speedup of I/O transfer before and after optimizing for CC-RRTMG_SW++

The bold values are used to represent critical information

Transfer direction Original Optimization Speedup Original Optimization Speedup
(K20) (K20) (V100) (V100)

CUDA Memcpy HtoD 78.9733 48.6722 1.62 38.6182 23.7652 1.62
CUDA Memcpy DtoH 66.8794 0.9980 67.01 34.0014 0.5072 66.04

17395

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

speedup of the data transfer time on K20 GPU and V100 GPU is almost the same
when the PCIe bus bandwidth is unchanged.

6.3 Overall performance evaluation

6.3.1 Evaluation on different GPUs

This paper conducts experiments on the overall performance of CC-RRTMG_
SW++ on three different GPUs and compares its speedup relative to RRTMG_SW.
The experimental conditions are specified in Sect. 6.1. The results are given in
Tables 5, 6, and 7. For the calculation method of the parameters in the three tables,
please refer to Sect. 6.2.1. The experimental results show that CC-RRTMG_SW++
has reached a speedup of 99.09× on a single Tesla V100 GPU. For the kernels inatm
and cldprmc with high parallelism, the speedup is more than 150× . The results dem-
onstrate the effectiveness and efficiency of 3D parallel computing and the perfor-
mance optimization methods for RRTMG_SW.

Due to the differences in video memory size, the maximum value of ncol on dif-
ferent types of GPUs is different. Recalling the instructions in Sect. 6.1, increasing

Fig. 8 The influence of ncol on the speedup and memory usage of CC-RRTMG_SW++ on a V100 GPU

Table 5 CC-RRTMG_SW++ runtime (s) and speedup on a single K20 GPU

The bold values are used to represent critical information

Subroutines Serial time ncol=1024 speedup ncol=2048 speedup ncol=4096 speedup

inatm 131.99 4.2872 30.79 4.0958 32.23 4.1206 32.03
cldprmc 82.76 3.3078 25.02 3.1775 26.05 3.2582 25.40
setcoef 2.76 0.2014 13.70 0.1379 20.01 0.1092 25.27
taumol – 2.2848 4.44 2.1787 7.33 2.1018 10.69
spcvmc 541.38 119.7340 71.6782 48.5506
rrtmg_sw 758.89 129.8152 5.85 81.2681 9.34 58.1404 13.05

17396 F. Li et al.

1 3

ncol reduces the number of kernel calls and indirectly increases the parallelism of
the kernel in the horizontal dimension. Therefore, it can be seen from the exper-
imental results that with the increase of ncol, the speedup of setcoef and spcvmc
has been greatly improved. For inatm and cldprmc, the calculation process is simple
and there are many memory access operations. With the increase of ncol, the higher
memory access cost limits the parallel efficiency of kernels, so there will be cases
where the speedup is not significantly improved or even slightly decreased. In addi-
tion, increasing the value of ncol also means that the horizontal dimension of the
arrays increases, and more GPU memory is required for each call to rrtmg_sw. Fig-
ure 8 shows the impact of ncol on the speedup and memory usage of rrtmg_sw on a
V100 GPU. When ncol is set to 16384, the memory usage reaches 54.80%, but the
speedup of rrtmg_sw is 4.71 times higher than that of ncol=1024.

Because of the differences in video memory, bandwidth, and double-precision
floating-point arithmetic capability for different GPUs, the computing performance
of CC-RRTMG_SW++ is highly diverse. Figure 9 compares the performance of
CC-RRTMG_SW++ on the K20, K40, and V100 GPUs. On a single Tesla V100
GPU, the highest speedup of CC-RRTMG_SW++ is 7.59 times faster than K20 and
is 2.48 times faster than K40.

6.3.2 With I/O transfer

With I/O transfer, the overall performance of CC-RRTMG_SW++ is given in
Table 8. The time of I/O transfer (TI∕O) and rrtmg_sw (Trrtmg_sw) is calculated with
the following formulas:

THtoD is the data transfer from host to device, TDtoH is the data transfer from device
to host, and Tcomputing is the sum of the calculation times of all kernels. Due to the
limitations of PCIe bus bandwidth and frequent communication, the data transfer
between host and device still costs plenty of time after optimizing I/O. However,
after the use of optimization methods, the speedup of CC-RRTMG_SW++ is still
up to 24.07× , which is better than CC-RRTMG_SW.

T
I∕O

= T
HtoD

+ T
DtoH

, Trrtmg_sw = T
computing

+ T
I∕O

Table 6 CC-RRTMG_SW++ runtime (s) and speedup on a single K40 GPU

The bold values are used to represent critical information

Subrou-
tines

Serial
time

ncol=1024 speedup ncol=2048 speedup ncol=4096 speedup ncol=8192 Speedup

inatm 131.99 1.7262 76.46 1.6577 79.62 1.6683 79.12 1.6476 80.11
cldprmc 82.76 1.0794 76.67 1.0991 75.30 1.0859 76.21 1.0870 76.14
setcoef 2.76 0.09814 28.12 0.06240 44.23 0.04721 58.46 0.03916 70.48
taumol – 0.5944 9.37 0.5561 15.10 0.5362 23.40 0.5199 33.33
spcvmc 541.38 57.2048 35.2991 22.6001 15.7245
rrtmg_

sw
758.89 60.7029 12.50 38.6744 19.62 25.9377 29.26 19.0182 39.90

17397

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

Ta
bl

e
7

 C
C

-R
RT

M
G

_S
W

+
+

 ru
nt

im
e

(s
) a

nd
 sp

ee
du

p
on

 a
 si

ng
le

 V
10

0
G

PU

Th
e

bo
ld

 v
al

ue
s a

re
 u

se
d

to
 re

pr
es

en
t c

rit
ic

al
 in

fo
rm

at
io

n

Su
br

ou
tin

es
Se

ria
l t

im
e

nc
ol

=
10

24
Sp

ee
du

p
nc

ol
=

20
48

Sp
ee

du
p

nc
ol

=
40

96
Sp

ee
du

p
nc

ol
=

81
92

Sp
ee

du
p

nc
ol

=
16

38
4

Sp
ee

du
p

in
at

m
13

1.
99

0.
86

25
15

3.
03

0.
82

00
16

0.
96

0.
77

56
17

0.
18

0.
78

44
16

8.
27

0.
75

84
17

4.
04

cl
dp

rm
c

82
.7

6
0.

53
47

15
4.

78
0.

56
31

14
6.

97
0.

54
85

15
0.

88
0.

57
25

14
4.

56
0.

54
91

15
0.

72
se

tc
oe

f
2.

76
0.

04
91

4
56

.1
7

0.
03

12
2

88
.4

0
0.

02
25

6
12

2.
34

0.
01

86
3

14
8.

15
0.

01
65

6
16

6.
67

ta
um

ol
–

0.
22

65
15

.6
3

0.
18

24
28

.6
7

0.
16

82
41

.4
9

0.
15

64
62

.0
4

0.
16

17
85

.4
7

sp
cv

m
c

54
1.

38
34

.4
01

3
18

.7
00

2
12

.8
79

8
8.

56
95

6.
17

25
rr

tm
g_

sw
75

8.
89

36
.0

74
1

21
.0

4
20

.2
96

9
37

.3
9

14
.3

94
7

52
.7

2
10

.1
01

4
75

.1
3

7.
65

83
99

.0
9

17398 F. Li et al.

1 3

6.4 Accuracy verification

In order to ensure the accuracy of the CC-RRTMG_SW++, this paper carried out an
error experiment of CC-RRTMG_SW++ and RRTMG_SW. The method is to call
rrtmg_sw in the serial Fortran version and the CUDA C version, respectively, and sub-
tract the results after the calls to obtain the error. The average error of CC-RRTMG_
SW++ obtained by this method compared to RRTMG_SW is -0.000455583 W∕m2 ,
which is consistent with CC-RRTMG_SW. The reason for error is the difference in
computing accuracy between the CPU and GPU, and the difference is magnified by
many cumulative calculations in the code. Due to the error in accuracy of the numeri-
cal model itself, it cannot simulate the atmospheric radiative transfer process with
absolute accuracy. Therefore, the error in accuracy between CC-RRTMG_SW++ and
RRTMG_SW is acceptable.

Fig. 9 The influence of different GPUs on the speedup of CC-RRTMG_SW++ when ncol=2048

Table 8 Running time (s) and speedup of CC-RRTMG_SW++ with I/O transfer on different GPUs

The bold values are used to represent critical information

GPU ncol Computing time CUDA
Memcpy
HtoD

CUDA
Memcpy
DtoH

I/O transfer rrtmg_sw Speedup

K20 4096 58.1404 47.1573 0.8047 47.9620 106.1024 7.15
K40 8192 19.0182 24.6021 0.5238 25.1259 44.1441 17.19
V100 16384 7.6583 23.3652 0.5012 23.8664 31.5247 24.07

17399

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

6.5 Discussion

The overall performance of CC-RRTMG_SW++ and CC-RRTMG_SW is com-
pared in Fig. 10. In CC-RRTMG_SW++, both the calculation time of the kernels
and the I/O transfer time are much less than in CC-RRTMG_SW. Taking the calcu-
lation time as a measure of computing efficiency, the average computing efficiency
of CC-RRTMG_SW++ on three different types of GPUs is 174.46% higher than
that of CC-RRTMG_SW. Compared to Mielikainen et al. [2], their CUDA C-based
1D parallel RRTMG_SW achieved a speedup of 202× on a single Tesla K40 GPU,
but they compared the serial RRTMG_SW with the grid size of 425×308, which is
much higher than the grid size of 128×256 in this paper; thus, they could achieve
higher horizontal dimension parallelism. If this paper used RRTMG_SW with a
higher grid resolution as the comparison, the speedup would be further improved.
Thus, the CC-RRTMG_SW++ proposed in this paper is very effective, and it pro-
vides a more efficient scheme for accelerating atmospheric physics on GPUs.

In the future, if a GPU version of the entire atmospheric general circulation
model or all atmospheric physics processes is developed, the initialization data in
CC-RRTMG_SW++ only need to be transferred once from the host to the device.
This means that the cost of data transfer is almost negligible, so CC-RRTMG_
SW++ will achieve a high computing efficiency.

7 Conclusions and future work

High-efficiency computation on GPU is always challenging. This paper proposes a
multi-dimensional acceleration algorithm for RRTMG_SW and some GPU-based
performance optimization methods. Then, CC-RRTMG_SW++, an optimized

Fig. 10 The runtime (s) of CC-RRTMG_SW (left) and CC-RRTMG_SW++ (right) on three different
GPUs when ncol=1024

17400 F. Li et al.

1 3

version of CC-RRTMG_SW, is developed. CC-RRTMG_SW++ further exploits
the advantages of GPU multi-core computing capabilities. The experimental results
prove the effectiveness and high efficiency of CC-RRTMG_SW++. Thus, CC-
RRTMG_SW++ can support the higher-resolution computation of shortwave radia-
tive transfer. This is of great significance to the development of the atmospheric gen-
eral circulation model.

Future work will begin from multi-GPU acceleration and mixed-precision com-
puting. (1) Supercomputers usually have hundreds of thousands of CPU and GPU
nodes. In order to make full use of these nodes, the “MPI+CUDA” hybrid program-
ming will be utilized to further accelerate CC-RRTMG_SW++ [30, 31]. (2) The
mixed-precision computing of CC-RRTMG_SW++ will also be considered. In
recent years, to reduce computing cost and improve computing efficiency, mixed-
precision computing has become a hot research topic in high-performance com-
puting. When accuracy errors exist objectively in many applications, most of the
variables are actually not necessary to use double-precision computation [32, 33].
Therefore, half-precision, single-precision, and double-precision mixed computing
[34, 35] will be quite promising work in CC-RRTMG_SW++.

Acknowledgements This work was supported in part by the National Natural Science Foundation of
China under Grant 41931183, in part by the National Key Scientific and Technological Infrastructure
project “Earth System Science Numerical Simulator Facility” (EarthLab), and in part by the GHFUND A
under Grant ghfund202107013661.

Declarations

Code availability The code generated and analyzed during this study is available in the Github repository:
https:// github. com/ guire nbenx in/ Heter ogene ous- RRTMG_ SW.

References

 1. Javadinejad S, Eslamian S, Ostad-Ali-Askari K (2021) The analysis of the most important climatic
parameters affecting performance of crop variability in a changing climate. Int J Hydrol Sci Technol
11(1):1–25

 2. Mielikainen J, Price E, Huang B, Huang HLA, Lee T (2015) GPU compute unified device architec-
ture (CUDA)-based parallelization of the RRTMG shortwave rapid radiative transfer model. IEEE J
Selected Topics Appl Earth Observ Remote Sens 9(2):921–931

 3. Michalakes J, Vachharajani M (2008) GPU acceleration of numerical weather prediction. Parallel
Process Lett 18(04):531–548

 4. Clough S, Shephard M, Mlawer E, Delamere J, Iacono M, Cady-Pereira K, Boukabara S, Brown P
(2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quantit Spectros-
copy Radiative Transf 91(2):233–244

 5. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inho-
mogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res:
Atmos 102(D14):16663–16682

 6. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative
forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geo-
phys Res: Atmos 113:13

 7. Pervin L, Gan TY (2021) Sensitivity of physical parameterization schemes in WRF model for
dynamic downscaling of climatic variables over the MRB. J Water Clim Change 12(4):1043–1058

https://github.com/guirenbenxin/Heterogeneous-RRTMG_SW

17401

1 3

CC‑RRTMG_SW++: Further optimizing a shortwave radiative…

 8. Bae SY, Hong SY, Lim KSS (2016) Coupling WRF double-moment 6-class microphysics schemes
to RRTMG radiation scheme in weather research forecasting model. Adv Meteorol 2016:84

 9. Zhang H, Zhang M, Zeng QC (2013) Sensitivity of simulated climate to two atmospheric mod-
els: interpretation of differences between dry models and moist models. Monthly Weather Rev
141(5):1558–1576

 10. Wang Y, Yan X, Zhang J (2021) Research on GPU parallel algorithm for direct numerical solution
of two-dimensional compressible flows. J Supercomput 77(10):10921–10941

 11. Ramon D, Steinmetz F, Jolivet D, Compiègne M, Frouin R (2019) Modeling polarized radiative
transfer in the ocean-atmosphere system with the GPU-accelerated SMART-G Monte Carlo code. J
Quantit Spectroscopy Radiative Transf 222:89–107

 12. Kelly R (2010) GPU computing for atmospheric modeling. Comput Sci Eng 12(4):26–33
 13. Wang Y, Zhao Y, Li W, Jiang J, Ji X, Zomaya AY (2019) Using a GPU to accelerate a longwave

radiative transfer model with efficient CUDA-based methods. Appl Sci 9(19):4039
 14. Wang Z, Wang Y, Wang X, Li F, Zhou C, Hu H, Jiang J (2021) GPU-RRTMG_SW: Accelerating a

Shortwave Radiative Transfer Scheme on GPU. IEEE Access 25:6681
 15. Ghorpade, J., Parande, J., Kulkarni, M., Bawaskar, A.: GPGPU processing in CUDA architecture.

http:// arxiv. org/ abs/ 1202. 4347 (2012)
 16. Huang M, Huang B, Chang YL, Mielikainen J, Huang HLA, Goldberg MD (2015) Efficient paral-

lel GPU design on WRF five-layer thermal diffusion scheme. IEEE J Selected Topics Appl Earth
Observ Remote Sens 8(5):2249–2259

 17. Leutwyler D, Fuhrer O, Lapillonne X, Lüthi D, Schär C (2016) Towards European-scale convec-
tion-resolving climate simulations with GPUs: a study with COSMO 4.19. Geosci Model Develop
9(9):3393–3412

 18. Mielikainen J, Huang B, Huang HL, Goldberg M, Mehta A (2013) Speeding up the computa-
tion of WRF double-moment 6-class microphysics scheme with GPU. J Atmos Oceanic Technol
30(12):2896–2906

 19. Cao, H., Yuan, L., Zhang, H., Zhang, Y.: AGCM-3DLF: Accelerating Atmospheric General Circu-
lation Model via 3D Parallelization and Leap-Format. http:// arxiv. org/ abs/ 2103. 10114 (2021)

 20. Lu, F., Cao, X., Song, J., Zhu, X.: GPU computing for longwave radiation physics: A RRTM_LW
scheme case study. In: 2011 IEEE Ninth International Symposium on Parallel and Distributed Pro-
cessing with Applications Workshops, pp. 71–76. IEEE (2011)

 21. Mielikainen J, Huang B, Huang HLA, Goldberg MD (2012) GPU acceleration of the updated god-
dard shortwave radiation scheme in the weather research and forecasting (WRF) model. IEEE J
Selected Topics Appl Earth Observ Remote Sens 5(2):555–562

 22. Price E, Mielikainen J, Huang M, Huang B, Huang HLA, Lee T (2014) GPU-accelerated longwave
radiation scheme of the rapid radiative transfer model for general circulation models (RRTMG).
IEEE J Selected Topics Appl Earth Observ Remote Sens 7(8):3660–3667

 23. Shi, G.Y.: On the k-distribution and correlated k-distribution models in the atmospheric radiation
calculations. Scientia Atmospherica Sinica (Special Issue Dedicated to the 70 < th> Anniversary of
the Founding of the Institute of Atmospheric Physics, Chinese Academy of Sciences) 22(4), 555–
576 (1998)

 24. Wang Y, Zhao Y, Jiang J, Zhang H (2020) A novel GPU-based acceleration algorithm for a long-
wave radiative transfer model. Appl Sci 10(2):649

 25. Li, X., Ye, H., Zhang, J.: Redesigning Peridigm on SIMT accelerators for High-performance Peri-
dynamics Simulations. In: 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 433–443. IEEE (2021)

 26. Xu J, Fu H, Luk W, Gan L, Shi W, Xue W, Yang C, Jiang Y, He C, Yang G (2019) Optimizing finite
volume method solvers on NVIDIA GPUs. IEEE Trans Parallel Distrib Syst 30(12):2790–2805

 27. Fu, H., Xu, J., Gan, L., Yang, C., Xue, W., Zhao, W., Shi, W., Wang, X., Yang, G.: Unleashing
the performance potential of CPU-GPU platforms for the 3D atmospheric Euler solver. In: 2016
IEEE 27th International Conference on Application-specific Systems, Architectures and Processors
(ASAP), pp. 41–49. IEEE (2016)

 28. Yang C, Xue W, Fu H, Gan L, Li L, Xu Y, Lu Y, Sun J, Yang G, Zheng W (2013) A peta-scalable
CPU-GPU algorithm for global atmospheric simulations. ACM SIGPLAN Notices 48(8):1–12

 29. Ashcraft MB, Lemon A, Penry DA, Snell Q (2019) Compiler optimization of accelerator data trans-
fers. Int J Parallel Program 47(1):39–58

 30. Wang Y, Guo M, Zhao Y, Jiang J (2021) GPUs-RRTMG_LW: high-efficient and scalable computing
for a longwave radiative transfer model on multiple GPUs. J Supercomput 77(5):4698–4717

http://arxiv.org/abs/1202.4347
http://arxiv.org/abs/2103.10114

17402 F. Li et al.

1 3

 31. Farhatuaini, L., Pulungan, R.: Parallelization of Uniformization Algorithm with CUDA-Aware MPI.
In: 2019 7th International Conference on Information and Communication Technology (ICoICT),
pp. 1–6. IEEE (2019)

 32. Jia, W., Wang, H., Chen, M., Lu, D., Lin, L., Car, R., Weinan, E., Zhang, L.: Pushing the limit of
molecular dynamics with ab initio accuracy to 100 million atoms with machine learning. In: SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis, pp.
1–14. IEEE (2020)

 33. Váňa F, Düben P, Lang S, Palmer T, Leutbecher M, Salmond D, Carver G (2017) Single precision in
weather forecasting models: an evaluation with the IFS. Monthly Weather Rev 145(2):495–502

 34. Thornes T, Düben P, Palmer T (2017) On the use of scale-dependent precision in Earth system mod-
elling. Q J R Meteorol Soc 143(703):897–908

 35. Klöwer M, Düben P, Palmer T (2020) Number formats, error mitigation, and scope for 16-bit arith-
metics in weather and climate modeling analyzed with a shallow water model. J Adv Model Earth
Syst 12(10):246

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Fei Li1 · Yuzhu Wang1 · Zhenzhen Wang1 · Xiaohui Ji1 · Jinrong Jiang2 ·
Xiaoyong Tang3 · He Zhang4

 Fei Li
 lifei2021@email.cugb.edu.cn

 Zhenzhen Wang
 zhen020227@cugb.edu.cn

 Xiaohui Ji
 xhji@cugb.edu.cn

 Jinrong Jiang
 jjr@sccas.cn

 Xiaoyong Tang
 tangxy@csust.edu.cn

1 School of Information Engineering, China University of Geosciences, Beijing 100083, China
2 Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
3 School of Computer and Communication Engineering, Changsha University of Science

and Technology, Changsha 410004, China
4 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

http://orcid.org/0000-0003-0449-2973

	CC-RRTMG_SW++: Further optimizing a shortwave radiative transfer scheme on GPU
	Abstract
	1 Introduction
	2 Related work
	3 Model description and analysis
	3.1 RRTMG_SW
	3.2 Parallelism analysis

	4 Multi-dimensional acceleration algorithms
	4.1 Parallel strategy
	4.2 Algorithm implementation
	4.2.1 inatm_d
	4.2.2 cldprmc_d
	4.2.3 setcoef_d
	4.2.4 spcvmc_d

	5 Optimization methods
	5.1 Decoupling data dependency
	5.2 Optimizing memory access
	5.3 IO optimization
	5.3.1 Avoiding unnecessary data transfer
	5.3.2 CUDA stream

	6 Results and discussion
	6.1 Experimental setup
	6.2 Evaluation of optimization methods
	6.2.1 3D acceleration
	6.2.2 Memory access optimization
	6.2.3 IO optimization

	6.3 Overall performance evaluation
	6.3.1 Evaluation on different GPUs
	6.3.2 With IO transfer

	6.4 Accuracy verification
	6.5 Discussion

	7 Conclusions and future work
	Acknowledgements
	References

