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Abstract
With increasing growth in IoT, the number of devices connected to the Internet is 
constantly growing. Moreover, the increase in the volume of data and their trans-
mission through the Internet of Things, as well as the existence of inadequate band-
width, limits cloud-based storage and data processing. Both fog and cloud comput-
ing provide the storage space, application, and data for users; however, fog is more 
proximate to the end user with wider geographical distribution. When bringing the 
computing resources closer to the required location in the fog environment, the 
efficiency of the system increases, and the distance at which data must be trans-
mitted decreases. On the other hand, implementing IoT applications and satisfying 
the requests of end users in fog computing will create new challenges in resource 
allocation and dynamic resource provisioning. The flexible and usually automatic 
mechanisms require the determination of required virtual resources to minimize the 
resource consumption and service level agreement (SLA). In this paper, we intro-
duce a framework for increasing resource management efficiency in the IoT eco-
system based on deep reinforcement learning (DRL). The proposed deep neural 
network (DNN) method for estimating value functions improves adaptability to dif-
ferent oscillating conditions, learns past sensible strategies, and as a self-learning 
adaptive system by replicating interactions with the fog environment. The DRL 
algorithm finds the best destination for implementing IoT services to compromise 
between minimizing average power consumption, minimizing average service 
latency, reducing costs, and balancing resource allocation. Finally, through simula-
tions, we show that under different loading rates, the policy used compared to other 
comparable solutions is to increase utilization and reduce the rate of delay, while 
ensuring an acceptable level of service quality.
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1  Introduction

The application of connected smart devices such as the Internet of Things (IoT) 
has witnessed exponential growth. The development of IoT enables individuals 
and objects to enter any information space at every time and place and commu-
nicate with each other. An increase in the number of IoT devices has inevitably 
led to the production of a mass volume of data that needs to be processed, stored, 
and properly made available to end users. The big volume of data makes the cur-
rent processing and storage capacity fail in responding to the demands and work-
ing with traditional computing models, such as distributive computing and cloud 
computing, more complicated [1–4]. Cloud computing is taken as an effective 
method in data processing because of its high computational and storage capacity. 
As the cloud computing pattern is a focused model and most computations are 
done in the cloud, the data processing speed has considerably increased; however, 
unfortunately, the bandwidth has not increased to the same extent. Therefore, the 
network bandwidth is one of the problems of cloud computing that could result 
in long delays. In some IoT applications, the system might require a very short 
response time and displacements. These include traffic light systems in smart traf-
fic, smart networks, intelligent health care, emergency reactions, and other delay-
sensitive applications. The delay due to data transmission is unacceptable. Some-
times, it is required to make decisions and take actions regarding the event, in 
which delay will lead to bad consequences. In addition, some decisions can be 
made locally, without any compulsion in transmission to the cloud. Even if deci-
sions need to be made in the cloud, it is not necessary to transmit all data to the 
cloud and classify because all data are not beneficial for analysis and decision 
making. In other words, these challenges that are created due to the rapid growth 
of IoT, and associated with the bandwidth of network, reliability, and security 
could be tackled based on cloud model and independently. The use of computing 
resources close to the users is proposed as the solution to these issues to achieve 
local processing and storage and reduce the transmission size and data latency [5, 
6].

Internet of Things (IoT) is one of the technologies that have made a huge 
leap in the world. IoT deals with large amounts of data, including video, audio, 
and text, that are not easy to be processed and store. These smart objects that 
are located everywhere generate and collect large amounts of raw data. Cloud 
computing plays an important role in the development of IoT, while providing 
processing and storage services for a large amount of data. However, many IoT 
applications suffer from cloud computing challenges such as latency and lack 
of relocation support and location awareness. Transferring these data to cloud 
data centers for processing or storage will definitely create bandwidth occupa-
tion, and in addition, increase the response time of IoT applications. On the other 
hand, transferring data outside the organization’s borders is considered in some 
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industries as a security breach. Under such circumstances, transferring data to 
cloud data centers is not very practical and cost-effective, and another computing 
model should be used for this purpose. Fog computing, which is almost known as 
the evolution of cloud computing, helps to provide solutions to these challenges. 
This model facilitates the deployment of IoT services and applications, reduces 
the time latency, and consequently, provides the possibility of real-time process-
ing and analysis, reducing the loss of communication bandwidth and costs [7, 8].

1.1 � Motivation

IoT is made up of heterogeneous environments with unpredictable traffic. Hetero-
geneous environments in IoT are reactive, which makes it difficult to predict traffic 
in a variety of situations. Failure to predict traffic in heterogeneous environments 
and increased connection of multiple devices with diverse traffics will cause con-
gestion and queuing in the network. One of the essential requirements of comput-
ing systems, which improves network performance, is resource management and 
dynamic resource provisioning effectively. When IoT services communicate with 
fog resources, the resources must be provisioned in such a way as not to be less 
or more than the service requirement. The hardware resources available in the fog 
node are limited compared to the cloud server. Moreover, the pattern of using IoT 
resource usage is also dynamic and time varying. As a result, the resources allocated 
to requests must be dynamically scaled to enable the best utilization of available 
resources, and static deployment will not be able to adapt to such changes. In other 
words, the traffic generated by users and sensors is irregular and oscillatory. If the 
used resources are fixed, there will be times when requests inbound from devices 
require more or fewer resources to perform transactions [9–11]. These conditions 
can sometimes lead to over-provisioning or under-provisioning. If the resources are 
less than the required IoT service, then the service cannot be performed at all or will 
be done incompletely. If the resources are more than the IoT service requirement 
and the workload requires fewer resources, the resources and costs will be wasted, 
and the efficiency will be reduced. Therefore, fog services should be dynamically 
placed on the resources to respond to the requests at the earliest time with the best 
response through optimal and dynamic resource management. In addition, it should 
be ensured that no node is overloaded with power or less than the required capac-
ity. The basis for the dynamism of fog services is the deployment and release of 
IoT services on fog computing devices or cloud servers to reduce costs, resource 
power consumption and achieve less latency and therefore, optimal quality of ser-
vice (QoS) for IoT applications. To this end, resource provisioning in fog computing 
is one of the challenging issues, as the important issue here is optimal fog resource 
provisioning so that all users can utilize each resource based on their needs. If these 
resources are provisioned and managed automatically, and without the users’ inter-
vention, there will be a significant reduction in criteria such as response time, cost 
and power consumption, and increase in productivity [12, 13].
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1.2 � Our approach and contributions

In static problems, the main goal is to find or better estimate the optimal points. 
However, in dynamic problems, not only the main goal of the static state should 
be satisfied, the optimal point/s should also be pursued at the earliest possible 
time. The reason is that in dynamic environments, due to environmental vari-
ability, it is possible to change the optimal point to another area of the search 
space. Consequently, such problems face more challenges than static ones, and 
these types of problems are considered hard problems (NP-hard class). Thus, the 
proposed algorithm should be able to show good performance in situations where 
the environment is facing uncertainty and track the optimal variable. Therefore, 
those algorithms should be utilized that can adapt themselves to the varying envi-
ronmental conditions.

The main purpose of this study is to reduce the average latency and cost of ser-
vice provisioning of IoT applications and increase the utilization in the fog envi-
ronment. To this end, we intend to create a new method for resource management 
related to IoT applications using neural network and DRL approaches. This method 
can automatically, relying on previous experiences, achieve an effective strategy for 
scheduling overtime. The issue of resource provisioning is in the realm of decision-
making issues, and due to the dynamic conditions of IoT networks and the diffi-
culty of their modeling, it is required to use an online and adaptable method to solve 
them. Therefore, it is not practical to use exploratory and law-based methods to this 
end. Using machine learning, it is possible to create estimative models with accept-
able accuracy from systems that have complex behavior through direct use of data 
without applying predetermined rules.

Reinforcement learning is one of the branches of machine learning in which an 
entity called an agent learns how to select the best possible actions with the aim 
of maximizing the cumulative reward through continuous interaction with its sur-
roundings. Deep learning is also one of the sub-areas of machine learning, which is 
a good choice for online learning due to its ability to represent the intrinsic relation-
ships between system inputs and outputs. Therefore, it can be concluded that DRL 
is considered as an appropriate and good choice for automatic and online decision 
making in resource provisioning of IoT application problems in fog computing. In 
addition, the innovations of this article include:

–	 Selecting the best server with the minimum response time along with optimal 
use of bandwidth to increase network efficiency and resource utilization, as well 
as load balance in heterogeneous IoT network to increase customer satisfaction 
and QoS.

–	 Presenting a framework for dynamic resource provisioning using the deep rein-
forcement learning technique for effective use of processing node resources.

–	 The results of simulation tests show that the proposed method in this paper has 
been better than the three basic algorithms in terms of the average waiting and 
response time and better completion of the tasks, and making effective use of 
resources through appropriate distribution of tasks.
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The remainder of this paper is organized as follows: In Sect.  2, we review the 
related research about resource provisioning in fog computing. In Sect. 3, we explain 
the proposed solution in more detail. In Sect.  4, the simulation results finally the 
conclusions and future works are presented in Sect. 5.

2 � Related work

Deployment of cloud and edge applications, such as IoT services, must be made 
compatible in run time with minimum human intervention to maintain performance. 
Software containers can be used to simplify the deployment and management of IoT 
services. To identify the key features of deployment solutions available in IoT ser-
vices and to summarize and organize the related approaches, a classification of dif-
ferent provisioning approaches in the edge environment has been presented, which 
is based on seven questions: why, who, when, where, which, what, and how so that 
the commonalities and differences of the works done in this area can be easily iden-
tified. Figure 1 shows a classification of different provisioning approaches in fog/ 
edge environment.

Fig. 1   Classification of different provisioning approaches in fog/edge environment
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2.1 � Why

This question is related to the estimation of quantitative criteria of optimization 
and target function during provisioning the required IoT services. To determine the 
goals of resource provisioning, several criteria have been improved in the studied 
researches, which are broadly classified into user-oriented (consumer-desire) and 
system-oriented (provider-desire) criteria. Consumers are concerned about the per-
formance of their applications, such as response time, cost, and energy consumption, 
while providers are more interested efficient use of resources such as throughput and 
resource efficiency metrics. If a user wants to get things done faster, he has to spend 
more as the faster resources are usually costly. Therefore, there is always a trade-
off between costs and run-time optimization. Most researches consider user-oriented 
criteria [14–21], while fewer researches consider a combination of consumer and 
provider-desire criteria [22–25].

2.2 � Who

In most studies, resource management and deployment of IoT services are the 
responsibility of an external controller or synchronization tool to improve modu-
larity and flexibility. The deployment controller is responsible for managing and 
deploying IoT services based on self-compatible mechanisms. This entity decides 
on adding or removing resources. A coordinator and centralized controller [16, 17, 
19, 23] would be considered as a bottleneck for scalability and would not have the 
required efficiency due to latency between the components of the controller system 
and managed system in case IoT services are distributed in a non-centralized man-
ner. Therefore, most studies utilize the decentralized controller [14, 22, 25–28] for 
the analysis and deployment of services.

2.3 � When

This question deals with the temporal aspects of dynamic resource provisioning of 
fog services that are decreased or increased in proportionate to the users’ demand 
rate. Concerning the varying running conditions of the programs and their long run 
time, it is necessary to implement the scalability operation at the proper time. Early 
resource provisioning leads to resource loss and increased cost. On the other hand, 
late resource provisioning will lead to SLA violations and user dissatisfaction. Pro-
visioning deficiency will be created due to failure in provisioning required resources 
in relation to the average input workload, and the provisioning surplus will be cre-
ated by providing more resources than the average input workload, which are both 
unfavorable situations. The resource provisioning time could be reactive [14–18, 
22, 23, 26] and periodically or proactive [19, 20, 25, 28] or event based. In time-
based reactive resource provisioning, the resource provisioning decisions are peri-
odically made after workload behavior variation and are widely used in studies due 
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to simplicity. In proactive resource provisioning, complicated techniques are used 
for the prediction of future demands in advance to adjust resources to the predicted 
amount. Therefore, the reactive approaches are not able to make provisioning deci-
sions in sudden workload traffics, and usually, proactive strategies are used to con-
front the workload oscillations.

2.4 � Where

The aim of this question is to specify the modeled computing infrastructure by the 
resource provisioning policy. The decisions of cloud infrastructure suppliers’ aim at 
the optimization of resources in data centers, while the supplier of IoT applications 
makes local decisions for each applied service to run on the virtual machines based 
on received workload and the cost of using services. In some studies, a homogene-
ous [14, 18, 23] computing infrastructure is used where the resource management 
problem is implemented locally and distributed in the fog/edge layer. Some other 
solutions in resource management consider resource heterogeneity [15–17, 19, 22, 
24–27], where the specifications of geographically computing environments (such 
as processing capacity, resource storage, existing resources, or network latency) are 
better described.

2.5 � Which

The aim of this question is to answer which types of scalability, visualization, and 
supplying issues persist?

2.5.1 � (A) Elasticity

An elastic IoT application dynamically manages computational resources based on 
its workload, improves the availability of the programs, and limits the implementa-
tion costs. The scalability problem determines how new containers are added to the 
computing system or platform in the face of workload variations, and the load bal-
ancer distributes the workload among all available virtual machines (i.e., horizon-
tal scaling), and, or more resources are added to the same running virtual machine 
to perform application demand (i.e., vertical scaling). The rapid response to small 
workload variations is usually implemented through vertical scaling and a reaction 
to sudden peak workload through horizontal scaling. Most studies consider only 
horizontal scaling operations [14, 15, 17, 18, 21–23, 25–27], and a limited number 
of them use a combination of horizontal and vertical scaling operations [19].

2.5.2 � (B) Provisioning problem

Concerning the dynamic resource provisioning, the problems are divided into two 
scaling groups (application and virtual machine scaling) and placement (f appli-
cations and virtual machine scaling). Application scaling (AppScale) refers to the 
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determination of the increase and decrease in the number of applications, or the 
constituting units of applications (service), and virtual machine scaling (VMScale) 
refers to determination of increase and decrease in the number of virtual machines 
and their related resource such as processor and memory. Application placement 
(AppPlace) refers to determination of the place of the applications on a virtual or 
physical machines, and virtual machine placement (VMPlace) refers to the determi-
nation of the place of virtual machines on physical machines. Some studies consider 
the placement strategy for deployment of services [14, 15, 17, 18, 21–23, 25–27], 
and some of them have used scaling operations [16, 19, 20, 24, 28].

2.5.3 � (C) Virtualization

There are two virtualization techniques: hypervisor and container virtualization. 
Hypervisor virtualization involves the use of the special operating system for virtu-
alization in a physical server and capturing the main resources such as RAM, CPU, 
and disk in the host system, and assigning and managing resources between the 
operating systems that are installed as guests. A container includes all things that are 
required for run time, including an application and all its dependencies, libraries and 
configuration systems, etc. The said items are packaged as a package. Containers are 
lighter and use fewer resources. Most studies consider container virtualization in the 
fog/edge layer [15, 16, 19, 22, 28].

2.6 � What

This question identifies the resources that should be supplied in the deployment of 
IoT services such as application-level (IoT services, container virtual machines) and 
the infrastructure-level entities (processor, memory, and network). Therefore, some 
of the provisioning policies act based on the manipulation of IoT applications with-
out changing their computational resources [17, 21], and others dynamically change 
the computational resources at the infrastructure level [20].

2.7 � How

This question intends to answer this question as to how be it possible to solve the 
provisioning problems using algorithms, techniques, and technologies. This phase 
is the main core of each automatic scaling method for which various soft compu-
tational techniques (such as genetic algorithm, neural networks, fuzzy logic, and 
queue theory), greedy algorithm, reinforcement learning, etc., can be utilized. The 
techniques and main technologies applied in the algorithms are VM migration, VM 
resizing, workload prediction, etc. In this study, the existing approaches are classi-
fied based on methods that use them, including mathematical programs [14–16, 22, 
23], heuristics [17, 18, 24, 26, 27], and machine learning solutions [19–21, 25, 28].

The mathematical programming approaches utilize the software-based 
approaches to manage the frameworks. The mathematical solutions include inte-
ger linear programming [16], queue theory [15], and Markov-based processes 
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[23]. Nguyen et al. [22] presented a framework with the aim of provisioning elas-
tic resources in container-based fog computation for resource provisioning based on 
the elastic fog method on the Kubernetes platform. Their focus is on solving two 
problems of network latency by collecting network traffic and allocating computa-
tional resources (elastic resources) in accordance with changes in demand in appli-
cations. Pereira et al. [23] programmed system use optimization and its preparation 
for input workload to determine the capacity in fog computing through minimization 
of rum time. In addition, they evaluated the proposed method for running web server 
performance through a stochastic-based method using Markov chain. Santos et al. 
[14] have considered a content-based mechanism as a solution for the deployment 
of services in fog nodes as an ILP problem. The intended mechanism has consid-
ered the energy and latency-based limitations of video-based applications as well 
as QoE to download the video content in the edge and evaluate the resource supply. 
Stavrinides et al. [15] studied the performance of a heterogeneous fog environment 
and effective factors on it by effective balancing of IoT workloads and considera-
tion of deadline limitations and scheduling challenges. The presented dynamic pro-
gramming algorithm improves the system performance based on the probabilities 
of input data location within two stages of task selection and proper allocation of 
virtual machines. Dinh et al. [16] developed a computation system model where it is 
possible to lease multiple fogs and cloud nodes, which takes into account the deci-
sions on resource allocation, edge processing costs, and cloud leasing options. They 
proposed an offline algorithm using future request information and an online deci-
sion algorithm for each loading without any future relevant information.

Heuristics as a trial and error solution is the most popular way to improve the 
NP-hard problems at run time, which utilizes the approximate solutions instead of 
exact solutions such as greedy approaches [17, 24], threshold-based exploration 
[27], and special designed solutions [18, 26]. Yousefpour et al. [17] designed a QoS-
aware Dynamic Fog Service Provisioning (QDFSP) framework with consideration 
of cost, latency, and QoS needs and discussed how it could be improved for fog 
service providers and their customers in terms of improved QoS and cost savings. 
The QDFSP problem, an optimization problem with INLP formulation, and two 
greedy algorithms are introduced that should be periodically implemented. Porkodi 
et al. [18] invented a fuzzy clustering with Flower Pollination meta-heuristic algo-
rithm as a resource provisioning technique for fog computing. The proposed model 
includes a three-step procedure: The first step is standardization and normalization 
of the resource features. The next step is fuzzy clustering for partitioning the devel-
oped resources and scalability of resource search for better exploitation of resources. 
Finally, the invented resource provisioning model is developed relying on the opti-
mal fuzzy clustering. Madan et  al. [26] presented a computational framework for 
smart cities with the aim of resource provisioning based on demand for the mobile 
networks using Flying Fog which is handled through introducing the allocation and 
resource provisioning concepts in the form of fog units. The lease period for the 
allocated resources is defined based on the preventive resource provisioning model. 
Bahreini et al. [24] pursued the aim of minimizing the energy consumption in edge 
computational systems and resource allocation so that the net profit of the service 
provider will be maximized. The problem is formulated as MILP, and the evaluation 
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is done using a meta-heuristic algorithm through extensive experimental analysis 
on the samples of the problem. Siasi et al. [27] proposed an SFC-based provision-
ing method in fog-cloud hybrid architecture by studying the concept of service per-
formance chains in fog and cloud computing nodes. To meet the different latency 
requirements, they used a heuristic search method to balance the network latency, 
resource consumption, energy consumption, and cost in high traffic volumes.

In machine learning, scaling decisions are based on learning techniques such as 
reinforcement learning [19, 20], neural networks [21], and fuzzy logic, which is a 
combination of artificial intelligence, statistics, and mathematics that through an 
agent learn to make appropriate decisions through interactions with the environment. 
Faraji et  al. [19] provided a distributed computational framework for autonomous 
resource management for time-varying work flows in which the resource provision-
ing self-management system operates through a reinforcement learning approach 
and uses a backup vector regression technique to predict future resource require-
ments in the fog computing environment. Abdollah et  al. [28] proposed an auto-
mated predictive scaling method for microservices that are running on Fog MDC to 
meet the response time of the SLO program. The proposed approach uses an auto-
mated scalability method based on reactive rules to collect training data sets to con-
struct a predictive automated scale model through preprocessing and post-process-
ing steps. In fact, this approach learns the predictive automated scalability model 
through tree regression by increasing the artificial workload. Liu et al. [25] carried 
out a study with the aim of managing the elastic resources based on error-correction 
workload prediction in edge/cloud environment in response to workload variations 
due to users’ requests. In fact, they acted based on workload prediction (combination 
of ARMA and ENN) and used an error-correction model to improve the prediction 
precision and workload migration model to reduce the migration time. Kim et  al. 
[20] performed a study intending to optimize the energy output using reinforcement 
learning in the edge. This paper proposes an adaptive and lightweight scaling engine 
based on a custom-designed reinforcement learning algorithm. Al-Makhadmeh et al. 
[21] designed an efficient scalability resource allocation structure based on deep 
learning and an effective framework for balancing the user density and their requests 
based on available resources and thereby maximizing the reliability of IoT services 
and user satisfaction.

Table 1 presents the comparison of the research conducted on resource provision-
ing in fog computing based on the proposed classification.

3 � Proposed approach

Resource provisioning and allocation to provide in fog computing, users want their 
requests not to go to the cloud as much as possible and to be answered close to the 
edge, or fog node with a minimum guarantee of service quality and minimum cost 
and the service providers seek for return of the maximum amount of profit and capi-
tal. As the availability of resources and workloads change dynamically, this dynamic 
behavior poses challenges for service providers and users. The two main issues of 
service quality requirements (such as reliability, latency, cost, supply, and proper 
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resources allocation) and the acceptable level of efficiency and productivity of the 
system are among the factors that must be considered to maintain the satisfaction 
of parties. The mathematical models confront an increase in the variables and con-
straints with an increase in the search space of the problem, and solving the problem 
of service deployment using traditional methods requires a lot of time and money, 
which contradicts the goals of fog computing in the face of real-time applications.

3.1 � The proposed framework

In this section, a resource provisioning framework will be presented for the imple-
mentation of the proposed approach. As seen in Fig.  2, the proposed approach is 
taken from three-layer fog computing architecture. The first layer includes IoT 
devices and sensors. All smart devices, including mobile phones, sensors, and tab-
lets, are supported in this layer. Not only does fog provide services based on Ad Hoc, 
but also estimates resource consumption and can allocate the estimated resources. In 
this layer, each device produces layers that might need some processing, storage, and 
computational operation. The users’ requests are entered into the access points and 
then into the admission control component. This deadline component compares each 

Fig. 2   The proposed approach
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request to the threshold value and sends it to the gateway for processing in the cloud 
if above the threshold value (the processing is not real-time and latency-sensitive). 
Otherwise, the processing is real-time, and it is required to be sent to the fog layer 
for quick processing. The fog layer is responsible for resource provisioning and fog 
node allocation for operating on the data produced by IoT devices. The cloud layer 
consists of virtual machines of cloud data centers that big data or non-time-sensitive 
applications are transferred to for processing purposes. The main component of the 
proposed resource provisioning framework is responsible for controlling all three 
layers in the proposed framework.

The proposed controlling component automatically and efficiently manages the 
fog layers and is consisted of the following components:

Supervision: This component is responsible for collecting the criteria that are 
related to IoT devices and fog and cloud layers. The supervision components can 
get the required data (such as CPU, storage, and required RAM for data process-
ing) through communicating with the IoT layer. It can also collect the resource 
data (such as CPU efficiency, use of storage, network traffic, and active/inactive 
resources) through communicating with fog devices or data centers.
Validation: This component has the responsibility of investigating the data taken 
from the supervision component. This component includes a data type checker 
module, duplicate, and damaged requests.
Knowledge Database: DB module is responsible for maintaining input data, 
including IoT device-level requests, fog device, and cloud data center data. The 
validation component updates this data after review.
Admission control: The admission manager module is responsible for verify-
ing the location of processing the requests received from IoT devices using data 
stored on the DB. If the request deadline exceeds a certain threshold, the request 
should be sent to the cloud layer. Taking such a decision, the data resources man-
agement module sends the request to execute module to send it to cloud data 
center for processing and storage. Otherwise, the request shall be processed in the 
fog layer by sending it to the Policy Maker component.
Resource manager: This component is responsible for managing and decision 
making about resource provisioning in the fog layer and processing the received 
requests through Admission Manager Module using the DRL technique. Then, it 
decides how to provide the resources concerning the received request.
Execute component: It is responsible for the execution of decisions taken the 
Policy Maker module. This module specifies that the request shall be processed 
in the fog or cloud layer through the admission manager. In addition, the resource 
manager determines the number of required resources for the requests sent to the 
fog layer. Finally, the requests are sent to the destination to be executed.



17012	 M. Faraji‑Mehmandar et al.

1 3

3.2 � Problem formulation

To model the fog infrastructure network, we use an undirected graph G = (N,A) for 
representing the communication network between resources in the fog ecosystem, so 
that the node set N includes a set of resources and the edge set A includes the com-
munication links between the resources, such that the communication link delay (in 
ms) depends on the propagation delay, bandwidth, queuing delay, and the network 
traffic condition. This section provides the notations and performance metrics used in 
the proposed method, as shown in Table 2. According to the QoS requirements of IoT 

Table 2   Notations and definitions

Parameter Description

� The time interval between two rounds (in milliseconds)
A Set of application servers hosted on containers in fog nodes. ai ∈ A, i = 1,… , n

Thri Maximum time value need to process on cloud servers or fog environment for ai
QoSi Desired quality of service for ai
Uai

CPU demand of the ai (in million instructions per request)
Mai

Memory demand of the ai (in byte)
Sai Storage demand of the ai (in byte)
Ufj

The processing power of the fog node j, in MIPS
Mfj

Memory capacity of the fog node j, in bytes
Sfj Storage capacity of the fog node j, in bytes
CU
FN

Unit cost of process at fog node j (per million instructions)

CS
FN

Unit cost of storage at fog node j (per byte per second)

CM
FN

Unit cost of main memory at fog node j (per byte per second)

CU
CN

Unit cost of process at cloud node k (per million instructions)

CS
CN

Unit cost of storage at cloud node k (per byte per second)

CM
CN

Unit cost of main memory at cloud node k (per byte per second)
�in
ik

Incoming traffic rate to cloud server k from IoT nodes for service i (request/second)

�in
ij

Incoming traffic rate to fog node j from IoT nodes for service i (request/second)
�out
ijk

Rate of outcome traffic from fog node j to cloud server k for service i (request/second)
�out
ijj

′ Outcoming traffic rate for service i from fog node j to fog node j′ (request/second)
cc(s,d) Cost of communication link (s,d) per unit bandwidth/second
rt(s,d) Rate of transmission (bandwidth) of link (s,d)
pd(s,d) Propagation delay of link (s,d)
Size

req

i
Average request length of service i, in byte

Sizeres
i

Average response length of service i, in byte
�k
a

BinaryvariableshowingifServiceahostedoncloudserverk

�
j
a

BinaryvariableshowingifServiceahostedonfognodej

�
j
a

BinaryvariableshowingifServiceaDeployedonFognodej

EU
FN

Unit communication energy consumption of a fog node
MDEfj

The maximum dynamic energy consumption of the fog node j
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services and the computation capabilities of fog nodes, the IoT services can be placed 
on a series of fog nodes. The main decision variables of the optimization problem are 
the placement binary variables, defined below:

Note that the fog service manager periodically calculates the IoT service place-
ment plan according to objective functions in certain � time intervals.

3.2.1 � Performance metrics

In this paper, we consider three kinds of objective functions, namely throughput, 
cost, and energy consumption.

3.2.1.1  (A) Throughput  The first objective is throughput metric or service accept-
ance ratio, that means the maximization of deploying the number of IoT services on 
the fog nodes (instead of cloud servers) while meeting the QoS requirements of each 
IoT service, as expressed by Eq. (3):

3.2.1.2  (B) Addressing cost model  The second objective is the cost, which means the 
minimization of the total cost for executing IoT service requests. The cost optimiza-
tion problem can be formulated as problem C

The cost components details are defined below.

(1)�k
a
=

{

1 if Service a hosted on cloud server k

0 otherwise

(2)�j
a
=

{

1 if Service a hosted on fog nodej

0 otherwise

(3)T =
∑

j∈FN

∑

ai∈A

�j
ai

C = CloudComputational Cost(C1)

+ FogComputational Cost(C2)

+ CommunicationCost(C3)

+ Deployment Cost(C4) + Penalty Cost(C5)

(4)C1 =
∑

k∈CN

∑

ai∈A

(CU
CN

× Uai
× �in

ik
+ CS

CN
× Sai + CM

CN
×Mai

) × �k
ai
× �

(5)C2 =
∑

j∈FN

∑

ai∈A

(CU
FN

× Uai
× �in

ij
+ CS

FN
× Sai + CM

FN
×Mai

) × �j
ai
× �
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where  cloud resources cost and fog resource cost are the total cost for all cloud 
servers and fog nodes for serving IoT requests into cloud and fog tier, respectively. 
The communication cost is determined according to the cost of communication links 
between fog nodes and communication links between fog nodes and cloud nodes 
when service offloading to the cloud. Deployment cost is the summation of service 
deployment from fog service manager module in the cloud to fog. The penalty cost 
for each service is the penalty that the fog service manager should pay per request of 
service if the delay requirements are violated.

3.2.1.3  (C) Energy consumption model  The third objective is energy consumption, 
and it depends on the computation and communication energy of the fog nodes.

The energy consumption optimization problem can be formulated as problem E:

The energy consumption components details are defined below. 

The communication energy consumption is specified by the service delay and the 
geographical locations between two fog nodes. Besides, the dynamic energy con-
sumption of a fog node is determined as a linear equation based on the CPU utiliza-
tion of the fog node and the maximum dynamic energy consumption. If the CPU 
utilization of the fog node is 100%, the amount of the dynamic energy consumption 
will be maximum; otherwise, it will be calculated based on the CPU utilization in 
the current time interval.

(6)

C3 =

(

∑

j∈FN

∑

j�∈FN

∑

ai∈A

cc(j,j�) × �out
ijj�

+
∑

j∈FN

∑

k∈CN

∑

ai∈A

uc(j,k) × �out
ijk

)

×
(

Size
req

i
+ Sizeres

i

)

× �

(7)C4 =
∑

j∈FN

∑

ai∈A

uc(FRP,j) × Sai × � j
ai
× �

(8)C5 =
∑

j∈FN

∑

ai∈A

max(0, Violation%
i
−
(

1 − QoSi
)

) × �in
ij
× Penaltyi × �

E = Communication Energy Consumption(E1) + Computational Energy Consumption(E2)

(9)E1 =
∑

j∈FN

∑

j�∈FN

∑

ai∈A

EU
FN

× �out
ijj�

× �j
ai
× �

(10)2 =
∑

j∈FN

ECStatic
comp

+
∑

j∈FN

ECDynamic
comp

(11)E3 = ECStatic
comp

=

{

�iffj is active

0 otherwise

(12)E4 = ECDynamic
comp

= Ufj
×MDEfj

× �
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3.2.2 � Constraints

Given the resource capacity of cloud servers and fog nodes, the use of fog node 
resources and cloud servers should not exceed their capacity, as formulated by the 
following equations:

3.3 � Deep reinforcement learning‑based resource provisioning policy

Reinforcement learning is one of the machine learning techniques where the 
learning agent is rewarded (along with delays) after evaluating each action. The 
reinforcement learning mechanism in the dynamic resource provisioning prob-
lem consists of two decision-making elements (reinforcement learning algorithm) 
and environment (IoT services ecosystem and fog computing resources). Initially, 
the environment creates a situation (determining the initial amount of resources 
for each service) for the agent to react to it based on its knowledge (increase of 
resources, decrease of resources, appropriate resources). Then, the environment 
simultaneously sends the next status and reward of the previous action to the 
agent. The decision maker updates its knowledge based on the reward that it has 
got for its previous action. This cycle continues until the environment sends the 

(13)
∑

ai∈A

𝛼j
ai
× Sai < Sfj , ∀j ∈ FN

(14)
∑

ai∈A

𝛼j
ai
×Mai

< Mfj
,∀j ∈ FN

(15)
∑

ai∈A

𝛽k
ai
× Sai < Sck ,∀k ∈ CN

(16)
∑

ai∈A

𝛽k
ai
×Mai

< Mck
,∀k ∈ CN

(17)
∑

ai∈A

𝛼j
ai
× Uai

< Ufj
,∀j ∈ FN

(18)
∑

ai∈A

𝛽k
ai
× Uai

< Uck
,∀k ∈ CN

(19)�k
ai
∈ {0, 1},∀ai ∈ A, i = 1,… , n and k ∈ CN

(20)�j
ai
∈ {0, 1},∀ai ∈ A, i = 1,… , n and j ∈ FN
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final status to the agent and ends the cycle. In most reinforcement learning meth-
ods, we analyze the changes in the results to see how the results will change with 
our decisions. This can be done with a better understanding of the system dynam-
ics or through smart trial and error to determine which decisions work best. In 
recent years, reinforcement learning algorithms have evolved as a result of merg-
ing with neural networks, so that the speed of the learning process has improved 
in order to solve complex problems. In deep reinforcement learning, the ability to 
understand deep learning is well combined with the ability to make reinforcement 
learning decisions. Reinforcement learning uses a table to store action values and 
concerning the complexity and diversity of the environment status, the use of a 
table for storing all values of action is impractical, and the continuous search of 
the related status in a big table is time-consuming. The proposed deep reinforce-
ment learning directly utilizes the neural network with parameter ω to approxi-
mate Q function and produce action values. The main components of the DRL 
model are completely shown as follow:

(A) Reinforcement learning

State (S) st Status includes full information about the ecosystem of IoT services in 
t time stage and shows the decision-making agents. An example of a system includes 
the current allocation of resources and IoT services requests such that a sequence of 
resource allocation to IoT services leads to the system status. We need to provide 
a suitable status to act as the neural network input, and because of several service 
requests at a time, we select the first few requests as a small batch for resource pro-
visioning in order to maintain a consistent state display. In addition, the presence of 
large possible combinations of allocation sequences leads to an MDP model with 
a different number of states. Based on the predefined objective, status refers to the 
configuration of various resources such as CPU values and memories.

Action (A) An action leads to the allocation of the required resources (alloca-
tion of the selected container) to the request of incoming IoT services. Every IoT 
service has requirements, and if the selected container has resources greater than 
or equal to these requirements, that container is considered a valid choice other-
wise, it is considered invalid. After each action, a transition from the current state 
in t time step to a new state st+1 occurs in the time step t + 1. While provisioning 
the incoming IoT services, a large number of actions are possible in the operating 
space, which in turn complicates the entire work of provisioning. During training, 
DRL-based resource provisioning tries to learn the distribution of actions along 
with weights and biases known as rewards. An action refers to setting up a unit of 
a single resource, such as increasing a CPU unit.

Reward (R) rt = (st, at, st+1) Reward is the immediate feedback of the system 
after evaluating each action of the decision maker and changing the current state 
of the system by the environment. For each action of the agent and the extent 
of its effects on the performance of the network, a positive or negative reward 
is given to the agent, which indicates the extent to which an agent performs 
well in stage t. Our goal is to minimize cost, average response time, and over-
all energy consumption. The combination of IoT ecosystem performance metrics 
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(monitoring metrics) indicates the state of the system. In the proposed method, 
the reward function is based on a combination of cost, efficiency, and energy con-
sumption parameters, the ultimate goal of which is to maximize future cumula-
tive rewards following the selected policy.

Policy (π) policy is a strategy that represents a state-of-action mapping that shows 
the probability distribution over actions in each state. Each mode in the IoT ecosys-
tem provides information about system monitoring metrics (cost, response time, and 
power consumption), and the values of these metrics change as the system moves to 
the next mode after performing an action. The result of criteria monitoring feedback 
is an action that leads to the current status of the system. For each action of resource 
allocation, final reward feedback is assigned to that particular action. The goal is to 
maximize future cumulative rewards based on feedback from consecutive actions:

where 0 ≤ γ ≤ 1 is a discount factor or delayed reward parameter (γ = 0.99 default). 
Different actions in each situation (mapping the resources required for IoT services) 
lead to a large number of possible policies. In this paper, we use a deep neural net-
work (DNN) as a function approximation to approximate the probabilities of pos-
sible actions and create an approximate probability distribution of a state-action pair.

(B)	 Deep Neural Network (DNN)

The resource allocation policy, which changes at different times, can be approxi-
mated using an approximate trained network (DNN) that has its own parameters. 
The approximate DNN network takes the status of complete information about the 
IoT service ecosystem as the network input and generates the probability of selecting 
the necessary actions using θ policy parameters as the weight and bias of the output 
network. A basic policy production model is shown in Fig. 3.

Our proposed algorithm creates an initial policy or action-practical relation-
ship for each set of requests. By interacting with the system environment, the 

(21)rt =

∞
∑

t=0

� trat

(

st, st+1
)

Fig. 3   Policy production models
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DNN senses the current state of the system and examines possible future situa-
tions by setting parameters following a process of rewards maximization. There-
fore, it learns the optimal policy through multiple iterations so that better meas-
ures can be taken for resource provisioning. As resource provisioning progresses, 
a database is created used to further improve the parameter θ policy and supply 
new requests based on this updated policy parameter. The descending gradient 
algorithm is used to update the weights to select beneficial actions. In this way, 
after several training repetitions, the optimal weights and biases are obtained, 
which maximizes the cumulative reward generated during resource provisioning.

The proposed deep RL approach is shown in Algorithm 1. The first part of the 
algorithm sets the initial values of the parameters. Line 3 is allocated to setting up 
playback memory E, which is a data structure containing the experiences created 
by the agent and stores all data needed for DNN training. First, two neural net-
work weights are set to the same values (lines 4–5); then, the other parameters are 
set to line 6. In each iteration of for loop, the agent observes the current state (line 
8) and selects an action to perform that depends on the exploration rate(−greedy) , 
which leads to a balance between exploration strategies and exploitation of previ-
ous experiences (line 10). Exploration identifies a randomly selected action (line 
11). In action, the most appropriate action in the current state is returned by the 
DNN prediction network (line 14). One of the challenges in this problem is the 
proper distribution of services among virtual machines in a way that the proper 
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and effective use of these resources is done. Exploration strategy in (−greedy) 
politics will overcome this challenge by choosing random actions. After perform-
ing the action, the agent again observes the situation obtained by the environment 
and the corresponding reward. (Lines 16–18) After storing the experience created 
by the agent in the replay memory E (line 19), this is the point where deep learn-
ing is entered. First, a nonlinear approximation (main Q network) predicts Q val-
ues for the given state sj (line 21). Then, the target Q values are evaluated via the 
target DNN network (line 22) and used in the Belman Update formula (line 23). 
After upgrade, the main DNN network is trained by performing a training step on 
the cost function (line 24), and after U step of execution, the weight of the target 
DNN network is adjusted to the weight of the main DNN network (line 25).

4 � Performance evaluation

In this section, the results of implementing the FRP_DRL method for resource provi-
sioning based on deep reinforcement learning in a fog environment will be investigated. 
iFogSim is used for accurate and extensive simulation of the fog, which provides the 
possibility of modeling and simulating the fog computing environment. Using this tool, 
it is possible to evaluate the resource management and resource provisioning policies 
in edge and cloud computing under different scenarios. This simulator can evaluate the 
resource management policies by focusing on their effect on latency, energy consump-
tion, operational cost, and utilization. This tool supports the devices in edge, computing 
cloud, and network links for evaluation of productivity. The main applied model which is 
supported in iFogSim is Sense-Process-Actuate. In this model, the sensors monitor data 
produced in IoT, follow sand processes the programs executed in fog tools, and at the 
end, the final decisions will be transferred to data transfer space [29, 30].

4.1 � Simulation setting

The simulation setting used in the simulation is presented in Table 3. The average size of 
the request is set on U (10: 26) KB, the application response on U (10:20) KB, and the 

Table 3   The specifications of each fog domain

Parameter Description Parameter Description

Thri 10ms CU
FN
,CU

CN
0.002 perMI

QoSi U(90, 99.99)% CS
FN
,CS

CN
0.004 perGbpersec

Uai
U(50, 200)MIperreq CM

FN
,CM

CN
0.004 perGbpersec

Mai
U(2, 400)MB Core,Edgelink 10Gbps,1Gbps

Sai U(50, 500)MB pd(j,k) U(15, 35)ms

Ufj
U(800, 1300)MIPS pd(IoT ,k) U(1, 2)ms

Mfj
U(2, 400)MB Size

req

i
U(10, 26)KB

Sfj ≥ 25MB Sizeres
i

U(10, 20)KB
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required value for processing services is set on U (50: 200) per request. The QoS level is 
assumed different for applications, which is a random number between U(90, 99.99)% . As 
far as fog services are latency-sensitive, the penalty for violating the latency threshold is 
a random number in U (10: 20). The processing capacity of each fog node is assumed as 
equal to U (800; 1300) MIPS, the processing capacity of each cloud server to 20 times the 
MIPS fog nodes U (16–26 K). The storage capacity of fog nodes is above 25 GB, and the 
storage capacity of cloud services is 10 times the fog nodes. The memory capacity of fog 
nodes and cloud servers is 8 GB and 32 GB, respectively. The propagation delay between 
IoT nodes and fog nodes is U (1; 2) microseconds, and between fog nodes and cloud serv-
ers are U (15; 35) microseconds. The communication path between IoT nodes and fog 
nodes is 1 Gbps links and between fog nodes and cloud servers is 10 Gbps. The cost of 
communication between fog nodes is 0.2 per Gb, and between cloud servers and fog nodes 
are 0.5 per Gb. The processing cost in fog nodes and cloud servers is 0.002 per MI. The 
storage cost in fog nodes and cloud servers is 0.004 per GB per second [17].

4.2 � Simulation metrics

The main evaluation metrics are: mean utilization, average response time, average 
cost, and mean energy consumption.

•	 Utilization: The amount of MIPs allocated to services in the fog node divided 
by MIPs available in each node is called utilization.

•	 Response time: The total deployment time (propagation and transmission 
delay) and mean execution time (processing delay) determine the service time or 
response time.

where w1 + w2 is deployment time and W3 is execution time of service in fog 
node.

•	 Cost: Cost is allocated to the node in respect to duration of running a service in 
the node as shown in Eq. (24).

where c1 is computational cost, c2 is communication cost, c2 is deployment cost, 
and c4 is penalty cost.

•	 Energy Consuming: The communication energy consumption is determined 
based on the service latency and the geographical location between two fog 
nodes. In addition, the computational energy consumption of a fog node is deter-
mined in the form of a linear equation based on using CPU of fog node and max-
imum dynamic energy consumption.

(22)Utilization =
Allocated_MIPS

Available_MIPS

(23)
W =UploadDelay(W1) + Transferringdelay(W2)

+ Expectedprocessingdelay(W3)

(24)
C =Computational Cost(C1) + Communication Cost(C2)

+ DeploymentCost(C3) + Penalty Cost(C4)
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4.3 � Workload

The type of artificial workload used in stimulation is a fast variable. The varied 
fast workload is constituted from 250 requests to 1350 services. The way this 
load is formed begins with defining several random peaks. The peak is then con-
sidered as the threshold, and the number of services is randomly increased to the 
peak and is randomly decreased to a certain amount in a similar way. The average 
number of services in this workload is 720.

4.4 � The base methods for comparison

The base algorithms used for the evaluation of the performance of the proposed 
method are FRP_LA (Fog Resource Provisioning Learning Automata) and FRP_
RL (Fog Resource Provisioning Reinforcement Learning).

FRP_LA[31]: The approach is a combination of the Learning Automata and 
resource provisioning framework proposed in this study. The approach first uses 
time series prediction methods in the analysis phase and then the learning auto-
mation method in the planning phase. The reason for choosing this approach is 
that it is one of the reinforcement algorithms, and is used in environments with 
variable requests and has a good convergence time.

FRP_RL[32]: In this algorithm, the service allocation in the fog environ-
ment is first random, and then in the planning section, the reinforcement learn-
ing method is used. As far as in the policy exploration section, the choices are 
just randomly made. It is necessary to compare the performance of the proposed 
method with this algorithm to determine the intelligence of the agent and the 
effect of learning from previous experiences in the performance of the agent.

4.5 � Evaluation and results

Four scenarios have been considered for evaluation of the proposed method. In 
the stimulation of each scenario, one main evaluation criterion in the proposed 
algorithm will be investigated with FRP_LA and FRP_RL algorithms.

4.5.1 � First scenario: cost comparison

In this experiment, the cost in the proposed algorithm will be investigated with 
FRP_LA and FRP_RL algorithms. The main metric in comparison with resource 
provisioning algorithm performance is its cost. Figure  4 shows the cost of the 
proposed method in variable workload in comparison with FRP_LA and FRP_
RL algorithms. The results indicate that using decision-making process of deep 

(25)E = Communication EnergyConsumption(E1) + ComputationalEnergyConsumption(E2)
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reinforcement learning and creating appropriate limits for resource provisioning 
in the node will increase the precision. However, the main reason for cost reduc-
tion is the use of an appropriate immediate monitoring systems for getting the 
nodes’ information, which increases the precision in resource provisioning in fog.

4.5.2 � Second scenario: comparison of response time

Response time, as one of the most effective objectives of service, has the main role in 
resource provisioning. If the desired response time of service (allowed response time) is 
not achieved, the resource provisioning must be performed once again. Figure 5 shows 
the average response time of the variable workload method compared to FRP_LA and 
FRP_RL algorithms. The results show that the proposed method has the desired per-
formance in terms of response time. The reason is that the response time is equal to 
the time interval between the moments of arrival to exit of the request. This interval 

Fig. 4   The cost of variable workload

Fig. 5   Average response time of variable workload
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includes waiting time as well as the execution time of the request, and as far as the 
execution and waiting times are part of the target function of the proposed algorithm in 
this paper, the lowest response time is achieved. In the proposed resource provisioning 
method, the provisioning will be improved due to multi-objective deep reinforcement 
learning process and the use of two important input variables, which are load and cost, 
since if the resource provisioning is not appropriately done, there will be a service with-
out access to the node and therefore the response time to that service will increase. On 
the other hand, when choosing a physical machine whose virtual machines have less 
memory, in case it is overloaded, its virtual machines will migrate faster, which in turn, 
will reduce the violation of SLA.

4.5.3 � Third scenario: comparison of the utilization

Figure  6 shows the average utilization of the proposed method in variable work-
load structure in comparison with FRP_LA and FRP_RL algorithms. The results 
show that the proposed method has the desired performance in terms of productiv-
ity. Precise monitoring of the performance of the fog nodes and continuous detec-
tion of workload is very effective factor in controlling the status of the fog cells. Due 
to monitoring of the status of the nodes and the use of decision makers based on 
deep reinforcement learning, provisioning is properly done. The results show that in 
the proposed method, the number of migrations has been less than two others at all 
times by proper identification of the overloaded physical machines and also select-
ing the appropriate servers with the possibility of higher free processor capacity to 
locating the migrating virtual machines.

4.5.4 � Fourth scenario: comparison of energy consumption

Figure 7 shows the average energy consumption of the proposed method in variable 
workload structure in comparison with FRP_LA and FRP_RL algorithms. Upon 
receipt of the request, the provider decides on how to supply the resources based on 

Fig. 6   Average utilization of variable workload
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users’ requests to maximize profit. The operational cost of a node is proportionate to 
its consumed energy, which is estimated through a linear function of CUP, memory, 
and disk. Therefore, energy consumption is calculated through operational cost as 
the target function. The proposed algorithm of this study distributes the requests in 
a more effective way and makes the service distribution among virtual machines in 
such a way that their idle time decreases and resource consumption increases and 
as well the service location with the least service delay. Furthermore, by choosing 
a physical machine with lower energy consumption, the proposed method has been 
able to consume less energy at all working times than the other two methods. On the 
other hand, due to timely identification of physical machines and the migration of 
virtual machines of these servers, the excessive overload of these servers and, as a 
result, their high energy consumption is prevented.

5 � Conclusion and future work

In recent years, the production of IoT devices has grown significantly; it is so bulky, 
and IoT applications need to get very quick responses to their requests. Accordingly, 
the use of edge computing processing power to process this type of data has recently 
become common. The process of determining the load status of physical machines 
and automatically scaling resources appropriately for oscillating applications of IoT 
devices in fog environments can reduce energy consumption and prevent breaches 
of user service level agreement to avoid problems with over-provisioning and under-
provisioning. Since the fog environment is dynamic and users’ requests change over 
time, we need an optimal resource delivery method that can process more requests 
in less time. Reinforcement learning is adaptable to such an environment and can, 
as a result of learning, perform the best mapping of services to resources and man-
age IoT services efficiently. In this paper, an automated resource scaling framework 
to express interactions between modules designed for IoT devices, fog nodes, and 
cloud servers has been proposed, and deep reinforcement learning techniques have 

Fig. 7   Average energy consumption of variable workload
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been used. The proposed method was evaluated and compared with two other pro-
vision methods (FRP_LA, FRP_RL) in the iFogSim simulator environment. Min-
imize response time, cost, and energy consumption as well as increase efficiency 
rate. Activities that can be done in the future to continue the research are the use of 
prediction techniques such as neural networks to increase accuracy and their combi-
nation to estimate the input workload and identify optimal physical machines. Com-
bining reinforcement learning with fuzzy logic, applying correlated learning, and 
integrating automatic resource scaling with resource placement and service migra-
tion between fog nodes for automatic scaling can significantly improve the proposed 
solution.
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