
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:16394–16424
https://doi.org/10.1007/s11227-022-04484-6

1 3

An efficient system using implicit feedback and lifelong 
learning approach to improve recommendation

Gautam Pal1 

Accepted: 24 March 2022 / Published online: 6 May 2022 
© The Author(s) 2022

Abstract
This paper presents a new technique for contextual item-to-item Collaborative Fil-
tering-based Recommender System, an improved version popularised by e-com-
merce giant Amazon two decades back. The concept is based on items also-viewed 
under the same browsing session. Users’ browsing patterns, locations, and times-
tamps are considered as the context and latent factors for each user. The algorithm 
computes recommendations based on users’ implicit endorsements by clicks. The 
algorithm does not enforce the user to log in to provide recommendations and is 
capable of providing accurate recommendations for non-logged-in users and with 
a setting where the system is unaware of users’ preferences and profile data (non-
logged-in users). This research takes the cue from human lifelong incremental learn-
ing experience applied to machine learning on a large volume of the data pool. 
First, all historical data is gathered from collectable sources in a distributed manner 
through big data tools. Then, a long-running batch job creates the initial model and 
saves it to Hadoop Distributed File System (HDFS). An ever-running streaming job 
loads the model from HDFS and builds on top of it in an incremental fashion. At 
the architectural level, this resembles the big data mix processing Lambda Architec-
ture. The recommendation is computed based on a proposed equation for a weighted 
sum between near real-time and historical batch data. Real-time and batch process-
ing engines act as autonomous Multi-agent systems in collaboration. We propose 
an ensemble method for batch-stream the recommendation engine. We introduce a 
novel Lifelong Learning Model for recommendation through Multi-agent Lambda 
Architecture. The recommender system incrementally updates its model on stream-
ing datasets to improve over time.

Keywords  Implicit feedback-based recommender system · Lifelong learning · Item 
to item collaborative filtering · Apache Storm · Context-aware systems

 *	 Gautam Pal 
	 gautam.pal1947@gmail.com

1	 Department of Psychological Medicine, King’s College London, London SE5 8AB, 
United Kingdom

http://orcid.org/0000-0002-2594-9699
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04484-6&domain=pdf


16395

1 3

An efficient system using implicit feedback and lifelong…

Abbreviations
LML	� Lifelong machine learning
LA	� Lambda architecture
MALA	� Multi-agent lambda architecture
KM	� Knowledge miner
KB	� Knowledge base
IFBRS	� Implicit feedback-based recommender system
HDFS	� Hadoop distributed file system

1  Introduction

Recommender systems are an effective substitute to search algorithms as they help 
users discover items in e-commerce sites users might not have found by themselves. 
Recommender systems adopt three types of approaches: (a) Content-based, (b) Col-
laborative, (c) Hybrid. Content-based filtering algorithms are based on a description of 
the item and profile of the user’s preferences [1]. The system creates a content-based 
profile of users based on a weighted vector of item features. These are often combined 
with the user’s feedback to assign a higher or lower weight to order the top n recom-
mendation. For example, when a user views a mobile phone in the shopping portal, a 
few other similar mobile phones are recommended for him. On the other hand, Col-
laborative Filtering methods [2–5] are based on collating and analysing a large amount 
of information on all users’ behaviours, activities, or preferences and predicting what 
users will tend to like based on their similarity to other similar users or items. The 
underlying philosophy assumes that people who agreed in the past will agree in the 
future. The hybrid approach makes content-based and collaborative-based predictions 
separately and blends them with weightage.

Recommender systems get input from different sources to make recommendations. 
The most common way of collecting input is through the user’s feedback. Shopping 
portals, for example, collect ratings provided by the users. Nevertheless, explicit feed-
back may not be always available. Thus, a number of attempts were taken to build rec-
ommendations through users’ implicit feedback [6].

The recommender system in e-commerce provides a prominent way to enhance the 
overall shopping experience by providing personalised or contextual advice through 
mining and discovering the interests and analysing patterns of customers. The method 
has made e-commerce more personal. No longer are products marketed to a mass audi-
ence, but are personalised based on individual unique needs. It also has a significant 
role in generating revenue for the website by the fact that users tend to purchase if a 
recommended product is relevant to his need.



16396	 G. Pal 

1 3

2 � Related work

2.1 � Background of implicit feedback‑based recommender system

Users provide feedback both in terms of explicit ratings as well as implicit endorse-
ments like views, purchases, comments, shares, and likes. Implicit feedback is more 
common compared to explicit ratings. Despite that, existing recommendation sys-
tems rely on explicit feedback making them prone to sparsity problems and cold 
start situations [6, 7]. In comparison, this work does not have access to ratings. Rec-
ommendations are computed purely based on users’ click-to-view items.

Most of the existing recommendation systems do not consider contextual infor-
mation extracted from the user browser like geographic location, date and time. 
However, our works show that contextual information tends to improve recommen-
dation accuracy by making more personalised recommendations. For instance, in 
e-commerce portals, buying patterns significantly influence users’ geographic loca-
tion, such as a colder or a warmer place. In a way, the current implementations work 
with two types of parameters—users and items but do not combine them into a 
context. The context is a multifarious construct that is studied in varying specialisa-
tions like natural language processing, geospatial data analysis, computer vision, etc. 
[8–12]. In this paper, to consider context information is considered as a latent factor 
to providing closely relevant recommendations as expressed by the following user-
item-context relationship: Users × Items × Context → Implicit Feedback (views)-
Based Recommender System (IFBRS).

The existing item-to-user rating-based recommender system suffers from issues 
like user cold start, item cold start, sparsity, scalability, etc. [13–15]. In user cold 
start, ratings cannot be predicted for a new item until similar users have rated the 
same item. In the case of sparsity, very few items are rated by users leading to a 
sparse item-user matrix, and hence finding similar users is difficult. Scalability issue 
occurs as the dataset grows with time, filling the sparse matrix becomes gradually 
extremely compute-intensive, and each batch run takes a longer time [13–15].

The proposed Implicit Feedback-Based Recommender System (IFBRS) over-
comes the above-said issues easily by adopting an item-to-item collaborative filter-
ing approach. It does not attempt to find similar users based on ratings. The model 
does not have access to ratings provided by the users and does not access users’ 
preferences captured during registration with the portal. Implicit feedback is purely 
computed in terms of the item viewed by users. The proposed ensemble model con-
siders context information as a latent factor providing more meaningful recommen-
dations depicted as follows: Users × Items × Context → Implicit Feedback (clicks)-
Based Recommendations.

2.2 � Lifelong incremental learning

Despite the recent advancement in machine learning, it is still in an era of Weak AI 
rather than Strong AI. Current machine learning algorithms only know how to solve 



16397

1 3

An efficient system using implicit feedback and lifelong…

a specific problem without the knowledge of reusing past learning to solve a group 
of related problems. Therefore, lifelong machine learning (or simply lifelong learn-
ing) [16] was introduced to solve the difficulties of knowledge accumulation and 
reuse with an infinite sequence of related tasks. For a group of related problems, 
an integrated model with knowledge reusing could decrease the cost of computing, 
such as sample annotation in the sentiment classification problem. In the sentiment 
classification, to predict the sentiment (positive or negative) of a sentence or a docu-
ment, traditional approaches need to train an independent model on each domain to 
obtain the best performance. Each domain needs to collect labelled data for super-
vised learning. This approach is considered as weak AI.

The work presented in the paper addresses the problem using a Lifelong Machine 
Learning model that is analogous to several machine learning models such as life-
long learning, incremental learning, multi-task learning, transfer learning, and 
streaming learning. Thrun [17] first studied supervised lifelong learning through the 
decade of the 90s. The work explored information sharing across multiple collabo-
rating tasks through neural network binary classification. A neural network approach 
to LML was introduced and subsequently improved by Silver et  al. through the 
years 1996 to 2015 [18–23]. Cumulative learning is explored in the form of LML, 
which builds a classifier to classify all the previous and the new classes by updat-
ing the old classifier [24]. Ruvolo et al. [25] proposed an LML system based on the 
multi-task learning developed by Kumar et  al. Efficient Lifelong Machine Learn-
ing (ELLA) [26] presented by Ruvolo and Eaton. Compared with multi-task learn-
ing [27], ELLA is much more efficient due to its unique proposition with real-time 
learning that gradually refines the learning outcome over time to maximise perfor-
mance across all tasks. Zhiyuan, etc. [28] improved the sentiment classification by 
involving knowledge. The object function was modified with two penalty terms cor-
responding with previous tasks. [29]. Here, the learning tasks are autonomous and 
distributed. In the area of lifelong Unsupervised Learning, Zhiyuan et al. Wang [30] 
proposed various lifelong modelling techniques to generate topics from a set of his-
torical tasks and use past knowledge to develop better topics. A notable application 
area like the item recommender system using LML emerged [31]. In the field of 
lifelong Semi-Supervised Learning, a Never-Ending Language Learner is proposed 
by Carlson et  al. [32], and Mitchell et  al. [33]. Using continuous web crawling, a 
large volume of information is gathered representing entities and relations in this 
approach. A testing scheme for the LML system is proposed by Lianghao et  al. 
[34], where the incremental learning ability of LML is tested to verify if the system 
becomes gradually more knowledgeable over time through accumulation, and trans-
fer of knowledge in each iteration. Leveraging the previous research in the area of 
LML, the proposed recommendation model uses an Incremental Lifelong Learning 
(ILML) approach through Storm Streaming which initialises itself with batch offset 
at the starting.

This paper leverages Spark Streaming APIs for testing and validation. Spark 
Streaming provides an abstraction on streaming datasets called DStreams, or 
discretised streams. DStream is a sequence of data arriving over time [35, 36]. 
Internally, each DStream is represented as a sequence of RDDs arriving at each 
time step (hence the name discretised). DStreams can be created from various 



16398	 G. Pal 

1 3

input sources, such as Flume, Kafka, or HDFS. Once built, they offer two types 
of operations: transformations, which yield a new DStream, and output opera-
tions, which write data to an external system. DStreams provide many of the 
same operations available on RDDs and additionally provide new operations 
related to time, such as sliding windows [37]. Spark MLlib library includes APIs 
for sliding window-based clustering on streaming data.

Datastream clustering was widely researched and improved over the years. 
Among the early works in this area, Guha [38] proposed the STREAM algorithm, 
which produces a constant factor approximation for the k-Median problem in a 
single pass and using a small space. Gupta et al. [39] presented a study for out-
lier detection approaches and case studies for different forms of temporal data. A 
time decay function that puts variable weights decreasing over time while updat-
ing the model is suggested. The proposed model extends the STREAM algorithm 
with an enhancement that allows further merging of a large static historical data 
pool with the latest and most updated streaming model.

Various improvement techniques were proposed for dimension reduction in 
large-scale high-dimensional data. Agarwal [40] presented a dimension reduc-
tion process for the online learning component where only the limited param-
eters are learned online, and the remaining item features are learned through 
an offline batch process. The model is proved through a recommender system 
implementation for Yahoo! front page and My Yahoo!.

In summary, although there has been significant progress in machine learning 
algorithms and frameworks through the period of the last two decades, much 
less emphasis has been put on how these methods and algorithms can be used 
to train over an extended period of time to incrementally become more knowl-
edgeable through knowledge retainment and transfer. This paper addressed these 
research gaps by developing an incremental, transfer learning model for recom-
mendation engines through a big data stream-batch mix processing approach. 
The proposed batch-stream ensemble method is based on MALA, a novel col-
laborative mixed processing framework. MALA uses Hadoop MapReduce at the 
batch layer and Apache Storm at the stream layer to develop a lifelong learn-
ing machine. The method is effective in high dimensional big data applications 
through in-memory data processing capability, unique dimension reduction tech-
nique, and incremental never-ending learning approach. Also, the paper intends 
to fill the research gaps in real-time machine learning for so-called continuous 
lifelong learning, where both training of the model as well as predictions happen 
in real-time or near real-time. Lifelong Machine Learning can continually accu-
mulate knowledge during the learning phase as a never-ending learning process.

As a precursor to the current work [41] first introduces the concept of MALA 
in the context of Lifelong Learning architecture. [42] further improves the 
MALA architecture through a novel scheme for reasoning and root cause analy-
sis, streaming hybrid clustering, dimension reduction techniques, and in-mem-
ory processing capabilities.



16399

1 3

An efficient system using implicit feedback and lifelong…

3 � Our contribution

The novel aspect of the proposed model is a contextual item-to-item Collaborative 
Filtering-based recommender system that does not rely on users’ ratings or prefer-
ences. The recommendation accuracy of the model is higher than that of rating-
based methods such as Spark ALS and other machine learning methods such as 
SVM, Logistic Regression, etc.

Another key contribution is a new incremental lifelong machine learning system 
for recommender systems by exploiting the interaction of low-latency stream pro-
cessing with comprehensive batch processing.

The key contribution areas are as described below: 

1.	 Lifelong learning model. We propose a novel collaborative ensemble method 
that uses Hadoop MapReduce at the batch layer and Apache Storm at the stream 
layer to create a lifelong learning machine.

2.	 A new technique for implicit feedback-based recommender system as 
described below:

•	 We develop an Implicit Feedback-Based Recommender System (IFBRS) 
using a lifelong machine learning approach. The dataset used is taken from 
Movielens: (https://​group​lens.​org/​datas​ets/​movie​lens/​100k/).

•	 The work redefines the item-to-item relationship by assigning more relevance 
to the current trend than the historical data. A hybrid method combines the 
results from Collaborative Filtering with content-based filtering on item simi-
larity.

•	 As an implicit feedback (clicks)-based recommender system, it interprets 
item-to-item collaboration in one browsing session by each user, which is in 
contrast to the traditional user-to-user similarity approach.

•	 To make recommendations relevant, IFBRS extracts the user’s browsing loca-
tion as a latent factor. Context-aware recommendations tend to be more accu-
rate.

•	 This case study redefines the item-to-item relationship by putting more rel-
evance on the current trend than the historical data.

•	 Finally, based on the above research, the work introduces a novel architec-
ture of an end-to-end recommender system with a host of online and offline 
big data ecosystem tools and their correlation as a multimodal interactional 
model. The proposed architecture can be extended to other big data domains 
taking advantage of both stream and batch processing capabilities.

4 � Lambda architecture

Lambda Architecture [43] is a simultaneous mix processing paradigmcts list at n 
that aggregates low-latency streaming frameworks with high-throughput Hadoop 
batch processing in a large distributed environment.

https://grouplens.org/datasets/movielens/100k/


16400	 G. Pal 

1 3

To build the recently viewed products list at a  on links;  we usnear equal pace, 
users continue to click on links, we use the Apache Storm stream processing pipe-
line [44–46] to cleanse and transform data to store into Cassandra DB. The recently 
viewed list is built ad hoc through a low-latency Cassandra query when a user con-
tinues to click the next items. The JSON response is returned to a UI through Java 
Spring REST APIs to display the recently viewed list [47–49]. At the same time, 
a simultaneous data pipeline stores the data into HDFS and periodic batch jobs 
through Apache Hive, perform data mining to extract user motifs through n-grams, 
and builds a recommendation service items ordering through collaborative filtering 
[50], which uses both batch and historical data. See Fig. 1.

To generalise, Lambda architecture provided a simultaneous and mixed process-
ing environment for data ingested into the system and dispatched to both the batch 
layer and the stream layer. The stream layer serves only low-latency queries. Data 
is further merged for the type of queries that require comprehensive historical data.

5 � Computing recommendations through collaborative filtering

The primary motivation behind item-based recommendation algorithms depends on 
the fact that the two items viewed by the same user in the same session are likely to 
be related to each other. Collective co-occurrence count sorted in descending order 
for each item reveals the trend of which items users are likely to search together 

Fig. 1   Lambda Architecture is a simultaneous mix processing paradigm that parallel processes and con-
solidates low-latency streaming frameworks with high-throughput Hadoop batch processing in a large 
distributed environment. Observe that while data is being processed in real-time through Storm Spouts 
and Bolts, concurrent batch computing takes place by the stored data from HDFS. Cassandra stores the 
combined view from the batch and the stream



16401

1 3

An efficient system using implicit feedback and lifelong…

most. The associative or collaborative filtering rule is the central theme of the 
implicit feedback-based recommender. The idea of a collective count of items co-
viewed under the same browsing session across all users’ bases eliminates any reli-
ance on user-provided ratings. User-provided ratings are sparse, but users’ clicks to 
view data are always plentiful, and therefore the model is helpful in sparsity and cold 
start situations.

5.1 � Application scenario

Consider the problem of building a personalised recommendation system for an 
e-commerce portal where the items listed are fairly time-sensitive, with the price 
and other parameters changing over time. The item parameters (e.g., price, category, 
etc.) are pre-stored in the database, and the user features are extracted through users’ 
click data (for non-logged-in users) and profile data (for logged-in users). The over-
all objective is to maximise the number of clicks by showing the most relevant per-
sonalised recommendations to the users.

5.2 � Model training

Let fi be the feature vector of item i and fu is the feature vector of user u. vu denote 
the latent factor vector of user u and vi is the latent factor vector of item i. When user 
u interacts with item i, CTR is predicted as 1∕

(

1 + exp(−Rij)
)

 by the Logistic model. 
Where the response score Rij is given by

K is the regression coefficient matrix representing user-item interactions, extracted 
and learned from the input dataset. In implicit feedback-based systems, both latent 
factors vi and vu are frequently updated since parameters are derived from click-
stream data.

5.2.1 � Offline learning

Offline learner updates the model parameters and latent factors (K, fi , fu , vi, vu ) from 
users clickstream data. The processing of a large data volume involves a parallel 
processing framework like Apache Spark. The offline process requires long-running 
jobs to complete, which executes every few hours interval. It ingests the trained 
models and parameters to the storage system using the Apache Flume [9, 11], from 
where the online learner incrementally updates the model.

5.2.2 � Online learning

Online learners update the model parameters in real-time at a sliding window proto-
col to keep the model parameters in sync with the most recent changes. For known 
parameters, K, fi , fu , vi, vu ; the online learning is about approximating a large num-
ber of independent regression problems for each individual item in i. The online 

(1)Rij = fiKfu + vivu



16402	 G. Pal 

1 3

regression process estimates vi and vu , while keeping fiKfu as an offset. The incre-
mental online learning process is described in detail in Sect. 6.

5.3 � Synchronising offline and online learning

The offline process is scheduled to initiate at an interval, 6 h in the current setup. 
When the offline learner finishes scheduled jobs, it stores the learned parameters K, 
fi , fu , vi, vu into a NoSQL storage. While the offline version provides a more compre-
hensive model training through the MapReduce framework, the online process keeps 
the model up to date with a near-real-time retraining process. The offline model is 
updated with newly learned model parameters in each iteration of a batch run, and 
the current iteration serves the end-users using the online model. The online process 
subsequently discards the old offline model and updates on top of the most recent 
version of the offline model.

5.4 � Big data solution enabling rapid aggregation to build item co‑occurrence 
matrix

The recommender system stores the stream data into the Cassandra DB. A co-occur-
rence job using Pig scripts or Java MapReduce is initiated at a periodic interval by 
an Apache Ozzie scheduler, generating the items co-occurrence matrix. Items for 
individual users are collated and subsequently merged with all other users’ clicks to 
view data in the following sequence:

User views items A, B, C:

A–B (and B–A)
A–C (and C–A)
B–C (and C–B)

We can initialise the co-occurrence count to one. See Table 1.
Assume, users continue to view items B, C, D under the same browsing session. 

We can create or increment the association by count one and create the co-occur-
rence matrix for a single user:

B–C (and C–B)

Table 1   Co-occurrence table Item1 Item2 Count

A B 1
A C 1
B C 1
B A 1
C A 1
C B 1



16403

1 3

An efficient system using implicit feedback and lifelong…

B–D (and D–B)
C–D (and D–C)

The count field is updated with each iteration. See Fig. 2.
The process is repeated across the all user base and is merged to create a single co-

viewed matrix. Results of the co-viewed matrix may look like this: iPhone, Galaxy 
phones were viewed together 100 times; iPhone, LG phones were viewed together 80 
times in the same session by all users. Note, items viewed under the same browsing 
session help to compute the related items searched by past users and, therefore, can be 
recommended to future users.

5.5 � Computing recommended items

A weighted hybridisation strategy combines two or more factors by computing 
weighted sums of their individual recommendation scores.

Following are the different latent factors:

•	 Co-occurrence count
•	 User’s location
•	 User preferences
•	 Timestamp of the click data in the recently viewed table.

Co-occurrence count is obtained in the previous step. The following section describes 
latent factors: location, user preferences, and timestamp. The overall recommendation 
score is computed for a user by Eq. (2):

(2)R =

n
∏

k=1

�K

Fig. 2   The final Co-occurrence matrix based on items viewed together under the same browsing session 
across all users base



16404	 G. Pal 

1 3

�K is the weight of each latent factor. Weight for co-occurrence count is normalised 
through the following equation:

where �k is the view count of the kth product and maxk
(

�k

)

 is the maximum view 
count across all categories the user viewed. In the experimental setting, cumulative 
view count is considered for a period of 2 weeks.

5.6 � Users’ location

An active user is the one for whom the recommendation is computed based on all 
passive users’ collective historical records. First, the active user’s physical location 
is retrieved from click data by parsing the click to view stream URL. Then, to com-
pute the recommendation score, a higher weight is applied for the same location 
where an item is viewed, and a few other items are also-viewed by the active user 
under the same browsing session.

Suppose, if an active user is based at location l1 and recommendations are shown 
for viewed item i1, then we can compute also-viewed items for i1 as i2, i3 . If we con-
sider i1 and i2 are viewed in the same location, we can assign more weight to the 
score of i2. If i1 and i2 are viewed together n times and both are from the same loca-
tion then the recommendation score for i2 = n × l1 , where l1 is the weight applied 
for a similar location. If i1 and i3 are from two different locations and the occurrence 
count between them is m then recommendation score is calculated for i3 = m × l2 , 
where l2 is the weight applied for different location.

5.7 � Users’ preferences

The implicit feedback-based recommender is not reliant on the user’s explicit pref-
erence settings that the user might have set while creating a profile with the portal. 
Rather, in an implicit model, preference is expressed as the user’s confidence in a 
particular category of the product measured by repeated views by the same user. 
Suppose, a user views smartwatches multiple times, which is under the subcategory 
of the  wearable device under category electronics. Then, recommending the user 
a few smartphones is a quite simple and effective strategy. We can apply greater 
weight to the same subcategory of recommended products in which the user shows 
more confidence by multiple views. View count is normalised by Eq. (3).

5.8 � Weighted hybridisation strategy through time‑variant data

In an e-commerce scenario age of the data, defined by the time order user viewed 
the items, can play an important parameter for  the relevancy of recommended 
items [51]. Data age is therefore, an influencing factor ranking the top n recom-
mendations. IFBRS prioritises recent data over old historical data. To achieve this, 

(3)�K =
�k

maxk
(

�k

)



16405

1 3

An efficient system using implicit feedback and lifelong…

first, we compute the list of recently viewed items from Cassandra and order them 
reverse chronologically so that the most recent item is placed at the top of the list. 
Thereafter, a big data solution enables rapid aggregation to create a co-occurrence 
matrix for each recently viewed item, as discussed in the preceding section. Since 
recently viewed items are reverse chronologically ordered, when weight is applied in 
descending order, most recent items end up receiving higher weights. Real-time and 
historical batch processing components are two collaborative autonomous Multi-
agent Systems. See Algorithm 1.



16406	 G. Pal 

1 3

5.9 � Illustrative example

Assume, a user u1 is in a location loc-1, opens an e-commerce portal and views 3 
items: A, B, C at time t1 , t2, t3 . Where t1 < t2 < t3 . Recommendations are built for 
the active user u1.

First, we consider historical data pre-loaded into the database capturing cumu-
lative click data from the entire user base. We can use the past dataset to create 
the also-viewed table, as shown in Fig. 2. The table contains items also-viewed 
across all user bases. A periodic batch job aggregates this data by adding the 
also-viewed count. For simplicity, we consider user preference count is one for all 
products; that is, the user has viewed items A, B, and C only once. See Table 2.

The recommendation score is computed based on Algorithm  1. A weighted 
hybridisation strategy computes the final score by applying different weightage 
schemes on location and time. If the item viewed and items also-viewed are from 
the same location, higher weight is applied to also-viewed items. Similarly, for the 
timestamp parameter, weights are adjusted in reverse chronological order. Thus, 
items with the latest timestamps are assigned to the highest weight. See Table 3.

Based on the recommendation score, the final order for the top n recommenda-
tions are:

D>E>H>F>G>I>J

5.10 � A hybridisation strategy: computing recommendation through item 
similarity

The IFBRS overcomes user/item cold-start situations, sparsity, or scalability 
problems caused by sparse rating data available. However, where no histori-
cal click view data is available for a product (maybe a newly launched product), 
the user cannot see any recommendation since there are no similar items viewed 
together across all user bases. In such scenarios, the IFBRS can be extended to a 
hybridisation strategy to recommend similar items based on the item features. If 
the IFBRS does not return any item, the item similarity approach is pursued. In 
such scenarios, the IFBRS returns recommended items, then the items not simi-
lar to the viewed items are eliminated from final recommendations. Therefore, 
if a user views a smartphone, a few other smartphones appear to him as recom-
mended items and not shoes or watches, which are not similar to a smartphone by 
category. Two methods can be adopted for item similarity: the first option is just 
to recommend the same category of products. That is, if a user views a smart-
phone, the recommendations are a few other smartphones ordered by popularity.

The second approach creates a user feature vector fit and item feature vec-
tor fjt at time t. The method needs to find the similarity between these vectors. 
There are several ways to measure the similarity between vectors. Starting with 
a simple setting where fit and fjt are data points in the same vector space; that 
is, both users and items are represented using the same set of features. We can 
measure the cosine similarity between two vectors. Nevertheless, the IFBRS does 
not consist of many users features since the system is designed for predicting 



16407

1 3

An efficient system using implicit feedback and lifelong…

recommendations with non-logged-in users. In reality, users expect to see rec-
ommendations in the same browser and device they use without the need to log 
in. Users tend to log in only during the checkout process. Thus, recommender 
systems can not have access to user features like gender, age, address, etc. There-
fore, we can continue on the method one, which only builds upon the item fea-
tures. The approach is computationally attractive, too, because of its simplicity 
and accuracy.

5.11 � Computing item similarity

We compute the cosine similarity between items by comparing identical features 
based on the item category. During the listing of items in the online portal, each 
item is placed into a category manually. Hence, item noodle goes to the food cat-
egory and the fast-food sub-category, while the smartwatches are placed into a 
wearable device under the electronics category. Item similarity attempts to find 
how suitable it is to recommend a user noodle if he views a smartwatch.

Table 2   Counting top n recommendations: Step 1

Timestamp Item viewed User preference 
count

Item also 
viewed

Similarity 
strength

Also 
viewed 
count

T1 A 1 D 0.98 10
T1 A 1 E 0.95 9
T1 B 1 F 0.88 11
T1 B 1 G 0.97 12
T2 B 1 H 0.77 15
T3 C 1 I 0.95 8
T3 C 1 J 0.94 6

Table 3   Counting top n recommendations: Step 2

t timestamp, l location, c count, p preferences

Item also 
viewed

Also viewed 
count (norm) (c)

Item viewed 
location (l)

Also viewed 
location (l)

Recommendation score ( t × l × c × p)

D 1 Loc1 Loc1 1 × 1 × 1 × 1 = 1

E 0.9 Loc1 Loc2 1 × 0.8 × 0.9 × 1 = 0.72

F 0.73 Loc3 Loc3 0.9 × 1 × 0.73 × 1 = 0.65

G 0.8 Loc3 Loc4 0.9 × 0.8 × 0.8 × 1 = 0.57

H 1 Loc3 Loc5 0.9 × 0.8 × 1 × 1 = 0.72

I 0.61 Loc6 Loc6 0.8 × 1 × 0.61 × 1 = 0.48

J 0.46 Loc6 Loc7 0.8 × 0.8 × 0.46 × 1 = 0.29



16408	 G. Pal 

1 3

The similarity between items is calculated based on how similar their catego-
ries are. A novel, computationally faster approach is introduced to achieve this. 
A numerical category value is assigned against each item. All electronics items 
are assigned into category values from 1 to 200; food items are assigned into cat-
egory values of 201 to 400, and so on. Computing cosine similarity on numerical 
categories reveals how related the two items are. For instance, consider comput-
ing the similarity between a television and a camera. A television (product A) 
may fall under the following category: Appliances (category id 1) - LCD (cat-
egory id 4) - 3D LCD (category id 6). And a camera (product B) is under the 
following category: Electronics (category id 1) - camera (category id 35) - DSLR 
camera (category id 95). We can calculate the item similarity strength of product 
A and B at a scale of 0 to 1 by the following equation:

SA,B is the similarity between product A and B, cos(�) is the angle between edges A 
and B.

Using Eq.  (4), we can calculate similarity strength between a television and a 
camera represented as:

A = (1, 4, 6)
B = (1, 35, 95)
Numeric values represent feature vectors of items A and B.
Cosine Similarity SA,B =

1×1+4×35+6×95
√

12+42+62×
√

12+352+952
 = 0.964.

6 � Lifelong learning model for recommender system

This section discusses lifelong learning in MALA through batch and stream ensem-
ble. In the traditional big data systems, feature vectors initialise themselves with 
historical batch data and persist data into Hadoop Distributed File System (HDFS) 
during the training phase. A long-running batch schedule trains the vector, and 
responses are again stored in HDFS. One of the primary constraints with this setting 
is that the full dataset may not be available at the initiation of a training schedule. 
The other key challenge is, the vectors can be updated with new events coming over 
time. Therefore, an iterative method is proposed that transforms the model training 
process into a lifelong learning machine [52, 53]. The Streaming model initialises 
itself with saved learning with the batch mode by loading the trained model from 
the Hadoop Distributed File System (HDFS) into a distributed memory. The MALA 
updates its streaming model incrementally on each new wave of incoming data. The 
framework further allows the merging of static historical data pools with the most 
updated streaming model. The method removes any cold-start situations at the train-
ing initiation. Figure  3 shows a screenshot of the learning process running in the 
command line.

(4)SA,B = cos(�) =
(A × B)

(�A��B�)
=

∑n

i=1
Ai × Bi

∑n

i=1

�

A2

i
×
�

B2

i



16409

1 3

An efficient system using implicit feedback and lifelong…

Let us consider a scenario with the entities users and items, in an e-commerce 
portal. The entities are represented as high-dimensional feature vectors. The Corre-
lation between the user and item ( rui ) in the shopping portal can be defined as:

vu and vi are the feature vector for the user and item, respectively. Modelling the 
interaction between high-dimensional feature vectors (user and item) has a signifi-
cant limitation of responsiveness, especially with big data. Also, the vectors are 
updated with new raw events arriving over time. Therefore, the constant need arises 
to revise the feature vectors leading to develop an iterative approach. With the itera-
tive approach, the vectors initialise with historical batch data and persist them into 
Hadoop Distributed File System (HDFS). A stream processor loads the model from 
HDFS and incrementally builds on top of it. So, Eq. (5) is updated to accommodate 
the incremental (delta) learning as follows:

The model learns vu , vi offline and �u , �i at an iterative fashion with small amount of 
streaming data. �u and �i are the most current updates or fresh new rows of data. The 
dimensionality of �u (or, �i ) is the same as vu (or, vi ). However, the data size is much 
smaller, only the volume of most recent data collected at a streaming window length 
of a few minutes and therefore not very large. The method allows the model to keep 
updated at low-latency on a small amount of incremental data.

A dimension reduction approach can be taken for vectors [54], producing a faster 
training time. So, �i or �j need not be of the same dimension as the user or item vec-
tor. Instead, only the modified columns can update the training model through the 
online process. The approach reduces the dimension of streaming learning data and 
the online learning time since the online model only needs to learn the correction 
over the batch offset. Nevertheless, in the current dataset, the search for the rows and 
columns that requires an update and subsequently merging the incremental result 
with the  batch is computationally expensive on a large volume of the data pool. 
Hence, the approach to retraining the model on a small window interval of data 
pool through distributed in-memory processing of Apache Spark provides a  faster 
response time. The lifelong learning method is described in Algorithm 2.

Lifelong learning has brought several benefits to recommendation accuracy. The 
recommendation method described in the preceding section can be extended using 

(5)f (rui) = vuvi

(6)f (rui) = vuvi + �u�i

Fig. 3   Screenshot showcasing the incremental streaming learning. MALA initialises with historical batch 
data and updates the streaming model incrementally on each new wave of incoming data. The model 
runs indefinitely at a 10 sec window interval. The training folder is updated incrementally with new data 
(Fig. a). The model is retrained simultaneously with a small amount of new data as they appear (Fig. b). 
Figure b shows the sliding window interval for the model retraining every 10 sec. The training starts with 
multiple stages as soon as a new dataset is copied to the training folder



16410	 G. Pal 

1 3

lifelong learning to update recommendations to the newly arriving dataset at faster 
intervals. The knowledge Miner component of MALA enables an incremental learn-
ing environment.

Algorithm 2 presents the novel lifelong learning method for a recommendation 
engine using incremental updates.

Step 1 (Batch processing rule, lines 1–2): Collaborative Filtering and items 
similarly based rules compute the initial recommendations.

Step 2 (Stream processing rule, lines 7–9): Two forms of recommendations 
are computed at the streaming setting. Their respective results are merged with the 
batch counterpart. The method makes the model agile to update at shorter intervals.

Step 3 (Computing the final recommendations, lines 10–13): The elements 
common between Collaborative Filtering and the similarity rule are preserved, and 
the rest are discarded. The final training model is added back to the datastore for 
future use, and the Knowledge Base is subsequently updated.



16411

1 3

An efficient system using implicit feedback and lifelong…

7 � Experiments

Users’ click-to-view data is high in volume and velocity compared to data generated 
only from purchases. We develop a robust big data environment to support the enor-
mous storage and processing requirement. Experiments are carried out in Amazon 
Cloud Services (AWS) for Cassandra, Kafka, and Hadoop installation. The Apace 
Storm is installed in the Microsoft Azure cloud.

Users’ click to view items generates a considerable volume of clickstream data. 
One of the challenging aspects of MALA is ingesting a high volume of incoming 
data into its big data store. This section provides an insight into managing the high-
velocity ingested data pool in a distributed and fault-tolerant manner.

7.1 � Real‑time clickstream data ingestion

Clickstream is the activity recording of parts of the screen a user views while web 
surfing (user footprint) [55]. User activity is picked up from the client-side browser. 
Therefore, clickstream data is the URL generated from each user’s click data. In 
an online shopping portal, a clickstream data may look like this:  http://​smart​buy.​
com:/​elect​ronics/​phone/​items?​userID=​id10&​produ​ctName=​iPhon​exs&​cost=​700&​
geolo​cation=​NewYo​rk. Where each context parameter like product name, price, and 
location are appended to each clickstream event.

In a context-aware recommendation system, we design a big data event capture 
framework that ingests every end-user click from a customer touchpoint. The cus-
tomer’s location and event time are extracted from clickstream and appended into 
each session object. A session object is associated with each time the user newly 
opens the e-commerce website. For each click event, a session ID and a context ID 
are created. The context is a uniquely derived object created from the session object 
generated at the JavaScript layer. Context ID is associated with each user’s click 
event stored in the datastore and used in computing recommendations.

Kafka is a popular option for stream data retrieval. Kafka is able to achieve ingest-
ing a high-velocity, a large volume of data that requires rapid, fault-tolerant, distrib-
uted pipelines. Kafka, as a distributed client-server-oriented publisher-subscriber 
message bus system, substitutes the conventional message buses like IBM MQ, Rab-
bit MQ, etc., owing to its higher throughput, failover, and replication abilities. Kafka 
is the principal hub for our real-time processing environment when applied along 
with Apache Storm stream processing APIs [56]. Refer Fig. 4 for the Kafka cluster 
we used in the data ingestion layer.

Recommender systems get input from different sources to make recommenda-
tions. The most common way of collecting input is through the user’s feedback. 
Shopping portals, for instance, collect ratings provided by the users. Nevertheless, 
explicit feedback may not be available always. Thus, a number of techniques were 
adopted to build recommendations through users’ implicit feedback [6]. Users’ click 
data or clickstream is one of the primary sources for deriving implicit feedback. 
Clickstream contains the user’s location data which is derived from the client’s IP 
address. Country, region, state, and city are part of location data. Each user clicks on 

http://smartbuy.com:/electronics/phone/items?userID=id10&productName=iPhonexs&cost=700&geolocation=NewYork
http://smartbuy.com:/electronics/phone/items?userID=id10&productName=iPhonexs&cost=700&geolocation=NewYork
http://smartbuy.com:/electronics/phone/items?userID=id10&productName=iPhonexs&cost=700&geolocation=NewYork


16412	 G. Pal 

1 3

an item generates an event and clickstream, which is captured by the Apache Kafka 
message queue, and data is moved from the source system to the analytics process-
ing system on a near real-time basis. Apache Storm processes data in real-time and 
stores it into a Cassandra data store. Context-aware, real-time data stored in Cassan-
dra is processed through a batch job that runs periodically at an interval of 6 h. The 
result of the batch job is an item recommendation table which is again stored back 
in Cassandra DB. The recommendation table is accessed from UI through RESTful 
API written in the Java Spring framework. The end-to-end big data ingestion frame-
work is shown in Fig. 5.

7.2 � MovieLens dataset

The IFBRS is examined on a real-world dataset from movielens.org [57], and per-
formance is compared with Spark MLlib ALS API [58]. The Movielns data contains 
up to 27,000 movies by 138,000 users. Since the IFBRS does not predict the ratings, 
instead, it ranks the recommended products on the overall score (Table 4). Subse-
quently, ranks are validated against the ratings predicted by Apache Spark ALS API.

7.3 � Setting up a storm cluster

For the Storm setup, the Microsoft Azure HDInsight Storm cluster is used for setting 
up a nine nodes Linux setup on Ubuntu OS. Unlike Farahabady [3], a heterogeneous 
Storm cluster was not considered for Nimbus or Supervisor to make the most out of 
the default scheduler and load balancer. See Fig. 6.

The recommender application is developed as Java Spring REST Web service 
and deployed into Tomcat through Datastax driver [5], which is a popular Cassandra 
Java client driver.

The Movielens DB has three tables with schema shown in Table 5.

7.4 � Data preparation

Table schema 5 is used to create a user-movie table containing the following col-
umn: UserID, MovieID, and Zip-code. Hadoop Pig scripts transform data consisting 
of movies also-viewed across all the user bases through MapReduce. However, in 
the current model with the Movielens Database, we cannot determine if each user’s 
also-viewed products are generated in a single session or multiple sessions since the 
algorithm is based on the assumption that items are considered also-viewed only 
if those items are viewed in the same browsing session. Therefore, it is a known 
limitation with the current data source that can be overcome with the availability of 
production clickstream data. The user’s location is the state from where clickstream 
data is generated. The state as the  location is computed from the zip code. Also-
viewed products are computed based on the scenarios where products are viewed, 
and products also-viewed are from the same or different location (State). Based on 
that, Algorithm 1 computes the top n recommended products.



16413

1 3

An efficient system using implicit feedback and lifelong…

Fig. 4   Multi-node, multi-broker Kafka cluster. A Broker is the actual Kafka process. Producer ingests 
data into multiple broker components for load distribution and parallel processing. The distributed archi-
tecture provides a robust failover and faster processing through load balancing

Fig. 5   End-to-end flow: Ingestion to the recommendation. Each user’s click on an item generates an 
event and clickstream, which is captured by the Apache Kafka message queue, and data is moved from 
the source system to the analytics processing system on a near real-time basis. Apache Storm processes 
data in real-time and persists them into a Cassandra data store. An online context-capture pipeline stores 
users’ click data, while an internal context-capture pipeline stores item features as historical data as 
recorded manually for each item. An efficient blend of historical batch data with a real-time stream cre-
ates a lifelong learning environment for a recommender system



16414	 G. Pal 

1 3

7.5 � Evaluating IFBRS

Evaluation of implicit-feedback-based recommender systems can be tricky. Numeric 
scores are available in explicit rating-based recommender systems as a benchmark, 
and precise accuracy can be measured using the root mean squared error. However, 
evaluating the success of an implicit model cannot use traditional evaluation meth-
ods in the absence of ratings. The implicit model rather can use users’ reaction to 
the recommendation by clicking or viewing the recommendations. The implicit 
model can as well compare the ranking orders of the recommendations with actual 
ratings provided by the user in the test dataset. The easiest way to evaluate the effi-
ciency of an implicit-feedback-based recommender system is by verifying if a user 
actually clicked the displayed recommended items. The percentage of recommended 
items clicked and subsequently carried until purchase provides a measurable conver-
sion rate, i.e., click-through rate (CTR). Nevertheless, in the experiment setup, any 
CTR data is not available in the absence of real users clicking on the recommenda-
tions. Thus, an offline method is used to examine the overall accuracy of IFBRS. 
Spark MLlib ALS APIs [58] are used to predict future ratings. Developed in Scala, 
parameters are configured as shown in the Listing 1:

Table 4   AWS instance types

Instance type Instance count vCPUs Memory Instance storage EBS optimised bandwidth

m1.large 3 2 7.5 GB 500 GB Moderate

Fig. 6   Microsoft azure HDIn-
sight storm cluster



16415

1 3

An efficient system using implicit feedback and lifelong…

Predicted ratings by the Spark ALS are Validated with the IFBRS rankings. If 
any predicted ALS ratings match with the actual ratings in the test database, the 
corresponding records are compared with the ranking produced by the IFBRS. The 
method is considered successful if an item rated as five by ALS is ranked among the 
top three by the ranking algorithm. See Table 6 and Fig. 7.

7.6 � Evaluation of precision

The actual Click Through Rate (CTR) cannot determine if a user actually clicks 
on the recommended items in the test environment. Therefore, an alternative 
method is proposed to calculate the precision of the recommended items. User 
Satisfaction Index (USI) [10] is used to define precision as follows:

The equation reveals how closely recommended items are related to the actual user 
provided ratings. In particular, if an item is ranked among the top five recommended 
items Ai , then the actual rating ( Bi ) is expected as four or five. Precision is defined as 
follows:

(7)USI(i) =
�Ai

⋂

Bi�

min(�Ai�, �Bi�)
× 100%

Table 5   Movielens database 
schema

Table Column names

Rating UserID, MovieID, Rating, Timestamp
Users UserID, Gender, Age, Occupation, Zip-code
Movies MovieID, Title, Genres



16416	 G. Pal 

1 3

In principle, precision denotes the average satisfaction index across all the user 
bases [10].

Table 7 is based on the precision function defined in Eq. (8). Precision accura-
cies in IFBRS shown in bold are 2.4% greater than SVM, 8.6% greater than Logistic 
Regression, and more than 30% greater than all other algorithms. Therefore, com-
pared with alternative models, IFBRS improves classification and regression accu-
racy significantly on multiple scales and parameters. See Fig. 8.

7.7 � Evaluation: an alternative approach

An alternative and more measurable approach is presented in this section. Spark 
ALS ratings are converted into ranks and compared with IFBRS. The method eval-
uates metrics more effectively by comparing accuracy under the same scale, i.e., 
ranking order (see Fig. 7). Also, the Root Mean Square Error (RMSE) is computed 
based on the ranking system under the latent factors such as location, time, and user 
preferences. We can verify how each factor independently and together affects the 
overall accuracy of recommendations. The following steps are performed for com-
puting RMSE: (i) The ratings are computed for each of the recommended products 
with Spark ALS, (ii) ratings are converted into relative ranks for each of the latent 
factors, (iii) RMSE are computed using user-provided actual rating and Spark ALS 
predicted rating. Similarly, RMSE for IFBRS rankings is obtained with each of 
the latent factors while keeping the user-provided rating as the reference (Fig. 9). 
Observe, the recommendation provided by the IFBRS is improved in accuracy after 
applying latent factors. The accuracy is significantly improved by employing all of 
the factors together. Figure 10 shows RMSE for IFBRS batch and lifelong learning 
model. Incremental lifelong learning produces better accuracy compared to one-shot 
batch learning.

7.8 � Load tests of MALA

This subsection provides system performance under stress. Apache Storm, the stream 
processor unit, and Cassandra, the storage engine of MALA, are evaluated for load 
testing. Three million records perform the write operation first and run a mixed type 
of load (read plus write) for another 3 million records. The server setup is shown in 
Table 8. Refer to Figs. 11 and 12 for test results using Datastax OPSCenter platform. 
The results validate the scalability of the system under stress.

(8)P =
1

n

n
∑

i=1

USI(i)



16417

1 3

An efficient system using implicit feedback and lifelong…

8 � Discussion

8.1 � Comparing IFBRS with spark ALS

As shown in Sect. 7.7, 9, the IFBRS is considerably more accurate than Spark ALS 
APIs when context parameters, e.g., location and time decay function, are consid-
ered. The algorithm’s approach putting more weight on recent data over historical 
data increases the relevancy of the recommendations and results in a higher Click 
Through Rate. Results assert our claim that the user’s context parameters signifi-
cantly improve recommendation quality in personalised recommendations.

8.2 � Trade‑off between low‑latency and high‑accuracy

The MALA consists of both low-latency real-time components as well as its high-
accuracy batch counterpart, which works simultaneously on the same dataset. The 
cost of a  batch and a real-time algorithm is defined by its cost (time, space, and 
resource utilisation complexity). We calculate the competitive ratio of a streaming 
algorithm against a batch algorithm. A smaller than one cost ratio will prove the 
superiority of the streaming process. However, the competitive ratio due to time 
complexity turns out to be greater than one in all scenarios and particularly worse in 
a certain dataset. This is less surprising because the streaming algorithm processes 
in mini-batches without the foresight of the entire dataset. On the contrary, real-time 
algorithm benefits from space and resource utilisation complexity due to much less 
volume of data processing in each mini-batches. A real-time algorithm is termed � 
competitive if there are positive factors � and � so that:

(9)vi ≤ �vb + �

Table 6   Comparing IFBRS with 
Spark ALS

Evaluation compares Spark ALS with IFBRS rankings for accuracy. 
All five ratings are expected to rank among the top three

Item number Actual rating Spark ALS 
prediction

Top n recommenda-
tion algorithm order

2987 4 4.1 10
1250 5 4.3 1
3791 4 3.9 12
858 3 2.6 9
1304 3 3.2 8
3791 2 2.5 18
2746 4 4.3 5
260 5 4.6 1
150 4 3.7 4
2987 1 2.5 19
3448 3 3.8 12



16418	 G. Pal 

1 3

vi is the cost for the streaming algorithm. vb is the cost at the batch setting.
From Eq. (9), we conclude, an � competitive real-time algorithm has cost no infe-

rior to � times to the optimal batch algorithm ( vb ) plus some initial advantages ( � ) 

Fig. 7   IFBRS recommendation distribution is significantly closer to the user-provided actual rating com-
pared to the Spark ALS. The results compare favourably to IFBRS than the standard Apache Spark ALS

Table 7   Model prediction 
accuracy for recommended 
items

Algorithm Precision Recall Accuracy F1 score

GaussianNB 0.15 0.27 0.19 0.14
Bernoulli NB 0.42 0.45 0.44 0.51
Decision tree classifier 0.55 0.64 0.70 0.60
SVM 0.79 0.57 0.63 0.57
Logistic regression 0.74 0.54 0.53 0.51
Proposed IFBRS 0.81 0.82 0.82 0.81

P
re

ci
si

on

0.1

0.95

DT Classifier
Gaussian NB
LR

Proposed 
IFBRS

SVM

1 2 3
Number of recommendations

4 5

0.25

0.5

0.75

1

Fig. 8   Model precision comparison against the number of recommended items



16419

1 3

An efficient system using implicit feedback and lifelong…

Fig. 9   RMSE for IFBRS and Spark ALS. RMSE is computed by applying the latent factors. The best 
accuracy is achieved when all of the factors are put together

Fig. 10   RMSE for IFBRS one-shot batch learning and lifelong learning model. RMSE is computed for 
the batch and incremental lifelong learning models of IFBRS over the latent factors. The lifelong learn-
ing model produces better results by integrating both batch and stream processing methods



16420	 G. Pal 

1 3

assigned to an optimised batch algorithm due to its prior knowledge of the entire 
dataset.

In a classic trade-offs between low-latency or high-accuracy, our real-time case 
study selects low-latency, real-time responses over high accuracy and strong con-
sistency. Our model uses Cassandra DB to support low-latency requirements for the 
real-time component. Cassandra initiates a read repair to update the inconsistent 
data in a situation with a higher consistency setting. The client read-write processes, 
therefore, must wait before discrepancies are eliminated. Big Data systems need-
ing swift turnaround time at a near-real-time puts the lowest likely value for con-
sistency (which is, CONSISTENCY ONE) due to the negative effect of consistency 
levels on general responsiveness. As Cassandra allows tunable consistency settings, 
Table 8   Cassandra Setup Cassandra vendor Number of records Replication factor

DSE 6 Million writes 3

Fig. 11   Statistics showing (i) Read Requests, (ii) Read Request Latency, and (iii) OS Disc Utilisation. (i) 
Read Requests: per second read requests count on all coordinating nodes in the cluster. It Analyses the 
number of requests for a given period that reveals the system read overhead and usage trends. (ii) Read 
Request Latency (Percentiles): 99th, 90th percentiles, min, max, the median for a client reads. When a 
node accepts a client read request, the time period initiates, and it terminates while the node replies back 
to the client. Depending on the replication factor and consistency setting, this might include the network 
delay from the replicas. (iii) OS Disc Utilisation: CPU time used by disc I/O. The time unit is in millisec-
onds

Fig. 12   Statistics shown for: (i) OS Load, (ii) Heap Used, and (iii) TP Flushes Completed. (i) OS Load: 
Operating system load average for every 1 min. (ii) Heap Used: Average of Java heap space utilised.(iii) 
TP Flushes Completed: Number of memtables flushed to disc since the nodes are started



16421

1 3

An efficient system using implicit feedback and lifelong…

this enables the proposed model to let Cassandra act like CP (partition tolerant and 
consistent) or AP (partition tolerant and available) system with regards to the CAP 
theorem.

8.3 � Validation by click‑through rate (CTR)

For validation of recommendation accuracy, we have adopted an offline strategy 
where 80% of data was used for the recommendation and 20% for validation. How-
ever, the Click-Through Rate (CTR) and purchase rate (PR) are arguably definitive 
ways to verify recommendation accuracy. CTR and PR determine users’ preferences 
on viewing or buying from recommended items versus non-recommended items. As 
CTR or PR verification will need a production deployment with a large set of the 
real user base, it was not a feasible option for us at this stage and a known limitation 
of the model.

9 � Conclusions

We developed an improved version of the implicit feedback-based contextual rec-
ommender system through Big Data collaborative Multi-agent Lambda Architec-
ture and a  lifelong learning approach. The aim is to provide a solution for an 
intelligent blend of historical batch data with a real-time stream towards develop-
ing a lifelong learning machine. The Architecture allows us to use past knowl-
edge, update and accumulate information iteratively over a large volume of data 
pool through a host of big data tools and methods. Graceful interaction of stream 
and historical batch data provides deeper insights at low-latency.

We brought a number of unique features to the Implicit Feedback-Based Rec-
ommender System. The novelty of the recommender approach is in the use of con-
textual parameters and a weighted hybridisation strategy to mix historical batch 
data with near-real-time data predicting the recommendation accurately. The 
trained model keeps improving over time with an incremental lifelong learning 
method. Another important distinction in the algorithm is that the model does not 
rely on the explicit rating provided by the user; rather, it computes on user’s pas-
sive endorsements by click data and does not suffer from the sparsity problem of 
rating-based user similarity approaches. The algorithm does not enforce the user 
to log in to provide recommendations and is capable of providing accurate recom-
mendations for non-logged-in users. Distinct advantages of the proposed methods 
over Hadoop MapReduce and Spark ML APIs are in terms of improved accuracy, 
response time, reduced training time, handling cold start situations, and signifi-
cant infrastructure cost savings.

This work introduces hybrid lifelong learning through Lambda Architecture 
which leaves a few interesting open questions further to investigate the lifelong 
learning model in our future works.



16422	 G. Pal 

1 3

Funding  This research was funded by Accenture Technology Labs, Beijing, China. Grant Number: RDF 
15-02-35. Project code: RDS10120180003.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Yao L, Sheng QZ, Ngu AHH, Yu J, Segev A (2015) Unified collaborative and content-based web 
service recommendation. IEEE Trans Serv Comput 8(3):453–466. https://​doi.​org/​10.​1109/​TSC.​
2014.​23558​42

	 2.	 Kim H, Madhvanath S, Sun T (2015) Hybrid active learning for non-stationary streaming data 
with asynchronous labeling, In: IEEE International Conference on Big Data (Big Data), pp 287–
292. https://​doi.​org/​10.​1109/​BigDa​ta.​2015.​73637​66

	 3.	 Lee CH, Lin CY (2017) Implementation of lambda architecture: a restaurant recommender sys-
tem over apache mesos, In: IEEE 31st International Conference on Advanced Information Net-
working and Applications (AINA), pp 979–985. https://​doi.​org/​10.​1109/​AINA.​2017.​63

	 4.	 Batyuk A, Voityshyn V (2018) Apache storm based on topology for real-time processing of stream-
ing data from social networks, In: 2016 IEEE First International Conference on Data Stream Mining 
& Processing (DSMP), pp 345–349. https://​doi.​org/​10.​1109/​DSMP.​2016.​75835​73

	 5.	 Hanif M, Yoon H, Jang S, Lee C (2017) An adaptive sla-based data flow mechanism for stream 
processing engines, In: International Conference on Information and Communication Technol-
ogy Convergence (ICTC), pp 81–86. https://​doi.​org/​10.​1109/​ICTC.​2017.​81909​47

	 6.	 Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for implicit feedback datasets, In: Eighth 
IEEE International Conference on Data Mining, pp 263–272. https://​doi.​org/​10.​1109/​ICDM.​2008.​
22

	 7.	 Collaborative filtering - RDD-based API. https://​spark.​apache.​org/​docs/2.​2.0/​mllib-​colla​borat​ive-​
filte​ring.​html. Accessed 20 Sept 2021

	 8.	 Wang J, Peng X, Xing Z, Fu K, Zhao W (2017) Contextual recommendation of relevant program 
elements in an interactive feature location process, In: IEEE 17th International Working Conference 
on Source Code Analysis and Manipulation (SCAM), pp 61–70. https://​doi.​org/​10.​1109/​SCAM.​
2017.​14

	 9.	 Ren Y, Tomko M, Salim FD, Chan J, Clarke C, Sanderson M (2017) A location-query-browse graph 
for contextual recommendation. IEEE Trans Knowl Data Eng 30(2):204–218. https://​doi.​org/​10.​
1109/​TKDE.​2017.​27660​59

	10.	 Rahman MM (2013) Contextual recommendation system, In: International Conference on Informat-
ics, Electronics and Vision (ICIEV), pp 1–6. https://​doi.​org/​10.​1109/​ICIEV.​2013.​65725​42

	11.	 Kharrat FB, Elkhleifi A, Faiz R (2016) Recommendation system based contextual analysis of face-
book comment, In: IEEE/ACS 13th International Conference of Computer Systems and Applica-
tions (AICCSA), pp 1–6. https://​doi.​org/​10.​1109/​AICCSA.​2016.​79457​92

	12.	 Domingues MA, Sundermann CV, Manzato MG, Marcacini RM, Rezende SO (2014) Exploiting 
text mining techniques for contextual recommendations, In: IEEE/WIC/ACM International Joint 
Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Vol 2, pp 210–
217. https://​doi.​org/​10.​1109/​WI-​IAT.​2014.​100

	13.	 Xie F, Xu M, Chen Z (2012) Rbra: A simple and efficient rating-based recommender algorithm to 
cope with sparsity in recommender systems, In: 26th International Conference on Advanced Infor-
mation Networking and Applications Workshops, pp 306–311. https://​doi.​org/​10.​1109/​WAINA.​
2012.​11

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TSC.2014.2355842
https://doi.org/10.1109/TSC.2014.2355842
https://doi.org/10.1109/BigData.2015.7363766
https://doi.org/10.1109/AINA.2017.63
https://doi.org/10.1109/DSMP.2016.7583573
https://doi.org/10.1109/ICTC.2017.8190947
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1109/ICDM.2008.22
https://spark.apache.org/docs/2.2.0/mllib-collaborative-filtering.html
https://spark.apache.org/docs/2.2.0/mllib-collaborative-filtering.html
https://doi.org/10.1109/SCAM.2017.14
https://doi.org/10.1109/SCAM.2017.14
https://doi.org/10.1109/TKDE.2017.2766059
https://doi.org/10.1109/TKDE.2017.2766059
https://doi.org/10.1109/ICIEV.2013.6572542
https://doi.org/10.1109/AICCSA.2016.7945792
https://doi.org/10.1109/WI-IAT.2014.100
https://doi.org/10.1109/WAINA.2012.11
https://doi.org/10.1109/WAINA.2012.11


16423

1 3

An efficient system using implicit feedback and lifelong…

	14.	 Sharifi Z, Rezghi M, Nasiri M (2014) A new algorithm for solving data sparsity problem based-
on non negative matrix factorization in recommender systems, In: 4th International Conference on 
Computer and Knowledge Engineering (ICCKE), pp 56–61. https://​doi.​org/​10.​1109/​ICCKE.​2014.​
69933​56

	15.	 Reshma R, Ambikesh G, Thilagam PS (2016) Alleviating data sparsity and cold start in recom-
mender systems using social behaviour, In: International Conference on Recent Trends in Informa-
tion Technology (ICRTIT), pp 1–8. https://​doi.​org/​10.​1109/​ICRTIT.​2016.​75695​32

	16.	 Thrun S (1998) Lifelong learning algorithms. Learning to learn. Springer, Boston, MA, pp 181–209
	17.	 Thrun S (1996) Explanation-based neural network learning: a lifelong learning approach. Kluwer 

Academic Publishers, Boston, MA
	18.	 Silver DL (1996) The parallel transfer of task knowledge using dynamic learning rates based on a 

measure of relatedness. Connect Sci 8(2):277–294. https://​doi.​org/​10.​1080/​09540​09961​16929
	19.	 Silver DL, Mercer RE (2002) The task rehearsal method of life-long learning: overcoming impover-

ished data. In: Cohen R, Spencer B (eds) Advances in artificial intelligence. Springer, Berlin, Hei-
delberg, pp 90–101

	20.	 Silver DL, Poirier R (2004) Sequential consolidation of learned task knowledge. In: Tawfik AY, 
Goodwin SD (eds) Advances in artificial intelligence. Springer, Berlin, Heidelberg, pp 217–232

	21.	 Silver DL, Mason G, Eljabu L (2015) Consolidation using sweep task rehearsal: overcoming the sta-
bility-plasticity problem. In: Barbosa D, Milios E (eds) Advances in artificial intelligence. Springer 
International Publishing, Cham, pp 307–322

	22.	 Hong X, Wong P, Liu D, Guan S-U, Man KL, Huang X (2018) Lifelong machine learning: outlook 
and direction, In: Proceedings of the 2nd International Conference on Big Data Research, ACM, pp 
76–79

	23.	 Hong X, Pal G, Guan S-U, Wong P, Liu D, Man KL, Huang X (2019) Semi-unsupervised life-
long learning for sentiment classification: less manual data annotation and more self-studying, In: 
Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference, 
HPCCT 2019, ACM, New York, NY, USA, pp 87–92. https://​doi.​org/​10.​1145/​33410​69.​33429​92

	24.	 Fei G, Wang S, Liu B (2016) Learning cumulatively to become more knowledgeable, In: Proceed-
ings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’16, ACM, New York, NY, USA, pp 1565–1574. https://​doi.​org/​10.​1145/​29396​72.​29398​
35

	25.	 Ruvolo P, Eaton E (2013) ELLA: An efficient lifelong learning algorithm, In: Dasgupta S, McAl-
lester D (eds.), Proceedings of the 30th International Conference on Machine Learning, Vol. 28 of 
Proceedings of Machine Learning Research, PMLR, Atlanta, Georgia, USA, pp 507–515. http://​
proce​edings.​mlr.​press/​v28/​ruvol​o13.​html

	26.	 Ruvolo P, Eaton E (2013) Ella: an efficient lifelong learning algorithm, In: International Conference 
on Machine Learning, pp 507–515

	27.	 Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75
	28.	 Chen Z, Ma N, Liu B (2015) Lifelong learning for sentiment classification, In: Proceedings of the 

53rd Annual Meeting of the Association for Computational Linguistics and the 7th International 
Joint Conference on Natural Language Processing (Volume 2: Short Papers), Vol 2, pp 750–756

	29.	 Kumar A, Daume III H Learning task grouping and overlap in multi-task learning, arXiv preprint 
arXiv:​1206.​6417

	30.	 Wang S, Chen Z, Liu B (2016) Mining aspect-specific opinion using a holistic lifelong topic model, 
In: Proceedings of the 25th International Conference on World Wide Web, International World 
Wide Web Conferences Steering Committee, pp 167–176

	31.	 Liu Q, Liu B, Zhang Y, Kim DS, Gao Z (2016) Improving opinion aspect extraction using semantic 
similarity and aspect associations. In: Thirtieth AAAI conference on artificial intelligence

	32.	 Carlson A, Betteridge J, Wang RC, Hruschka Jr ER, Mitchell TM (2010) Coupled semi-supervised 
learning for information extraction, In: Proceedings of the Third ACM International Conference on 
Web Search and Data Mining, ACM, pp 101–110

	33.	 Mitchell T, Cohen W, Hruschka E, Talukdar P, Yang B, Betteridge J, Carlson A, Dalvi B, Gardner 
M, Kisiel B et al (2018) Never-ending learning. Commun ACM 61(5):103–115

	34.	 Li L, Yang Q (2015) Lifelong machine learning test, In: Proceedings of the Workshop on Beyond 
the Turing Test of AAAI Conference on Artificial Intelligence

	35.	 Salloum S, Dautov R, Chen X, Peng PX, Huang JZ (2016) Big data analytics on apache spark. Int J 
Data Sci Anal 1(3–4):145–164

https://doi.org/10.1109/ICCKE.2014.6993356
https://doi.org/10.1109/ICCKE.2014.6993356
https://doi.org/10.1109/ICRTIT.2016.7569532
https://doi.org/10.1080/095400996116929
https://doi.org/10.1145/3341069.3342992
https://doi.org/10.1145/2939672.2939835
https://doi.org/10.1145/2939672.2939835
http://proceedings.mlr.press/v28/ruvolo13.html
http://proceedings.mlr.press/v28/ruvolo13.html
http://arxiv.org/abs/1206.6417


16424	 G. Pal 

1 3

	36.	 Solaimani M, Iftekhar M, Khan L, Thuraisingham B, Ingram JB (2014) Spark-based anomaly detec-
tion over multi-source vmware performance data in real-time, In: IEEE Symposium on Computa-
tional Intelligence in Cyber Security (CICS), IEEE, pp 1–8

	37.	 Rettig L, Khayati M, Cudré-Mauroux P, Piórkowski M (2015) Online anomaly detection over big 
data streams, In: IEEE International Conference on Big Data (Big Data), IEEE, pp 1113–1122

	38.	 Guha S, Mishra N, Motwani R, O’Callaghan L (2000) Clustering data streams, In: Foundations of 
computer science, proceedings. 41st annual symposium on, IEEE, pp 359–366

	39.	 Gupta M, Gao J, Aggarwal CC, Han J (2014) Outlier detection for temporal data: a survey. IEEE 
Trans Knowl Data Eng 26(9):2250–2267

	40.	 Agarwal DK, Chen B-C (2016) Statistical methods for recommender systems. Cambridge Univer-
sity Press, New York

	41.	 Pal G, Li G, Atkinson K (2018) Big data ingestion and lifelong learning architecture, In: IEEE Inter-
national Conference on Big Data (Big Data), IEEE, pp 5420–5423

	42.	 Pal G, Li G, Atkinson K (2018) Multi-agent big-data lambda architecture model for e-commerce 
analytics. Data 3(4):58

	43.	 Heidrich J, Trendowicz A, Ebert C (2016) Exploiting big data’s benefits. IEEE Softw 33(4):111–
116. https://​doi.​org/​10.​1109/​MS.​2016.​99

	44.	 Xiang D, Wu Y, Shang P, Jiang J, Wu J, Yu K (2017) Rb-storm: resource balance scheduling in 
apache storm, In: 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), pp 
419–423. https://​doi.​org/​10.​1109/​IIAI-​AAI.​2017.​63

	45.	 Farahabady MRH, Samani HRD, Wang Y, Zomaya AY, Tari Z (2016) A qos-aware controller for 
apache storm, In: IEEE 15th International Symposium on Network Computing and Applications 
(NCA), pp 334–342. https://​doi.​org/​10.​1109/​NCA.​2016.​77786​38

	46.	 Yan L, Shuai Z, Bo C (2017) Multi-sensor data fusion system based on apache storm, In: 2017 3rd 
IEEE International Conference on Computer and Communications (ICCC), pp 1094–1098. https://​
doi.​org/​10.​1109/​CompC​omm.​2017.​83227​12

	47.	 Apache Cassandra 3.0 for DSE 5.0 (2021). https://​docs.​datas​tax.​com/​en/​cassa​ndra/3.​0/. Accessed 
20 Sept

	48.	 Carpenter J, Hewitt E (2018) Chapter 12: Performance tuning. In: Cassandra: the definitive guide, 
2nd edn. O’Reilly Media, Inc.

	49.	 Thottuvaikkatumana R (2015) Data modeling considerations. In: Cassandra design patterns, 2nd 
edn. Packt Publishing Ltd.

	50.	 Mass G, Garillot F (2018) Streaming application design, Chap 3. In: Learning spark streaming, 
O’Reilly Media, Inc.

	51.	 Xia C, Jiang X, Sen L, Zhaobo L, Zhang Y (2010) Dynamic item-based recommendation algorithm 
with time decay. Sixth International Conference on Natural Computation, vol 1, pp 242–247. https://​
doi.​org/​10.​1109/​ICNC.​2010.​55828​99

	52.	 Thrun S (1996) Explanation-based neural network learning: a lifelong learning approach. Kluwer 
Academic Publishers, Boston, MA

	53.	 Xia R, Jiang J, He H (2017) Distantly supervised lifelong learning for large-scale social media sen-
timent analysis. IEEE Trans Affect Comput 8(4):480–491. https://​doi.​org/​10.​1109/​TAFFC.​2017.​
27712​34

	54.	 Agarwal K, Chen B (2015) Statistical Methods for Recommender Systems. Cambridge University 
Press, Cambridge

	55.	 Hanamanthrao R, Thejaswini S (2017) Real-time clickstream data analytics and visualization, In: 
2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication 
Technology (RTEICT), pp 2139–2144. https://​doi.​org/​10.​1109/​RTEICT.​2017.​82569​78

	56.	 https://​www.​linke​din.​com/​pulse/​flume-​kafka-​real-​time-​event-​proce​ssing-​lan-​jiang/, Accessed: 20 
Sept. (2021)

	57.	 https://​group​lens.​org/​datas​ets/​movie​lens/​100k/ , Accessed: 20 Sept. (2021)
	58.	 Winlaw M, Hynes MB, Caterini A, Sterck HD (2015) Algorithmic acceleration of parallel als for 

collaborative filtering: speeding up distributed big data recommendation in spark, In: IEEE 21st 
International Conference on Parallel and Distributed Systems (ICPADS), pp 682–691. https://​doi.​
org/​10.​1109/​ICPADS.​2015.​91

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1109/MS.2016.99
https://doi.org/10.1109/IIAI-AAI.2017.63
https://doi.org/10.1109/NCA.2016.7778638
https://doi.org/10.1109/CompComm.2017.8322712
https://doi.org/10.1109/CompComm.2017.8322712
https://docs.datastax.com/en/cassandra/3.0/
https://doi.org/10.1109/ICNC.2010.5582899
https://doi.org/10.1109/ICNC.2010.5582899
https://doi.org/10.1109/TAFFC.2017.2771234
https://doi.org/10.1109/TAFFC.2017.2771234
https://doi.org/10.1109/RTEICT.2017.8256978
https://www.linkedin.com/pulse/flume-kafka-real-time-event-processing-lan-jiang/
https://grouplens.org/datasets/movielens/100k/
https://doi.org/10.1109/ICPADS.2015.91
https://doi.org/10.1109/ICPADS.2015.91

	An efficient system using implicit feedback and lifelong learning approach to improve recommendation
	Abstract
	1 Introduction
	2 Related work
	2.1 Background of implicit feedback-based recommender system
	2.2 Lifelong incremental learning

	3 Our contribution
	4 Lambda architecture
	5 Computing recommendations through collaborative filtering
	5.1 Application scenario
	5.2 Model training
	5.2.1 Offline learning
	5.2.2 Online learning

	5.3 Synchronising offline and online learning
	5.4 Big data solution enabling rapid aggregation to build item co-occurrence matrix
	5.5 Computing recommended items
	5.6 Users’ location
	5.7 Users’ preferences
	5.8 Weighted hybridisation strategy through time-variant data
	5.9 Illustrative example
	5.10 A hybridisation strategy: computing recommendation through item similarity
	5.11 Computing item similarity

	6 Lifelong learning model for recommender system
	7 Experiments
	7.1 Real-time clickstream data ingestion
	7.2 MovieLens dataset
	7.3 Setting up a storm cluster
	7.4 Data preparation
	7.5 Evaluating IFBRS
	7.6 Evaluation of precision
	7.7 Evaluation: an alternative approach
	7.8 Load tests of MALA

	8 Discussion
	8.1 Comparing IFBRS with spark ALS
	8.2 Trade-off between low-latency and high-accuracy
	8.3 Validation by click-through rate (CTR)

	9 Conclusions
	References




