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Abstract
Swarm-Intelligence (SI), the collective behavior of decentralized and self-organized 
system, is used to efficiently carry out practical missions in various environments. 
To guarantee the performance of swarm, it is highly important that each object oper-
ates as an individual system while the devices are organized as simple as possible. 
This paper proposes an efficient, scalable, and practical swarming system using 
gas detection device. Each object of the proposed system has multiple sensors and 
detects gas in real time. To let the objects move toward gas rich spot, we propose 
two approaches for system design, vector-sum based, and Reinforcement Learning 
(RL) based. We firstly introduce our deterministic vector-sum-based approach and 
address the RL-based approach to extend the applicability and flexibility of the sys-
tem. Through system performance evaluation, we validated that each object with a 
simple device configuration performs its mission perfectly in various environments.
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1 Introduction

Recently, micro-robot control technology has been developed with the aim of pro-
cessing tasks that are difficult for humans to do in various environments such as 
production lines  [40], disaster environments  [30], logistics  [31], surveillance  [22], 
and medical systems [7]. Along with this trend, Swarm Intelligence (SI) technology 
is also in the spotlight as a promising robotic solution. The concept of SI in robotics 
was introduced in the early 1990s  [4], but its commercialization was not accom-
plished due to the limitations of the technology. However, in recent years, with the 
development of robotics, research and application of SI technology has been actively 
carried out [28, 39]. This trend is because in many cases it is much more produc-
tive when several simple robots perform a particular job cooperatively. The collec-
tive flight of wild geese, the collaboration of ant groups, and the collective action 
of bees gave SI an original idea [23]. In case of space exploration, multiple robots, 
rather than a single robot, assigned to each mission enable much more comprehen-
sive and three-dimensional exploration. It is more efficient to fly hundreds of drones 
and conduct simultaneous searches than to fly one in several missions, such as survi-
vor searching in a forest fire area [1]. It may be much better to use a number of small 
robots to detect leaks in gas pipes [33]. No matter how many are lost in the process, 
the remaining objects could continue their global mission.

In the field of robotics, various studies have been conducted to explore algorithms 
to control these swarming robots. Several studies have been conducted including the 
systems using infrared and acoustic signal. Studies that constructed various simu-
lation environments  [16, 35] were also addressed. However, despite of the explo-
sive attention of deep learning, collaboration with SI concept has not been deeply 
considered, because of difficulty of satisfying SI concept; in SI system, each object 
should determine the control decision with local and particular information.

In this paper, we propose a novel swarming system based on Reinforcement 
Learning (RL) [9] with gas sensing, which is shown in Fig. 1. The system is focused 
on pinpointing the source point, especially in  situations of gas leakages or vapor 

Fig. 1  Overview of the proposed systems
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distribution in indoor environments. The proposed system includes a process of con-
verting gas sensing data into distance information. Therefore, it is difficult to utilize 
the system in a space in which gas is dispersed due to a strong air flow or in a space 
saturated by gas leaked for a long period of time. Our swarming system is special-
ized in quickly detecting gas leakage points in the early stages of the accident by uti-
lizing multiple robots in an indoor space where the structure is unknown. In terms of 
security guarantees, the proposed systems are essential. For example, with the sys-
tems, it is possible to find source points at gas accident sites to ensure safety quickly, 
or to find danger points in high-risk areas to prevent accidents. The proposed system 
is highly flexible in determining the shape of the robot frame, such as the number 
and location of mounted sensors, and dimensions.

We introduce a robot control system that uses vector sum based on gas sensing 
data (Fig. 1a). We then validate the performance through simulation and address the 
advantages and the limitation of the system. To compensate these shortcomings, we 
further propose an advanced model applying RL technique. The advanced design 
shows high performance of scalable multi-robot migration, collision prevention 
between robots, and obstacle avoidance while moving. As a result, each individual 
does not have high intelligence, but based solely on sensing data, it can accurately 
find the source point without collision (Fig. 1b).

The remaining part of this paper is organized as follows. We introduce related 
work in Sect. 2. In Sect. 3, we describe detail design of our proposed system. Sec-
tion 4 validates the performance of the proposed system in simulation environments. 
Finally, Sect. 5 concludes the paper.

2  Releated work

2.1  Swarm‑robotics

SI is an artificial intelligence based on distributed collective behavior and self-
organizing systems. SI is a system made of simple objects that locally interact with 
other objects. Even without a central control structure that dictates the behavior of 
each object, it acts according to a simple rule, which creatively leads to an "intelli-
gent-looking" action through a local, somewhat random interaction, without under-
standing the entire rule [3].

Swarm Robotics (SR)  [5] refers to the technology of moving several simple 
robots at once, and its background is in SI. SR was initially used to support and vali-
date biological research. The ant cluster optimization algorithm  [11] and the par-
ticle cluster optimization algorithm  [13] are typical. Since then, as algorithms for 
swarm robots have been proposed in robotics, studies to solve real-world problems 
are actively conducted. Full-fledged research began in the early 21st century. Typical 
examples are Sentibots [10] supported by DARPA and Swarm-bots project [8] sup-
ported by the EU. Seaswarm [41], which removes oil from the sea surface in a dis-
aster situation, is also a representative example of SR. In recent years, SR has been 
commonly introduced in various logistics lines and military operations. In addition, 
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Ars Electronica [19], Intel [21], EHang [14] are actively utilizing swarm robot tech-
nology by directing various types of drone shows.

2.2  Gas detection

Gas detector is a device that monitors the presence of gases in an area, often as part 
of a safety system [27]. This type of equipment is used to detect a gas leak or other 
emissions and is connected to a control system so that one of its processes can auto-
matically shut down the entire system that leaks the gas. Gas leak detection is the 
process of identifying potentially hazardous gas leaks by sensors.

Gas sensing is commonly performed with various types of gas sensors. The semi-
conductor gas sensor [36] detects gas by using the change in density of the surface 
conduction electrons by chemical interaction between the air component and the 
semiconductor surface. The catalytic gas sensor  [6] uses a catalyst (platinum, pal-
ladium, and so on.) sensor. The principle is to measure the increase or decrease of 
heat generated by catalytic combustion of gas generated on the surface of the cata-
lyst. The thermal conductivity sensor [34] measures the concentration of the gas by 
using the difference in the heat conduction of the two mixed gases. Non-Dispersive 
Infrared (NDIR) gas sensor [20] detects gas by using the phenomenon that the radi-
ated infrared rays cause molecular vibration of the target gas, and the infrared rays 
of a specific wavelength are absorbed. The electrochemical gas sensor [12] detects 
gas on the principle of converting energy generated by a chemical reaction (redox 
reaction) into electrical energy.

2.3  Reinforcement learning

Reinforcement learning is one of the learning method based on the Markov Decision 
Process (MDP)  [25]. RL combines the concept of redundancy and the concept of 
animal psychology [38], as known as trial-and-error. RL constructs a reward func-
tion using data derived from the environment and improves it repeatedly to achieve 
the optimal goal. The whole process of learning is as follows. The agent recognizes 
the current state based on the data that can be obtained within the defined envi-
ronment. Then, among the selectable actions, the action or sequence of actions that 
obtains the greatest reward is selected.

However, the initial reinforcement learning model has a limitation that it is quite 
difficult to learn about systems with higher complexity compared to simple linear 
systems  [17]. To resolve this problem, Deep Reinforcement Learning (DRL)  [29] 
combining Deep Neural Networks (DNN)  [24] have been developed, which ena-
bles flexible learning in more diverse situations. Utilizing this DRL algorithm, 
various algorithms have been developed, such as Deep Q-Networks (DQN)  [15], 
Deep Deterministic Policy Gradient (DDPG) [26], Asynchronous Advantage Actor-
Critic (A3C)  [2], PPO (Proximal Policy Optimization)  [37], and Soft Actor-Critic 
(SAC) [18]. In this paper, we address the design that includes DNN into swarming 
system.
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3  System design

We propose two systems that implement swarm intelligence for gas detection. The 
first is the system based on vector summation. The swarm control system that moves 
using the sum of vectors is simple to implement, and each object moves quickly and 
efficiently, searching the shortest path in real time to its destination, the gas source. 
The second is the RL-based system. We propose a system in which each object 
performs more flexible and sensitive movement over episode, by designing proper 
states and reward that considers a variety of environments. Following subsections 
describe specific designs for two systems.

3.1  Vector‑sum‑based control

The vector-sum-based control algorithm allows each robot to select the optimal 
direction through appropriate sensor placement.

Figure 2 shows the standard models of the system. Figure  2a represents the basic 
model of vector-sum system. The robot frame forms a circle with a radius of r, and 
each sensor is attached to the circumference by dividing it into equal parts. The 
Vector-sum system is not limited to the number of sensors if it has at least three 
sensors, which is the minimum number required for the system. As such, the rule 
of the standard model of the vector-sum control system is a model in which N gas 
sensors divide the frame into N equal parts, and the system shows the maximum 
performance in standard model. Figure 2b show the models in which the number of 
sensors is expanded from 3 sensors to 8.

Before the system operates, each robot assumes the center of its frame as a local 
origin and specifies vectors for its all sensors. These vectors are called the basic 
vectors. The robot equipped with N sensors has a total of N basic vectors. During 
system operation, the robot detects gas every cycle and updates sensor values s1 to 

Fig. 2  Sensor configuration and vector selection of vector-sum-based system
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s
N

 . Finally, the robot’s period-wise moving vector � within the vector-sum system 
can be obtained as follows.

Sensors in the vector-sum system do not necessarily have to be mounted in speci-
fied locations. If only one following requirement is satisfied, the sensors can be 
freely repositioned. However, in such cases, the performance of the system may be 
reduced. The vector-sum control system has one essential requirement for optimal 
path setting. The total sum of the basic vectors must be zero. The placement of the 
sensors do not necessarily have to be fixed. However, when the sum of the basic 
vectors is a specific vector, the robot cannot estimate the exact location of the des-
tination and gradually flows in the corresponding direction. The vector-sum-based 
control algorithm can accurately grasp the shortest route to the gas source destina-
tion with at least three gas sensors per robot, and the same result can be obtained 
even if the number of sensors is increased. In noisy environments, the more sensors 
mounted, the higher the robot’s noise resilience, which results in a route approach-
ing a straight line to the source. Furthermore, it can simply control the speed of 
robot by multiplying a scalar value by � derived via Eq. (1).

3.2  RL‑based control

Vector-sum-based approach can make simple but accurate decisions for the gas 
detection robot system, but some limitations are difficult to address. The motivations 
of introducing RL are listed as follows.

– Sensor position constaint: In vector-sum-based approach, the sum of center-
to-sensor vectors should be a zero vector, which decreases the flexibility of the 
robot design. This constraint can be relaxed by designing complex weight of each 
vector, but it is hard to prove that the obtained weight comprehensively works in 
every case.

– Rigidity on applications: The mathematical model applied on the proposed sys-
tem only solves the proposed problem. For different sensors or objectives, con-
trol system should be revised regarding the characteristics of the targeted cases.

From these reasons, we considered to utilize RL-based approach to solve more com-
plexed problem of our system. The following subsections describe the details of our 
proposed RL system components.

3.2.1  Algorithm

We adopted REINFORCE algorithm for learning mechanism. Recently, determinis-
tic policy gradient algorithms such as DDPG [26], SAC [18] are eagerly considered 
for control systems, due to the requirements on the discrete action space. However, 
we claim that deterministic algorithms could be inadequate for the problem we face, 

(1)� = {�N

k=1
s
k
⋅ ��|3 ≤ N}
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primarily the randomness of the problem. In our problem, a robot is firstly spawned 
at the randomized position and seeks the direction to the gas source from its sen-
sor measurements. In most of our studies, we observed that deterministic algorithm 
tends to converge to the local optimum which outputs acceptable results in some part 
of the cases, which does not consider the diversity of the initial position. Exploration 
by random noise [32] temporally helps to escape this wrong convergence, but con-
trolling the scale of noise would be labor-intensive and case-dependent approach. 
Thus, we attempted stochastic approach that opens entire case of the action while 
narrowing the probability distribution from stored experiences.

3.2.2  Gas tracking

In this section, we address how we determined the state vector used in our algo-
rithm. We measured the actual sensor value of sensor device s with respect to the 
distance to the gas source. Figure 3 shows the result of the experiment. As shown at 
the sensor value (black dotted line) and its fitting curve (red dotted line) in the fig-
ure, sensor value with respect to the distance can be obtained as

where �� , ����� refer to the position of the sensor and the destination, respectively, 
and � , � , and � refer to the estimation parameter of regression. The error of theo-
retical distance is 0.4170 m in average. Since square root function is inversible in 
positive domain, each robot can roughly derive the distance to its sensors. Note that 
Eq. (2) is an example of the sensor value transformation, and the form of equation 
depends on the HW model, type, sensing material, and so on.

(2)s = �
√
� − ��� − ������ + �

0 2 4 6 8 10 12 14 16 18
Distance (m)

100

200

300

400

500

600

700

800

900

1000

1100

Se
ns

or
 v

al
ue

Measurement
Fitted curve
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It is worthwhile to try to set the state vector as the sensor values, but we found 
that the algorithm hardly increases the episodic reward in the learning phase. We 
argue that the cause of the learning failure is a too small differences in the sen-
sor values compared to the sensor values themselves. The sensors output a value 
approximately between 100 and 1000, and the differences among the sensor values 
are measured less than 10. Since the differences between the sensor values are the 
core clues to determine the direction of the robot, we simply normalized the state 
values by deducting the sensor values from a pre-selected sensor value. By doing so, 
the state vector has a set of numbers approximately ranged from −10 to 10, where 
the algorithm can efficiently seize the state changes from the actions.

In summary, we can obtain our desired state value, difference of the distance 
between the sensors to the source, from the sensor values collected online. In addi-
tion, relative positions of the sensors (vector from robot’s center to each sensor) are 
no longer required since the state value implicitly contains this information. The 
remaining concern about state is the error during transformation. In this case, the 
noise can be considered during learning, in detail, updating and correcting the prob-
ability distribution of the action space. In our evaluation section (Sect. 4), we show 
that the proposed system learns from the errors and draw out the best decision from 
noisy measurements.

As aforementioned, we define the discrete action space A as a set of the unit vec-
tor, expressed as

where N
A
 refers to the dimension of the action space. In our implementation, we set 

N
A
 to 36. Then, we model the reward function r(t) as

where �(�) ∈ A refers to the action chosen in the step t, u(�) refers to the unit vector 
of � , ����� refers to the position of destination, and �(� − �) refers to the position of 
robot at t − 1 . Note that r(t) is close to 1 when �(�) is close to the direction toward the 
destination, and close to −1 when a(t) is opposite to the direction toward the destina-
tion. We firstly organized the reward formula with the differential of the sensor val-
ues s

i
 , and we found that the sensor values brings inefficient learning curve, which 

means delayed learning. Since the sensor value increases as it closes to the destina-
tion, the experience at the far positions has relatively less effect on the policy net-
work. Thus, we adopted the angular difference of the resulting action for equalized 
reward. If the robot reaches to the destination, expressed as |�(�) − �(����)| < 𝜖 , we 
grant prize reward r

success
= 2 to encourage the positive actions of the network.

3.2.3  Collision avoidance

In addition to the gas tracking, we attempted to add collision avoidance feature for 
our control system. To decide the movement that avoids collision, the policy network 

(3)A =

{(
cos

(
2𝜋k

N
A

)
, sin

(
2𝜋k

N
A

))
|0 ≤ k < N

A
, k ∈ ℕ

}

(4)r(t) = �(�) ⋅ u(����� − �(� − �))
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should secure the related parameter that can warn the risk of collision. Thus, we 
added ranging sensor to the robot that scans the nearby space and outputs the range 
to its nearby area, such as Lidar or radar. Note that the sensor can detect whether 
an obstacle is mobile or stationary, so can be utilized at the swarming and the path 
finding. Then, we appended two state values: the minimum range value d

min
 , and 

the degree where the value is obtained �
min

 . From this, policy network can recog-
nize where the nearest obstacle is and select the alternative direction for avoiding 
collision.

To grant the feedback of the collision, we applied negative reward r
collision

< −1 
in the case of collision. In our implementation, we set r

collision
= −2 . Note that too 

low reward for punishment could lead to the biased weight of the network, which 
results the wrong or delayed convergence of the policy.

3.2.4  Summary

In summary, we set the state, action, and reward value as following.

In Eq. (5), N
s
 refers to the number of sensors equipped in the robot, and d

s
i
 refers to 

the distance between the sensor s
i
 to the destination.

Figure 4 graphically represents the overall structure of the learning system. Since 
all nodes perform the same action, we use a single policy network applied to all 

(5)
s(t) =

(
d
s1
(t) − d

s0
(t), d

s2
(t) − d

s0
(t), ...d

s
Ns

(t) − d
s0
(t), d

min
, �

min

)
,

where d
s
i
is obtained by Eq. (2).

(6)a(t) ∈ A, where A is defined by Eq. (3).

(7)r(t) =

⎧
⎪⎨⎪⎩

r
success

������ − ������� < 𝜖

r
collision

Collision occurs

�(�) ⋅ u(����� − �(� − �)) Otherwise

Fig. 4  RL-based gas tracking control design
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robots, which matches to the swarming intelligence philosophy. So that, the result-
ing network with an environment of small number of robots can be applied to the 
scenario of large number of robots, which is shown in Sect. 4. As shown in the fig-
ure, we constructed our learning system based on the pseudo code of REINFORCE 
algorithm [42]. Algorithm 1 shows schematic pseudo-code of RL-based swarm sys-
tem. One of main contributions is the formularization of the robot control system 
which finds the unknown position of the gas source, from one-dimensional sensor 
values. In addition, we added collision avoidance to the network and made a learn-
ing system achieves multiple objectives, with simple state values that the robots can 
empirically obtain. 

4  Performance evaluation

In this section, we validate the performance on the two proposed systems by simu-
lation. We first evaluate the impact of the number of sensors mounted on vector-
sum systems and subsequently validate RL-based control systems in various 
environments.
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4.1  Number of sensors is vector‑sum system

As aforementioned in Sect. 3.1, each robot in vector-sum system must be equipped 
with at least 3 sensors, and the number of sensors can theoretically increase as much 
as possible. Therefore, we analyzed the effect of the number of sensors on the sys-
tem performance in the standard model through simulation. In situations where gas 
sensor values ideally detect gases without noise, for three or more sensors, the sys-
tem always presents the robot with the shortest distance from the gas source, that is, 
movement in a linear direction. However, since this situation is not possible in real-
world environments, we added noise to the sensor value and conducted experiments 
by increasing the number of sensors. Experiments were conducted on 6 standard 
models of 3, 10, 30, 100, 300, and 500 sensors, and each model has the same initial 
status except the number of sensors. The experiment environment is as follows.

The coordinates of a gas source are (0 m, 0 m), and each model operates a system 
at (50 cos(30◦) m), 50 sin(30◦) m) to explore toward the source. That is, the distance 
between the gas source and the robot in the initial state is 50 m, and in an ideal case, 
the robot travels 50 meters in a straight path in one episode and arrives at the gas 
source accurately. In order to highlight the differences between 6 models, we added 
a fairly large gaussian noise of N ∼ (0, 2) to each sensor value at every step and cal-
culated the distance the robot has away from the source at the end of one episode. 
We simulated each of the 6 models for 200 episodes, recording the remaining dis-
tance from the gas source.

Figure 5 shows the experimental results. The 3, 10, 30, 100, 300, and 500 sen-
sor models showed an average of 41.48 m, 31.05 m, 4.03 m, 1.09 m, and 0.61 m 
remaining distances, respectively. Through this, it can be derived that as the num-
ber of mounted sensors increases, the exploration to the gas source becomes easier. 
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This is because the more sensing data in the noisy environment, the more accurate 
results can be inferred. In the standard model, as the number of sensors increases, 
the angle formed by adjacent sensors decreases, so that the system can provide more 
precise directions. However, as the number of sensors increases, the model cost also 
increases, so the user will have to select an appropriate number of sensors that meets 
their needs.

4.2  RL‑based system evaluation

In this section, we decribe how to implement the system and show the evaluation 
results of our proposed scenario. We conducted the gas tracking scenario in multi-
faceted cases, including the aforementioned ones such as noise, sensor formation, 
and obstacle avoidance. We show the figures to confirm the validity of our system 
for each case.

4.2.1  Implementation

We implemented each component of our proposed design using Python 3 and 
PyTorch API. The dimension of policy network is 7 × 16 × 16 × 36 . In environ-
ment, we created 50m × 50m two-dimensional map and located a destination point 
(gas source) at a random position. Then, according to the configuration, we created 
obstacles and objects into the map. Environment receives the actions derived from 
the policy network and changes the positions of the objects with designated speed. If 
the object occurs collision, environment cancels the movement and returns punish-
ment reward for negative feedback. In our system, we set the speed to 1.0 and set the 
maximum step count to 100 for each episode.

0 2000 4000 6000 8000 10000
Episode

0

5

10

15

20

25

30

35

W
in

do
w

 a
ve

ra
ge

 o
f 

ep
is

od
ic

 r
ew

ar
d

noise=0.0
noise=0.2

Fig. 6  Episodic reward with respect to the sensor formation



14806 S. Lee et al.

1 3

4.2.2  Sensor formation

At first, we varied the formation of the sensors with respect to the object frame. As 
shown in Fig. 2, vector-sum-based approach forces the symmetric formation of the 
sensors. However, RL-based system does not require the relative positions of the 
sensors, so we attempt to run the learning algorithm while randomizing the sensor 
formation. Figure 6 shows the windowed average of episodic rewards while 10000 
episodes. As shown in the figure, it is certain that the uniform sensor formation is 
advantageous to learn quickly, due to the clear relevance between the sensor dis-
tances. However, both average converges to the similar value after about 5000 epi-
sodes, which indicates that the randomized sensor formation does not disturb the 
finest performance of the system, but only does the learning speed.

4.2.3  Sensor noise

Secondly, we added the noise factor considered in Sect. 3.2.2. From the approxima-
tion, we found the average noise as 0.4170m. Thus, we added the gaussian noise of 
N ∼ (0,�

noise
) , where �

noise
= {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} . Figure 7 shows the aver-

age reward of each case.
As shown in the figure, as �

noise
 increases, average reward decreases and less 

converges in 10000 episodes. However, since the average reward tends to increase 
during learning, the noise factor is considered in RL system. Because of the ran-
domness of the noise, policy network would reshape the distribution of the action 
probability to explore multiple choices.
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4.2.4  Obstacle avoidance

In addition to the gas tracking, we added obstacle avoidance mission by extending 
the state vector and reward function (Sect. 3.2.3). We located 20 obstacles at the 
map with radius of 2m, while preventing the total block of the path between the 
source and the robot starting point. Figure 8 shows the average episodic reward of 
20 obstacle case, comparing with the case without obstacle. Since environment 
returns punishment reward r

collision
 at every collision, overall episodic reward is 

less than the case without obstacle. However, similar to the case of noise, average 
episodic reward increases along episodes, which indicates the possibility of the 
successful obstacle avoidance. To briefly scan the learning trend of this case, we 
collected the trajectories of the episodes at 0, 2000, 4000, ..., 10000, as shown in 
Fig. 9. As shown in the figure, the trajectories in earlier episodes show unreached 
(episode 0,2000) cases, but finds the way after episode 4000. The reason for the 
increasing episodic rewards is that the robot previously finds the risk of collision 
by d

min
 , selects the alternative way by �

min
 , and avoids getting punishment reward 

for that step.
As discussed in Sect. 3.2.3, robot-to-robot collision avoidance can be also learnt 

by obstacle avoidance environment. Thus, from the network parameters obtained by 
the above single robot learning, we ran 20-robot simulation while the robots use 
the same policy network. Figure 10 shows the overall trajectories and the snapshot 
of the robots’ positions in simulation. As shown in the figure, entire robots gather 
around the gas source (destination), while keeping the space between the robots. 
From this experiment, we confirmed that our learning strategy on obstacle avoid-
ance is effective on swarming gas tracking system with existence of obstacles.
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Fig. 8  Episodic reward with respect to the existence of obstacles
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4.2.5  Comprehensive evaluation

Finally, we dealt with all the aforementioned concerns together and performed a 
simulation study. We operated 30 robots with 20 obstacles, while equipping ran-
domly attached sensors with �

noise
= 0.4 . Figure  11 shows the overall trajectories 

and the step snapshots of the experiment. As shown in the figure, each robot gath-
ers around the gas source while avoiding the collision with obstacles and the other 
robots. From this evaluation, we showed that our RL-based control system achieves 
complex objective of multiple agents with noise resilience.
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Fig. 9  Trajectories of object with 20 obstacles
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Additionally, we validate the system performance by constructing various envi-
ronments up to 30 robots with 40 obstacles. The video shows the position of the 
robots during the system operation. In all cases, we can see that each robot finds the 
optimal path and moves appropriately to its destination. It is available on YouTube 
(https:// www. youtu be. com/ watch?v= p28px AuExrI).
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Fig. 10  Trajectories of 20 robots simulation
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5  Conclusion

In this paper, we proposed RL-based swarming system for gas detection. We 
approached to implement two swarm robot systems through gas detection in two 
different ways. First, the vector-sum based control can implement fast movement 
simply and efficiently. However, this approach is disadvantageous as the number 
of robots in the swarm increases. This is because the sensor formation is highly 
constrained, and it is vulnerable to the collisions between robots and obstacles. 
On the other hand, our proposed RL-based control system is more complicated 
than the vector-sum approach, but it can adapt to the environment and perform a 
wider variety of missions. We evaluated the performance of the proposed system 
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through simulation. We hope our work contribute to the design of the RL-based 
swarm system.

We have several researches plans as future work. First, we will apply a learning 
model for multiple gas points. The system will be able to evolve into a model that 
accurately seeks the highest gas concentration point. Second, if there is no safety 
issue, we will construct a physical environment similar to the simulation environ-
ment to proceed with the empirical experience. By doing so, we will be able to fur-
ther improve the reliability of the proposed system.
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