
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:15663–15680
https://doi.org/10.1007/s11227-022-04466-8

1 3

EP4DDL: addressing straggler problem in heterogeneous
distributed deep learning

Zeyu Ji1 · Xingjun Zhang1 · Jingbo Li1 · Jia Wei1 · Zheng Wei1

Accepted: 17 March 2022 / Published online: 21 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Driven by big data, neural networks evolve more complex and the computing capac-
ity of a single machine is often difficult to meet the demand. Distributed deep learn-
ing technology has shown great performance superiority for handling this problem.
However, a serious issue in this field is the existence of stragglers, which signifi-
cantly restricts the performance of the whole system. It is an enormous challenge to
fully exploit the computing capacity of the system based on parameter server archi-
tecture, especially in a heterogeneous environment. Motivated by this, we designed
a method named EP4DDL to minimize the impact of the straggler problem by load
balance technique. In a statistical view, the approach introduces a novel metric
named performance variance to give a comprehensive inspection of stragglers and
employs flexible parallelism techniques for each node. We verify the algorithm on
standard benchmarks and demonstrate that it can reduce training time to 57.46%,
24.8%, and 11.5%, respectively, without accuracy loss compared with the FlexRR,
Con-SGD, and Falcon.

Keywords Distributed system · Heterogeneous environment · Stragglers · Deep
learning · Flexible parallelism

Jingbo Li, Jia Wei and Zheng Wei have contributed equally to this work.

 * Xingjun Zhang
 xjzhang@xjtu.edu.cn

 Zeyu Ji
 zeyu.ji@stu.xjtu.edu.cn

 Jingbo Li
 lijingbo17@stu.xjtu.edu.cn

 Jia Wei
 weijia4473@stu.xjtu.edu.cn

 Zheng Wei
 frank.wei@stu.xjtu.edu.cn

1 School of Computer Science and Technology, Xi’an Jiaotong University, West Xianning Road,
Xi’an 710049, Shaanxi, China

http://orcid.org/0000-0003-0362-7506
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04466-8&domain=pdf

15664 Z. Ji et al.

1 3

1 Introduction

The diffusion of deep learning, which is based on statistics, has been made pos-
sible by an exponential growth in data, generally driven by the information explo-
sion. The deep learning approaches have demonstrated impressive performance
in various applications including facial recognition [1], natural language process-
ing [2], computer game [3], real-time resource allocation [4]. To maximize the
performance, the deep learning model often involves large data sets and increas-
ingly complex networks, leading to the storage and computation resource demand
far exceeding a single machine’s capacity. Distributed deep learning technology
delivers a prevalent scale-out solution by leveraging a cluster of machines to fin-
ish large-scale tasks under an acceptable time cost. The parameter server [5–7] is
a general parallel framework supporting distributed deep learning, which focuses
on data-parallel manner. However, due to straggler problems, iterative conver-
gence often causes significant slowdowns.

The straggler problem [8, 9], which is an unforeseen phenomenon, will block
the parallel running of the deep learning model and have a negative impact on
program performance. The presence of stragglers in a distributed system is a seri-
ous problem that restricts the performance of the whole system. In particular, in
heterogeneous environments [10, 11], the different performance of compute nodes
and varying operating environments can lead to more serious straggler problems.
It is an enormous challenge to fully exploit the computing capacity of the system.

Many techniques are proposed to mitigate the impact of stragglers. The
method based on redundant job execution [12–14] is first proposed, which relies
on the idempotent of the execution jobs in BSP model. However, they are inef-
ficient in ASP and SSP models, which change the idempotent of shared state.
Subsequently [9], proposes a dynamic task assignment approach. The main idea
is that the fast workers can help the slowed workers to catch up [5]. Introduces
new hyper-parameters to adjust the contribution of the gradient which is from
each node to solve the straggler problem [7, 15, 16]. Use the idea of elastic paral-
lelism to solve the straggler problem. Yet, the methods above do not fully exploit
the computation resource in a heterogeneous environment where the stragglers
are serious and hard to be detected. The dynamic task assignment approach [9]
generates unavoidable data transfer overhead, the hyper-parameter approach [5]
does not essentially solve the straggler problem, and the clustering approach used
in falcon [7]’s elastic parallelism scheme groups compute nodes, eliminating the
intra-group straggler problem, but the inter-group straggler problem still exists
and has a tendency to expand.

In order to fully utilize the computational resources of nodes in a heteroge-
neous environment, we introduce a novel metric named performance variance
to give a comprehensive inspection of stragglers and propose an approach—
EP4DDL, which implements load balancing by searching for the optimal paral-
lelism of each node to solve the performance degradation triggered by stragglers.
Compared with flexRR [9], EP4DDL uses an elastic parallel strategy instead
of dynamic task assignment to achieve load balancing and avoid additional

15665

1 3

EP4DDL: addressing straggler problem in heterogeneous…

communication overhead. In contrast to falcon [7], EP4DDL considers all nodes
as a group and treats the performance variance as a metric to limit the gap
between the fastest and slowest nodes.

This method is a special form of load balancing optimized for data-parallel itera-
tive deep learning:(1) it uses a customized gated recurrent units(GRUs) model based
on time series to predict the performance of each node in the system instantaneously
through real-time hardware parameters; (2) it uses multi-threading techniques to
elastically adjust the computational resource of the straggler nodes; (3)on the top of
the prediction model and an elastic parallel system, EP4DDL provides an optimized
parallelism strategy for the straggler nodes. Overall, the approach can reduce the
system heterogeneity and alleviate the impact of stragglers.

We evaluated the method EP4DDL in a cluster of 10 nodes with stragglers. We
used 2 mainstream image classification models Alexnet [17] and VGG19 [18] on the
data-sets MNIST [19] and Cifar-10 [20] as benchmarks. The experimental results
show that the EP4DDL method achieves good performance in terms of training
convergence speed, training accuracy and other metrics with little overhead. It also
shows excellent performance in benchmark tests compared to previous solutions.
Our main contributions can be summarized as follows:

1. We analyze and quantify the straggler problem from a statistical perspective, and
propose to solve the straggler problem from two directions: performance expecta-
tion and performance variance;

2. We design a customized P-GRUs based on time series to predict the performance
of each node in the system instantaneously through real-time hardware param-
eters;

3. We flexibly adjust the computational resources of the straggler nodes based on the
above prediction model results and adopt multi-threading techniques to provide
an optimized parallel strategy for the computation nodes;

4. We validated the EP4DDL method on the data-sets MNIST and CIFAR-10 with
two general image classification models, Alexnet and VGG19.

The rest of the paper is organized as follows. Section 2 presents background and rel-
evant theory, Sect. 3 describes design details and algorithm implementation, Sect. 4
shows experimental results and analysis, Sect. 5 introduces the related works and the
last part concludes the paper.

2 Background

2.1 Parallel model and consistency protocol

In order to migrate the deep neural network model to a distributed computing plat-
form, researchers propose the corresponding parallel models. There are three types
of popular parallel models for deep neural networks: model parallelism [21], data
parallelism [22] and hybrid parallelism [23, 24].

15666 Z. Ji et al.

1 3

Model parallelism involves different hardware (CPU/GPU) in a distributed sys-
tem being assigned to different parts of the neural network model, as shown in
Fig. 1, where different network layers in the neural network model are assigned to
different hardware for execution, or different parameters within the same layer are
assigned to different hardware. Data parallelism means that each node in the distrib-
uted system has a copy of the same model, as shown in Fig. 2, where each node is
assigned different training data, and then the parameter server merges the computa-
tion results of all machines in a certain way, and finally completes the parameter
exchange. Hybrid parallelism is the trade-off between model parallelism and data
parallelism. The network overhead in model parallelism starts to dominate as the
number of devices increases compare with data parallelism. Therefore, most of the
current researchers focus on data parallelism or hybrid parallelism.

Bulk synchronous parallel(BSP) is a typical method for parameter synchroniza-
tion in distributed deep learning, which guarantees consistent results in both the
stand-alone and distributed cases [25]. With this method, the host simply divides
and maps the data to the nodes. By using the consistent model, it ensures that all
nodes use the same parameters, but is vulnerable to stragglers. This incurs a sub-
stantial overhead on the overall system, which hinders training scaling. To solve the
problem, researchers relax the synchronization restriction, creating an inconsist-
ent model called asynchronous parallel (ASP) model [26, 27], which overcomes
the drawbacks by eliminating the displayed fence between nodes. A well-known

Fig. 1 Model parallelism

15667

1 3

EP4DDL: addressing straggler problem in heterogeneous…

instance of inconsistent SGD is the HOGWILD shared-memory algorithm [28],
which allows training agents to read parameters and update gradients at will, over-
writing existing progress. To alleviate the interference effect of updating w at each
step in the distributed system, the method transfers the gradient Δw from the train-
ing process instead of w. However, this asynchronous behavior inevitably introduces
new troubles called “gradient staleness” [29, 30] to the whole system. Therefore,
the model with ASP tends to be much less effective than the BSP, and severe gra-
dient staleness can significantly slow down the speed of convergence. To provide
correctness guarantees in spite of asynchrony, Stale-Synchronous Parallelism (SSP)
[6] proposes a compromise between consistent and inconsistent models. In SSP, a
global synchronization step is introduced after a maximal staleness may have been
reached by one of the nodes in order to bound the gradient staleness enforcedly. This
approach works especially well in heterogeneous environments, where stragglers are
kept in check. The specific relationship is shown in Fig. 3.

2.2 Straggler problem

Parameter servers provide a reliable solution for parallel training of deep learning
in a distributed environment. Many parameter server-based studies make trade-
offs between its scale and convergence accuracy. But there is a hidden assumption

Fig. 2 Data parallelism

15668 Z. Ji et al.

1 3

here: a homogeneously distributed environment, i.e., all nodes are in a similar
computational and network environment. Therefore, the above studies are difficult
to achieve the expected results in an environment with stragglers. A straggler is
defined as a task which executes abnormally slow in comparison with the aver-
age task duration within a job. It brings the impact of a long-tail problem [8] in
distributed systems.

To demonstrate how the straggler degrades the performance of the distributed
deep learning system, we use a parameter server system containing four work-
ers and a server with the same workload in the experimental section. As shown
in Fig. 4, the training convergence time with stragglers is much longer than that
without stragglers. For example, on the cifar10 data-set, the training time for
the Alexnet model increases by 2.02 times, and the training time for the VGG
model increases by 2 times. In conclusion, addressing the performance degrada-
tion caused by stragglers is a very critical issue in distributed deep learning. A
number of previous efforts have been made to address the problem of stragglers,
which overall can be categorized into 3 classes as follows:

1. Solving the stragglers [12, 13, 25] the main idea is redundant execution, where
tasks assigned to stragglers are executed simultaneously on multiple nodes. The
ensuing cost is that a huge amount of computation resources are wasted;

2. Tolerating the stragglers Accept the existence of stragglers and aim to eliminate
their effects. By relaxing the strict of synchronization, [6, 26, 27] eliminate the
impact of stragglers but introduce problems such as gradient staleness. As a fur-
ther step, [5, 29, 30] introduce a new parameter to assign the gradient contribution
of computational nodes;

3. Improving the stragglers [7, 15, 31] mitigates the impact of stragglers by the idea
of task partitioning and load balancing.

Fig. 3 The relationship between BSP, ASP, and SSP

15669

1 3

EP4DDL: addressing straggler problem in heterogeneous…

The first type of solution is based BSP approach, using redundant computation strat-
egies. Cause of the bulk synchronous method, these types of solutions are inefficient
in heterogeneous environments. To solve the straggler problem, the second type
of solution introduces the stale gradient which results to slow convergence of the
DNN model. Therefore, most recent research has concentrated on the third type of
solution. The research [7] proposes a system called falcon which uses a time-based
recurrent neural network for performance prediction of computational nodes. On top
of the performance prediction results, falcon clusters the nodes with a density-based
spatial algorithm and achieves intra-group performance balancing by using an elas-
tic parallelism strategy. However, with this approach the performance gap between
groups becomes insurmountable; In the research [15], FlexSlot adaptive changes
the number of slots on each virtual node to promote the effective utilization of the
resource pool; In research [31], firstly, a new model-based data partitioning algo-
rithm is proposed based on extensive tests on the performance of compute nodes
under different task volumes, which minimizes the execution time of computations
in the parallel execution of the application. However, the algorithm cannot partition
the data in real time and the computational overhead of the algorithm is unaccep-
table; [9] dynamically evaluates the performance of nodes and divides the nodes
into help and helpee groups. The nodes in the help group can assist the nodes in the
helpee group after completing their own tasks. But with this strategy, the communi-
cation overhead between nodes is huge.

It is obvious that the idea of load balancing is more applicable to distributed deep
learning models in heterogeneous environments rather than the former two solu-
tions. Therefore, our research is also based on it.

Fig. 4 Stragglers degrade the system performance of training time

15670 Z. Ji et al.

1 3

3 Design and implementation

3.1 Problem analysis

The quantitative and technical demands of distributed deep learning applications
lead to an increase in system scale and system complexity for a single cluster that
contains several servers. However, the increased complexity leads to a series of phe-
nomena which are unexpected at the beginning of the system design. One of these
phenomena is that some of the working nodes compute at a much lower speed com-
pared to the normal nodes, which we call the stragglers. To better investigate how
the stragglers are throughout the training cycle in a distributed system, we observe
the straggler problem from a statistical perspective. We introduce the expectation to
represent the overall performance of the system, then the variance can describe the
dispersion of the system performance, which is a good fit with the straggler phe-
nomenon. The above analysis shows that the performance of the slow nodes needs
to be brought closer to the average performance of the whole system to better solve
the straggler problem. Inspired by the theory of [7, 15], we adopt the idea of load
balancing based on elastic parallelism.

First, we experimentally tested the status of CPU utilization during the training
process of deep learning. It can be observed from Fig. 5 that the CPU utilization
is not fully utilized. For training Alexnet and VGG19 on the MNIST data-set, the
CPU utilization is only 33.4% and 40.7%. A large portion of the CPU resource
is idle and the CIFAR 10 data-set has similar results. These results indicate that
computing resources are not exploited. Then elastic controlling the parallelism
for each worker can be a good solution to the straggler problem caused by the
imbalance of computing capacity between workers. Here, the concept of parallel-
ism is defined as the number of basic training units on a node. For example, In a
CPU-based platform, we apply multi-threading techniques to ensure that a worker

Fig. 5 Average utilization of CPU computation capacity

15671

1 3

EP4DDL: addressing straggler problem in heterogeneous…

can run multiple workloads simultaneously. As shown in Fig. 6, by using multiple
threads, the model Alexnet is trained 2.2 times faster on the CIFAR 10 data-set,
showing great potential. In Fig. 7, we can observe that the performance curve of
the hardware shows an upward convex shape, and the optimal performance still
requires a reasonable parallelism selection.

The above experiments and analysis show the feasibility of load balancing by
adjusting multiple parallelisms to solve the straggler problem. We will then use
algorithms to ensure how to assign reasonable parallelism to each node.

Fig. 6 Training time on Cifar 10 with different threads

Fig. 7 The utilization of CPU and speedup with different threads

15672 Z. Ji et al.

1 3

3.2 Algorithm description

3.2.1 Predict model

In particular, for clusters with shared resources, the computational capacity of a node
varies with run-time. Consequently, a prerequisite for solving the load balancing prob-
lem is to obtain real-time performance of each worker. The performance of nodes may
be affected by the available resources including CPU state and memory resources.
Therefore, we introduce a gated recurrent units(GRUs) [32], an extended recurrent neu-
ral network that makes performance predictions on each node by using a set of feature
vectors ve

<i>
CPU, memory, parallelism, time per epoch describing the computing nodes

as input. To achieve this goal, we elaborate an online time-series-based long short-term
memory model, which is inspired by [7, 33].

As shown in Algorithm 1, the input is the real-time state of the node (CPU, memory,
time per epoch and parallelism). At first, the algorithm is to initiate the model with pre-
trained parameters. Then it normalizes the input data, predicts the result with the model
and anti-normalizes the output. Next the predicted result is used to calculate the current
speed of the node. Finally, the algorithm inserts the input data into the history data and
updates the parameters w.

This GRUs-based prediction model can provide a mapping function between paral-
lelism and performance for each node with a small overhead. Then we need to mini-
mize the variance of the performance of all nodes through the results provided by the
above function, while also ensuring that the overall performance of the nodes remains
in a high-performance interval.

3.2.2 Formulation of performance optimization problem

Recall the analysis in Sect. 3.1, we should search the corresponding parallelism pe
<i>

 for
each worker, which is constrained by the following limits:

If we simply solve for the combination with the smallest variance in node perfor-
mance, the overall performance of the nodes will likely fall into a lower interval
despite the small performance gap in each node, which will fail to meet our original
intention of using distributed techniques. If all nodes use the best performance par-
allelism, i.e., only solving Eq. 2

which makes the nodes run the fastest, however, the performance gap between
nodes is still not solved. The performance gap leads to the waste of resources on
fast computing nodes with BSP. And on the case of ASP or SSP, the performance
gap between nodes causes the problem of unstable gradients of staleness [29, 30].
Therefore, firstly, the method should find the lower bound se

<i>
 among all nodes with

(1)pe
<i>

= max

(

i,e

min
i=0,e=1

(

batch size

te
<i>

))

(2)pe =
e

max
e=1

(

batch size

te

)

15673

1 3

EP4DDL: addressing straggler problem in heterogeneous…

Eq. 1. Then it minimizes the performance variance of the nodes by using the thresh-
old se

<i>
 as a constraint. As a result, the method maintains the performance of each

node in a high interval.
According to the above description, the problem of minimizing the variance

can be represented as an integer nonlinear programming problem. The input to
the performance model is a discrete sequence. To achieve optimal parallelism,
we adopt the idea of branch and bound. As shown in Fig. 8, for example, there
are four workers in a distributed system. On each node, a task can be executed
by 1 thread, 2 threads, 3 threads, or 4 threads (parallelism represents the number
of threads when a task is running on a worker). Then the Solution Tree is con-
structed from the root, which has four child nodes that represent four different
statuses of parallelism in turn, and the values on the edges represent the perfor-
mance values of the node with current parallelism. When the tree reaches the leaf
node at the fourth level, the value of the fourth level leaf node is the performance
variance value of the four nodes under that path. If a path is not explored to the
fourth level, it means that the path does not meet the conditions and has no solu-
tion. Finally, we search all the paths and return the path with the smallest perfor-
mance variance, which is the optimal parallelism solution for the current system
node.

Algorithm 1 Performance-aware Gate Recurrent Units
Input: Workers status ve<i>

Output: Estimated speed of workers (Pictures/sec)
1: procedure P-Gate Recurrent Units(ve<i>)
2: Initiate neural network with pre-trained w
3: Normalize each input element ve<i>

4: Calculate output te<i>

5: Anti-normalize te<i>

6: insert ve<i> into history data and update w
7: se<i> ← batch size

te<i>

8: return se<i>

9: end procedure

4 Experiment

We will test the EP4DDL method from three aspects:

1. How accurate is the performance prediction model? Experiments show that the
accuracy of the prediction model for the performance of nodes in a CPU cluster
reaches more than 89.3%. Therefore, the model can provide good support for the
parallelism control algorithm and thus alleviate the straggler problem;

15674 Z. Ji et al.

1 3

2. What is the computational overhead of the parallelism control algorithm? Experi-
mental tests on two models with two data sets show that the overhead of the
parallelism control model does not exceed 3% of the overall overhead;

3. What is the final performance of the EP4DDL method? We benchmark the
EP4DDL method on three models with two data sets, and the results demonstrate
the EP4DDL method has stable convergence efficiency and good scalability. It
is also compared with three related methods(FlexRR, Con-SGD and falcon),
and can reduce the training convergence time by 57.46%, 24.8%, and 11.5%,
respectively.

4.1 Experiment setting

4.1.1 Experimental environment

We build a 10-node parameter server consisting of 9 compute nodes and 1 server
node. Each node is a 12-core CPU (4 of them are configured with i7-8700 and 16G
RAM, the remaining 6 nodes are configured with i5-10500 and 4G RAM). All the
machines, which are interconnected using gigabit routing, work with CentOS Linux
release 7.8.2003 and Docker containers. We can observe that this cluster is naturally
heterogeneous.

4.1.2 Workload

We train the image classification models Lenet, Alexnet, and VGG19 on two data
sets MNIST and CIFAR-10 as the benchmark test. Empirically, the batch size in
the model parameters is set to 256, the initial learning rate is set to 0.01, and the
number of epochs for model training is set to 50.

Fig. 8 Examine all combinations with threshold and search an optimal parallelism solution

15675

1 3

EP4DDL: addressing straggler problem in heterogeneous…

4.1.3 Baseline

We organize 7 baselines, which can be divided into two groups. (1)BSP-based
baseline: BSP on PyTorch, and sync-opt [25] (2)ASP(including SSP)-based base-
line: ASP [26] on PyTorch, SSP [6] on PyTorch, FlexRR, ConSGD [5] and falcon
[7]. To simulate the occurrence of stragglers in our experiments, we manually
injected stragglers into the task.

4.2 Predict model

We verified the prediction accuracy of P-GRUs by comparing the predicted time
for epoch with its real completion time. As shown in Fig. 9, P-GRUs provides
speed prediction with large errors at the beginning. Yet, as the training data
grows, the prediction accuracy gradually improves, eventually reaching an aver-
age accuracy of 89.3%.

4.3 Overhead

In order to alleviate the straggler time delay by adjusting the worker’s iteration
speed, we need to dynamically execute the EP4DDL method to deliver optional par-
allelism for each worker. As shown in Fig. 10, the execution frequency of the algo-
rithm will have a different impact on the accuracy and overhead. We also observe
that when the EP4DDL method is executed once per epoch, the prediction accuracy
is low (61.2%), and the time overhead is small. When the frequency is increased

Fig. 9 Predict epoch time of P-GRUs

15676 Z. Ji et al.

1 3

to 3 times per epoch, the prediction accuracy improves significantly (88.7%), and
the time cost is not very high. When the frequency is determined to be 8 times per
epoch, the prediction accuracy reaches 92.7%, and the corresponding time overhead
becomes unacceptable(24.72s).

4.4 Convergence

To verify the convergence of the EP4DDL method, we tested it with different node
sizes on two data sets. As shown in Fig. 11, the models converge to acceptable accu-
racy under different data sets.

4.5 Baseline comparison

4.5.1 Iteration time

The variance of the node performance in the system is reduced overall due to
the effective improvement of the straggler’s performance. Figure 12 shows that
in the BSP group, the iteration time of the EP4DDL method is reduced by 76.7%
and 60.48% compared to the BSP algorithm and sync-opt. However, it is still
relatively high due to the explicit synchronization fence. In the ASP group, all
algorithms have reduced the iteration time compared to the methods in the BSP
group. Further, the EP4DDL method has a corresponding reduction of 59.5%,
10.6%, and 7.25% in iteration time compared to FlexRR, ConSGD, and Falcon
due to its real-time characteristics and better search algorithm.

Fig. 10 Predict accuracy and time cost of P-GRUs

15677

1 3

EP4DDL: addressing straggler problem in heterogeneous…

4.5.2 Convergence time

We tested the two data sets in different baseline tests. As shown in Fig. 13, both
the BSP-based and SSP-based algorithms eventually converge with very low perfor-
mance in heterogeneous environments. The ASP algorithm is very adaptable to the

Fig. 11 Training loss and test accuracy on Alexnet model with CIFAR-10 and MNIST

Fig. 12 Training on Alexnet model with CIFAR-10

15678 Z. Ji et al.

1 3

heterogeneous environment but can lead to non-convergence of results. Compared to
the state of art solutions, The EP4DDL method performs more iterations with higher
accuracy and reduces the convergence time of the model by 57.46%, 24.8%, and
11.5% over FlexRR, Con-SGD, and falcon.

5 Conclusion

The straggler problem is a primary matter in distributed deep learning training
under a heterogeneous environment. Therefore, we propose the EP4DDL method,
which introduces the idea of load balancing to solve the straggler problem of
iterative convergent data-parallel distributed deep learning. By using a reason-
able adjustment of the elastic parallelism of nodes to achieve load balancing of
nodes, the EP4DDL method fully exploits the computational capacity of nodes
and avoids the performance degradation problem caused by stragglers. And on
the top of experiment with various benchmarks, the EP4DDL method demon-
strates reliability, excellent performance. It reduces training time by 7.5–59.5%
and iteration time by 11.5–57.4% without accuracy loss over Falcon, Con-SGD,
and FlexRR.

Fig. 13 Training on VGG19 model with CIFAR-10

15679

1 3

EP4DDL: addressing straggler problem in heterogeneous…

Acknowledgements We would like to thank the anonymous reviewers, whose insightful comments
greatly improved the quality of this paper. The work described in this paper was supported in part by the
Key Basic Research Program of the China Basic Strengthening Program (2019-JCJQ-ZD-041) and the
National Key Research and Development Program of China (2016YFB0200902).

References

 1. Zhong Y, Oh S, Moon HC (2021) Service transformation under industry 4.0: investigating accept-
ance of facial recognition payment through an extended technology acceptance model. Technol Soc
64:101515

 2. Stewart R, Velupillai S (2021) Applied natural language processing in mental health big data. Neu-
ropsychopharmacology 46(1):252

 3. Lanctot M, Lockhart E, Lespiau JB, et al (2019) OpenSpiel: a framework for reinforcement learning
in games. arXiv preprint arXiv: 1908. 09453

 4. Peng Y, Bao Y, Chen Y et al (2021) Dl2: a deep learning-driven scheduler for deep learning clus-
ters. IEEE Trans Parallel Distrib Syst 32(8):1947–1960

 5. Jiang J, Cui B, Zhang C et al (2017) Heterogeneity-aware distributed parameter servers. In: Proceed-
ings of the ACM International Conference on Management of Data, pp 463–478

 6. Ho Q, Cipar J, Cui H et al (2013) More effective distributed ml via a stale synchronous parallel
parameter server. Adv Neural Inf Process Syst:1223

 7. Zhou Q, Guo S, Lu H et al (2020) Falcon: addressing stragglers in heterogeneous parameter server
via multiple parallelism. IEEE Trans Comput 70(1):139–155

 8. Gill SS, Ouyang X, Garraghan P (2020) Tails in the cloud: a survey and taxonomy of straggler man-
agement within large-scale cloud data centres. J Supercomputing 76(12):10050–10089

 9. Harlap A, Cui H, Dai W et al (2016) Addressing the straggler problem for iterative convergent par-
allel ML. In: Proceedings of the Seventh ACM Symposium on Cloud Computing, pp 98–111

 10. Kishor A, Chakraborty C, Jeberson W (2021) A novel fog computing approach for minimization of
latency in healthcare using machine learning. Int J Interact Multimed Artif Intell 6(Special Issue on
Current Trends in Intelligent Multimedia Processing Systems):7–17

 11. Benalla M (2016) A distributed intelligent system for emergency convoy. Int J Interact Multimed
Artif Intell 4:1

 12. Aktas MF, Peng P, Soljanin E (2017) Effective straggler mitigation: which clones should attack and
when? ACM SIGMETRICS Perform Eval Rev 45(2):12–14

 13. Zhang J, Simeone O (2020) LAGC: Lazily aggregated gradient coding for straggler-tolerant and
communication-efficient distributed learning[J]. IEEE Trans Neural Networks Learn Syst 32(3):
962–974

 14. Bitar R, Wootters M, El Rouayheb S (2020) Stochastic gradient coding for straggler mitigation in
distributed learning. IEEE J Sel Areas Inf Theor 1(1):277–291

 15. Guo Y, Rao J, Jiang C et al (2016) Moving hadoop into the cloud with flexible slot management and
speculative execution. IEEE Tran Parallel Distrib Syst 28(3):798–812

 16. Huang Y, Jin T, Wu Y et al (2018) Flexps: Flexible parallelism control in parameter server architec-
ture. Proc VLDB Endow 11(5):566–579

 17. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neu-
ral networks. Adv Neural Inf Process Syst 25:1097–1105

 18. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv: 1409. 1556

 19. LeCun Y, Cortes C, Burges CJC "THE MNIST DATABASE of handwritten digits". http:// yann.
lecun. com/ exdb/ mnist/

 20. Krizhevsky A, Nair V, Hinton G CIFAR-10: cs.toronto.edu/~kriz/cifar.html
 21. Huang Y, Cheng Y, Bapna A et al (2018) Gpipe: Efficient training of giant neural networks using

pipeline parallelism. arXiv preprint arXiv: 1811. 06965
 22. Dean J, Corrado GS, Monga R et al (2012) Large scale distributed deep networks
 23. Wu X, Xu H, Li B et al (2020) Stanza: layer separation for distributed training in deep learning.

IEEE Trans Serv Comput

http://arxiv.org/abs/1908.09453
http://arxiv.org/abs/1409.1556
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1811.06965

15680 Z. Ji et al.

1 3

 24. Geng J, Li D, Wang S (2020) Fela: incorporating flexible parallelism and elastic tuning to accelerate
large-scale DML. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE,
pp 1393–1404

 25. Chen J, Pan X, Monga R et al (2016) Revisiting distributed synchronous SGD. arXiv preprint arXiv:
1604. 00981

 26. Zheng S, Meng Q, Wang T et al (2017) Asynchronous stochastic gradient descent with delay com-
pensation. In: International Conference on Machine Learning. PMLR, pp 4120–4129

 27. Costantini S, De Gasperis G, De Lauretis L (2021) An application of declarative languages in dis-
tributed architectures: ASP and DALI microservices. Int J Interact Multimed Artif Intell 6(Special
Issue on Artificial Intelligence, Paving the Way to the Future):66–78

 28. Niu F, Recht B, Re C et al (2011) HOGWILD!: a lock-free approach to parallelizing stochastic gra-
dient descent. Adv Neural Inf Process Syst 24:693–701

 29. Zhang W, Gupta S, Lian X et al (2016) Staleness-aware async-SGD for distributed deep learning.
In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp
2350–2356

 30. Chen M, Mao B, Ma T (2021) FedSA: a staleness-aware asynchronous Federated Learning algo-
rithm with non-IID data. Fut Gener Comput Syst 120:1–12

 31. Khaleghzadeh H, Manumachu RR, Lastovetsky A (2018) A novel data-partitioning algorithm for
performance optimization of data-parallel applications on heterogeneous HPC platforms[J]. IEEE
Trans Parallel Distribut Syst 29(10):2176–2190

 32. Cho K, Van Merriënboer B, Gulcehre C et al (2014) Learning phrase representations using RNN
encoder-decoder for statistical machine translation. arXiv preprint arXiv: 1406. 1078

 33. Chen, C et al (2018) Fast distributed deep learning via worker-adaptive batch sizing. In: Proceedings
of the ACM Symposium on Cloud Computing

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1406.1078

	EP4DDL: addressing straggler problem in heterogeneous distributed deep learning
	Abstract
	1 Introduction
	2 Background
	2.1 Parallel model and consistency protocol
	2.2 Straggler problem

	3 Design and implementation
	3.1 Problem analysis
	3.2 Algorithm description
	3.2.1 Predict model
	3.2.2 Formulation of performance optimization problem

	4 Experiment
	4.1 Experiment setting
	4.1.1 Experimental environment
	4.1.2 Workload
	4.1.3 Baseline

	4.2 Predict model
	4.3 Overhead
	4.4 Convergence
	4.5 Baseline comparison
	4.5.1 Iteration time
	4.5.2 Convergence time

	5 Conclusion
	Acknowledgements
	References

