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Abstract
In the edge computing, service placement refers to the process of installing service 
platforms, databases, and configuration files corresponding to computing tasks on 
edge service nodes. In order to meet the latency requirements of new types of appli-
cations, service placement in edge computing becomes critical. The service place-
ment strategy must be carried out in accordance with the relevant tasks within the 
program. However, previous research has paid little attention to related tasks within 
the application. If the service placement strategy does not consider task relevance, 
the system will frequently switch services and cause serious system overhead. In 
this paper, we mainly study the problem of service placement in edge computing. 
At the same time, we considered the issue of network access point selection during 
data transmission and the dependencies of task execution. We propose a Dynamic 
Service Placement List Scheduling (DSPLS) algorithm based on dynamic remaining 
task service time prediction. We conducted relevant simulation experiments, and our 
algorithm took the least amount of time to complete the task.

Keywords  Edge computing · Network access point · Relevant tasks · Service 
placement

1  Introduction

Edge computing is a new computing paradigm that pushes resources such as com-
puting, storage, and services from a centralized cloud to close to the data source 
[1]. Under normal circumstances, the long transmission distance of the traditional 
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cloud computing architecture leads to a large network delay in the Internet, which 
cannot meet the delay-sensitive applications such as augmented reality [2], virtual 
reality [3], vehicle-in-the-car Internet systems [4], and smart grids [5]. In addition, 
the Internet has gradually started to use the IPV6 protocol in recent years, provid-
ing the most basic network communication conditions for the Internet of Things 
[6]. According to Gartner’s survey, the Internet infrastructure will support 10 bil-
lion smart devices to access the Internet in 2020, an increase of 82% compared 
to Gartner’s 2018 forecast [7]. It is estimated that by 2025, about 50 billion smart 
devices will be connected to the Internet [8]. These smart devices include vehicles, 
wearable devices, measuring sensors, household appliances, healthcare, and indus-
trial products [9]. The data generated by these smart devices poses a crucial chal-
lenge to communication and computing technology [10]. The multiple data types 
generated by these applications are more suitable for processing in edge computing 
[11].

New types of applications that have emerged in recent years have higher require-
ments for time delay. One of the current challenges in edge computing is the place-
ment of edge servers and service entities [12]. The prerequisite for the edge server 
to process user requests is the deployment of corresponding services. As the main 
deployment plan, edge servers are deployed on cellular base stations to provide users 
with final services [13]. In the research on service placement [14], in order to ensure 
service quality, the service placement model is usually divided into two parts: user 
offloading tasks and system service processing tasks. The service placement strategy 
must be carried out in accordance with the relevant tasks within the program [15]. 
Therefore, service placement in edge computing becomes critical. At the same time, 
because edge devices have the characteristics of independence and heterogeneity, 
how to schedule the resources required to provide services is also a problem that 
must be considered in edge computing.

In the work of recent years [16, 17], in order to ensure the quality of service 
(QoS), the problem of service placement has been solved from the aspect of resource 
utilization. In reality, edge computing is more used as a micro data center [18], and 
each edge has at least one network access point (AP) as a means of access (for exam-
ple, a base station or a WiFi hotspot). In order to meet the needs of delay-sensitive 
applications, some studies have paid attention to the impact of network performance 
on the quality of service [19, 20]. In a multi-access environment, a suitable trans-
mission network link must be considered before data transmission [21]. The het-
erogeneity between different service nodes leads to differences in the performance 
of providing services. In terms of service deployment, high-load service nodes will 
affect the performance of the service [22]. In previous work, research on service 
placement ignored the impact of network latency on service performance. In some 
studies that have paid attention to network access point selection, they have not paid 
attention to the load situation of service nodes.

In order to improve edge computing performance, the system must consider 
both network transmission and related service deployment [23]. In an ideal state, 
the user’s offloading task is to select the computing node closest to him and with 
better network communication conditions. As shown in Fig. 1, in order to avoid 
excessive communication distance leading to excessive transmission delay, users 
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only offload tasks to adjacent computing nodes. If the service placement strategy 
does not consider task relevance, the system will frequently switch services and 
cause serious system overhead. We use a directed acyclic graph (DAG) to repre-
sent dependencies within tasks. The relationship between the corresponding tasks 
is represented by the points and edges in the graph [24, 25]. We considered a 
scenario consisting of edge service nodes and network access points. As shown 
in Fig. 2, in our system model, users may be in multiple areas covered by base 
station signals, but the transmission signal status of each base station is differ-
ent. When the user needs to request the service cloud edge, the base station with 
good communication status should be selected to upload the task. The tasks are 
uploaded to the edge cloud. The edge cloud counts the status of each node and 
uploads the status of each node and task type to the core cloud. The core cloud 
provides a service placement plan based on the task type submitted by the edge 
cloud and the status of each edge node, and services will be required. The part of 
parallel computing is divided into different service nodes in the edge cloud for 
processing.

Our main contributions in this paper are as follows:
1. The purpose of our proposed edge computing service placement model is to 

reduce the total delay of task processing and complete task requests submitted by 
users faster.

2. We consider the impact of network access point selection and task segmenta-
tion deployment on service placement strategies when users submit tasks.

3. We put the service processing flow into the DAG graph, and predict the 
remaining service time based on the remaining task volume.

4. We propose a dynamic remaining task service time prediction based on the 
Dynamic Service Placement List Scheduling (DSPLS) algorithm. We conducted 

Offload
 tasks

Offload
 tasks Offload

 tasks

Offload
 tasks

Fig. 1   Users selects the nearest edge cloud offloading task
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relevant simulation experiments, and our algorithm took the least amount of time to 
complete the task.

The rest of the paper is arranged as follows. We introduce related work in Sect. 2. 
In Sect. 3, we introduce our system model. The algorithm is introduced in Sect. 4. In 
Sect. 5, we introduce related experiments and analyze the results of the experiments. 
In Sect. 6, we conclude this paper.

2 � Related work

In traditional cloud computing, the placement of services is a relatively common 
problem, and it has been extensively studied. In cloud computing, the method of 
optimizing the placement of services reduces the time of accessing services and 
the communication delay to achieve network balance [26]. In order to solve the 
problem of limited edge computing resources, this work [27] proposed a mode 
of enabling edge cloud and centralized cloud cooperation for service placement. 
In the field of mobile edge computing, user mobility and service migration and 
placement have become another hot issue of research. There are some studies on 
the placement of edge computing services, focusing on device mobility. The work 
[28] is that the solution of the service placement problem of device mobility is 
formulated as a Markov decision process (MDP). In work [29], a service deploy-
ment strategy for user self-management was proposed. This strategy combines 

Service 
placement profile

Core cloud

Edge cloud

User and
service nodes

Submit task type

Delivery service 
deployment model

Submit task type

Delivery service 
deployment model

Submit task typeDelivery service 
deployment model

Network 
communication load

User submits task

Select node 
deployment services based 

on task relevance

Fig. 2   The user selects a channel with good communication status to upload the task to the edge cloud. 
Edge cloud upload task type to obtain service deployment model. The edge cloud selects the appropriate 
node to deploy the service in the edge service node
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user preferences to optimize the users perceived delay and service migration 
costs, and transforms the service deployment problem as a contextual Multi-
armed Bandit (MAB) problem. The article considers task scheduling in cloud 
computing using dynamic scheduling [30]. However, these studies only consider 
the placement of services and ignore the influence of the network on the overall 
effect of the program.

In another part of the research, researchers have also noticed the impact of 
network performance on the service placement system. In addition to considering 
the computing and storage capabilities of service nodes, this paper [31] also con-
siders network performance, and designs a polynomial time algorithm to solve 
the service placement problem. In this work [32], network performance is also 
considered, and an iterative-based service placement algorithm is proposed. The 
local-Greedy-Gen (LGG) algorithm [33] is proposed in the article, the purpose of 
which is to store the service content required by the user on the server closest to 
the user. Also in the related research of service deployment, the article proposes 
a method based on distributed data flow (DDF) [34] to provide the required ser-
vices for the program. The article [35] proposes the Edge-ward module placement 
(EWMP) algorithm for service placement in the research on edge computing and 
fog computing. In the research on service placement in edge computing in recent 
years, it is proposed to deploy services based on the reliability of edge computing 
nodes. This article considers the high availability of services from the perspective 
of redundancy. The author proposes that some unexpected situations in complex 
environments may cause edge nodes to be unavailable. The author proposes an 
Reliable Redundant Services Placement (RRSP) [36] algorithm for service place-
ment decision based on node reliability. Because the service placement environ-
ment proposed by the author is rather special, the optimal network transmission 
line is not considered.

The scheduling of service placement plays a vital role in overall program per-
formance. We consider corresponding service placement for different nodes and 
introduce DAG graphs for research. For task processing in DAG graphs, there 
have been extensive researches in cloud computing. In the related research in the 
field of scheduling, the two scheduling algorithms of short job priority (SJF) [37] 
and first-come-first-served (FCFS) [38] are the most well-known classic sched-
uling algorithms. In this work [39], proposed a scheduling algorithm based on 
genetic algorithm according to the priority of tasks in the graph. For the hetero-
geneity of computing devices, in the work [40] proposed a new scheduling algo-
rithm called HEFT in order to enhance the function of the heterogeneous earliest 
completion time (HEFT) algorithm. This paper proposes a (SDBATS) algorithm 
[41] that takes into account the heterogeneity of tasks and significantly reduces 
the overall execution time of a given application. In the research of DAG schedul-
ing in heterogeneous environment, the author propose a new and efficient Ant-
Colony based Low Delay Scheduling (ACLDS) [42] algorithm. In order to reduce 
the communication delay of service placement, we choose to select the network 
before placing the service. Secondly, in order to reduce the time overhead of 
switching services, according to the split of tasks, predict the remaining service 
time of the task on different computing nodes. We propose a Dynamic Service 
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Placement List Scheduling (DSPLS) algorithm based on network selection and 
service placement prediction.

3 � System model and problem formulation

3.1 � System model

The edge computing system we consider has a series of network access points NA 
(for example, wireless network, wired network, 4G/5G, etc.) and U users. Each 
edge cloud can be accessed through multiple network access points NA. We use 
NA and U to represent AP/edge computing cloud and users. In order not to lose 
generality, the system operates within a larger working time range, and we use 
time slots to work. Timeline representation T = {0, 1, 2, ...T} . In an edge cloud, 
we use lightweight virtualization solutions (for example, virtual machines, con-
tainers, etc.) [43] for service placement on each computing node. These light-
weight virtualization programs can provide services such as computing, stor-
age, and database. At time t ∈ T  , user u ∈ U has multiple base stations to access 

Table 1   Notations used in the paper

Notation Definition

U A series of users in edge computing
NA A series of network access points in edge computing
E A series of edge computing cloud
�u(t) User u selectable network access point
�ju(t) Whether to choose j network access point to connect to the edge 

cloud (=1) or not (=0)
�iu(t) Whether user u service is placed on edge cloud i (=1) or not (=0)
�(t) Vector of a �ju(t) decision variables
�(t) Vector of a �iu(t) decision variables
Cj The capacity of each NA point in the edge cloud
Ep Computing power of each edge service node
Dq Queuing delay for access to the edge cloud network
Dc Total communication delay to access the service
Bij(t) Communication delay between nodes i and j
ru(t) Provide resources needed for user u
du(t) User u demand for network access point resources
J Job consists of a series of tasks m
P A series of edge servicing nodes
N Number of edge service nodes
lpi ,pj (t) The communication distance between two service nodes pi, pj
c
(

pi, pj
)

The time when node pi transmits data to pj
w
(

pn,mi

)

The servicing time of task mi on service node pn
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the edge cloud through NA, denoted as �u(t) . The jobs = {0, 1, 2, ...m} that users 
offload to the edge cloud consist of multiple tasks. For ease of reference, the nota-
tions used in the paper are listed in Table 1.

3.2 � Network access point selection model

In each time slot t, the user needs to select the network access point before offload-
ing the task. Here we use a binary variable to �ju(t) represent the network selection. 
When �ju(t) = 1 , it means that the user selects the j ∈ �u(t) network access point for 
edge cloud access, and �ju(t) = 0 otherwise. It is worth noting that the user can only 
select one network access point for access in each time slot t, so the following con-
straints are given for �ju(t):

At any time, the network access point selected by the user cannot exceed the 
resource limit of its network access point.

3.3 � Service placement model

Due to the difference in the computing capacity and storage capacity of each com-
puting node, the length of time a task is served on different computing nodes is dif-
ferent. We use the service time matrix W = J ∗ P to list all possible service time 

(1)
∑

j∈�u(t)

�ju(t) = 1,∀u ∈ U,

(2)�ju(t) ∈ {0, 1},∀j ∈ �u(t),∀u ∈ U.

(3)
∑

u∈U

du(t)�ju(t) ≤ Cj,∀j ∈ �u(t).

Fig. 3   DAG-based job example
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mapping relationships between computing nodes pn and tasks mi Table II describes 
an example of the service time matrix of the relevant task graph in Fig. 3. Assuming 
that the computing node set P =

{

p
1

, p
2

, p
3

}

 consists of 3 computing nodes, the ele-
ments of the mapping task J1 and the computing node p1 indicate that it takes time 
55 to provide services for the task m1 on the computing node p1.

As we all know, user u must access the edge cloud through the network access 
point NA. For each user u, the corresponding service is provided in the edge cloud 
i selected by the user. In addition, the user’s network access point selection is not 
necessarily related to the service placement location. The service of user u can be 
placed on any edge cloud. However, service placement is meaningful only when 
user u ∈ U accesses edge cloud i ∈ E through network access point j ∈ �u(t) in time 
slot t. Similar to the network access model, we establish a service placement model.

Ensure that services are provided by certain edge clouds. In the time slot t, the ser-
vice allocated to the edge cloud cannot exceed the processing capacity of the edge 
cloud where it is located. We use Eq. 5 to express it. Equation 6 is used to indicate 
whether to place the service of user u ∈ U on the edge cloud i ∈ E.

3.4 � Network queuing delay model

The network access point changes with time and users. In some densely populated 
areas, certain network access points will become popular options, causing some net-
work access points to overload. The increase in queuing delay will greatly reduce 
the quality of service of the application. Through research and analysis, we intro-
duce queuing theory [44] to model the queuing delay of the core backbone network. 
The queue delay of the network access point NA for a series of users U in a time slot 
t is expressed by the following formula:

where CJ is the resource amount of NA J. In particular, network access point 
j ∈ �u(t) satisfies the Eq. 7. Otherwise Eq. 7 could be 0 when j ∉ �u(t) . In order to 
ensure that Eq. 7 is true, we assume that the resources owned by CJ meet the needs 
of users at all times.

(4)
∑

i∈E

�iu(t) = 1,∀u ∈ U,

(5)
∑

u∈U

ru(t)�iu(t) ≤ Eq,∀i ∈ E,

(6)�iu(t) ∈ {0, 1},∀i ∈ E,∀u ∈ U.

(7)Dq(�(t)) =
�

u∈U

�

i∈E

�ju(t)
1

CJ −
∑

u∈U du(t)�ju(t)
,
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3.5 � Predictive service placement model in edge cloud

We consider that when users decide to offload job to an edge cloud, we process dif-
ferent tasks in the job on different computing nodes in the cloud. These tasks are 
executed in a sequential or parallel manner, so we introduce a DAG diagram to rep-
resent the service placement process in a single edge cloud.

3.5.1 � Start and end tasks

First of all, we define two computing tasks, namely the start task and the last 
task. According to graph theory, when the in-degree is 0, we represent the start-
ing task:

According to graph theory, the out-degree is 0 and we denote the starting task:

3.5.2 � Earliest service placement time

Define the earliest time when task m starts to provide services on computing node p 
as the earliest service placement time (ESPT). ESPT

(

mi, pn
)

 represents the earliest 
time when task m can start providing services on computing node p, where mi is one 
of the components of task m, and pn is the edge node n serving the task. In practice, 
the earliest time to start providing services also depends on the completion time of 
previous tasks. In Eq. 10, we express ESPT as the completion time of the previous 
task plus the communication time of the previous task’s output data to this node. 
pre

(

mi

)

 is a series of pre-tasks of mi . PCT
(

mi

)

 is completion time of all predeces-
sors of mi.

If the two tasks are on the same compute node, then c(pj, pi) = 0 . Indicates that there 
is no network delay overhead between the data processed by the previous task and 
the data required by the next task.

3.5.3 � Earliest service completion time

In order to better represent the service time of the computing node, we also define 
the earliest service completion time (ESCT). ESCT(mi, pn) indicates the earliest 
completion time when the service provided by the computing node pn satisfies the 
computing task mi.

(8)deg−(m) = 0, ∀m ∈ J.

(9)deg+(m) = 0, ∀m ∈ J.

(10)ESPT
(

mi, pn
)

= max
{

PCT
(

mi

)

+ c
(

pj, pi
)}

,∀mi ∈ J,∀pi, pj ∈ P.
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3.5.4 � Service scheduling length

The service scheduling length of the job, workspan, is the total time to provide 
all related task services. Workspan is calculated by Eq.  12 and is used to rep-
resent the actual completion time of the final task of the job in the DAG graph. 
PCT(mfinaltask) represents the actual final task completion time:

3.5.5 � Total latency in edge cloud

The complete route (CR) is the longest path in the DAG graph, from the start task 
to the final task. Each edge on this path represents the transmission delay required 
for the job. Therefore, the total communication delay of a job in the edge cloud is 
expressed as follows:

All calculation delays of a job in the edge cloud are expressed as follows:

3.6 � Problem formulation

Combined with the queue delay of the user selecting the communication path on 
the core network, the communication delay of working in the cloud, and the cal-
culation delay of the task calculated at each node. We express the problem of 
network selection and predictive service placement as follows:

According to the model we established, the total delay of task processing under this 
model includes three parts: data transmission delay, communication delay between 

(11)ESCT
(

mi, pn
)

= ESCT
(

mj, pn
)

+ w
(

pn,mi

)

,∀mi,mj ∈ J,∀pn ∈ P.

(12)workspan = max
{

PCT
(

mfinaltask

)}

.

(13)cv
(

mi

)

P
∑

i,j=1

c
(

pj, pi
)

,∀m ∈ J,∀p ∈ P.

(14)wv

(

mi

)

P
∑

p=1

w
(

pn,mi

)

,∀m ∈ J,∀p ∈ P.

(15)
min

T
∑

t=1

D(�(t),�(t)) =

T
∑

t=1

(

Dq(�(t)) + c�(t) + w�(t)
)

s.t. (1)(3)(2)(4)(5)(6).
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components within edge cloud, and service time provided by edge nodes. where 
Dq(�(t)) is the queuing delay mentioned in Eq. 7, that is, the link delay of data trans-
mission, c�(t) is the communication delay of the task component in the edge cloud, 
which is defined by Eq. 13, and w�(t) is the time for the task component to request 
resources at the edge computing node, which is Eq. 14. For each part of the mod-
eling of the service placement problem, there are corresponding constraints, namely 
s.t.(1)(3)(2)(4)(5)(6) , and our goal is to minimize the total delay under the condition 
that the constraints are satisfied.

4 � Algorithm

When the user’s work needs to be offloaded to the edge cloud, a decision needs to be 
made based on the total delay. It is known that the placement problem of minimiz-
ing latency for computing tasks is NP-hard [45]. The following aspects affect the per-
formance of service placement: (1) Queue waiting time on the backbone network. (2) 
The communication between nodes that provide services in edge computing nodes. (3) 
Time to provide services on different computing nodes. (4) Provide constraint relation-
ships between service nodes in the edge cloud. (5) The number of nodes serving in 
parallel in the edge cloud. (6) The number of nodes that provide associated services in 
the edge cloud.

In this section, we propose a Dynamic Service Placement List Scheduling (DSPLS) 
algorithm based on dynamic remaining task service time prediction. The algorithm 
provides services for tasks in the DAG graph at different nodes, determines the execu-
tion order and parallelism between tasks, and minimizes the calculation and propaga-
tion delay in the edge cloud. The algorithm calculates the service time of each node 
task and predicts all execution paths of the task. After that, the algorithm selects the 
largest task execution path and provides services at the computing node in order to 
optimize the execution path length of the entire job. After providing service for the pre-
vious task, the remaining path length of the task to be serviced must be updated. There-
fore, the service provided by the computing node is dynamically updated according to 
the previous task scheduling. The algorithm is mainly composed of four components.

Component one: The transmission delay of the backbone network accounts for. The 
transmission delay of the data of user offloading job in the backbone network accounts 
for a relatively large amount of the total delay. The status of the backbone network Dq is 
represented by the queues in the network.

Component two: The remaining time of the task service is calculated. The remain-
ing service time of task m should be calculated after m starts to be served, after consid-
ering all task m constraints, and then calculate the total calculation and transmission 
overhead.

Component three: The task to be scheduled needs to be serviced. According to 
task scheduling, service placement is performed in sequence. According to the calcu-
lated remaining service time of the task, select the computing node where the service is 
placed for the next task and start the service.
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Component four: Select computing nodes for task service scheduling. For the task 
to be scheduled, the algorithm determines the computing node assigned to the task and 
the time to provide the service.

4.1 � Calculation of remaining service time

First, assign a weight to each task service, which is the total computing service time 
and communication time of subsequent services. In the system, we create a predicted 
remaining service schedule (PRSS) to maintain the weight value of each task on dif-
ferent computing nodes. In particular, the PRSS table is composed of N (different 
tasks) rows and M (different computing nodes) columns. PRSS(mi, pn) represents the 
estimated remaining time required for all subsequent tasks of service task mi if the 
task service is allocated to the computing node pn . The weight of the service task mi 
is closely related to the number of subsequent tasks to be serviced and the available 
computing nodes. Therefore, we use the Eq. 16 to express as:

where sub(mi) is the subsequent task set of task mi , and let

Note that no matter which computing node the final task is served on, the weight of 
the task is 0. Therefore, for any pt ∈ P,PRSS

(

mend, pn
)

= 0.

(16)
�i,n = max

[

minPRSS
(

mj, pn
)

+ w
(

pn,mj

)

+ c
(

ti, tj
)]

,

mj ∈ sub
(

mi

)

, pn ∈ P

(17)
�i =

∑

mj∈sub(mi)

∑

pn∈P
PRSS(mj,pn)

N

N
.
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The weight of the service task m is calculated by Eq. 18:

From the entry task service to the exit task service, the algorithm DSPLS recursively 
calculates the weight value of each computing node and obtains the PRSS table.

4.2 � The task to be scheduled needs to be serviced

It is not possible to schedule task mi and provide services unless all predecessor 
tasks of task mi have completed the scheduling and services. If task mi can be ser-
viced, we call task mi in a service-ready state. We create a task service ready state 
list (SRSL) to maintain all tasks in the service ready state. At the beginning, only 
the start task in the DAG graph is in the service ready state. The service ready status 
list at this time only contains the initial start task. We calculate the earliest service 
placement time (ESPT) for each task in the service ready state list. The ESPT of 
task mi on calculate node pn , ESPT

(

mi, pn
)

 calculated by Eq. 10. The estimated ser-
vice path length (ESPL) when task mi is served on computing node pn , ESPL

(

ti, pn
)

 
can be calculated by Eq. 19:

For each task, services may be provided at any computing node pn ∈ P . For the task 
mi in the service ready state list, the average service path length (ASPL) of mi is 
expressed ASPL

(

mi

)

 by Eq. 20:

Because the task chooses different service paths, there will be great delay differ-
ences. Therefore, the task mi with the largest service path in the service ready list is 
selected for service scheduling first, which is expressed as:

In the process of the entire job being serviced, priority is given to the ESPT related 
tasks to provide services, so the entire ESPT will change with the previous task ser-
vice scheduling. Therefore, in the service scheduling process of related tasks, the 
scheduling selection of task services will be dynamically changed.

4.3 � Select computing nodes for service placement for tasks to be scheduled

We assign task to be scheduled mi to computing node pm to provide services. Such 
scheduling will shorten the task service path length, thereby reducing the total ser-
vice time.

(18)PRSS
(

mi, pn
)

= max
{

�i,n, �i

}

,∀mi ∈ M,∀pn ∈ P.

(19)
ESPL

(

mi, pn
)

= ESPT
(

mi, pn
)

+ w
(

mi, pn
)

+ PRSS
(

mi, pn
)

,

∀mi ∈ M,∀pn ∈ P.

(20)ASPL
�

mi

�

=

∑

pn∈P
ESPL

�

mi, pn
�

N
,∀mi ∈ M.

(21)mi = max
[

ASPL
(

mj

)]

, path ∈ SRSL.
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If multiple edge computing nodes provide services for task mi and can obtain the 
same minimum service path length, we will randomly select one of these edge com-
puting nodes to provide services for task mi . The actual service start time of task mi 
is determined by Eq. 11.

After completing the assignment of computing nodes to the task m to provide ser-
vices, other tasks may be ready to receive services. Therefore, we have updated the 
service readiness list.

4.4 � Time complexity analysis

The algorithm consists of four parts, network access point selection, remain-
ing service time, service scheduling and services node selection. In algorithm 
DSPLS, the core network selection mainly depends on the queue length in the 
network. The length of the queue depends on the number of tasks O(P ∗ J) . For 
the remaining service time of the job, the algorithm DSPLS recursively calcu-
lates the estimated service time for each task on different computing nodes from 
the outgoing task to the last entry task of the DAG-based job, which requires time 
O
(

P ∗ J2
)

 . Before each task is scheduled or scheduled for service, the ESPT of the 
task in the service ready list must be calculated. The maximum number of tasks 
in the service ready list is (J − 2) , and the service time of ESPT will not exceed 
O(J ∗ (J − 2) ∗ P) = O

(

P ∗ J2
)

 . It takes time O(J) to calculate the estimated path 
length of each task service in the service ready state list on all computing nodes, and 
it takes time O(1) to calculate the average path length of each task service. Therefore, 
the time complexity of task service selection is O

(

P ∗ J2 ∗ P ∗ 1

)

= O
(

P2 ∗ J2
)

 . 
Since the ESPL of the task service has been calculated in the last task service 
scheduling process, it takes time O(1) to determine the time for the computing node 
to provide services for each task; The time it takes to select computing nodes for 
all M task scheduling services is O(J) . It takes time O

(

J2
)

 to update the tasks in 
the service ready state list, so the total time complexity of algorithm DSPLS is 
O(P ∗ J) ∗ O

(

P ∗ J2
)

+ O
(

P2 ∗ J2
)

+ O(P) + O
(

P2

)

= O
(

P2 ∗ J2
)

.

5 � Performance evaluation

In this section, we evaluate the performance of the proposed algorithm DSPLS 
by comparing four scheduling algorithms HEFT [41], ACLDS [42], SJF [37] and 
FCFS [38]. For the DAG examples shown in Fig. 3 and Table 2, the results of the 
five scheduling algorithms are shown in Fig.  4. In this example, we can see that 
the DSPLS algorithm is better than the other four algorithms in terms of schedul-
ing completion time. This shows that, based on the constraints of the DAG graph, 
the algorithm DSPLS can better complete the scheduling faster in a heterogeneous 
environment.

(22)pm = min
[

ESPL
(

mi, pt
)]

, pt ∈ P.



14518	 J. Xu et al.

1 3

We further evaluated the performance of the five algorithms in terms of schedul-
ing length ratio (SLR) and winning rate. The scheduling length ratio (SLR) is to 
obtain the ratio of the scheduling length to the minimum scheduling length by ignor-
ing the defined communication time, as shown in Eq. 23.

CPMIN is the minimum length of the critical path in DAG-based operations after 
ignoring the communication time between tasks.

(23)SLR =
workspan

∑

mi∈CPMIN
min

�

w
�

pn,mi

�� , pn ∈ P.

Table 2   Example of service 
time matrix

p
1

p
2

p
3

m
1

55 52 90
m

2

65 42 60
m

3

72 67 87
m

4

17 25 10
m

5

80 67 107
m

6

55 45 45
m

7

37 52 20
m

8

72 57 90
m

9

35 62 75
m

10

32 40 82
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Fig. 4   Scheduling process for different algorithms for example DAG graphs
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5.1 � Simulation setup

Our simulation experiments assume that each edge computing node is a single-core 
processor, so that task components can be allocated to different nodes for service 
requests. We divide our algorithm into two parts for evaluation. The first part com-
pares the scheduling of DAG tasks separately. The second part is to compare perfor-
mance with other service deployment algorithms in the EUA [46] data environment.

5.1.1 � Randomly generate DAGs

We use 8 parameters to generate the DAG graph [47]. The following is a description 
of the parameters and the settings used in our experiment.

(1) The number of tasks in the DAG graph J.

•	 J ∈ {9, 10, 11, 13, 15, 27}

(2) regularity: The number of tasks in each layer in the DAG graph.

•	 regularity ∈ {0.2, 0.8}

(3) jump: In the generated DAG graph, the edges can span the maximum span of the 
layer.

•	 jump ∈ {1, 2, 4}

(4) density: This parameter indicates the number of edges between the layer and the 
layer in the DAG graph.

•	 density ∈ {0.2, 0.8}

(5) fat: Represents the aspect ratio in the DAG graph.

•	 fat ∈ {0.1, 0.4, 0.8}

(6) CCR​: This parameter represents the ratio of the average communication time 
between tasks in the DAG graph to the average calculation time of tasks.

•	 CCR​ ∈ {0.1, 0.5, 0.8, 1.0, 1.3, 1.5}

(7) N: Number of service nodes.

•	 N ∈ {3}

(8) � : This parameter indicates the difference between all the relevant tasks of com-
puting time.
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•	 � ∈ {0.2, 0.3, 0.5, 0.6, 1.0}

In our simulation, we use the following parameters to randomly generate a DAG 
graph to test the scheduling performance of our algorithm.

5.1.2 � Real‑world environment

We use the EUA [46] data sets to perform simulation experiments on service place-
ment. This repository maintains a set of EUA [46] data sets which we collected from 
real-world data sources. The data sets are publicly released to facilitate research 
in Edge Computing. The data in this data set are all from Australia. The data set 
includes the latitude and longitude information of the edge server and the user. As 
shown in Fig. 5, examples of edge service node and their coverage and end users.

5.2 � Evaluate algorithm scheduling performance by randomly generating DAG 
graphs

Figure  6 shows the time it takes for different algorithms to complete scheduling 
under different number of tasks. In general, the scheduling completion time will 
increase as the number of tasks increases. We can see that the DSPLS algorithm 
achieves the shortest scheduling completion time in the scheduling completion time 
of different tasks. When assigning service nodes to tasks, the HEFT [41] algorithm 
considers the earliest completion time of the current task, and assigns tasks to the 

Fig. 5   Distribution of users and edge service nodes in the central business district
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service nodes through the strategy of assigning priority to all tasks. However, the 
algorithm does not consider the impact of the current task assignment on subsequent 
tasks, and a certain communication delay may be lost in the process of subsequent 
task scheduling, resulting in an increase in the overall scheduling time. The ACLDS 
[42] algorithm is an efficient and low-latency scheduling algorithm based on ant 
colony. The advantage of this algorithm is that the decision-making speed is fast, 
and the operating parameters are dynamically adjusted according to the node state. 
First, task scheduling is prioritized by average execution time and subsequent maxi-
mum task communication and execution time. Then, by the ratio of the earliest start 
time of the task to the earliest completion time, it is determined which settlement 
node the task should be executed by. However, in the initial stage of scheduling, the 
algorithm tends to assign tasks to the nodes with the least execution time, ignoring 
the influence of communication delay on the total delay, and this algorithm is not 
conducive to short task scheduling.

The SJF [37] scheduling algorithm only ensures that the shortest task can be 
scheduled at the earliest. For long tasks, the scheduling completion time cannot 
be guaranteed. It can be seen from our simulation experiments that short jobs are 
preferentially scheduled in jobs with a small number of tasks, and the algorithm 
is slightly ahead of the ACLDS algorithm. However, when the number of tasks is 
large, the performance of ACLDS [42] algorithm is better than that of SJF. The 
FCFS [38] algorithm only considers the earliest time when the task arrives at the 
service node. This algorithm is relatively fair for task allocation, but if the task that 
requires a long service time is scheduled first, it will cause the following task with 
a short service time to take a lot of time to wait. The algorithm DSPLS creates a 
remaining service schedule by jointly considering the current task and all subse-
quent tasks. In the process of table building, according to Eq. 12 and 16, the DSPLS 
of all tasks on each service node takes into account the number of service nodes and 
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the number of parallel tasks. Therefore, the DSPLS algorithm performance schedul-
ing completion time of the algorithm is earlier than that of the HEFT [41], ACLDS 
[42], SJF [37] and FCFS [38] algorithms.

Figure 7 shows the average SLR state of different algorithms under different 
number of tasks. In the case of the same number of service nodes but different 
tasks, the average SLR value of the DSPLS algorithm is always the lowest. This 
situation is because the DSPLS algorithm improves the scheduling performance 
by comprehensively considering the relationship between the current task, the 
status of the service node, and the subsequent tasks. The remaining four algo-
rithms do not consider the status of subsequent tasks and the communication 
delay during scheduling, which leads to higher average SLR. Similarly, we can 
also see from SLR that the scheduling performance of SJF [37] algorithm is bet-
ter than ACLDS [42] when the number of tasks is small. Once, the number of 
tasks increases, the performance of ACLDS [42] algorithm is better than that of 
SJF [37]. From the experimental results, this situation is in line with the respec-
tive characteristics of the two algorithms.

In Fig. 8, we randomly generated a series of DAG graphs to simulate the total 
time spent by different algorithms when scheduling a batch of tasks. When sched-
uling tasks in batches, the total scheduling time of the DSPLS algorithm is always 
less than that of other scheduling algorithms. In a batch environment, the sched-
uling differences between algorithms are magnified to facilitate comparison of the 
scheduling performance of each algorithm. The DSPLS algorithm comprehensively 
considers the current task, the current service node status and subsequent related 
tasks to reduce the waiting time of the task as much as possible. The other four algo-
rithms are only scheduled for the current task, ignoring subsequent related tasks and 
service node status. It is worth noting that the total scheduling delay of the ACLDS 
[42] algorithm in the batch environment is always higher than that of the SJF [37] 
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algorithm. The reason for this is because of the problem of our experimental envi-
ronment. There are many small tasks generated in our experimental environment, 
which leads to the poor performance of the ACLDS [42] algorithm. However, this 
does not mean that the ACLDS [42] algorithm is not good. In the original text, the 
experimental environment of the ACLDS [42] algorithm focuses on testing the 
scheduling performance of hundreds of tasks. The experimental results also show 
that different scheduling algorithms have their best performance execution scenarios.

5.3 � Service placement performance evaluation in the EUA data set environment

At this stage, there are various devices connected to the Internet. We assume that in 
the future, each device will have multiple ways to access the Internet. In this case, 
there is a problem of network access point selection. Therefore, we have added net-
work access point selection to the algorithm DSPLS. We propose the network access 
point selection to reduce the transmission delay of user upload tasks. We calculate 
the network delay in different algorithms according to time slot statistics. As shown 
in Fig. 9, we compared several network selection strategies [48–50]. According to 
Eq.  7 of queuing theory, it can be seen that our network selection strategy is the 
smallest average delay.

Among them, the worst algorithm is to select the worst transmission channel 
for each transmission, as the baseline of the network selection performance. Algo-
rithm GRN [49] is to randomly select the network channel. The advantage of this 
algorithm is that data transmission is performed without considering the channel 
state, but it may select a channel with a normal or poor signal state for communica-
tion, resulting in poor average network performance. The (SR)ARQ [48] algorithm 
uses a polling method for network channel transmission. The channel selected each 
time is different from the previous one. This algorithm ensures the balance of the 

Fig. 8   The time for each scheduling algorithm to complete scheduling in a batch processing environment
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transmission line load but cannot guarantee that the best transmission channel can 
be selected every time. The principle of the CRC [50] algorithm is to select the net-
work transmission channel through the hash value, and its purpose is also to ensure 
the balance of all channels in the network. The network selection strategy we pro-
pose through queuing theory is to select the transmission line with the smallest delay 
each time based on the transmission line determined by the current channel state. 
Therefore, our algorithm guarantees the transmission performance of the network.

In the EUA [46] data set environment, we compared LGG [33] algorithm, DDF 
[34] algorithm, EWMP [35] algorithm and RRSP [36] algorithm. We use randomly 
generated tasks and perform performance comparisons through different service 
placement strategies. Our main task from the total service time to evaluate the per-
formance of the algorithm. The service time includes the transmission time of the 
user’s transmission task to the edge service node and the service time of the service 
node.

Figure 10 shows the total service time of different algorithms in batch task pro-
cessing in the EUA [46] environment. Generally speaking, as the number of tasks 
increases, the overall service time for the tasks will also increase. The LGG [33] 
algorithm will select the data transmission network before transmitting the task, 
and the data transmission delay is relatively low. However, the LGG [33] algorithm 
selects the service node closest to the user to provide the service. This causes a sin-
gle service node to be in a high load state for a long time, and the waiting time for 
subsequent tasks is too long before being served. In the DDF [34] algorithm, no net-
work selection is performed before the data is transmitted, and the link is randomly 
selected for data transmission, and the transmission delay is relatively large. The 
algorithm uses randomly selected multiple nodes to deploy services at the same time 
in the service placement strategy to improve the parallelism of services. The EWMP 
[35] algorithm is consistent with the DDF [34] algorithm in network selection. 

Fig. 9   Network delay under different network selection strategies
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However, in the selection of service nodes, the EWMP [35] algorithm will first eval-
uate and select appropriate nodes for service placement. The RRSP [36] algorithm 
is mainly for service placement decisions in a specific environment. The RRSP [36] 
algorithm is mainly to ensure the high availability of the service, and to place the 
service by evaluating the reliability of the nodes. Through reliability evaluation, the 
algorithm tends to provide more services at reliable nodes. Normally, reliable nodes 
have more resources and can handle more task requests. Because it is in a special 
environment, there may be no conditions for selecting a network link. Therefore, a 
part of the communication performance is lost in our experimental environment. We 
can see from Fig. 10 that the performance of the RRSP [36] algorithm is slightly 
lower than that of the EWMP [35] algorithm in the environment of 20 tasks. As the 
number of tasks increases, the RRSP [36] algorithm exhibits the performance due 
to the EWMP [35] algorithm. The DSPLS algorithm we proposed not only includes 
network selection, but also fully considers the DAG dependency of the task in the 
process of service placement, and selects multiple service nodes for service place-
ment. This not only reduces the time delay of data transmission, but also reduces the 
service delay required to complete the task.

6 � Conclusion

In this paper, we researched the issue of service placement in edge computing. We 
improve system performance from two aspects: reducing transmission delay and 
reducing service scheduling time. We first select the network link before transmit-
ting data to ensure the efficiency of data transmission. Then, in view of the het-
erogeneity of edge service nodes, we select the appropriate node to place the cor-
responding service. We combined network access point selection and DAG related 

Fig. 10   Comparison of service placement algorithms in a batch processing environment
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dependencies, and proposed a service placement algorithm. We conducted simu-
lation experiments on the two parts of the algorithm, network selection and DAG 
scheduling, to verify the performance of our algorithm.

Many scenarios in this article are idealized modeling based on assumptions. In 
future research, we will reduce assumptions and make the model closer to real life. 
For example, when the task component is being served, the state of the edge com-
puting node changes, how to adjust the service placement strategy. The splitting and 
distribution of task components should be more intelligent. Not necessarily all tasks 
need to be split to different nodes for execution, and multi-core devices can also 
complete tasks in parallel. With the development of the Internet of Things and edge 
computing, our solutions provide a basis for related research in the future.
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