
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:13728–13755
https://doi.org/10.1007/s11227-022-04430-6

1 3

Kubernetes distributions for the edge: serverless
performance evaluation

Vojdan Kjorveziroski1 · Sonja Filiposka1

Accepted: 3 March 2022 / Published online: 24 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Serverless computing, especially when deployed at the edge of the network, is seen
as an enabling technology for the future development of more complex Internet of
Things systems. However, special care must be taken when deploying new edge
infrastructures for serverless workloads in terms of resource usage and network
connectivity. Inefficient utilization of the available computing resources might eas-
ily cancel out the benefits acquired by moving the equipment closer to the edge,
namely the reduced communication latency. Containers, together with the Kuber-
netes container orchestrator, are used by many serverless platforms today. We
evaluate the performance of three different Kubernetes distributions—full-fledged
Kubernetes, K3s, and MicroK8s when deployed in a resource constrained environ-
ment at the edge. We use the OpenFaaS serverless platform and employ 14 different
benchmarks divided into three separate categories to evaluate various aspects of the
execution performance of the distributions. Four different test types are performed
focusing on cold start latency, serial execution performance, parallel execution using
a single replica, and parallel execution utilizing different autoscaling strategies. Our
results show that the edge-oriented K3s and MicroK8s distributions offer better
performance in the majority of the tests, while a full-fledged deployment exhibits
noticeable advantages for sustained loads such as parallel function invocation using
a single replica.

Keywords Serverless computing · Internet of Things · Function as a service ·
Kubernetes · Performance evaluation

Vojdan Kjorveziroski and Sonja Filiposka equally contributed to this work.

 * Vojdan Kjorveziroski
 vojdan.kjorveziroski@finki.ukim.mk

 Sonja Filiposka
 sonja.filiposka@finki.ukim.mk

1 Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Rudzer
Boshkovikj 16, 1000 Skopje, North Macedonia

http://orcid.org/0000-0003-0419-4300
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04430-6&domain=pdf

13729

1 3

Kubernetes distributions for the edge: serverless performance…

1 Introduction

The emergence of the cloud computing paradigm has drastically altered the com-
putational landscape and has had a significant influence on both existing and
future application architectures [1]. Incentivized by pay-as-you go pricing, virtu-
ally unlimited capacity, and fast time to market, developers have even devised
new programming trends and application designs, better leveraging the features
of the cloud infrastructure [2]. These trends include the rising popularity of the
microservice architecture, the use of containers as runtime environments where
the applications are executed, as well as the use of various as a service managed
products [3], further easing the development and deployment processes. Perhaps
one of the most impactful of these new offerings is serverless computing [4], with
its combination of function as a service and backend as a service [5], both made
possible and inspired by the scalability of the cloud.

Serverless computing completely abstracts the underlying infrastructure,
instead focusing solely on the logic that needs to be performed to solve a given
task. Despite its name, servers are still utilized, but the responsibility for their
setup, management, and maintenance has simply shifted further up the chain of
developer, platform provider, infrastructure provider. Developers submit finished
functions written in their programming language of choice, usually utilizing addi-
tional backend as a service offering by their platform provider for user manage-
ment, application persistence, or engagement analysis [6].

Even though cloud computing has revolutionized application development
and infrastructure management since its inception, a number of open issues still
remain, especially in terms of communication delays between remote locations
and the data centers where the infrastructure itself is hosted [7]. These issues
become more prevalent with the continuing rise of Internet of Things (IoT)
devices, which have become ubiquitous in everyday homes, while also being seen
as enablers for new industry technologies [8]. To deal with the sheer data volume
generated by these low-powered and resource constrained devices, researchers
have recommended the adoption of edge computing. By setting up compute infra-
structure closer to the data source capable of preprocessing the incoming data,
numerous benefits can be achieved such as faster response times for latency sensi-
tive applications, increased user privacy by sending only filtered data upstream to
the cloud, and reduced network congestion as a result of the initial preprocessing
done at the edge [9].

However, the question of how to deploy these edge infrastructures still remains
today. Simply copying the existing cloud architectures’ design has been shown to
be inefficient for the resource constrained edge due to the potentially limited com-
pute capacity [10]. Overcoming these problems, serverless computing has been
identified as a suitable fit for edge infrastructures because of the benefits that it
offers. Recently, many commercial serverless providers have adapted their port-
folios to offer computing options at the edge which can either run on leased or
privately owned infrastructure [11–13]. At the same time, open-source solutions
have been published, attracting significant developer interest, and establishing

13730 V. Kjorveziroski, S. Filiposka

1 3

thriving communities [14]. Despite this, open issues still remain when it comes to
adapting the serverless computing to the edge of the network [15], with perhaps
the most pressing one being the selection of the appropriate runtime environment
where the functions are executed [5, 16].

Considering that containers are the most used execution environment for the
increasingly popular edge serverless platforms, a number of container orchestrators
have been adapted to the resource constrained edge. Kubernetes, as the most widely
used container orchestrator today [17], has been chosen as an underlying compo-
nent for most of the open source serverless platforms currently available. This has
attracted a noticeable interest from both academia and industry to better optimize the
orchestrator and make it more suitable for deployment at the edge of the network.

The goal of this paper is to analyze three different Kubernetes distributions
together with their deployment methods and evaluate the performance impact that
they have on serverless function execution performance on constrained edge infra-
structures. The main contributions of this work are given as follows:

• Description of a varied benchmarking strategy encompassing different modes of
serverless function execution, including serial and parallel invocation with and
without scaling mechanisms.

• Adaptation of the FunctionBench serverless benchmarking suite to the previ-
ously unsupported OpenFaaS platform and open sourcing the resulting imple-
mentation.

• Evaluation of the performance characteristics of three different Kubernetes dis-
tributions, along with an assessment of how they adapt to the edge of the net-
work, elaborating their advantages in different scenarios.

• Analysis of the supported scaling strategies of the OpenFaaS serverless platform
using different workload types.

The rest of this paper is organized as follows: in section two, we provide additional
background information on lightweight Kubernetes distributions and discuss related
work in this field. We then proceed with section three where we explain the test-
ing methodology that we have devised, the infrastructure where the tests have been
performed, as well as the motivation behind the different benchmarking scenarios.
In section four, we present the obtained results before moving to the fifth and final
section with which we conclude the paper, summarizing the findings and discussing
how the various optimizations of the tested Kubernetes distributions have impacted
their performance.

2 Background and related work

Serverless edge computing has become a popular topic in recent years [18], attract-
ing a significant research interest from various research groups, some of which
have also focused on the performance aspects and how they can be measured in a
reproducible manner using cross-platform benchmarking suites. In this section, we
first present the motivation for the existence of the various Kubernetes distributions

13731

1 3

Kubernetes distributions for the edge: serverless performance…

today, before continuing with an overview of the latest literature concerning server-
less platform benchmarks and the underlying infrastructures on top of which they
are deployed.

2.1 The relationship between Kubernetes and serverless

Since its initial release in 2014, Kubernetes has seen an enormous rise in its popu-
larity. On one hand, many organizations have chosen to reorganize their computing
infrastructure to incorporate this container orchestrator, hoping to reap the benefits
from easier management of applications at scale. On the other hand, academia has
identified it as an interesting research topic, proposing yet more areas and usage sce-
narios where Kubernetes can be applied [19].

As a result of its popularity and the diverse use-cases in which it can be used,
alternative Kubernetes distributions have been developed which are specifically
optimized for a given scenario [20]. The need for such custom distributions has
arisen because of the increasingly large number of components which have been
incorporated in Kubernetes itself, allowing it to be deployed on diverse infrastruc-
tures, ranging from multiple distributed cloud providers with thousands of nodes, to
development machines for testing purposes. The inclusion of these addons increases
the size, resource requirements and the deployment complexity, even though many
of the addons are not utilized in smaller or resource constrained clusters, such as
those deployed at the edge of the network. To better describe the nature of these
additional components, they include features such as the option of seamlessly inte-
grating with the existing service offerings of the cloud provider where the cluster
is deployed on persistent datastores that are optimized for supporting large number
of nodes, instead of minimizing the resource footprint. It is evident that in edge-
based scenarios, such cloud focused components are not only unnecessary, but their
omission could potentially lead to increased runtime performance as well. In the
wider context of serverless computing, where one of the primary focuses is func-
tion instantiation speed as a prerequisite for efficient scale-to-zero behavior, this
added complexity could also potentially affect the initial start up times of containers,
impacting end-user experience.

To alleviate these shortcomings, a number of open-source initiatives such as K3s
[21] and MicroK8s [22] have emerged, shedding unnecessary Kubernetes compo-
nents or merging existing ones, with the aim of reducing their footprint. Focused
on enabling easy deployments on bare-metal infrastructure, they are appropriate
options for edge computing and can be utilized for hosting serverless edge platforms
or enabling multi access edge computing (MEC) scenarios. These improvements
have allowed the resource requirements to be reduced, the deployment process to be
greatly sped up, and at the same time increasing the elasticity, using simpler scale up
and scale down operations. Nonetheless, all these Kubernetes distributions are still
compatible with the original software and can run and utilize the same configuration
and applications [23].

The differences between the various Kubernetes distributions in terms of the
included components raise the question whether they can indeed offer better

13732 V. Kjorveziroski, S. Filiposka

1 3

performance compared to a full-fledged Kubernetes cluster, and what are the com-
promises which allow them to do so.

2.2 Related work

The main issue when it comes to any performance evaluation is reproducibility and
the introduction of relevant benchmarks which can accurately depict the perfor-
mance specifics of the various platforms undergoing the tests. To solve these prob-
lems, researchers have developed comprehensive test suites for serverless functions,
including both microbenchmarks and real-world workloads [24, 25]. While micro-
benchmarks focus exclusively on a specific component such as processor speed, net-
work performance, or the number of input/output (I/O) operations in a given time
frame, real-world workload benchmarks aim to evaluate the performance character-
istics of commonly executed tasks. In most cases, the performance of these real-
world tasks is not determined solely by a single component, thus allowing these tests
to determine the overall quality of the infrastructure. Examples of such workloads
that are representative of real use cases include the training of machine learning
models, image processing, big-data analysis, video encoding and decoding [26, 27].

Unfortunately, the lack of cross-compatibility between the serverless solutions
[28] forces researchers to only target a specific set of platforms, relying on the open-
source community or other interested researchers to adapt them to other, initially
unsupported environments. Maissen et al. have developed [29] and open sourced
FaaSdom [30], a set of serverless functions whose aim is to characterize the per-
formance of popular cloud computing serverless platforms such as AWS Lambda,
Azure Functions, Google Cloud Functions, and IBM Cloud Functions. In a similar
manner, the authors of [26] provide an overview of popular commercial serverless
platforms, providing a taxonomy covering 20 characteristics and devising bench-
marks aimed at describing their performance. Eismann et al. [31] approach the issue
of benchmarking public serverless platforms in a different manner. Instead of evalu-
ating their performance simply at a given point in time, they test the performance
variability across time and how the presumed overall load of the public cloud infra-
structure might impact execution of individual functions.

This research interest is not limited only to commercial serverless platforms but
also extends to open source and self-hosted ones. Li et al. [14] analyze four different
solutions running on top of the Kubernetes container orchestrator, evaluating their
performance while providing architecture details and how they might have impacted
the acquired results. The authors of [32] compare the performance of different plat-
forms, including OpenWhisk and Lean-OpenWhisk, a more lightweight alternative,
suitable for deployment on edge devices. Evaluation of serverless edge platforms
has also been performed in [33], where two commercial and one open-source server-
less platform have been included with the aim of testing single node serverless edge
infrastructures.

The optimization of existing open-source serverless platforms to better run at the
edge of the network where computing capacity is limited has not been restricted
only to OpenWhisk and its Lean-OpenWhisk counterpart. Authors of [34] improve

13733

1 3

Kubernetes distributions for the edge: serverless performance…

the scheduling of Knative, another popular serverless framework built on top of
Kubernetes by implementing linear regression models, optimizing the incurred cold
start latency of new function invocations. Similar work has also been done for Kube-
less [35] and OpenWhisk [36].

While it is important to optimize existing serverless solutions for the network
edge, the underlying computing infrastructure on top of which they are running must
be taken into account as well. Kayal et al. [20] evaluate the overall feasibility of run-
ning Kubernetes on edge infrastructures and discuss a number of lightweight Kuber-
netes distributions which make it possible to do so. Eiermann et al. [37] further con-
firm the need for lighter Kubernetes solutions, showing that the idle resource usage
of Kubernetes is greater than other similar container orchestrators albeit with a more
limited feature set.

It is clear that a number of studies have been conducted to evaluate the perfor-
mance characteristics of various serverless platforms on one hand, and container
orchestrators, on another. However, to the best of our knowledge, there is no com-
prehensive analysis of how the different distributions of the most popular container
orchestrator today, Kubernetes, impact the performance of serverless functions. It
must be noted that some of these new Kubernetes distributions have been explic-
itly tailored for the resource constrained edge, so a comprehensive evaluation is
required. In our opinion, the performance of serverless platforms running on top of
the Kubernetes orchestrator greatly depends on the chosen Kubernetes distribution,
and these two factors should be analyzed together.

3 Methodology

In order to evaluate whether a given Kubernetes distribution plays a significant
role in the exhibited performance of a serverless platform when deployed on edge
infrastructure with modest performance, the following aspects should be taken into
account:

• Appropriate benchmarks capable of capturing different performance aspects;
• A serverless platform, preferably one which is widely used, serving as the bench-

marking functions’ execution environment;
• A criterion for choosing which Kubernetes distributions to include;
• A benchmark execution strategy, with the aim of acquiring as relevant data as

possible, reminiscent of real-world execution scenarios.

In the following subsections, we elaborate the choices that we have made for each of
these points.

3.1 Benchmarks selection

Recently, a number of serverless function benchmarking suites have been published
[13, 25, 38], aimed at different platforms and execution scenarios. It is common for

13734 V. Kjorveziroski, S. Filiposka

1 3

these benchmarks to focus exclusively on either commercial or open source server-
less platforms due to the lack of a unified application programming interface (API)
and no common set of supported features between them.

For our tests, we have chosen to use a mix of microbenchmarks and real-world
workloads applicable to edge computing scenarios, with the end goal of indepen-
dently testing different performance aspects of the underlying Kubernetes platforms.
As to not fragment this field even further by devising a custom set of tests, and at
the same time to ensure higher reproducibility, we have adapted the FunctionBench
serverless benchmarking suite presented by Kim et al. [38] which has been fully
open sourced [39]. We have utilized 14 different tests in total, divided into three
distinct categories:

• CPU & Memory—The central processing unit (CPU) performance is usually the
most important metric to be evaluated, due to its relevancy for different usage
scenarios. We have decided to include in this category memory tests as well,
since many serverless platforms offer only a limited number of execution envi-
ronment flavors, tying the allocation of CPU shares in terms of the configured
memory or vice versa [27]. 8 of the 14 conducted tests can be associated with
this category:

• Float operation—performance of common mathematical operations;
• Image processing—time taken to apply different filters to a given image;
• Linear equation performance—solving linear equations of an arbitrary size;
• Matrix multiplication—multiplication of square matrices;
• Model training—training a machine learning (ML) model on a given dataset;
• Advanced Encryption Standard (AES) encryption and decryption—decryp-

tion and encryption of arbitrary messages using the AES block-cipher algo-
rithm;

• XML manipulation—rendering performance of a large XML document;
• Video processing—video manipulations performed on sample video files.

• Disk Input/Output (I/O) operations—the speed of the storage devices has a sig-
nificant role in the overall perceived performance of the serverless functions and
directly impacts all function types, not only those with heavy I/O workloads.
Non-optimal I/O performance leads to longer start up times and reduced perfor-
mance when loading large programming libraries for the first time into memory.
4 of the 14 conducted tests are related to measuring disk performance:

• Disk throughput using the dd command—sequential disk throughput using
the UNIX dd tool;

• Gzip compression—Gzip compression of arbitrary files;
• Random disk I/O—testing random disk I/O performance using Python librar-

ies;
• Sequential disk I/O—testing sequential disk I/O performance using Python

libraries.

• Network performance—While network performance is important for any mod-
ern system that uses network connectivity for information exchange, it is also of

13735

1 3

Kubernetes distributions for the edge: serverless performance…

paramount importance for edge based serverless functions, playing a major role
not only in the total throughput, but also in the incurred network latency. 2 of the
14 tests focus on evaluating network performance:

• Large file download—download of an arbitrary large file from an object stor-
age service;

• Small dataset download—download of a modestly sized JSON dataset which
is then deserialized and serialized again.

The described benchmarks are a mix of pure microbenchmarks testing a single hard-
ware aspect on one hand, and real-world scenarios relevant for the cases of edge
computing, on the other. With the inclusion of the model training, video process-
ing, and image processing tests, we strove to show the performance characteristics
of the tested distributions in terms of these increasingly popular and realistic edge
and serverless workloads [19]. Full-fledged application scenarios were omitted on
purpose, since the results obtained by testing them would not be as relevant out-
side of their specific use-case, would be heavily dependant on their implementation,
and thus would not be representative of the distributions’ end-to-end performance
differences.

3.2 Serverless platform selection

The majority of serverless platforms today are using containerization as the cho-
sen runtime technology. Even though it offers reduced performance in comparison
to more efficient runtime environments [40], this choice increases adoption levels
among diverse groups of administrators and developers since it relies on well-estab-
lished and well-tested technology, with which many are already familiar. Using con-
tainers as the runtime environment also does not impose any restrictions in terms of
which functions can be deployed, allowing virtually any programming language to
be used, and at the same time easing the migration process to serverless for existing
code bases.

The serverless platforms that are based on containerization require a container
orchestrator capable of distributing the instantiated functions across different com-
puting nodes, each of them joined to the same computing cluster.

We have opted to use OpenFaaS [41] as the serverless framework with which
to benchmark the performance of the different Kubernetes distributions. It is the
most popular serverless framework among those that natively support Kuber-
netes [42–44], based on the number of GitHub stars that the project has received
[45]. Furthermore, OpenFaaS supports two different function scaling modes [46]:
native scaling based on internal metrics which can be customized by the adminis-
trator (e.g., requests per second, response codes, or resource usage); scaling using
the default Kubernetes Horizontal Pod Autoscaler (HPA) [47] mechanism, which is
based on current CPU and memory usage. This allows us to determine the behavior
of these two approaches across different underlying Kubernetes distributions.

OpenFaaS has many built-in function templates for popular programming lan-
guages which have been optimized for performance. However, as with other similar

13736 V. Kjorveziroski, S. Filiposka

1 3

frameworks, it also allows developers to specify their own container template to be
used. These approaches, coupled with dedicated client-side command line tooling,
allow easy adaptation of existing serverless functions, including the FunctionBench
benchmarks, to the OpenFaaS serverless platform.

3.3 Kubernetes distribution selection

Even though Kubernetes is a rather complex system involving multiple different
components, throughout the years, the codebase has matured, and advancements
have been made which allow simple and fast deployment of new production and
testing clusters. These advancements have been focused mainly on modularizing the
architecture and publishing well-defined APIs for interaction with external systems,
such as storage [48] or networking [49]. The increased modularity on one hand and
the ever-growing number of components on the other have incentivized the devel-
opment of lightweight Kubernetes distributions that ship only with the necessary
components for a given use-case. Nevertheless, these are fully conformant Kuber-
netes platforms, capable of running the same software and undergoing the same
configuration.

For our tests, we have selected three Kubernetes deployment methods: Kubespray
[50], K3s [21], and MicroK8s [22]. Kubespray is an open-source project which
aims to simplify the deployment of full-fledged Kubernetes clusters on different
infrastructures, ranging from on-premise bare-metal servers to multi-cloud setups.
Contrary to this, both K3s and MicroK8s are lightweight Kubernetes distributions
specifically aimed at the network edge. Both are characterized with fast and simple
setup procedures and support multi-node architectures as well.

To aid the deployment process, all three selected Kubernetes distributions come
with extensive documentation. Kubespray is comprised of a set of Ansible play-
books (specialized automation scripts), capable of deploying the Kubernetes cluster
once all parameters have been specified. K3s is packaged as a single binary and the
whole deployment process can be completed by simply downloading and executing
the official shell script hosted on the project’s website. Finally, MicroK8s is pack-
aged as a snap application, capable of being deployed on any GNU/Linux distribu-
tion where the snapd daemon is running.

Apart from the packaging and distribution choices, other aspects can play a sig-
nificant role in potential performance differences between the distributions. K3s
has opted to bundle all Kubernetes components into a single binary which runs as
a single process, thus co-locating both the K3s server and the agent [51]. To reduce
load on the underlying storage devices and offer better I/O speed, the etcd key–value
store traditionally used for persisting the Kubernetes cluster state has been replaced
by SQLite, using an adapter mechanism. The development of such an adapter
also facilitates the use of different database backends. Due to these changes and
the removal of the cloud specific integrations, K3s has lower minimum hardware
requirements compared to a traditional Kubernetes deployment. It requires 512MB
of memory for master nodes and 256MB for worker nodes [52], compared to more
than 2GB per node for a traditional deployment with Kubeadm [53], also used by

13737

1 3

Kubernetes distributions for the edge: serverless performance…

Kubespray. Differences also occur in terms of processor cores, with K3s requiring
at least 1, while Kubernetes 2. In terms of MicroK8s, apart from using the snap
packaging format, it has also replaced the etcd database with a new implementa-
tion called Dqlite [54], which works similarly to SQLite, albeit with the possibil-
ity of distributed operation. The minimum hardware requirements for MicroK8s are
higher than those for K3s, requiring at least 540MB of memory [55], with no official
recommendation for the number of processor cores.

More information regarding the different component versions, setup procedure
and execution strategy is available in the next subsection, Execution Strategy.

3.4 Execution strategy

Table 1 provides an overview of the execution environment used for the bench-
marks, listing the versions of the various software components, as well as the
hardware specification of the bare-metal machines. In summary, a set of 6 physi-
cal machines was used for the deployment of the three selected Kubernetes dis-
tributions. Each cluster was comprised of 1 master and 5 worker nodes. The mas-
ter node did not host any function instances, thus reserving its resources for the
Kubernetes control plane. Once all of the tests for the given distribution were fin-
ished, the machines were reinstalled from scratch and the next Kubernetes distri-
bution was deployed. Kubernetes version 1.20.7 was used for both the Kubespray
and K3s deployments and Kubernetes 1.23.0 for MicroK8s. The difference in
Kubernetes versions is due to the fact that MicroK8s supports additional worker
nodes without enabling high-availability by default only since version 1.23.0
[56]. Even though node addition is supported in previous MicroK8s versions, the
first two additional nodes (up to a total of three) are automatically made part of
the control plane which in our case would have negatively impacted the acquired
results. Control plane nodes take an active role in maintaining the cluster state
and require the database to be replicated between them, resulting in increased

Table 1 Execution environment
specification

a Kubespray and K3s
b MicroK8s

Parameter Value

Operating system Ubuntu 20.04
Number of nodes 6 (1 master, 5 workers)
CPU Intel Xeon X5647
Memory 8 GB
Disk space 320 GB
LAN connection 1 Gbps
Kubernetes version 1.20.7a, 1.23.0b

CNI plugin Calico 3.21.2
OpenFaaS version 0.21.1

13738 V. Kjorveziroski, S. Filiposka

1 3

load and disk activity. As a result of this, we have chosen to dedicate only a single
master node to be responsible for the control plane, in all three deployments.

All 6 machines have the exact same hardware specification providing a uni-
form execution environment and avoiding any performance differences between
the nodes due to mismatched hardware. Each bare-metal host is equipped with an
Intel Xeon X5647 octa-core CPU, 8GB of random-access memory (RAM), and a
320GB hard drive.

The same Kubernetes container networking interface (CNI) plugin was used
across all distributions—Calico. Even though some of the distributions install
Calico automatically during the deployment process, we opted for a manual
installation, in order to ensure that the exact configuration was used in all cases.
OpenFaaS was deployed using the official Helm chart [57], and the Longhorn
storage plugin was used for providing persistent volumes to the containers which
requested them.

The FunctionBench serverless functions used for benchmarking require addi-
tional parameters to be passed upon each invocation of a particular test function
instance. A short description of the parameters required by each test is given below
in Table 2.

A total of 5 test runs were executed for each Kubernetes distribution, testing dif-
ferent performance aspects:

• Cold start performance—each function is executed 100 times to test the cold
start delay. After every execution, the number of instances for the function is

Table 2 Execution parameters for each test

Test category Test name Parameters Purpose Values

CPU & Memory Float-operation n Number n: 10,000,000
Image-processing URL File to download –
Linpack n Matrix size n: 5000
Matmul n Matrix size n: 5000
Model-training URL Source data –
Pyaes n, m Length, iterations n: 1000 m: 100
Chameleon n, m Rows x cols n, m: 2000
Video-processing URL File to download –

Disk Gzip-compression File_size Size (MB) File_size: 50
dd bs, count Block size, num.

files
bs: 100M count: 1

Random-disk-io File_size, byte_size File and block size File_size: 100
byte_size: 1024

Sequent0ial-disk-io File_size, byte_size File and block size File_size: 100
byte_size:1024

Network s3-object-storage Input_bucket,
output_bucket,
object_key

Connection param-
eters

100 MB binary file
download

Json-dumps-loads URL File to download –

13739

1 3

Kubernetes distributions for the edge: serverless performance…

scaled down to 0. Upon the next invocation, a new container instance needs to be
created before a response is returned.

• Serial execution performance—each function is continuously invoked for a
period of 5 min using a single thread. Once a response is received, a new request
is immediately sent. Auto-scaling is manually disabled as to not skew the results
using multiple replicas.

• Parallel execution performance using a single replica—each function is invoked
exactly 20 times using 20 parallel threads. This simulates a bursty workload
where the number of requests per second increases dramatically in a short
amount of time. Auto-scaling is manually disabled as to not skew the results
using multiple replicas.

• Parallel execution using native OpenFaaS auto scaling—each function is invoked
for a fixed amount of time using varying concurrency to determine the perfor-
mance of the auto-scaling behavior.

• Parallel execution using Kubernetes Horizontal Pod Autoscaler—each function
is invoked for a fixed amount of time using varying concurrency to determine the
performance of the auto-scaling behavior.

Additional details and a discussion about the obtained results are available in Sect. 4,
Results.

To execute the requests and to obtain accurate measurements in terms of
response-time and number of executions in the given time frame, we have utilized
the hey benchmarking tool [58]. All tests were invoked from a standalone machine
present in the same local network as the Kubernetes cluster, but without having a
role in the cluster. The network segment was dedicated to the testing infrastructure,
avoiding any impact on latency or throughput due to external factors. The nodes
which hosted the Kubernetes cluster itself were also dedicated to this task and no
additional workload was run on them in order to avoid skewing of the results [31].
External resources required for some of the tests, such as datasets for model train-
ing, video files, or large binary files have been served from a dedicated local object
storage server present in the same network, but on a different host, not part of the
Kubernetes cluster, eliminating any unforeseen performance degradation due to net-
work congestion.

3.5 Reproducibility and extensibility

Reproducibility aspects are very important for all experimental works which try to
objectively measure a given metric, such as performance. However, in the case of
modern technologies which undergo significant advancements regularly, and where
the rate of feature change is great, the question of long-term relevancy and future
extensibility needs to be addressed as well.

Recognizing these challenges, we have decided to employ a set of existing server-
less benchmarks for all of the performed tests. The selected FunctionBench bench-
marking suite has already been reused in various other works, targeting both com-
mercial and open source platforms, with authors adding support for new computing

13740 V. Kjorveziroski, S. Filiposka

1 3

infrastructures previously unsupported by the original implementation [59–63]. Its
permissive Apache 2.0 open source license also makes it possible to integrate com-
pletely new testing scenarios, either as additional microbenchmarks or real-world
workloads.

Due to the lack of cross-platform compatibility between serverless solutions, the
FunctionBench benchmarks which we decided to use had to be adapted for execu-
tion on the OpenFaaS platform. This required refactoring of the original code so
that it could take full advantage of OpenFaaS, as well as rebuilding of the associ-
ated container images. All functions used the recommended OpenFaaS of-watch-
dog template [64] for increased performance, while keeping the same programming
language—Python 3.7. We have published all of our modifications to the original
serverless functions, along with the source code for executing the benchmark runs
on GitHub [65], thus further contributing to the extensibility of the original imple-
mentation. Open sourcing this work allows the wider research community to:

• Eextend the existing benchmarking suite with new functions either in the form of
microbenchmarks or real-world workloads;

• Reuse the benchmarking suite as is, leveraging the prepared Docker containers
for execution of the same scenario on new Kubernetes distributions in the future,
comparing their performance to those already tested;

• Reuse the benchmarking suite as is, testing different commercial and private
infrastructures without focusing exclusively on Kubernetes as the underlying
orchestration platform. Even though OpenFaaS can already be deployed both
on Kubernetes clusters hosted on either private or public clouds, faasd [66] is a
slimmed down version of the same serverless platform, which does not require
a container orchestrator to function and has full compatibility with the original
implementation.

In terms of the reproducibility of the acquired results, we have also published the
full raw metrics acquired during the different testing runs in the same GitHub
repository. These results can either be reused as reference points in future works
or explored interactively using the accompanying Jupyter notebook, which serves a
dual purpose. Apart from being used for data exploration, it also allows for the exist-
ing raw data to be replaced with testing results from different platforms, allowing
for a head-to-head comparison, while keeping the same analysis methodology and
visualizations.

4 Results

All three selected distributions (Kubespray, K3s and MicroK8s) support the com-
plete lifecycle management of the deployed clusters, including node addition and
node removal, but the complexity of executing these operations varies. Kubespray
takes the longest to both provision a new cluster and upgrade an existing one, owing
to the fact that the Kubernetes cluster is created in a conventional manner, with all
components included. On the other hand, both K3s and MicroK8s take significantly

13741

1 3

Kubernetes distributions for the edge: serverless performance…

less time to execute the same operations. Another differentiating factor between
these deployment methods is the number of supported plugins which can be auto-
matically installed by the distribution. To ease the administrative burden, all three
support installation and configuration of additional plugins for networking, storage,
or monitoring. Kubespray does this by using the official Kubernetes manifests for
each plugin, introducing templating variables where needed. Once the templates
have been rendered, the generated manifests can be used on any Kubernetes cluster,
not limited to those deployed using Kubespray. Contrary to this, K3s supports ena-
bling of additional plugins by passing parameters to its installation script, abstract-
ing away the rest of the process, while MicroK8s supports enabling and disabling
of plugins at any time using its command line interface. This is made possible by
custom shell scripts for each plugin that needs to be deployed. These shell scripts are
applicable only to MicroK8s environments.

In the following subsections, we focus on these results obtained from each of the
five test runs executed on the different Kubernetes distributions, as explained in 3.4
Execution Strategy.

4.1 The problem with the cold start delay

One of the main advantages of serverless computing compared to other paradigms
is the option of scaling down to zero replicas functions which are not currently
executed. This allows resources to be released when functions are idle, leading to
more efficient resource usage and reducing billing costs. However, a drawback of
this approach is the increased latency that is incurred upon the next invocation of a
function that has been scaled down, since the runtime environment will need to be
set up from scratch, loading both the code and all associated libraries from disk in
the process. This cold start delay can be significantly larger than consecutive execu-
tions of an already active function.

The platform that we are using for running the tests, OpenFaaS, uses contain-
ers as the only supported runtime environment for executing the deployed server-
less functions. Taking into account the fact that all of the tests are ran on multiple
nodes with the same exact hardware, any cold start delay difference between the
three Kubernetes distributions will be as a result of their underlying architecture and
complexity.

Figure 1 shows the average container cold start delay across all different func-
tions for each platform. Every single function has been executed 100 times, lead-
ing to 1400 measurements for all 14 functions on each Kubernetes distribution, or
4200 measurements in total, across all three distributions. It can be seen that Kube-
spray, which deploys a full-fledged Kubernetes cluster, exhibits a 15% increase in
the cold start delay compared to both K3s and MicroK8s. The two lightweight edge
distributions show very similar results when it comes to bringing up new container
instances.

13742 V. Kjorveziroski, S. Filiposka

1 3

To better visualize the difference in cold start performance, Fig. 2 shows a box
plot outlining the median, minimum, maximum and the outliers1 for the execution
times incurred by the different Kubernetes distributions across all executions. Even
though the median values are consistent, the lower performance of Kubespray is vis-
ible in this case as well.

Continuing the cold start delay analysis, Fig. 3 shows a more granular representa-
tion of the average delay incurred when creating a new container instance for each
of the 14 functions that were used during the benchmarks. As was the case with the
previously discussed results, a noticeable difference is present between the results
of Kubespray on one hand and the more lightweight Kubernetes distributions on the
other.

The small difference in performance between K3s and MicroK8s raises the
question whether it is statistically significant or not. To test this, we performed the

Fig. 1 Average container cold
start delay for each of the three
platforms

Fig. 2 Box plot of the cold start delays for each of the three platforms

1 The extreme outliers for the K3s platforms (larger than 17s) have been cut off to aid the visibility of the
figure. However, they have been taken into account in all other analyses and calculations.

13743

1 3

Kubernetes distributions for the edge: serverless performance…

nonparametric Mann–Whitney U test, with the following two hypotheses and an
alpha value of 0.05:

• H0: the two populations are equal
• H1: the two populations are not equal

After conducting the test, the p value is 0.202, leading to a failure to reject the null
hypothesis. The acquired results do not show that there is a statistically significant
difference between the cold start delays incurred by K3s and MicroK8s.

4.2 Serial execution performance

Most serverless platforms, especially those relying on containers as their runtimes,
utilize methods to reduce the cold start delay. These methods can be implemented
in a variety of ways, ranging from simple to more complex. A number of platforms
simply leave a function running for a specific period of time after it has been exe-
cuted, expecting further invocations as a result of temporal centrality. However,
there are also examples of advanced monitoring infrastructure being utilized for per-
formance data gathering which is then used for training machine learning models
[67, 68].

In the case of OpenFaaS, while it does support automatic scale down to zero, this
feature requires a paid license. However, manual scale down to zero via a simple
API call to the OpenFaaS gateway is possible, allowing developers to design their
own scale-up or scale-down implementations.

To test the raw performance of each platform, without taking into account the
cold start delay when a new container instance is created, we have executed each
function for 5 min, continuously sending requests after each received response from
a single worker. All scaling features have also been disabled, to prevent an undesired

Fig. 3 Average cold start delay (in seconds) per function

13744 V. Kjorveziroski, S. Filiposka

1 3

increase in the number of replicas for a given function, thus skewing the results. All
the tests were performed one-by-one instead of at the same time for all functions.

Figure 4 shows the total number of executions for each function instance across
all tested Kubernetes distributions. As was the case with the cold start benchmarks,
K3s and MicroK8s exhibit very similar performance, being tied or differing by a sin-
gle execution in 10 of the 14 tests. Kubespray has the most executions in the given
time window in only a single test, the large file download from an object storage
(s3-download-speed), while lagging in some of the more CPU intensive tests such as
AES encryption/decryption and linear equation solving.

To offer another perspective on the obtained results, Fig. 5 shows the average
response times for each function instance during the 5-min serial execution. As
expected, the results between the lightweight K3s and MicroK8s distributions are
comparable.

Several functions exhibited very similar performance not only between K3s and
MicroK8s, but across all three different deployment methods, Kubespray included.
To test the statistical significance of the results, we conducted the nonparametric
Kruskal-Wallis test, testing the three groups. The tested hypothesis, using an alpha
value of 0.05, in this case were given as follows:

• H0: the population medians are equal
• H1: the population medians are not equal

Statistically significant results were obtained for 13 of the 14 functions. The null
hypothesis failed to be rejected for the video-processing test.

Unfortunately, the previous test is not able to specify where the difference
occurs, among which groups. From the figures above, it is evident that the results
between K3s and MicroK8s are much closer together compared to those of Kube-
spray in most cases. To formally test this, we performed the Mann-Whitney U test
between the populations for each function for these two distributions, keeping the
same hypothesis and alpha value of 0.05, as previously in Sect. 4.1. This has led to

Fig. 4 Total number of serial executions for each function in a 5-min period

13745

1 3

Kubernetes distributions for the edge: serverless performance…

statistically significant results and thus the rejection of the null hypothesis in 10 of
the 14 tests: chameleon, dd, float-operation, gzip-compression, json-dumps-loads,
matmul, model-training, pyaes, random-disk-io, sequential-disk-io. The null hypoth-
esis failed to be rejected for the remaining 4: image-processing, linpack, s3-down-
load-speed, video-processing. Three of these tests for which the null hypothesis was
not rejected are CPU bound benchmarks, while s3-download-speed is a network
intensive one.

4.3 Parallel execution without automatic replica scaling

A common practice whose aim is to offer better function execution performance is
to reuse the same runtime environment for consecutive executions, instead of tearing
it down and recreating it. While this does conserve computational resources, it opens
new possibilities for attacks and data leakage, as a result of the reduced isolation.

Fig. 5 Average response time for each function during a serial execution

13746 V. Kjorveziroski, S. Filiposka

1 3

In the case of OpenFaaS, it is evident that a given container can be reused for
multiple consecutive executions, since the containers are not immediately terminated
once a response has been sent. To test how many requests can each function instance
serve, we have executed 20 parallel requests at the same time, measuring the time
taken to complete them. Apart from allowing us to analyze the concurrency rating
per container instance, this test also shows how well the different Kubernetes dis-
tributions cope with bursty workloads. As previously, all scaling mechanisms were
disabled during this test, forcing each function to run only with a single instance.

Figure 6 shows the total time required for each distribution to complete the 20
requests. Contrary to previous results, Kubespray exhibits better performance than
both K3s and MicroK8s in 6 of the 14 tests, namely chameleon, float-operation,
model-training, pyaes, s3-download-speed, and sequential-disk-io. K3s takes
the lead in 2 tests: gzip-compression and json-dumps-loads, while MicroK8s in 6
(same as Kubespray): dd, image-processing, linpack, matmul, random-disk-io,
video-processing.

Fig. 6 Total time required for completing 20 requests using a single function replica

13747

1 3

Kubernetes distributions for the edge: serverless performance…

To test the number of parallel executions per container instance for single
threaded workloads at any given point in time, we have plotted the response times
on a histogram, presented in Fig. 7. It is clearly visible that in all cases, OpenFaaS
forks up to 4 different function processes in the same container. These results are
consistent with the ones obtained in [33] where the lightweight version of Open-
FaaS, FaaSd has been analyzed. It should be noted, however, that this behavior is
configurable, but we decided to evaluate the default configuration across all different
tests.

4.4 Parallel execution with automatic replica scaling

The real benefit of the serverless paradigms is the option to seamlessly scale the
number of function instances depending on the current load. One of the reasons why
OpenFaaS was selected as the platform for evaluating the three different Kubernetes

Fig. 7 Number of concurrent executions per container instance

13748 V. Kjorveziroski, S. Filiposka

1 3

distributions is the fact that it can leverage two diverse scaling mechanisms. This
allowed us to test the scaling behavior and performance when different parameters
were used for driving the scaling decisions.

In the following subsections, we outline how these two strategies work and
describe the results that we have obtained during the testing.

4.4.1 OpenFaaS native automatic replica scaling

The default scaling strategy which comes preconfigured on each new OpenFaaS
install is based on function metrics which are gathered by the popular Prometheus
monitoring tool [69] and then evaluated using Alertmanager [70]. Once the config-
ured threshold is reached, an alert fires which in turn executes the required API call
for increasing the number of function replicas.

Even though this approach is extremely flexible, allowing users to write scaling
rules based on the various metrics that Prometheus scrapes related to each func-
tion, the rule which is enabled by default on new installations is somewhat binary in
nature. The default rule tests the number of successful invocations per second for the
last 10 seconds, and if this number is larger than 5, it scales up the number of func-
tion instances up to a preconfigured maximum. This means that even when execut-
ing requests at a constant rate, say 6 per second, it is possible to obtain the maximum
number of allowed replicas, same as when testing with a much larger number of
requests per second, for example 30 or 40. We have tested this behavior by executing
1 request per second from 6 concurrent workers for more than 200 seconds, success-
fully reaching the defined threshold for the maximum number of replicas.

In summary, this behavior of not taking into account the current number of
deployed replicas, instead solely relying on the number of requests per second, leads
to suboptimal scaling decisions. Under a consistent load, it either scales to the maxi-
mum number of configured replicas or it does not scale at all. However, as a result
of using well-known third-party applications for the actual monitoring and rule defi-
nitions, administrators should be able to change the default behavior with relative
ease, thus better reflecting their needs.

4.4.2 Leveraging the Kubernetes horizontal pod autoscaler

The alternative method for automatic scaling of function instances supported by
OpenFaaS is by using the Kubernetes Horizontal Pod Autoscaler (HPA). HPA is
the native Kubernetes scaling mechanism and by default relies on metrics acquired
via the metrics server component, namely CPU and memory utilization. Different
autoscaling profiles can be associated with different functions, catering to their runt-
ime specifics. In our tests, we have configured a custom HPA profile which fired
whenever the float-operation function has used more than 350 CPU shares (0.35
of a core). With testing, it was determined that when executing the float-operation
function using 100,000 as the input parameter, and not 10,000,000 as was the case
with previous benchmark executions, 350 CPU shares are utilized. These 350 shares
accounted for four parallel executions per container instance, the default value as
discussed previously in Sect. 4.3.

13749

1 3

Kubernetes distributions for the edge: serverless performance…

To evaluate the behavior of the HPA, we have executed the float-operation func-
tion multiple times with varying concurrency levels on each Kubernetes distribu-
tion. Figure 8 shows the results for three different execution strategies:

1. Start from 1 function replica, execute 2 concurrent requests per second, increasing
the concurrency rate by 2 every 5 min, until 48 requests per second are achieved.

2. Start from 1 function replica, execute 40 concurrent requests per second,
decreasing the concurrency rate by 2 every 5 min, until 2 requests per second are
achieved.

3. Start from 1 function replica and vary the number of concurrent requests every 5
min using the following strategy: 8, 1, 20, 4, 40, 24, 1, 4, 16, 1, 36, 32.

The idea behind the three different execution scenarios defined above is to test how
the HPA behaves under different circumstances. Both (1) and (2) gradually increase
and decrease the load respectively, while (3) significantly varies it every 5 min, forc-
ing more dramatic changes in the number of active function instances.

Fig. 8 Average response time for float-operation using various concurrency levels across the different
distributions

Fig. 9 Change in number of replicas based on requests per second

13750 V. Kjorveziroski, S. Filiposka

1 3

Kubespray exhibits higher response times across the three presented tests in
Fig. 8, while the results obtained from K3s and MicroK8s are similar, albeit with
MicroK8s having a noticeable advantage in terms of the varied workload.

To better gauge the auto-scaling behavior, Fig. 9 presents the concurrency rate
versus the number of replicas during that period. These results are obtained from
a test where the initial number of replicas for the function was 1 and the execu-
tion started with 4 concurrent requests per second, increased by 4 every 5 min. This
strategy was chosen because theoretically it should lead to a single replica increase
every 5 min, or at every concurrency increase, as a result of the auto scaling policy
elaborated previously.

As with all previous tests, the auto-scaling behavior of K3s and MicroK8s is
closely matched, showing a difference in only a single case. MicroK8s increases the
number of replicas slightly faster when faced with 32 concurrent requests per sec-
ond, while K3s follows with the same increase when 36 requests per second are
executed. Kubespray lags behind the other two platforms in two cases, while pulling
ahead in one.

5 Discussion and conclusion

Using a set of existing serverless benchmarks executed on the OpenFaaS serverless
platform, we have tested the performance characteristics of three different Kuber-
netes distributions: Kubespray which deploys a full-fledged Kubernetes cluster, as
well as K3s and MicroK8s, both aimed at resource constrained devices placed on the
network edge.

Our results show that the more lightweight Kubernetes distributions offer better
performance on bare-metal devices where advanced integrations with third-party
cloud systems are not required. By simply removing the unnecessary components
and altering the default persistent store used by regular Kubernetes clusters, both
K3s and MicroK8s have not only managed to reduce the deployment time and com-
plexity but have also improved performance. This is consistent across all four differ-
ent test types that were conducted.

When it comes to the cold start delay, the full-fledged Kubernetes cluster
deployed using Kubespray takes longer to instantiate new function instances. This
leads to larger delays during the initial execution of a function which has been scaled
down to zero replicas. The results obtained from K3s and MicroK8s are comparable,
and there is no evidence to suggest that they differ significantly from one another.

The results from the serial execution, where each function has been serially
executed for a period of 5 min also paint a similar picture. There is no evidence
to suggest a significant performance difference in only one of the 14 relevant tests
between the three Kubernetes distributions. However, when comparing only the K3s
and MicroK8s platforms among themselves, which have shown more similar results
compared to Kubespray, the null hypothesis failed to be rejected in only 4 of the 14
relevant cases. Of the remaining 10, in one half of those K3s exhibits better perfor-
mance, while in the other MicroK8s.

13751

1 3

Kubernetes distributions for the edge: serverless performance…

Kubespray manages to perform better than the more lightweight alternatives in 6 of
the 14 tests when under extreme load from 20 simultaneous requests being executed
against a single function replica. This same test has allowed us to determine that in
the default OpenFaaS configuration for our architecture, 4 concurrent requests can be
served by a single function container instance.

Finally, we have also tested two modes of automatic scaling supported by OpenFaaS
and their performance on different Kubernetes distributions. The first scaling strategy
which is enabled by default and relies on external monitoring components offers a
binary scaling mechanism which is not suitable for cases where there is a consistent
load for longer periods of time. On the other hand, using the native Kubernetes Hori-
zontal Pod Autoscaler, MicroK8s exhibits lower response times.

In conclusion, Kubernetes distributions that are explicitly optimized for resource
constrained devices show better performance when it comes to cold start latency and
certain families of disk throughput tests. One such example are the sequential read
and write tests conducted using the dd tool where a traditional Kubespray deployment
shows 22% decrease in the number of total executions during a 5 min window, and
a 28% increase in the average response time. The evident volatility of the Kubespray
results compared to the other distributions can be attributed to a number of factors.
Firstly, both K3s and MicroK8s have omitted non-essential components used for inter-
acting with external systems and have opted to use more lightweight database backends
based on SQLite instead of etcd, impacting both disk performance and idle resource
usage. Further optimizations such as the colocation of multiple different components
into a single process, as is the case with K3s, have also positively affected performance,
and have led to a reduction of their overall resource footprint. These improvements are
evident in certain CPU bound benchmarks as well. The traditional Kubernetes deploy-
ment experienced higher average response times in both serial and parallel executions
for matrix multiplication and linear equations solving. However, there are also work-
loads where Kubespray offers comparative performance, such as video processing
during parallel and serial executions, where no statistically significant difference was
detected.

Even though the optimizations made by both K3s and MicroK8s offer better per-
formance for the majority of serverless edge workloads, the compromises of doing so
must be taken into account, such as the reduced integration capabilities or limited scal-
ability when it comes to large numbers of nodes. Careful consideration is needed when
deciding which database to use for the control plane in cases where a different Kuber-
netes distribution is used, especially when it applies to large clusters.

Great progress was achieved in the last few years in regards to simplifying Kuber-
netes deployments and optimizing the container orchestrator for different use-cases.
We expect this to continue in the future as well, combined with additional techniques
to reduce the significant cold start latency of new containers, typical for this runtime
technology.

13752 V. Kjorveziroski, S. Filiposka

1 3

6 Threats to validity

We have strived to eliminate as many potential threats to validity as possible, using
dedicated bare-metal infrastructure with exact hardware characteristics between the
different nodes across all tests. Furthermore, all network communication during the
tests was done on an isolated network segment and did not connect to external desti-
nations, eliminating external delays influencing the results. OpenFaaS also published
guidelines on how to properly configure the platform for maximum performance
[71], which we have followed. However, it must be pointed out that different strate-
gies in terms of routing the requests to the function instance may produce different
results. In our case, we have routed all requests first to the function gateway instead
of directly to the function itself, in order to ensure a fairer load-balancing between
multiple replicas [72]. It should be recognized though that this method might have
introduced additional latency in comparison to direct invocation. Nevertheless, the
same strategy was used for all different Kubernetes distributions, thus largely cance-
ling out any potential impacts when comparing the results between themselves.

Acknowledgements The work presented in this paper has received funding from the Faculty of Com-
puter Science and Engineering under the “SCAP” project.

References

 1. Mell P, Grance T (2011) The NIST definition of cloud computing. Technical report NIST special
publication (SP) 800-145, National institute of standards and technology. https:// doi. org/ 10. 6028/
NIST. SP. 800- 145

 2. Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A,
Stoica I, Zaharia M (2009) Above the clouds, A Berkeley view of cloud computing. http:// bnrg. eecs.
berke ley. edu/ randy/ Papers/ RHKPu bs07- 11/A. Accessed 26 Dec 2021

 3. Duan Y, Fu G, Zhou N, Sun X, Narendra NC, Hu B (2015) Everything as a service (XaaS) on the
cloud, origins current and future trends. In: 2015 IEEE 8th International Conference on Cloud Com-
puting, pp 621–628. https:// doi. org/ 10. 1109/ CLOUD. 2015. 88

 4. Jonas E, Schleier-Smith J, Sreekanti V, Tsai C.-C, Khandelwal A, Pu Q, Shankar V, Carreira J,
Krauth K, Yadwadkar N, Gonzalez J.E, Popa R.A, Stoica I, Patterson DA (2019) Cloud program-
ming simplified, A Berkeley view on serverless computing. arXiv: 1902. 03383 [cs]

 5. Kratzke N (2018) A brief history of cloud application architectures. Appl Sci 8(8):1368. https:// doi.
org/ 10. 3390/ app80 81368

 6. Eismann S, Scheuner J, van Eyk E, Schwinger M, Grohmann J, Herbst N, Abad CL, Iosup A (2021)
Serverless applications, why when, and how? IEEE Softw 38(1):32–39. https:// doi. org/ 10. 1109/ MS.
2020. 30233 02

 7. Bittencourt L, Immich R, Sakellariou R, Fonseca N, Madeira E, Curado M, Villas L, DaSilva L,
Lee C, Rana O (2018) The Internet of Things fog and cloud continuum: integration and challenges.
Internet of Things 3–4:134–155. https:// doi. org/ 10. 1016/j. iot. 2018. 09. 005

 8. Varghese B, Buyya R (2018) Next generation cloud computing: new trends and research directions.
Future Gener Comput Syst 79:849–861. https:// doi. org/ 10. 1016/j. future. 2017. 09. 020

 9. Pfandzelter T, Bermbach D (2019)IoT data processing in the fog, functions streams, or batch pro-
cessing? In: 2019 IEEE International Conference on Fog Computing (ICFC), pp 201–206. IEEE
Prague, Czech Republic. https:// doi. org/ 10. 1109/ ICFC. 2019. 00033

 10. Carvalho G, Cabral B, Pereira V, Bernardino J (2021) Edge computing: current trends, research
challenges and future directions. Computing 103(5):993–1023. https:// doi. org/ 10. 1007/
s00607- 020- 00896-5

https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.6028/NIST.SP.800-145
http://bnrg.eecs.berkeley.edu/randy/Papers/RHKPubs07-11/A
http://bnrg.eecs.berkeley.edu/randy/Papers/RHKPubs07-11/A
https://doi.org/10.1109/CLOUD.2015.88
http://arxiv.org/abs/1902.03383
https://doi.org/10.3390/app8081368
https://doi.org/10.3390/app8081368
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1016/j.iot.2018.09.005
https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.1109/ICFC.2019.00033
https://doi.org/10.1007/s00607-020-00896-5
https://doi.org/10.1007/s00607-020-00896-5

13753

1 3

Kubernetes distributions for the edge: serverless performance…

 11. AWS IoT Greengrass: Amazon Web Services. https:// aws. amazon. com/ green grass/ Accessed 26
April 2021

 12. IoT Hub | Microsoft Azure. https:// azure. micro soft. com/ en- us/ servi ces/ iot- hub/ Accessed 26 April
2021

 13. Das A, Patterson S, Wittie M (2018) EdgeBench, benchmarking edge computing platforms. In: 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Compan-
ion), pp 175–180. IEEE Zurich. https:// doi. org/ 10. 1109/ UCC- Compa nion. 2018. 00053

 14. Li J, Kulkarni S.G, Ramakrishnan KK, Li D (2021) Analyzing open-source serverless platforms,
characteristics and performance, pp 15–20. https:// doi. org/ 10. 18293/ SEKE2 021- 129

 15. Kjorveziroski V, Canto CB, Roig PJ, Gilly K, Mishev A, Trajkovik V, Filiposka S (2021) IoT server-
less computing at the edge, open issues and research direction. Trans Netw Commun 9(4):1–33.
https:// doi. org/ 10. 14738/ tnc. 94. 11231

 16. Gadepalli P.K, McBride S, Peach G, Cherkasova L, Parmer G (2020) Sledge: a Serverless-first,
Light-weight Wasm Runtime for the Edge. In: Proceedings of the 21st International Middleware
Conference. Middleware ’20, pp 265–279. Association for Computing Machinery New York.
https:// doi. org/ 10. 1145/ 34232 11. 34256 80

 17. 2021 Kubernetes Adoption Survey. https:// www. pures torage. com/ conte nt/ dam/ pdf/ en/ analy st- repor
ts/ ar- portw orx- pure- stora ge- 2021- kuber netes- adopt ion- survey. pdf Accessed 26 Dec 2021

 18. Kjorveziroski V, Filiposka S, Trajkovik V (2021) IoT serverless computing at the edge. A systematic
mapping review. Computers 10(10):130. https:// doi. org/ 10. 3390/ compu ters1 01001 30

 19. Risco S, Moltó G, Naranjo DM, Blanquer I (2021) Serverless workflows for containerised applica-
tions in the cloud continuum. J Grid Comput 19(3):30. https:// doi. org/ 10. 1007/ s10723- 021- 09570-2

 20. Kayal P (2020) Kubernetes in fog computing, feasibility demonstration limitations and improve-
ment scope: invited paper. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pp 1–6.
https:// doi. org/ 10. 1109/ WF- IoT48 130. 2020. 92213 40

 21. K3s: Lightweight Kubernetes. https:// k3s. io/ Accessed 05 Sept 2021
 22. MicroK8s-Zero-ops Kubernetes for developers, edge and IoT | MicroK8s. http:// micro k8s. io

Accessed 05 Sept 2021
 23. Software conformance(Certified Kubernetes). https:// www. cncf. io/ certi ficat ion/ softw are- confo

rmance/ Accessed 26 Dec 2021
 24. Martins H, Araujo F, da Cunha PR (2020) Benchmarking serverless computing platforms. J Grid

Comput 18(4):691–709. https:// doi. org/ 10. 1007/ s10723- 020- 09523-1
 25. Gan Y, Zhang Y, Cheng D, Shetty A, Rathi P, Katarki N, Bruno A, Hu J, Ritchken B, Jackson B,

Hu K, Pancholi M, He Y, Clancy B, Colen C, Wen F, Leung C, Wang S, Zaruvinsky L, Espinosa
M, Lin R, Liu Z, Padilla J, Delimitrou C (2019) An open-source benchmark suite for microservices
and their hardware-software implications for cloud & edge systems. In: Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages and Operat-
ing Systems. ASPLOS ’19, pp 3–18. Association for Computing Machinery New York. https:// doi.
org/ 10. 1145/ 32978 58. 33040 13

 26. Wen J, Liu Y, Chen Z, Chen J, Ma Y (2021) Characterizing commodity serverless computing plat-
forms. J Softw: Evol Process. https:// doi. org/ 10. 1002/ smr. 2394

 27. Scheuner J, Leitner P (2020) Function-as-a-service performance evaluation: a multivocal literature
review. J Syst Softw. https:// doi. org/ 10. 1016/j. jss. 2020. 110708

 28. Hellerstein JM, Faleiro J, Gonzalez JE, Schleier-Smith J, Sreekanti V, Tumanov A, Wu C (2018)
Serverless computing, one step forward two steps back. In: CIDR 20019 Monterey, CA. http://
cidrdb. org/ cidr2 019/ papers/ p119- helle rstein- cidr19. pdf Accessed 09 Jan 2022

 29. Maissen P, Felber P, Kropf P, Schiavoni V (2020) FaaSdom, a benchmark suite for serverless com-
puting. In: Proceedings of the 14th ACM International Conference on Distributed and Event-based
Systems, pp 73–84. https:// doi. org/ 10. 1145/ 34010 25. 34017 38

 30. Bschitter: benchmark-suite-serverless-computing (2021). https:// github. com/ Bschi tter/ bench mark-
suite- serve rless- compu ting Accessed 24 Dec 2021

 31. Eismann S, Costa DE, Liao L, Bezemer C-P, Shang W, van Hoorn A, Kounev S (2021) A case study
on the stability of performance tests for serverless applications. arXiv: 2107. 13320 [cs]

 32. Tzenetopoulos A, Apostolakis E, Tzomaka A, Papakostopoulos C, Stavrakakis K, Katsaragakis M,
Oroutzoglou I, Masouros D, Xydis S, Soudris D (2021) FaaS and curious, performance implications
of serverless functions on edge computing platforms. In: Jagode H, Anzt H, Ltaief H, Luszczek P
(eds) High performance computing. Lecture notes in computer science. Springer Cham, pp 428–
438. https:// doi. org/ 10. 1007/ 978-3- 030- 90539-2_ 29

https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-us/services/iot-hub/
https://doi.org/10.1109/UCC-Companion.2018.00053
https://doi.org/10.18293/SEKE2021-129
https://doi.org/10.14738/tnc.94.11231
https://doi.org/10.1145/3423211.3425680
https://www.purestorage.com/content/dam/pdf/en/analyst-reports/ar-portworx-pure-storage-2021-kubernetes-adoption-survey.pdf
https://www.purestorage.com/content/dam/pdf/en/analyst-reports/ar-portworx-pure-storage-2021-kubernetes-adoption-survey.pdf
https://doi.org/10.3390/computers10100130
https://doi.org/10.1007/s10723-021-09570-2
https://doi.org/10.1109/WF-IoT48130.2020.9221340
https://k3s.io/
http://microk8s.io
https://www.cncf.io/certification/software-conformance/
https://www.cncf.io/certification/software-conformance/
https://doi.org/10.1007/s10723-020-09523-1
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1002/smr.2394
https://doi.org/10.1016/j.jss.2020.110708
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://doi.org/10.1145/3401025.3401738
https://github.com/Bschitter/benchmark-suite-serverless-computing
https://github.com/Bschitter/benchmark-suite-serverless-computing
http://arxiv.org/abs/2107.13320
https://doi.org/10.1007/978-3-030-90539-2_29

13754 V. Kjorveziroski, S. Filiposka

1 3

 33. Kjorveziroski V, Filiposka S, Trajkovik V (2021) Serverless platforms performance evaluation at
the network edge. In: 13th ICT Innovations Conference 2021 Skopje, North Macedonia

 34. Wang I, Liri E, Ramakrishnan KK (2020) Supporting IoT applications with serverless edge clouds.
In: 2020 IEEE 9th International Conference on Cloud Networking (CloudNet), pp 1–4.https:// doi.
org/ 10. 1109/ Cloud Net51 028. 2020. 93358 05

 35. Agarwal S, Rodriguez MA, Buyya R (2021) A reinforcement learning approach to reduce serverless
function cold start frequency. In: 2021 IEEE/ACM 21st International Symposium on Cluster Cloud
and Internet Computing (CCGrid), pp 797–803. https:// doi. org/ 10. 1109/ CCGri d51090. 2021. 00097

 36. Wang B, Ali-Eldin A, Shenoy P (2020) LaSS, running latency sensitive serverless computations at
the edge. In: Proceedings of the 30th International Symposium on High-Performance Parallel and
Distributed Computing, pp 239–251. Association for Computing Machinery New York. https:// doi.
org/ 10. 1145/ 34313 79. 34606 46

 37. Eiermann A, Renner M, Großmann M, Krieger UR (2017) On a fog computing platform built
on ARM architectures by docker container technology. In: Eichler G, Erfurth C, Fahrnberger G
(eds) Innovations for community services. Communications in computer and information science.
Springer, Cham, pp 71–86. https:// doi. org/ 10. 1007/ 978-3- 319- 60447-3_6

 38. Kim J, Lee K (2019) FunctionBench, a suite of workloads for serverless cloud function service.
In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp 502–504. IEEE
Milan, Italy. https:// doi. org/ 10. 1109/ CLOUD. 2019. 00091

 39. kmu-bigdata/serverless-faas-workbench. BigData Lab. in KMU (2021). https:// github. com/ kmu-
bigda ta/ serve rless- faas- workb ench Accessed 09 May 2021

 40. Aslanpour MS, Toosi AN, Cicconetti C, Javadi B, Sbarski P, Taibi D, Assuncao M, Gill SS, Gaire
R, Dustdar S (2021) Serverless edge computing, vision and challenges. In: 2021 Australasian Com-
puter Science Week Multiconference. ACSW ’21, pp 1–10. Association for Computing Machinery
New York, NY, USA. https:// doi. org/ 10. 1145/ 34373 78. 34443 67

 41. OpenFaaS—Serverless Functions Made Simple with Kubernetes. https:// www. openf aas. com/
Accessed 26 April 2021

 42. Knative. https:// knati ve. dev/ Accessed 10 April 2021
 43. Nuclio. https:// nuclio. io/ Accessed 27 April 2021
 44. Kubeless. https:// kubel ess. io/ Accessed 26 April 2021
 45. openfaas/faas. OpenFaaS (2021). https:// github. com/ openf aas/ faas Accessed 26 Dec 2021
 46. Autoscaling - OpenFaaS. https:// docs. openf aas. com/ archi tectu re/ autos caling/ Accessed 26 Dec

2021
 47. Nguyen T-T, Yeom Y-J, Kim T, Park D-H, Kim S (2020) Horizontal Pod autoscaling in kubernetes

for elastic container orchestration. Sensors 20(16):4621. https:// doi. org/ 10. 3390/ s2016 4621
 48. Container Storage Interface (CSI) for Kubernetes GA (2019). https:// kuber netes. io/ blog/ 2019/ 01/ 15/

conta iner- stora ge- inter face- ga/ Accessed 26 Dec 2021
 49. Kumar R, Trivedi MC (2021) Networking analysis and performance comparison of kubernetes

CNI plugins. In: Bhatia SK, Tiwari S, Ruidan S, Trivedi MC, Mishra KK (eds) Advances in com-
puter communication and computational sciences. Advances in intelligent systems and computing.
Springer, Singapore, pp 99–109. https:// doi. org/ 10. 1007/ 978- 981- 15- 4409-5_9

 50. Kubespray—Deploy a Production Ready Kubernetes Cluster. https:// kubes pray. io/#/ Accessed 26
Dec 2021

 51. Galal H, Introduction to K3s. https:// www. suse. com/c/ ranch er_ blog/ intro ducti on- to- k3s/ Accessed
18 Feb 2022

 52. K3s System Requirements. https:// ranch er. com/ docs/ k3s/ latest/ en/ insta llati on/ insta llati on- requi
remen ts/ Accessed 17 Feb 2022

 53. Kubeadm System Requirements. https:// kuber netes. io/ docs/ setup/ produ ction- envir onment/ tools/
kubea dm/ insta ll- kubea dm/ Accessed 17 Feb 2022

 54. High availability (HA) | MicroK8s. http:// micro k8s. io Accessed 18 Feb 2022
 55. MicroK8s System Requirements. http:// micro k8s. io Accessed 17 Feb 2022
 56. MicroK8s 1.23 Release Notes. https:// github. com/ ubuntu/ micro k8s/ relea ses Accessed 27 Dec 2021
 57. OpenFaaS Helm Chart for Kubernetes. https:// github. com/ openf aas/ faas- netes Accessed 26 Dec

2021
 58. Dogan J (2021) rakyll/hey. https:// github. com/ rakyll/ hey Accessed 26 Dec 2021
 59. Park J, Kim H, Lee K. (2020) Evaluating concurrent executions of multiple function-as-a-service

runtimes with MicroVM. In: 2020 IEEE 13th International Conference on Cloud Computing

https://doi.org/10.1109/CloudNet51028.2020.9335805
https://doi.org/10.1109/CloudNet51028.2020.9335805
https://doi.org/10.1109/CCGrid51090.2021.00097
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1145/3431379.3460646
https://doi.org/10.1007/978-3-319-60447-3_6
https://doi.org/10.1109/CLOUD.2019.00091
https://github.com/kmu-bigdata/serverless-faas-workbench
https://github.com/kmu-bigdata/serverless-faas-workbench
https://doi.org/10.1145/3437378.3444367
https://www.openfaas.com/
https://knative.dev/
https://nuclio.io/
https://kubeless.io/
https://github.com/openfaas/faas
https://docs.openfaas.com/architecture/autoscaling/
https://doi.org/10.3390/s20164621
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/
https://doi.org/10.1007/978-981-15-4409-5_9
https://kubespray.io/#/
https://www.suse.com/c/rancher_blog/introduction-to-k3s/
https://rancher.com/docs/k3s/latest/en/installation/installation-requirements/
https://rancher.com/docs/k3s/latest/en/installation/installation-requirements/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
http://microk8s.io
http://microk8s.io
https://github.com/ubuntu/microk8s/releases
https://github.com/openfaas/faas-netes
https://github.com/rakyll/hey

13755

1 3

Kubernetes distributions for the edge: serverless performance…

(CLOUD), pp 532–536. IEEE Beijing, China. https:// doi. org/ 10. 1109/ CLOUD 49709. 2020. 00080.
https:// ieeex plore. ieee. org/ docum ent/ 92843 20/ Accessed 17 Feb 2022

 60. Ustiugov D, Petrov P, Kogias M, Bugnion E, Grot B. (2021) Benchmarking, analysis, and optimiza-
tion of serverless function snapshots. In: Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, pp 559–572. ACM
Virtual USA. https:// doi. org/ 10. 1145/ 34458 14. 34467 14. Accessed 17 Feb 2022

 61. Chadha M, Jindal A, Gerndt M (2021) Architecture-specific performance optimization of compute-
intensive FaaS functions. arXiv: 2107. 10008. Accessed 17 Feb 2022

 62. Choi J, Lee K (2020) Evaluation of network file system as a shared data storage in serverless com-
puting. In: Proceedings of the 2020 Sixth International Workshop on Serverless Computing, pp
25–30. ACM Delft Netherlands. https:// doi. org/ 10. 1145/ 34298 80. 34300 96. Accessed 17 Feb 2022

 63. Zhao L, Yang Y, Li Y, Zhou X, Li K (2021) Understanding, predicting and scheduling serverless
workloads under partial interference. In: Proceedings of the International Conference for High Per-
formance Computing Networking Storage and Analysis. SC ’21, pp 1–15. Association for Comput-
ing Machinery New York, NY, USA. https:// doi. org/ 10. 1145/ 34588 17. 34762 15. Accessed 16 Feb
2022

 64. of-watchdog. OpenFaaS (2021). https:// github. com/ openf aas/ of- watch dog Accessed 26 Dec 2021
 65. korvoj/k8s-distributions-iot-edge: Kubernetes distributions for the edge, serverless performance

evaluation. https:// github. com/ korvoj/ k8s- distr ibuti ons- iot- edge Accessed 18 Feb 2022
 66. faasd - OpenFaaS. https:// docs. openf aas. com/ deplo yment/ faasd/ Accessed 28 Feb 2022
 67. Patman J, Chemodanov D, Calyam P, Palaniappan K, Sterle C, Boccia M (2020) Predictive cyber

foraging for visual cloud computing in large-scale IoT systems. IEEE Trans Netw Serv Manag
17(4):2380–2395. https:// doi. org/ 10. 1109/ TNSM. 2020. 30104 97

 68. Cho C, Shin S, Jeon H (2020) QoS-aware workload distribution in hierarchical edge clouds. A rein-
forcement learning approach. IEEE Access 8. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30334 21

 69. Prometheus: Prometheus—Monitoring system & time series database. https:// prome theus. io/
Accessed 26 Dec 2021

 70. Prometheus: Alertmanager | Prometheus. https:// prome theus. io/ docs/ alert ing/ latest/ alert manag er/
Accessed 26 Dec 2021

 71. Performance—OpenFaaS. https:// docs. openf aas. com/ archi tectu re/ perfo rmance/ Accessed 26 Dec
2021

 72. OpenFaaS Endpoint Load-Balancing. https:// github. com/ openf aas/ faas- netes Accessed 26 Dec 2021

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/CLOUD49709.2020.00080
https://ieeexplore.ieee.org/document/9284320/
https://doi.org/10.1145/3445814.3446714
http://arxiv.org/abs/2107.10008
https://doi.org/10.1145/3429880.3430096
https://doi.org/10.1145/3458817.3476215
https://github.com/openfaas/of-watchdog
https://github.com/korvoj/k8s-distributions-iot-edge
https://docs.openfaas.com/deployment/faasd/
https://doi.org/10.1109/TNSM.2020.3010497
https://doi.org/10.1109/ACCESS.2020.3033421
https://prometheus.io/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://docs.openfaas.com/architecture/performance/
https://github.com/openfaas/faas-netes

	Kubernetes distributions for the edge: serverless performance evaluation
	Abstract
	1 Introduction
	2 Background and related work
	2.1 The relationship between Kubernetes and serverless
	2.2 Related work

	3 Methodology
	3.1 Benchmarks selection
	3.2 Serverless platform selection
	3.3 Kubernetes distribution selection
	3.4 Execution strategy
	3.5 Reproducibility and extensibility

	4 Results
	4.1 The problem with the cold start delay
	4.2 Serial execution performance
	4.3 Parallel execution without automatic replica scaling
	4.4 Parallel execution with automatic replica scaling
	4.4.1 OpenFaaS native automatic replica scaling
	4.4.2 Leveraging the Kubernetes horizontal pod autoscaler

	5 Discussion and conclusion
	6 Threats to validity
	Acknowledgements
	References

