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Abstract
This paper presents HDNN, a proof-of-concept MLIR dialect for cross-platform 
computing specialized in deep neural networks. As target devices, HDNN supports 
CPUs, GPUs and TPUs. In this paper, we provide a comprehensive description of 
the HDNN dialect, outlining how this novel approach aims to solve the P3 problem 
of parallel programming (portability, productivity, and performance). An HDNN 
program is device-agnostic, i.e., only the device specifier has to be changed to run 
a given workload in one device or another. Moreover, HDNN has been designed to 
be a domain-specific language, which ultimately helps programming productivity. 
Finally, HDNN relies on optimized libraries for heavy, performance-critical work-
loads. HDNN has been evaluated against other state-of-the-art machine learning 
frameworks on all the hardware platforms achieving excellent performance. We con-
clude that the ideas and concepts used in HDNN can be crucial for designing future 
generation compilers and programming languages to overcome the challenges of the 
forthcoming heterogeneous computing era.

Keywords  High-performance computing · LLVM · MLIR · Heterogeneous 
computing · Domain-specific languages · Deep neural networks

1 � Introduction and motivation

One of the most important factors in the fast evolution of computer science in 
recent years is the performance improvement in CPUs, which has been devel-
oped and vastly improved over time. While Moree’s law was true, the center of 
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attention in computer architecture was always the CPU. Since Moore’s law has 
ended [6], we need to find new ways to keep enhancing the performance of com-
puters, either with or without the help of CPUs. This trend change opens a vast 
number of opportunities [8].

Thus, the new direction in computer architecture is looking for alternative 
architectures, like graphics processing units (GPUs), field-programmable gate 
arrays (FPGAs), or domain-specific accelerators (DSAs). Accelerators can offer 
orders of magnitude improvements in performance and energy efficiency com-
pared to CPUs  [3]. A specialized core can perform the operations for which it 
has been designed much more efficiently than a general-purpose core. Nowadays, 
computing systems based on heterogeneous chips include general-purpose cores, 
graphics processing units, and other specialized accelerator cores (FPGAs and 
DSAs) in the same chip.

In addition to heterogeneous computing, another recent dramatic irruption is 
machine learning, specifically deep learning. Since the first applications of deep 
neural networks (DNNs) to speech recognition and image processing, the impor-
tance of DNNs has grown exponentially. Many data centers and companies have 
opted for using DSAs for deep learning  [11], which offer the performance and 
power efficiency needed to support the machine learning workloads nowadays. 
The appearance of multiple devices of execution has created a problem in paral-
lel programming languages often known as P3  [21]. We need programming lan-
guages to provide portability, productivity and performance among target devices 
in heterogeneous environments.

This paper presents heterogeneous deep neural network (HDNN), a proof-of-
concept MLIR dialect for deep neural networks. HDNN currently supports con-
volution and softmax layers along with basic I/O functionality. HDNN is built 
with a compiler based on MLIR (which we refer to as hdnn-opt). HDNN gen-
erates code for CPUs, GPUs and TPUs, a domain-specific accelerator for machine 
learning.

HDNN programs are portable thanks to our MLIR-based ecosystem, following an 
idea of progressive lowering of high-level, device-agnostic to low-level operations, 
device-specific operations. Regarding productivity, HDNN allows programming 
using a single device-agnostic source code language using MLIR. Furthermore, 
HDNN uses optimized libraries for performance-critical operations achieving com-
petitive performance against state-of-the-art approaches. Moreover, this approach 
has negligible overhead and thus allows for taking advantage of the full potential of 
the underlying libraries.

HDNN is a step forward in the P3 solution by providing:

•	 Portability: because each hardware device needs different programming lan-
guages and frameworks, software complexity grows exponentially. Specifically, 
to run a given program in n heterogeneous devices, software developers need 
n different source codes, one for each device. However, HDNN source code is 
written once and can be targeted to three devices (CPUs, GPUs and TPUs). In 
other words, HDNN source code is device-agnostic and can be launched to any 
of the supported devices seamlessly.
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•	 Productivity: heterogeneous languages often suffer from being too complex for 
the developer, reducing the productivity of software development. HDNN is a 
dialect for deep neural networks, and one of its design principles is simplicity. 
Softmax and convolution layers have been developed with domain-specific func-
tionality, so HDNN is inherently easier to use than other languages and frame-
works in the deep learning area.

•	 Performance: most state-of-the-art heterogeneous languages often provide worse 
performance than native programming. This issue is commonly referred to as 
performance portability. HDNN relies on optimized libraries for the heavy, per-
formance-critical workloads to achieve it. Internally, HDNN uses the best-per-
formant libraries for the deep learning field (oneDNN and cuDNN). Therefore, 
HDNN provides the best-known performance for each architecture.

The rest of this paper is organized as follows: Sect.  2 presents the background of 
accelerators and heterogeneous languages, LLVM and MLIR frameworks. In 
Sect. 3, we present the HDNN frontend, describing our proposed dialect at the pro-
grammer level. In Sect.  4, we present the HDNN backend, outlining how HDNN 
works “under the hood”. Section 5 evaluates HDNN from three points of view: port-
ability, productivity and performance. Our proposal is compared to two state-of-the-
art reference machine learning frameworks for the latter. Finally, Sect. 6 concludes 
the paper and gives some hints for future work.

2 � Background and related work

2.1 � Heterogeneous hardware and software

GPUs are the most common kind of accelerator. They are used for many domains 
(like graphics processing or deep learning). In the next iteration, in terms of spe-
cialization, we find FPGAs. For certain applications, FPGAs offer even better per-
formance and efficiency than GPUs. Domain-specific accelerators (DSAs), also 
referred to as application-specific integrated circuits (ASICs), are the best in terms 
of specialization. To understand the importance of accelerators nowadays, we only 
need to look at the variety of accelerators available for each domain, like the Cer-
ebras accelerator [17] or the tensor processing unit (TPU) [11] in the deep learning 
area.

From a software standpoint, the management of this heterogeneity is a challenge. 
Each hardware device works differently and is coded with specific languages, so per-
formance is achieved following different approaches. Therefore, we seek software 
solutions that offer performance, portability and productivity ( P3) [21]. To manage 
the programming of the heterogeneous device, one approach is to have languages 
that allow running a program in different hardware devices using a unified source 
code. This way, software only needs a single-source code base for each device (CPU, 
GPU, etc.). In such a case, we say that the language is portable. The problem with 
these languages is that they are often too complex for the developer, reducing soft-
ware development productivity. The learning curve to master one of these languages 
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is relatively high, which may be a barrier for new developers. Moreover, most of 
these languages often provide worse performance than native programming, which 
is commonly referred to as performance portability. An application is performant-
portable when it achieves good performance on all the hardware platform that the 
application supports.

The problem known as P3 [21, 25] is to develop a language that is portable and 
productive and provides performance portability. This problem is usually a trade-
off [25] because it is impossible to get the best of the three worlds at the same time. 
Some frameworks and libraries have appeared trying to solve the P3 problem. Some 
examples are: oneAPI [2], PHAST [20], OpenCL [23], HPVM [13] and Kokkos [5].

2.2 � LLVM and MLIR

Regarding compilers, one of the de facto standards for building compilers is 
LLVM [14] or the more recent MLIR [15]. LLVM is a collection of modular com-
piler and toolchain technologies [14]. One of its goals is to provide a compiler infra-
structure that compiles from and to an intermediate representation (IR). Intermediate 
representation is a program representation that sits between the source code and the 
compiled program. In the case of LLVM IR, it is based on static single assignment 
(SSA), which provides many important features in compilation workflows. The IR 
provides a lot of flexibility in the compilation process, which further translates into 
different optimizations. LLVM has been used for different applications in academia 
(HPVM [13] or Glow [22]) and industry (oneAPI [2], OpenCL [23] or XLA [16]). 
Furthermore, the idea of using optimized libraries to enhance the performance of 
applications using LLVM has also been studied [4].

One of the latest sub-projects of LLVM is MLIR [15]. A key difference between 
both is that MLIR introduces the idea of multilevel IR. Instead of translating source 
code to LLVM IR directly, MLIR offers a framework to do a progressive lowering of 
the IR. This way, IR starts from a high-level IR representation that gets transformed 
into lower-level IR at each compiler pass. This is known as progressive lowering. 
Those transformations are technically referred to as transformation passes. Each of 
the transformation passes modifies the IR with different goals. Thanks to this step-
by-step transformations, the high-level semantics of the high-level code is preserved 
during IR transformations.

Even though MLIR was released recently, it already has had a significant impact 
since many projects use it in fields like image processing  [7], quantum comput-
ing [19], or polyhedral compilation [12].

3 � HDNN frontend

The hdnn dialect provides a set of operations to work with neural networks, but it 
does not add new data types as it was designed to cooperate with the already exist-
ent data types in MLIR, like the tensor. Currently, the dialect is not particularly 
productive from the programming standpoint because it has to be used directly at the 
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MLIR IR level. For that reason, the hdnn dialect is not designed as a user-friendly 
DSL. We leave for future work to design and implement a top-level DSL to ease the 
programming task.

3.1 � HDNN operations

The hdnn dialect provides three kinds of operations: operations for creating regions, 
operations for the deep learning domain, and auxiliary operations. The only opera-
tion available for creating regions is hdnn.launch. The launch encompasses an 
MLIR region that may contain any operation. Those operations will be launched 
to the device specified in the operation argument. For deep learning, the hdnn dia-
lect currently provides two layers: softmax and convolution. Both layers can only 
work in inference mode since they implement the feedforward phase. Finally, hdnn 
provides auxiliary functions to print an arbitrarily sized tensor, create an arbitrarily 
sized tensor with random data (useful to fill the layers with data), and an operation 
to mark the end of an MLIR function. hdnn operations are detailed in Table 1.

3.2 � HDNN programming

In addition to the hdnn dialect, the HDNN compiler supports the tensor, aff-
ine, memref, and standard dialects. In essence, this means that the programmer 
can use any of these dialects to build an HDNN compliant program. However, the 
normal procedure in an HDNN program is to use only the hdnn and the tensor 
dialects, while the rest of them are only used in further lowering passes.

Running a layer in HDNN is straightforward, as can be seen in Fig. 1. The first 
operation corresponds to the launch operation. This operation dictates the device 
in which the computations will be executed (in the example, the GPU is selected). 
Then, random 3D tensors are generated. After that, the convolution layer is exe-
cuted and the output is used by the softmax. Note that the MLIR code inside the 
launch operation is simple but, more importantly, device-agnostic. Only the hdnn.
launch operation parameter must be modified to change the target device. At the 
moment, one limitation of HDNN launch operations is that they cannot be mixed 
together as they are treated as completely different tasks. Thus, the current imple-
mentation dictates that only the data created inside a region can be used. Still, it is 
not possible to use data from another region or data created outside of the region.

HDNN programming is straightforward because the function calls hide the com-
plexity of an HDNN program. This makes sense because programmers often do 
not need to know or modify the code of a neural network layer. Furthermore, other 
common constructions like conditions or control flow can still be used in HDNN. 
One of the strengths of HDNN is the fact that data are stored in tensors, which are 
extremely flexible (following the MLIR idea, they are expressed in a very-high-level 
way). Thus, connecting different layers in HDNN is straightforward, as shown in 
Fig. 1.
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4 � HDNN backend

The HDNN backend architecture is built up of two components. The first one is 
the HDNN compiler (which we refer to as hdnn-opt), and the second one is the 
HDNN runtime (composed by the CPU, GPU and TPU runtimes).

4.1 � HDNN architecture

The HDNN compilation flow is depicted in Fig. 2. First, the HDNN compiler trans-
forms the MLIR code to LLVM. The original MLIR code suffers different modifica-
tions (partial lowering) before being converted to the LLVM IR code. This code is 
then compiled to an object file using clang. The HDNN runtime is written in C++, 
so it can also be compiled to object files using any compiler. Finally, object files 
are linked into a single binary file. Depending on the original MLIR code, the final 
binary file is executed on CPU, GPU or TPU. However, as it is tied to a specific 

func @main() -> i32 {
hdnn.launch {dev = "gpu"} {

%imgs = hdnn.random () : tensor <10x1x28x28xf32 >
%weig = hdnn.random () : tensor <20x1x5x5xf32 >
%bias = hdnn.random () : tensor <20xf32 >

%cout = "hdnn.conv"(%imgs , %weig , %bias) :
(tensor <10x1x28x28xf32 >, tensor <20x1x5x5xf32 >,
tensor <20xf32 >) -> tensor <10x20x24x24xf32 >

%sout = "hdnn.softmax"(%cout) : (tensor <10x20x24x24xf32 >) ->
tensor <10x20x24x24xf32 >

hdnn.print %sout : tensor <10 x20x24x24xf32 >
}
hdnn.return

}

Fig. 1   HDNN program that runs the convolution and softmax layer in GPU

Fig. 2   HDNN compilation flow
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device, different devices cannot execute the MLIR code concurrently. Nonetheless, 
thanks to the HDNN design, this limitation could be eliminated easily to allow co-
execution, which is a promising line for future work.

4.2 � HDNN compilation process (lowering)

An HDNN program has to be lowered to transform the HDNN high-level IR code 
(MLIR) to a lower-level IR (LLVM). The lowering process is divided into three dif-
ferent passes, as depicted in Fig. 2.

4.2.1 � First transformation pass

The first pass (marked as 1◦ in Fig. 2) takes as input the HDNN source file. In this 
file, operations are used inside the launch operation, so they are device-agnostic. 
The main goal is to replace device-agnostic with device-specific operations. For this 
task, the HDNN dialect has not only device-agnostic operations but also device-spe-
cific ones. For example, for the convolution, HDNN has the device-agnostic hdnn.
conv and the device-specific hdnn.conv.cpu, hdnn.conv.gpu, and hdnn.
conv.tpu. The multi-level nature of MLIR is convenient in this case; it is very 
interesting for heterogeneous compiling, as multilevel IR can transform a generic 
IR to one that is device-specific. In addition to the mentioned transformations, this 
pass also adds the operation hdnn.init_gpu when a launch operation on GPU is 
detected (explained in the following pass). Another objective is to lower high-level 
data types to lower-level ones, e.g., the tensor data type is lowered to the mem-
ref dialect to work with lower-level operations, like loads and stores.

When the pass has finished, only the affine, memref, and standard dialects 
are legal. Lastly, the hdnn dialect is said to be dynamically legal because not all the 
operations in the dialect are legal, just the device-specific operations generated by 
the compiler in the current pass. These device-specific operations are not available 
to the user as only the compiler can generate them. Note that the MLIR code gener-
ated in this pass is no longer device-agnostic since we have already specialized the 
operations to target a specific device. We leave for future work to experiment with 
more sophisticated approaches, like dynamically selecting the device depending on 
the system’s load, thus allowing co-execution.

4.2.2 � Second transformation pass

The input of the second pass (marked as 2◦ in Fig. 2) is the output of the previous 
one, which contains deep learning device-specific operations (neural network lay-
ers). The device-specific operations found in this pass have to be lowered. To do so, 
the hdnn-opt inserts calls to the HDNN runtime, which uses optimized libraries 
for running the layers. Depending on the layer and the device selected, the compiler 
also inserts calls to initialize the library used to do the computations. Data types 
used by the library also have to be initialized, and the compiler generates the IR 
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code at this moment. It is worth noting that when this pass has finished, only the 
mlir-llvm dialect is legal.

The rest of the transformations performed by the second pass are dependent on 
the device being targeted:

•	 CPU lowering: this lowering is the easiest because there are no memory move-
ments. Thus, the compiler inserts the calls to the CPU runtime to lower the code 
when the CPU is selected.

•	 GPU lowering: when the IR contains GPU-specific operations (e.g., a convolu-
tion launched to the GPU), the compiler needs to provide mechanisms for data 
management between CPU and GPU. For this duty, MLIR provides a GPU dia-
lect. During the second pass, the compiler generates GPU operations (that are 
part of the gpu dialect). However, the gpu dialect operations cannot be con-
verted to mlir-llvm.1 Our approach to circumvent this problem is to do a 
transitive lowering of the gpu dialect. Therefore, these operations (part of the 
gpu) are immediately lowered to other lower-level operations instead of leaving 
them to be translated in a further pass (transitive lowering). Another important 
thing to do is to lower the hdnn.init_gpu operation. This HDNN operation 
aims to initialize both a CUDA stream and a cuDNN handler. This operation is 
lowered in this pass, and it is done by calling the HDNN GPU runtime, which 
will take care of this.

•	 TPU lowering: even though we use a specific dialect to handle the GPU, we do 
not follow the same approach for TPU. The gpu dialect is used to manage mem-
ory allocations and memory transfers between CPU and GPU. Following this 
idea, there should be a dialect for the TPU, but there is no TPU dialect in stand-
ard MLIR, and we did not design it either. This decision comes from a limitation 
in the TPU runtime of HDNN. Currently, the memory allocation and movement 
in the TPU are managed implicitly, so it does not make sense to have a dialect 
that can express these operations as they cannot be executed using our current 
TPU runtime. The TPU lowering inserts calls to the TPU runtime, which handles 
both the memory and the computations in the TPU. A lower-level TPU runtime, 
along with a tpu dialect, would allow explicit memory management, as well as 
other optimizations.

4.2.3 � Third transformation pass

The last pass (marked as 3◦ in Fig.  2) transforms the mlir-llvm into LLVM. 
This transformation is an automated process managed entirely by MLIR. Thus, the 
HDNN compiler invokes the appropriate MLIR function to do it. The output of this 
pass is LLVM code, which will be further compiled with the HDNN runtime into 
the executable file.

1  While it has been discussed if this is how it should work or not, at the moment of writing, converting 
the gpu dialect to mlir-llvm is not possible.
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4.3 � HDNN runtime

The HDNN runtime consists of one generic runtime and three device-specific runt-
imes: the CPU, GPU and TPU runtimes. The generic runtime is executed on the 
CPU. It provides functions for time measurements (useful for the evaluation) and 
functions for generating random floating-point values, which are called when the 
operation hdnn.random is used.

The HDNN runtime essentially acts as a middleware between the LLVM code 
generated by MLIR and the corresponding optimized library. Each runtime defines 
custom functions to operate with the corresponding library. These functions are used 
by the LLVM IR code, as depicted in Fig. 3. The HDNN compiler needs to generate 
function definitions for all of the functions defined in the runtime to connect LLVM 
and the libraries. These definitions are not linked when the LLVM code is generated 
since they reference functions that do not exist in the LLVM code. They are linked 
when the LLVM code is compiled altogether with the HDNN runtime, because the 
device-specific runtime is the one that provides the needed functions.

The device-specific runtimes provide two functions: to manage library-specific 
data structures and run the softmax and convolution layers. They delegate the layers’ 
computation to the optimized libraries to do so. We chose the best-performant deep-
learning library for each device. oneDNN is used for the CPU runtime, cuDNN for 
the GPU runtime, and PyTorch for the TPU runtime. The case of the TPU is differ-
ent because there is no optimized, ready-to-use library, as is the case of oneDNN 
and cuDNN. We explored different alternatives like PyTorch, TensorFlow or XLA. 
PyTorch and TensorFlow provide an easy interface to run any layer on the TPU, but 
they only work with Python (both libraries offer limited support with languages dif-
ferent than Python). Therefore, to use TPUs from HDNN, we designed a TPU runt-
ime that takes the inputs from HDNN, sends them to a Python code, and returns the 
data to HDNN coming from Python. This Python code uses PyTorch to run the lay-
ers on the TPU and XLA to communicate with the TPU itself. However, running a 
layer using PyTorch directly only makes use of 1 TPU core. Thus, we implemented 
a basic algorithm inside the TPU runtime to parallelize the code among the TPU 
cores. The algorithm follows an allreduce scheme, which is a common approach 

Fig. 3   HDNN example lowering with runtime communication
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in the distributed DNN execution [1]. Essentially, the number of batches is divided 
between the number of TPU cores (data parallelism), and the master core gathers the 
partial results into a single one at the end of the execution.

5 � Evaluation

In this section, we evaluate how portable, productive and performance portable 
HDNN is ( P3).

5.1 � Portability and productivity

Figure  1 shows how the same code can be executed in different devices only by 
changing the device specifier. This feature demonstrates the portability of HDNN 
across different hardware devices.

Regarding productivity, we compared the complexity of an HDNN program with 
other alternatives. However, comparing a program complexity is yet not something 
purely objective. Different metrics have been proposed over time, but here we will 
use the lines of code of a program for simplicity. Before calculating the lines of 
code, non-essential lines (blank lines, comments) were removed, allowing for a fair 
comparison. We compared DeepDSL [26], a DSL for deep learning, and oneAPI [2] 
against HDNN. We use three basic programs executing softmax, convolution, and 
both as a testbed. The evaluated programs for oneAPI were based on previous 
work [18], and the DeepDSL programs were manually built from scratch. Table 2 
summarizes the results. HDNN and DeepDSL needed similar lines, while oneAPI 
required more. This result emphasizes that HDNN source code is straightforward so 
that good productivity can be achieved with it, in the line of existent DSL.

5.2 � Performance portability

This section compares the performance using the internal HDNN library against 
using a machine learning framework. This analysis is not meant to be a comparison 
of machine learning frameworks but instead to shed a bit of light on the competitive-
ness of HDNN concerning already existent approaches. In CPU and GPU, HDNN 
was compared against Caffe, and in the TPU, against PyTorch. For the first compari-
son, we developed custom softmax and convolution implementations using oneDNN 
and cuDNN. Essentially, these programs create tensors with random data and call 
the appropriate libraries. This way, the overhead caused by the communication 

Table 2   Source lines of code 
(SLOC) measured in different 
programming languages

Layer HDNN DeepDSL oneAPI

Softmax 7 13 60
Convolution 9 13 78
Both 10 14 80
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between HDNN and the corresponding runtime could be measured. For the second 
comparison, we developed tiny testing programs using Caffe and PyTorch. The per-
formance evaluation was accomplished using only the feedforward phase, as the cur-
rent HDNN implementation does not support backpropagation.

5.2.1 � Test bed

The evaluation platform was divided into two parts. On the one hand, we have the 
CPU and GPU hardware platform, which was equipped with a double-socket Cas-
cade Lake Intel Xeon Gold 6238 and a Turing NVIDIA RTX 2080 Ti. On the other 
hand, we have the TPU hardware platform, which was equipped with a TPUv2. 
Hardware details for the CPU, GPU and TPU used are shown in Table 3.

The CPU and GPU system ran on a CentOS 8.2 (4.18.0 kernel). LLVM was 
downloaded from the official Git repository, obtaining the code corresponding to the 
commit cf72768. We used this LLVM version to build HDNN. Our custom imple-
mentations of softmax and convolution examples of oneDNN and cuDNN were built 
using gcc 8.3.1. Furthermore, we used oneDNN version 1.9.6 and cuDNN version 
8.2.4. Caffe testing programs were developed using the Caffe release in the official 
Git repository with commit 99bd997. For the TPU, we used a Cloud TPU service 
in Google Cloud Platform. This system ran on a Debian 10 (4.19.0-14 kernel). In 
this case, we used the same LLVM version to build the HDNN compiler, and for the 
TPU backend we used Python 3.7 and PyTorch 1.9.

The evaluation was performed using simple precision data types. It is impor-
tant to note that the TPU was designed to work in half precision, so its potential is 
reduced in this scenario, compared to the CPU and the GPU. We leave for future 
work the support of half precision workloads, which would make much better use of 
TPUs and other machine learning accelerators.

Table 3   Hardware specifications for the testbed environment (per chip)

1 A single TPUv2 board contains 4 TPU chips with 2 TPU cores each.
2While maximum frequency is 3.7 GHz, real frequency when the CPU is using all the cores and running 
AVX-512 code is 2.1 GHz. Therefore, we used 2.1 GHz to calculate the peak performance

CPU (Intel) GPU (NVIDIA) TPU (Google) [9, 10]

Model Xeon Gold 6238 RTX 2080 Ti TPUv2
Release date Q2 2019 Q3 2018 Q2 2017
Manufacturing process 14 nm 12 nm 16 nm
TDP 140 W 250 W 280 W
Configuration 2 Chips per host 1 chip per host 4 chips per host1

Cores/chip (total) 22 (44) 4352 2 (8)
Maximum frequency 3700 MHz2 1545 MHz 700 MHz
Peak performance (SP) 2.95 TFLOP/s 13.44 TFLOP/s 3.00 TFLOP/s
Memory size (on-chip) 30.25 MB L3 5.5 MB L3 32 MB
Memory type (off-chip) DDR4 2933 MHz GDDR6 1750 MHz HBM
Memory bandwidth (off-chip) 140.7 GB/s 616.0 GB/s ∼ 600.0 GB/s
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For the performance evaluation, we measured the execution time of each imple-
mentation (given in seconds), taking into account only computation times. Each 
experiment was repeated 5 times, and the values shown are the average over these 
5 independent runs. For the softmax layer, we run each input during 1000 iterations 
and for the convolution, we run each input during 100 iterations.

5.2.2 � Softmax

For the softmax layer, we designed 4 input sizes expressed in the triple (N,C,W), 
where N is meant to be the number of classifications that softmax needs to calculate, 
C is the number of channels and W is the width of the vector containing the softmax 
data. Input 1 is (2, 10, 6), Input 2 is (200, 100, 600), Input 3 is (2000, 100, 600) and 
Input 4 is (200, 100, 6000).

Performance results are shown in Table 4. It is worth noting that Caffe was com-
piled using openBLAS since it achieved better results than MKL.2 In cuDNN, the 
CUDNN_SOFTMAX_ACC​URA​TE algorithm was used (both for HDNN and the 
cuDNN test program) to avoid possible overflows when computing the softmax. 
When we compared the performance achieved by HDNN against the optimized 
libraries (oneDNN and cuDNN), we found that HDNN achieves the same perfor-
mance as using the libraries directly. Therefore, we omitted the results in the tables 
for brevity. As we theorized before, we can conclude that HDNN suffers no over-
head when communicating to the specialized backends.

Except for the first input, HDNN achieves speedup near or bigger than 5x com-
pared with Caffe in CPU. The performance degradation in the first input comes from 
the fact that this input is tiny. For bigger workloads, HDNN consistently outper-
forms Caffe. In GPU, HDNN is around 1.5x faster than Caffe for all input except the 
first, reaching 15x. Finally, the results in TPU are very similar to the ones obtained 
by PyTorch.

Table 4   Execution time of the softmax layer in CPU, GPU and TPU (in seconds)

Input CPU GPU TPU

HDNN Caffe (open-
BLAS)

Speedup HDNN Caffe 
(cuDNN)

Speedup HDNN PyTorch Speedup

1 0.237 0.001 0.01× 0.001 0.015 15.0× 0.990 0.950 0.96×
2 33.32 151.88 4.55× 0.562 0.821 1.46× 1.220 1.248 1.02×
3 263.4 1529.1 5.80× 5.123 7.482 1.46× 31.69 31.88 1.06×
4 333.1 1554.5 4.66× 4.482 7.727 1.59× 30.31 30.25 0.99×

2  MKL outperformed openBLAS for all the operations needed in the softmax layer except for the divi-
sion, which ran very slow compared to openBLAS.
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5.2.3 � Convolution layer

For the convolution layer, we designed a set of inputs based on real neural networks, 
for which we used the Sze et al. survey [24]. In this evaluation, we set the number of 
batches to 100 for all inputs. Inputs 1 and 2 are representative of the MNIST dataset. 
Although the MNIST dataset images are gray scale, we also tried using color images 
(3 channels instead of 1). Thus, the Input 1 size is 28 × 28 × 1, and Input 2 is 28 × 28 
× 3. Both have 5 × 5 filters, but Input 1 has 20 filters, and Input 2 has 50. Inputs 3, 
4, and 5 represent AlexNet networks (input sizes 227 × 227 × 3 with 96 filters, and 
filter sizes of 3 × 3, 5 × 5, 11 × 11, respectively). Input 6 is based on ResNet (input 
size of 224 × 224 × 3, with 64 7 × 7 filters).

We used the direct convolution algorithm in oneDNN (CPU), the only available 
algorithm that worked. In cuDNN, we used cudnnGetConvolutionForward-
Algorithm to automatically get the fastest algorithm for the convolution in each 
case. We used this approach for HDNN and the cuDNN test program. In HDNN, 
the best algorithm is queried once and is used for all the iterations. According to 
this function, the best algorithm was IMPLICIT_GEMM for input 1, IMPLICIT_
PRECOMP_GEMM for inputs 2,3,4 and 6, and FFT_TILING for input 5.3

Convolution performance results are shown in Table 5. We evaluated the perfor-
mance using oneDNN and cuDNN directly, and we did not appreciate any nega-
tive impact on the performance in this case either, so we also omitted the results of 
oneDNN and cuDNN. In both the CPU and the CPU, HDNN achieves significant 
enhancements against Caffe, which highlights the fact that HDNN is competitive, 
thanks to the use of optimized libraries. As happened with the softmax layer, HDNN 
performs similarly to PyTorch. Therefore, we believe that the TPU-distributed algo-
rithm implemented in the TPU runtime and the use of PyTorch-optimized primitives 
effectively take advantage of the full power of the TPU.

Table 5   Execution time of the convolution layer in CPU, GPU and TPU (in seconds)

Input CPU GPU TPU

HDNN Caffe (MKL) Speedup HDNN Caffe 
(cuDNN)

Speedup HDNN PyTorch Speedup

1 0.101 0.505 5.01× 0.004 0.132 30.0× 1.016 1.063 1.05×
2 0.145 1.029 7.08× 0.012 0.162 13.2× 0.902 0.944 1.05×
3 0.145 1.029 7.08× 1.288 1.720 1.33× 2.226 2.227 1.02×
4 7.091 9.561 1.34× 1.550 2.094 1.35× 2.001 2.018 1.01×
5 7.898 13.722 1.73× 4.158 5.801 1.39× 5.130 5.229 1.02×
6 14.428 39.663 2.74× 1.157 2.120 1.83× 3.102 3.100 1.00×

3  The full name of the algorithms (which always starts with CUDNN_CONVOLUTION_FWD_ALGO_) 
was omitted for brevity.
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In the light of the results, we can conclude that HDNN achieves competitive 
results against other machine learning frameworks. Even though a given HDNN 
program is only written once, it can be targeted to different hardware devices with-
out any changes, and it also provides solid performance results.

6 � Conclusions and future work

Heterogeneous computing is the future but also the present in computer architec-
ture. However, heterogeneous language proposals often suffer worse performance 
than native programming. While they provide a unified language for heterogeneous 
computing, they fail to provide reliable performance.

In this work, we have proposed HDNN, a deep learning MLIR dialect for hetero-
geneous computing. HDNN provides a unified interface to run softmax and convolu-
tion layers, executed on x86_64 CPUs, NVIDIA GPUs and Google TPUs. Overall, 
HDNN provides:

•	 An unified language for deep learning in heterogeneous environments. Using dif-
ferent hardware devices is easy since the source code is the same, and only the 
device specifier has to be changed to select the desired device.

•	 Excellent performance. Our experiments show that HDNN is execution time 
competitive, thanks to the underlying optimized libraries.

With HDNN, we have shown a novel approach to the P3 problem. HDNN is pro-
gramming portable as its code is device-agnostic. To provide programming produc-
tivity, DSLs could be used, as they hide the complexity of specific domains. Lastly, 
we have demonstrated that HDNN is also performance portable using the best exist-
ing implementation for each device and workload, reusing specialized engineers’ 
work. This approach is the complete opposite of a common idea in heterogeneous 
computing, trying to compile a unique code efficiently for multiple platforms. This 
goal is hard to fulfill because it is very complex to generalize a code to run it on 
completely different devices.

We plan to design a high-level DSL for HDNN to improve its productivity and 
usability for future work. Another relevant improvement to HDNN is implementing 
other essential layers in DNNs, like fully-connected and activation layers. By doing 
so, we could run complete neural network architectures. While the range of hard-
ware covered by HDNN is decent, we also aim to support other hardware, especially 
FPGAs. To do so, we would not seek to generate device-specific code from HDNN 
but instead to run already implemented, optimized routines on the FPGA. Finally, 
a good research line is to add a scheduler to HDNN, allowing the co-execution of a 
program in several devices.
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