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Abstract
Most path planning algorithms choose path length as the evaluation criterion for 
algorithm performance. However, considering the driving and environmental costs, 
the car’s fuel consumption is also critical. This paper proposes an improved A* 
algorithm based on fuel consumption. Because there are driving stages and idling 
stages in the driving process, the latter mainly occurs when the car meets the red 
lights. Accordingly, we make the same improvement to the A* algorithm; the fuel 
consumption of each part corresponds to the composition of the evaluation func-
tion of the A* algorithm. Finally, we use the abstract map and set different red light 
proportions to compare the algorithm’s performance. The experimental results show 
that with the red light proportion increase, the improved A* algorithm can reduce 
the fuel consumption by up to 16.949% compared with the original A* algorithm.

Keywords  A* algorithm · Path length · Idling fuel consumption · Red light 
proportion

1  Introduction

Path planning is a common problem in any road network [26, 30]. In recent years, 
the vehicle ownership has increased dramatically, and the proliferation of vehicle 
numbers has led to the increasing significance of path planning. Choosing a non-
optimal path will not only increase travel costs and lead to congestion problems, 
which significantly impact people’s daily life [16, 18]. To this end, how to resolve 
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the path planning problem, choosing an optimal path has become a top priority now 
[12].

Path length has been considered a critical factor in most path planning algorithms 
about vehicles [13, 20]. The most common is the ant colony algorithm [33] and the 
A* algorithm [29]. Ant colony algorithm is one of the algorithms based on swarm 
intelligence [32]. The idea of ant colony algorithm is to simulate ant’s behavior, 
which is often used in solving optimization problems [1, 24, 27]. A* algorithm is a 
typical heuristic search algorithm. The search in the state space evaluates the loca-
tion of each search, gets the best location, and then searches from this location to the 
target location [8, 14, 17]. The advantage of the A* algorithm is that by introduc-
ing the heuristic function as the auxiliary decision-making information for moving 
to the target location, it is unnecessary to expand all the expansion locations when 
looking for the successor location, which reduces a lot of unnecessary searches and 
saves the time for path planning. In addition, the flexible form of the A* algorithm 
has good results in various application scenarios, the most common being pathfind-
ing in game development and path planning in navigation. The ant colony algorithm 
does not possess these advantages.

Compared with how to efficiently complete the path planning, the practical sig-
nificance of the selected path is equally important. Most path planning algorithms 
still choose the shortest path or the shortest time-consuming path, but this is often 
difficult to achieve in natural driving environments. Considering the complex traffic 
environment and the driving characteristics of the vehicle under different conditions, 
many factors should be taken into account when path planning, such as the fuel con-
sumption of the vehicle [34], the idling time [31], the congestion level of the path 
[5].

We propose an improved A* algorithm based on the above reasons. The improved 
algorithm optimizes the A* algorithm based on retaining the heuristic characteristics 
of the original A* algorithm. At the same time, we define a new fuel consumption 
calculation method, which uses the fuel consumption and proportion of different 
cars. Obtain the mathematical expectation on fuel consumption, and combine it with 
the driving distance to calculate the driving fuel consumption; use the total idling 
time to calculate the idling fuel consumption. Furthermore, the path obtained by the 
improved A* algorithm can effectively reduce fuel consumption. In order to improve 
the authenticity and convenience of the simulation effect, the red light is introduced 
into the map to restore the natural traffic environment. The importance of this study 
is that it explores the relationship between path planning and fuel consumption. This 
not only gives practical significance to the selected algorithm but also conforms to 
the city’s traffic concept, and the resulting paths are also primarily in line with the 
actual choice of the driver.

The rest of the paper is structured as follows. The related work is introduced in 
Sect.  2. The improved ant colony algorithm and A* algorithm are introduced in 
Sect. 3. The next Sect. 4 is the experimental process, we use the abstract maps and 
randomly generate red lights to test the performance of the improved A* algorithm. 
In the last section of the article, we conclude and forward the future research work.
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2 � Related works

A* algorithm is favored by researchers for its unique search advantages and wide 
range of application scenarios. However, the disadvantages of the A* algorithm 
should not be ignored, as the proportion of the heuristic function [6] and the com-
plexity of the environment [3] can affect the algorithm’s performance. To overcome 
the performance limitations of the A* algorithm, many researchers have proposed 
improvement measures. Alazzam et al. [2] change how the A* algorithm searches, 
where the algorithm searches parallelized. Zhang and Xu [36] put a new hybrid algo-
rithm, the advantages of each algorithm are fully utilized. Chen et al. [4] combined 
the A* algorithm with the ant colony algorithm, which greatly improved algorithmic 
efficiency. Tang and Wu [28] applied the hierarchical search method to the A* algo-
rithm plan paths efficiently while avoiding obstacles. While improving the execution 
efficiency of the A* algorithm, more researchers are committed to broadening its 
application fields. Mohammadzadeh et al. [22] uses feature selection for spam detec-
tion and a multi-agent system to optimize the search process of the A* algorithm, 
which eliminates spam more effectively. Min and Xiong [19] present an environ-
ment description method combining global navigation based on the improved A* 
algorithm for autonomous driving vehicles in unstructured environment. Duan and 
Fan [7] propose a hybrid algorithm of adaptive large-scale neighborhood search to 
predict the trajectory of marine debris and determine its location, which reduces the 
cost of positioning and dramatically reduces the search time. Ouyang et al. [21] use 
the A* algorithm for underwater gravity matching navigation, and formed a grid ref-
erence map for adapting the gravity field, effectively overcoming the accumulation 
of inertial navigation system errors caused by long-term underwater navigation.

3 � Proposed algorithms

3.1 � Algorithm A‑the improved ant colony algorithm

Italian scholars in the 1990s first proposed the ant colony algorithm. The original 
purpose of this algorithm is to solve the traveling salesman problem [10, 15].

The main idea of the ant colony algorithm is to simulate the communication 
and cooperation between ants to complete the transportation of food to the nest. 
In looking for food, ants will leave pheromones on the path, and ants will travel 
along the path with a high concentration of pheromones. The dynamic changes of 
the foraging pheromone of the ants who come back early can determine the time 
and direction for the foraging ants to choose the optimal foraging path. In this 
way, the ants behind are usually able to automatically determine the next foraging 
and travel path according to the number and concentration of ant pheromones on 
each path. Under such a positive feedback mechanism, an optimal path is finally 
formed, all ants will select this path to find food. The pathfinding principle of the 
ant colony algorithm is shown in Fig.1.
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As shown in Fig.1, when ant2 and ant4 reach their respective destination, ant1 
and ant3 have not yet reached the destination. Due to the positive feedback mech-
anism, all ants will eventually select the path between ant2 and ant4 . The opti-
mal path is also determined. In using the ant colony algorithm for path selec-
tion, under the role of positive feedback mechanism, the search speed is greatly 
accelerated and has an excellent ability to solve problems. However, the short-
comings of ant colony algorithm cannot be ignored. When faced with a complex 
environment, such as an urban traffic environment, the operation of the whole 
algorithm will become particularly slow. There is no way to obtain the optimal 
solution quickly, which dramatically limits its scope of application [23]. Another 
disadvantage of the ant colony algorithm is that if there is a non-optimal solution 
with high pheromone concentration, other ant colonies will not continue to look 
for other solutions so that they cannot traverse all paths, only obtain the optimal 
local solution, and thus fall into the optimal local solution.

In order to effectively solve the limitations of the ant colony algorithm, we 
have made the following improvements.

In the t iteration, the state transition probability of antk selecting the next point 
j by the point i is:

Where allowk represents the set of all passable path points in the next step, � is the 
information heuristic factor, � is the expected heuristic factor, �ij is the pheromone 
concentration of the path, �ij is the heuristic function, which is usually negatively 
correlated with the distance between the two points. However, in the iterative pro-
cess of the algorithm, due to the increasing number of iterations, it will cause uneven 
distribution of pheromone concentration in the global search, which in turn reflects 
the tendency of pheromone distribution, so this influence factor with the increasing 
number of iterations should be taken into account in the heuristic function. That is,

(1)pk
ij
(t) =

⎧⎪⎨⎪⎩

�
�ij(t)

���
�ij(t)

��
∑

j∈allowk

�
�ij(t)

���
�ij(t)

�� , j ∈ allowk

(a) Initial pathfinding state (b) Ant colony algorithm pathfinding ends

Fig. 1   The pathfinding principle of ant colony algorithm
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dij represents the distance between point i and point j, Rmax represents the maximum 
number of iterations allowed in the search process, Rt represents the current number 
of iterations. This practice considers the iterative boundary problem of the algorithm 
to some extent, makes the heuristic function more practical.

Because the algorithm is only affected by the path length and pheromone, and 
the positive feedback makes the pheromone accumulate continuously, it is con-
ceivable that the pheromone value on the path will become huge when it reaches 
a particular time. It will weaken or even eliminate the role of the heuristic func-
tion. Therefore, every time the ant completes an iterative process, it must be 
updated according to the pheromone update formula. The update rules for the 
original pheromone are

Where � represents the pheromone volatilization coefficient, m represents the total 
number of ants, Δ�ij(t, t + 1) represents the increment of pheromones in cycle(i, j).

In the original ant colony algorithm, � is a constant value. If the value of � 
is significant, although it can accelerate the convergence speed, it is easy to fall 
into the optimal local solution; if the value of � is small, the probability that the 
already explored points are repeatedly explored becomes larger, which reduces 
the convergence speed of the algorithm, so we improve the strategy of pheromone 
volatilization coefficient as follows:

We set the minimum threshold �min for the pheromone volatilization coefficient and 
adjust its volatilization dynamically by piecewise function. Accordingly, we change 
the pheromone update rules as follows.

lhistory represents the optimal historical path, lcurrent represents the current optimal 
path length. After ants finish each iteration, if lhistory >lcurrent , it means that the path 

(2)�ij(t) =
1

dij
∗
Rmax − Rt

Rmax

(3)�ij(t + 1) =(1 − �)�ij(t) + Δ�ij(t, t + 1)

(4)Δ�ij(t, t + 1) =

m∑
k=1

Δ�k
ij
(t, t + 1)

(5)𝜌(t) =

{
0.9𝜌(t − 1) 0.9𝜌(t − 1) > 𝜌min

𝜌min otherwise

(6)�min =0.1

(7)�ij(t + 1) =(1 − �(t)) ⋅ �ij(t) + Δ�ij(t, t + 1) + liter

(8)liter =
lhistory − lcurrent

lcurrent
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of this iteration is shorter, and should strengthen the concentration of pheromone 
of this iteration and preserve the optimal path of this iteration; on the contrary, if 
lhistory < lcurrent , it means that the path found in this iteration is not the shortest, and 
should reduce the concentration of pheromone of this path. In this way, we intro-
duce the path length factor into the pheromone update rules, making the pheromone 
update rules more in line with the search process.

According to the different methods of solving �ij(t) , there are usually three 
solving models: ant-cycle model, ant-quantity model and ant-density model. 
Because of the rigor of the ant-cycle model, it is often used to solve the problem 
in practice.

In the ant-cycle model, the pheromone intensity released by ants through a 
specific cycle is fixed, that is,

Where Q represents the pheromone intensity, Lk represents the total length of the 
path taken by antk.

The process of the improved ant colony algorithm can be expressed as follows.
Among them, Rt represents the current number of iterations, Rmax represents 

the maximum number of iterations allowed, m represents the total number of 
ants, pointmax represents the total number of coordinate points in the map, and L 
is the final path obtained. 

After the algorithm finds the optimal path, we calculate the length of the 
optimal path, denoted as predist , as an essential parameter for the subsequent 
algorithm.

(9)Δ�k
ij
(t, t + 1) =

{
Q

Lk
, if antk pass the path in cycle (i, j)

0, otherwise
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3.2 � Algorithm B‑the improved A* algorithm based on fuel comparison

A* algorithm is a heuristic search algorithm. It starts from the starting, searches 
for the locations adjacent to the starting, and then uses the evaluate function 
to judge and select the best-extended location as the starting of the following 
search, and continues to expand until the target is found. Because every step in 
the search process selects the location with the lowest cost, the resulting path 
must be the optimal path.

The evaluation function is the core part of the heuristic search. An appropri-
ate evaluation function will significantly speed up the acquisition of the optimal 
path [25].

The evaluation function of A* algorithm is:

Where n refers to the current location, G(n) refers to the actual cost from the starting 
to location n, and H(n) is the estimated cost from location n to the target.

In the pathfinding process of the A* algorithm, it is generally necessary to 
construct two tables: OPEN table and CLOSED table. The OPEN table stores 
the locations that have been estimated, and the role of the CLOSED table is to 
store the extended locations that do not need to be concerned.

We use a more specific picture to illustrate the pathfinding principle of the A* 
algorithm, as shown in Fig.2.

The blue rectangle in Fig.2 represents the starting point, the green rectan-
gle represents the endpoint, the black area represents the impassable area, and 
the rectangle marked with a red circle inside represents the following moveable 
location. Each rectangle around the starting point represents a selectable loca-
tion for the next step. The default horizontal and vertical distance between two 
adjacent rectangles is 10, and the diagonal distance is 14. The number in the 
lower-left corner of each rectangle represents the distance between itself and 
the starting point, which is calculated as Euclidean distance; the number in the 
lower right corner represents the distance between itself and the endpoint, which 
is calculated as Manhattan distance; the number in the upper left corner is the 
sum of the two, which is the total cost of the A* algorithm. The A* algorithm 
will choose the location with the lowest total cost. After calculation, it is found 
that the total cost of the rectangle in the upper right corner and the lower right 
corner of the starting point is equal, so they can be used as the moving location 
that can be selected for the next step of the starting point.

It is undeniable that the original A* algorithm has some disadvantages. The 
guidance of the heuristic function removes the locations containing unknown 
information to some extent, which may cause path deadlock. At the data struc-
ture level, the maintenance of the OPEN table is also a critical issue that affects 
the algorithm’s performance. Therefore, we have to improve the algorithm to 
meet the needs of the problem.

(10)F = G(n) + H(n)
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3.2.1 � Optimization of OPEN table storage structure

When expanding the CLOSED table during the searching process, we first need 
to find a corresponding point with the lowest F value in the OPEN table as we use 
abstract maps. The storage structure of the OPEN table typically selects a linked 
list or an array. The time spent during various operations will grow as the storage 
capacity increases. This paper selects another structure, the minimum heap.

The binary tree implements the minimum heap. The value of each child point 
in the tree is greater than its parents, so this will make the point with the lowest 
value always at the top of the tree. The process has a time complexity of O(log n) , 
compared to the original complexity of O(n) , which greatly reduces the time 
spent of the algorithm. There is another advantage that cannot be neglected. It is 
more convenient to insert or delete the point. It can be put in a suitable location 
relatively few times when inserting the point. When deleting the point, the top 
has the lowest value, and the last point is used as a supplement.

(a) Initial state

(b) The next location to be selected

Fig. 2   The pathfinding principle of the A* algorithm
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3.2.2 � The use of hash table

In the process of A* search, the next step of searching requires the selection and judg-
ment of adjacent points, and it is necessary to determine whether these points exist in 
the OPEN table, which is usually achieved by traversal of the OPEN table. When the 
amount of points is too large, this operation can severely limit the algorithm’s perfor-
mance. For this reason, this paper proposes to create a hash table to store the mark 
value of the point in the OPEN table. It only needs to visit the elements corresponding 
to the point coordinates to judge the belonging of the members in the OPEN table.

The basic principle of the hash table is key-value mapping. The key value key is 
converted into a valid number Num through a specially designed calculation [11], 
called the hash function, and then the value is stored in the storage space marked by the 
number. The general hash function can be expressed as follows:

The principle of the hash function is shown in Fig.3.
In the application of this paper, when the coordinates of a point is (temp_x, temp_y) , 

the hash function can be represented as:

Formula (12) is the data retrieval formula to find the planning point from the hash 
table according to the key value, where M is usually a prime with the same length as 
the hash table.

Considering the secondary conflict, the definition of the secondary hash function 
should also be simple. There is:

(11)Num = f (key)

(12)f (key) =
(
temp−x + temp−y

)
%M

(13)f (key) =
(
temp−x + temp−y + p

)
%M

Fig. 3   The principle of hash function
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Where p represents the offset, thus, we can resolve the secondary conflict issues. 
The hash table dramatically reduces the resource waste caused by the algorithm.

3.2.3 � The selection of distance calculation method

There are usually three ways to calculate the distance, Manhattan distance, Euclid-
ean distance, and Diagonal distance, shown in Fig.4.

3.2.3.1  Manhattan distance  We assume that the current point is 
(
current−x, current−y

)
 , 

and the target point is 
(
goal−x, goal−y

)
 , then the Manhattan distance disManhattan is: 

Because Manhattan distance calculates the sum of the absolute difference 
between the horizontal and vertical coordinates, the algorithm will search in a 
broader range when performing the search, resulting in the results may be greater 
than the actual value of the optimal path.

3.2.3.2  Euclidean distance  The specific formula of Euclidean distance disEuclidean is 
as follows: 

The Euclidean distance is shorter than the Manhattan distance, the probability of 
obtaining the optimal path is high, but the calculation involves square root opera-
tions, making the calculation very cumbersome.

3.2.3.3  Diagonal distance  As seen above, we can see that although the finding effi-
ciency of Manhattan distance is high, the path quality is low; the Euclidean distance 
is just the opposite. So we choose the diagonal distance and achieve a balance of both. 
The diagonal distance disDiagonal can be expressed as:

Based on the highlights of diagonal distance, this paper chooses to calculate the 
distance. To be consistent, the ant colony algorithm in the previous section also 
chooses the diagonal distance as the distance calculation.

3.2.4 � Calculation of driving fuel consumption

Figure 5 shows the 100 kilometers of driving fuel consumption and its proportion of 
vehicles with different emissions. The data is collected from China’s vehicle market 
different products focus on proportion displacement in June and July 2012 [35].

(14)disManhattan =
(
current−x − goal−x

)
+
(
current−y − goal−y

)

(15)disEuclidean =

√(
current−x − goal−x

)2
+
(
current−y − goal−y

)2

(16)l(n) =min
(
current−x − goal−x, current−y − goal−y

)

(17)disDiagonal =
√
2 × l(n) +

�
dismanhattan − 2 × l(n)

�
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As we all know, driving fuel consumption is related to driving distance. Then 
we can replace the driving fuel consumption according to the overall average level 
of driving fuel consumption of vehicles with different emissions, that is, mathe-
matical expectations. We use Econsumption to express expectations, Fuelconsumption for 
the fuel consumption, and Provehicle for the proportion of vehicles, then there are:

Fig. 4   Three common distances

(a) Manhattan distance

(b) Euclidean distance

(c) Diagonal distance
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(a) Different vehicle emissions and corresponding proportion

(b) Different vehicle emissions and corresponding driving fuel consumption

Fig. 5   The 100 kilometers driving fuel consumption and its proportion of vehicles with different emis-
sions
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When the driving distance of the vehicle is disdriving , then the driving fuel consump-
tion ldriving can be expressed as:

3.2.5 � Calculation of idling fuel consumption

The idling fuel consumption is a positive correlation to the idling time [9]. We 
assume that the total idling time of the vehicle in the driving process is tidling , the 
idling fuel consumption of the vehicle is Fuelidling , then the idling fuel consumption 
lidling during driving can be expressed as:

3.2.6 � Calculation of the cost of the improved A* algorithm

For the improved A* algorithm based on fuel consumption, assuming that the diago-
nal distance from the starting to the current location n is S1 , then the actual cost G(n) 
is:

In the same way, when the diagonal distance from the current location n to the end-
point is S2 , the estimated cost H(n) is:

Among them, S2 becomes smaller gradually, and the initial value of S2 is smaller 
than predist . Because the proportion of H(n) in the initial stage of the algorithm 
is much more significant than G(n), the algorithm will gradually degenerate to a 
breadth-first search algorithm. By setting such parameters, we can appropriately 
reduce the proportion of H(n) in the initial stage of the algorithm so that the propor-
tion of H(n) and G(n) will not differ too much to ensure the characteristics of the 
algorithm itself.

The total cost F at this time is:

lcur−idling represents the idling fuel consumption so far, calculated in the same way as 
above.

(18)Econsumption =
∑

Provehicle ∗ Fuelconsumption

(19)ldriving = Econsumption ∗ disdriving

(20)lidling = Fuelidling ∗ tidling

(21)G(n) = Econsumption ∗ S1

(22)H(n) =Econsumption ∗ S2 ∗ f
(
S2
)

(23)f
(
S2
)
= log2

(
1 + e

S2

predist
−1
)

(24)F = G(n) + H(n) + lcur−idling
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The process of the improved A* algorithm based on fuel consumption is shown 
as follows. 

4 � Experimental simulations

In order to confirm the effectiveness of the proposed algorithms, we test the algo-
rithms through simulation experiments. The hardware environment and software 
environment adopted in the experiment are as follows: (1)Operating System: Ubuntu 
18.04; (2)Processor: AMD Ryzen 7 4800H with Radeon Graphics; (3)Memory: 
16GB; (4)GPU: NVIDIA 2060M. First of all, we analyze the improved ant colony 
algorithm; after we apply the abstract map to simulate the traffic environment, we 
randomly add red lights to the map to test the performance of the improved A* algo-
rithm. Finally, we provide a comprehensive evaluation of the experimental results 
(Fig. 6)

The specific flow chart for solving the problem is as follows:

4.1 � Verify the improved ant colony algorithm

In order to achieve the purpose of comparison, we use different maps to simulate. 
We set the starting point and endpoint unchanged and changed the distribution of 
obstacles. We conducted a total of five sets of comparative experiments (Table 1).
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Fig. 6   The flow chart of the path 
planning problem

Table 1   Parameter settings of 
the ant colony algorithm

Original expression Initial value

� 1
� 5
R
max

300
Rt 1
� 0.9
�
min

0.1
Q 1
m 50
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Among them, the initialization of each parameter in the ant colony algorithm 
is as follows:

After the parameter initialization is completed, we will compare the original 
ant colony algorithm and the improved ant colony algorithm from the following 
two aspects.

4.1.1 � Comparison of path length and smoothness

The gray area in the figure represents the obstacles, and the white area represents 
the passable area. Among them, the red trajectory represents the path of the origi-
nal ant colony algorithm, the black trajectory represents the path of the improved 
ant colony algorithm, and the blue trajectory represents the overlapping part of 
the two algorithm paths. The pathfinding results of the first group of comparative 
experiments are shown in Fig.7 (Figs. 8, 9, 10 and 11).

Similarly, the pathfinding results of the other four groups of comparative 
experiments are:

After five groups of comparative experiments, it can be found that the 
improved ant colony algorithm has a significant improvement in path length and 
path smoothness, which not only avoids many unnecessary path deviations but 
also enhances the overall path quality. From this point of view, the improved ant 
colony algorithm has a more practical significance for the next step of integration 
with the A* algorithm.

Fig. 7   The pathfinding results of the first map distribution
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Fig. 8   The pathfinding results of the second map distribution

Fig. 9   The pathfinding results of the third map distribution
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Fig. 10   The pathfinding results of the fourth map distribution

Fig. 11   The pathfinding results of the fifth map distribution
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4.1.2 � Comparison of pathfinding time

We compare the algorithm time of the above five groups of experiments (Table 2).
From the above results, we can see that the improved ant colony algorithm has 

an apparent improvement in total time, which proves that the improved ant colony 
algorithm has a better performance.

4.2 � Verify the improved A* algorithm

In the experiments, we randomly generate red lights to test the performance of 
the improved A* algorithm.

For calculation purposes, the horizontal and vertical moving cost for each step 
in the map is equivalent to 100m in practice. To simplify the problem, we assume 
that the idling time at each red light is the same, equating the idling fuel con-
sumption at each red light as the mathematical expectation of driving fuel con-
sumption multiplied by the moving cost for each step. Namely, the idling fuel 
consumption at each red light is equivalent to the driving fuel consumption at 
each step. This assumption minimizes the path deviation caused by excessive 
idling fuel consumption setting at each red light. If the setting is too big, the red 
lights will often be avoided when selecting the following location, thus making 
the introduction of red lights meaningless. If the setting is too small, it does not 
play a reference role for path selection at all, which will cause more severe path 
deviation, resulting in the path is not the optimal path. In addition, to ensure the 
quality of pathfinding and avoid many complex calculations, the distance meas-
urement in the A* algorithm also adopts the diagonal distance.

4.2.1 � Comparison of time performance

In order to verify the necessity of each improvement measure in the A* algo-
rithm, we conduct the following comparative experiments. First, for the following 

Table 2   Time performance 
comparison of the ant colony 
algorithm

aThe total time of the original ant colony algorithm.
bThe total time of the improved ant colony algorithm.
cThe improvement in total time.

Original 
algorithm 
time(s)a

Improved 
algorithm 
time(s)b

Improvementc (%)

Experiment 1 12.019 11.564 3.786
Experiment 2 12.475 11.642 6.677
Experiment 3 11.634 10.651 8.449
Experiment 4 11.479 10.259 10.628
Experiment 5 11.281 9.892 12.313
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maps, we set three sets of points to explore the time performance of the algo-
rithm without minimum heap, without hash function, and improved algorithm 
(Table 3).

When the map distribution is as shown in Fig.12, the corresponding pathfind-
ing time in different situations is:

We change the map distribution as shown in Figs.13 and 14, and continue to 
explore the time performance of the improved algorithm.

The results corresponding to Figs.13 and 14 are as follows (Tables 4 and 5).
It can be seen from the above comparison that the time performance of the 

improved algorithm is better than that without minimum heap or hash function. 
The above improvement measures are indispensable.

Fig. 12   The first map distribution

Table 3   Time performance 
comparison of the first map 
distribution

dTime for A* algorithm without minimum heap.
eTime for A* algorithm without hash function.
fTime for A* algorithm with minimum heap and hash function.

Minimum heap 
time(s)d

Hash function 
time(s)e

Improved 
time(s) f

(1,1)->(37,39) 0.37 0.41 0.28
(1,1)->(24,39) 0.32 0.38 0.24
(1,3)->(26,39) 0.34 0.30 0.25
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Fig. 13   The second map distribution

Fig. 14   The third map distribution
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4.2.2 � Comparison of fuel consumption

After verifying the necessity of each improvement measure, we compare the 
improved A* algorithm with the original A* algorithm and the Dijkstra algorithm to 
explore the difference in fuel consumption.

To this end, we set three different red light proportions and points. In order to 
visually compare the differences in the paths, we put the paths of the improved A* 
algorithm and the paths of the other two algorithms on a figure and marked them 
with different colors. Among them, the green trajectory represents the path of the 
original A* algorithm, the orange trajectory represents the path of the improved A* 
algorithm, the purple trajectory represents the path of the Dijkstra algorithm, and 
the red trajectory represents the overlapping part of the paths of different algorithms.

When the red light proportion is �1 , the pathfinding results of the first set of points 
are shown in Fig.15.

When the red light proportion is �1 , the pathfinding results of the second set of 
points are shown in Fig.16.

When the red light proportion is �1 , the pathfinding results of the third set of 
points are shown in Fig.17.

After getting the path, we count the number of red lights in the different paths 
above (Tables 6, 7, 8 and 9). There are:

The total fuel consumption can be calculated from formula (24), that is:
We continue to increase the proportion of red lights, recorded as �2 and �3 , and 

the corresponding fuel consumption is:

Table 4   Time performance 
comparison of the second map 
distribution

dTime for A* algorithm without minimum heap.
eTime for A* algorithm without hash function.
fTime for A* algorithm with minimum heap and hash function.

Minimum heap 
time(s)d

Hash function 
time(s)e

Improved 
time(s) f

(1,1)->(37,39) 0.22 0.26 0.14
(1,1)->(24,39) 0.29 0.25 0.18
(1,3)->(26,39) 0.24 0.21 0.17

Table 5   Time performance 
comparison of the third map 
distribution

dTime for A* algorithm without minimum heap.
eTime for A* algorithm without hash function.
fTime for A* algorithm with minimum heap and hash function.

Minimum heap 
time(s)d

Hash function 
time(s)e

Improved 
time(s) f

(1,1)->(37,39) 0.29 0.31 0.21
(1,1)->(24,39) 0.37 0.43 0.26
(1,3)->(26,39) 0.32 0.35 0.23
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4.3 � Overall evaluation

We comprehensively evaluate the experimental results, as shown in Figs.18 and 19.
Based on the above comparison, it can be seen that compared with the original A* 

algorithm and Dijkstra algorithm, the improved A* algorithm based on fuel consump-
tion proposed by us significantly reduces the total fuel consumption. At the same time, 
the complexity of the abstract map restores the actual traffic environment to a certain 
extent, so the selected path is convenient to be applied to the actual environment.

(a) The pathfinding results of the improved A* algorithm and original A* algorithm

(b) The pathfinding results of the improved A* algorithm and Dijkstra algorithm

Fig. 15   The pathfinding results of the first set of points
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5 � Conclusion and future works

In this paper, an improved A* algorithm based on fuel consumption is pro-
posed, combining the characteristics of the A* algorithm with the calculation 
method of fuel consumption to find the corresponding optimal path. In order 
to facilitate the simulation, we simplify the abstract map and introduce the red 
light to restore the natural traffic environment. Statistics and analysis show that 
it has high feasibility and good performance. As the proportion of red lights 

(a) The pathfinding results of the improved A* algorithm and original A* algorithm

(b) The pathfinding results of the improved A* algorithm and Dijkstra algorithm

Fig. 16   The pathfinding results of the second set of points
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increases, when the abstract map is getting closer and closer to the actual traffic 
environment, the improved A* algorithm can reduce fuel consumption by up to 
16.949% compared with the original A* algorithm. However, several limitations 
of our study need to be addressed in future investigations. The restoration of 
the actual traffic environment is not accurate enough, and factors such as traffic 
congestion need to be considered. The improved A* algorithm also has a certain 
complexity and needs to be further optimized. Future research should consider 

(a) The pathfinding results of the improved A* algorithm and original A* algorithm

(b) The pathfinding results of the improved A* algorithm and Dijkstra algorithm

Fig. 17   The pathfinding results of the third set of points
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Table 6   Red lights comparison 
of the first red light proportion

gThe total number of red lights passed by the original A* algorithm.
hThe total number of red lights passed by the Dijkstra algorithm.
iThe total number of red lights passed by the improved A* algo-
rithm.

Original red 
lightsg

Dijkstra red 
lightsh

Improved 
red lights i

The first set of points 9 4 3
The second set of points 4 3 2
The third set of points 2 1 0

Table 7   Total fuel consumption 
comparison of the first red light 
proportion

jThe total fuel consumption of the original A* algorithm.
kThe total fuel consumption of the Dijkstra algorithm.
lThe total fuel consumption of the improved A* algorithm.

Original 
consumption(ml) j

Dijkstra 
consumption(ml)k

Improved 
consumption(ml)l

617.669 597.936 569.994
257.628 264.926 247.306
269.178 281.661 264.041

Table 8   Total fuel consumption 
comparison of the second red 
light proportion

jThe total fuel consumption of the original A* algorithm.
kThe total fuel consumption of the Dijkstra algorithm.
lThe total fuel consumption of the improved A* algorithm.

Original 
consumption(ml) j

Dijkstra 
consumption(ml)k

Improved 
consumption(ml)l

652.933 592.928 578.804
240.008 238.672 229.686
278.011 287.391 266.541

Table 9   Total fuel consumption 
comparison of the third red light 
proportion

jThe total fuel consumption of the original A* algorithm.
kThe total fuel consumption of the Dijkstra algorithm.
lThe total fuel consumption of the improved A* algorithm.

Original 
consumption(ml) j

Dijkstra 
consumption(ml)k

Improved 
consumption(ml)l

617.534 536.316 512.980
248.818 239.150 232.958
304.418 293.664 276.500
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the potential effects of traffic conditions more carefully, thereby more accurately 
calculating idling time and idling fuel consumption. In the following work, we 
will focus on reducing the algorithm’s complexity so that the conclusion has 
general applicability.

Fig. 18   Overall evaluation of the improved A* algorithm and original A* algorithm

Fig. 19   Overall evaluation of the improved A* algorithm and Dijkstra algorithm
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Appendix A List of variables and abbreviations

See Tables 10 and 11

Table 10   The meaning of 
variables and abbreviations in 
the ant colony algorithm

Original expression Meaning

antk The kth ant
allowk The set of all passable points
� The information heuristic factor
� The expected heuristic factor
�ij The pheromone concentration of the path
�ij The heuristic function
dij The distance between i and j
R
max

The maximum number of iterations
Rt The current number of iterations
� The pheromone volatilization coefficient
lhistory The historical optimal path
lcurrent The current optimal path length
Q The pheromone intensity
Lk The total length of the path taken by antk
m The total number of ants
point

max
The total number of points in the map

predist The length of the optimal path

Table 11   The meaning of variables and abbreviations in the A* algorithm

Original expression Meaning

G(n) The actual cost from the starting to location n
H(n) The estimated cost from location n to the endpoint
M The prime with the same length as the hash table
disManhattan The Manhattan distance
disEuclidean The Euclidean distance
disDiagonal The diagonal distance
Econsumption The expectations about fuel consumption
Provehicle The proportion of vehicles
Fuelconsumption The fuel consumption
disdriving The driving distance
ldriving The driving fuel consumption
lidling The idling fuel consumption
tidling The idling time in the driving process
S
1

The distance from the starting to the current location n
S
2

The distance from the current location n to the endpoint
lcur−idling The idling fuel consumption from the starting to location n
F The total cost
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