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Abstract
The low-rank matrix completion problem has aroused notable attention in various 
fields, such as engineering and applied sciences. The classical methods approximate 
the rank minimization problem by minimizing the nuclear norm, therefore obtaining 
unsatisfactory results, which may deviate from the true solution. In addition, most 
methods minimize the square error directly, which may be sensitive to the outli-
ers. This paper presents a robust matrix completion model, which is suitable for a 
low sampling rate. First, the truncated nuclear norm is introduced, which is a more 
accurate and robust approximation to the rank function. Then, the Lp-norm may be 
employed as an error function, which provides a robust estimation. Finally, several 
optimization algorithms are employed to solve the model. Numerical simulations 
and experimental data analysis show the effectiveness and advantages of the pro-
posed method. Notably, the algorithm can better approximate rank minimization 
problems and enhance robustness to outliers, especially when the sampling rate 
is very low. The method’s practical potential is illustrated on the MovieLens-1M 
dataset.
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1 Introduction

With the improvement of mathematical theory, the linear representation method has 
formed a nice theoretical framework, which has attracted widespread attention [1, 2]. 
Sparse representation method is one of the most representative method, which has 
been widely employed in various fields, such as signal processing, image processing, 
machine learning, and computer vision [3–5]. For many problems, such as image resto-
ration, super-resolution, visual tracking, image classification and image segmentation, 
sparse representation methods also show its practical potential [6–9]. And low-rank 
matrix completion plays an importance role in sparse low-rank representation.

In recent years, estimating the missing values via the very limited information in an 
unknown matrix has aroused notable interest [10, 11]. Obviously, the completion of 
any matrix is an inappropriate problem, since the number of samples is limited, leading 
to being infinitely many cases for restorable matrices. Therefore, we need some other 
qualifying information to determine which of these candidates is more appropriate. In 
many cases, we hope that the restored matrix has low-rank or approximately low-rank 
features, which means it may be solved by a low-rank matrix completion method.

A typical low-rank matrix completion problem is the Netflix problem. From 2006 
to 2009, Netflix held a data science competition to improve its proprietary movie rec-
ommendation system. The training set is a rating matrix containing approximately 
480,000 users (i.e., rows) and 18,000 movies (i.e., columns), with a total of 8.6 billion 
potential users. Among them, only 1.2% of the scores can be observed, and the goal 
was to predict the remaining 98.8% of the blank items based on the existing data. How 
to use a customer’s ratings of a limited number of movies to predict their preferences, 
and then recommend movies that match their preferences, which is equivalent to infer-
ring unknown elements through the known elements in the matrix. Due to the limited 
factors which may affect customers’ preferences, the matrix is essentially a low-rank 
matrix. Nowadays, matrix completion plays an important role in collaborative filtering, 
recommendation systems, data clustering, video denoising, network coding, medical 
imaging, and other fields, which has become one of the most significant and challeng-
ing tasks in computer vision and machine learning.

Candès and Recht pointed out that the matrix recovery is not as difficult to 
solve as people think [12]. They proved that even if the cardinality of the sam-
ple set is surprisingly small, most low-rank matrices can be accurately recovered 
from a small number of sample entries. More importantly, they proved that a low-
rank matrix completion problem can be solved by minimizing the rank function.

However, due to the non-convexity and discontinuity of the rank function, the 
above-mentioned rank minimization problem is usually NP-hard, and existing 
algorithms cannot solve it directly and effectively. As is well known, the nuclear 
norm is the most common alternative to the rank function. Simultaneously, the 
value of the observed item may not have to be strictly accurate due to noise inter-
ference, therefore we can restore it by minimizing the prediction square error. But 
unfortunately, this kind of method may be very sensitive to outliers.

In this article, we propose a low-rank matrix completion model based on truncated 
nuclear norm and Lp-norm. Different from minimizing the sum of all singular values 
based on the nuclear norm method, a truncated nuclear norm is introduced, which only 
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minimizes min(m, n) − r singular values. In this way, a more accurate and robust approxi-
mation function to the rank function can be obtained. In addition, the Lp-norm is employed 
as the error function to improve the robustness. Therefore, our new goal is to minimize the 
joint truncated nuclear norm and Lp-norm. When p approaches 0, the proposed method 
is more robust and effective than the standard matrix completion method. Although our 
objective function is not a convex problem, an efficient solution based on the alternating 
direction multiplier method has been derived.

In the numerical simulation, experiments are carried out on both synthetic and real 
image data, and evaluations are performed by using relative error (RE) and peak signal-
to-noise ratio (PSNR) indicators. All empirical results show that the presented model is 
better than several state-of-the-art matrix completion methods, especially at low sam-
pling rates. The method efficiency is illustrated on the MovieLens-1M dataset.

All in all, the main contributions of this article are as follows:

1.  A new objective function based on the truncated nuclear norm and Lp-norm is 
proposed for the low-rank matrix completion problem;

2.  Though the optimization objective function is a non-convex and non-trivial prob-
lem, an efficient optimization scheme has been derived to solve this problem.

1.1  Outlines

The remainder of this paper is organized as follows: In the next section, the back-
ground of the matrix completion and some related definitions are provided. In 
Sect. 3, a robust matrix completion model is proposed based on the truncated nuclear 
norm and Lp-norm. An effective optimization scheme is designed in Sects. 4. Sec-
tion 5 conducts the numerical experiments to compare the proposed method with 
existing methods. Finally, Sect. 6 concludes this paper.

1.2  Notations

The set Rn and Rm×n denote the space of n dimensional column vector and the space of 
m × n dimensional matrix, respectively. Lowercase bold letters indicate vectors, while 
uppercase bold letters indicate matrices, with the (i,  j) element of the matrix X being 
expressed as Xij . For a matrix X , rank(X) and Tr(X) denote the rank and the trace of X . 
The Frobenious norm of X is defined as ‖X‖F = (

∑
i

∑
j Xij)

1

2 . The nuclear norm of X is 
denoted as ‖X‖∗ = ∑min(m,n)

i=1
�i , with �i denoting the i-th singular value.

2  Preliminary

2.1  Background

We first describe the low-rank matrix completion problem formally. Let
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where X denotes a matrix, and � denotes the index of the observation matrix ele-
ments, i.e., 𝛺 ⊂ {1, ...,m} × {1, ..., n} . Assuming that we have obtained some obser-
vations, D� , in the low-rank matrix, X , the task of matrix completion is to restore 
the unobserved elements in X . Specifically, the completion problem of X may be 
described by solving the following rank minimization problem as

However, in most cases, due to the non-convexity and discontinuity of the rank 
function, the problem (1) is NP-hard [13], which means it is difficult to be solved 
directly and effectively. Theoretical studies show that the nuclear norm, ‖X‖∗ , i.e., 
the sum of singular values, is the tightest convex lower bound of the rank function. 
Therefore, the nuclear norm is commonly used as the convex replacement of the 
matrix rank function [14]. Thus, problem (1) may be expressed approximately by 
the nuclear norm as

Estimating the low-rank matrix will inevitably be disturbed by noise, such that the 
recovered matrix does not have to perfectly match the corresponding items of the 
observation items. Thus, we relax the constraints of the equation, and problem (2) 
may be described as [15]

where � denotes the penalty parameter. Many researchers have strived to find the 
optimal solution of this problem, deriving a series of related approaches, such as the 
singular value threshold [16] and singular value projection algorithm [17]. In addi-
tion, a variety of objective function have been studied, such as the truncated nuclear 
norm [18], Schatten p-norm [19], and other variants [20–22], which may lead to a 
more accurate estimation.

2.2  Definition of Lp‑Norm

Definition 1 Given a matrix X ∈ Rm×n , the Lp-norm of X is defined as [19]

X� = {Xij|(i, j) ∈ �},

(1)
min
X

rank(X),

s.t.X� = D�.

(2)
min
X

‖X‖∗,
s.t.X� = D�.

(3)min
X

‖X‖∗ + ���X� − D�
��22,

(4)‖X‖p = (

n�
i=1

m�
j=1

�Xij�p)
1

p .



12954 H. Liang et al.

1 3

2.3  Definition of truncated nuclear norm

Definition 2 Given a matrix X ∈ Rm×n , its truncated nuclear norm ‖X‖r is defined as 
the sum of min(m, n) − r smallest singular values, which may be expressed as [18]

where �i denotes the i-th singular value of X.

3  The proposed method

Note that Lp-norm can be regarded as an extension of L2-norm. We, therefore, use 
Lp-norm ( 0 < p ≤ 1 ) to replace L2-norm in problem (3). Employing Lp-norm as an 
error function can effectively enhance the robustness to the outliers [23]. Then, we 
can transform the problem (3) into the following form as

Simultaneously, noting that the value of the largest r non-zero singular values will 
not affect the rank of a matrix, we do not constrain them in the newly designed trun-
cated nuclear norm, and focus on minimizing the remaining min(m, n) − r smallest 
singular values, i.e., convert ‖X‖∗ into the optimization of ‖X‖r , such that problem 
(6) may be transformed into

Since ‖X‖r is non-convex, it is obviously difficult to solve problem (7) directly. To 
handle this issue, the following lemma from [18] is given without proof:

Lemma 1 Given a matrix X ∈ Rm×n , for any matrix A ∈ Rr×m and B ∈ Rr×n that sat-
isfy AAT = Ir×r and BBT = Ir×r , where Ir×r denotes a r-order identity matrix. Thus, 
for any non-negative integer r satisfying r ≤ min(m, n) , it holds [18]

In summary, combining the truncated nuclear norm and Lp-norm, we may rewrite 
the optimization problem (7) as

with A ∈ Rr×m and B ∈ Rr×n . This is our proposed robust model combining Lp-
norm and the truncated nuclear norm (Lp-TNN). The solution scheme of model (9) 
will be detailed in Sect. 4.

(5)‖X‖r =
min(m,n)�
i=r+1

�i,

(6)min
X

‖X‖∗ + ���X� − D�
��pp.

(7)min
X

‖X‖r + ���X� − D�
��pp.

(8)‖X‖r = ‖X‖∗ − max
AA

T=Ir×r ,BB
T=Ir×r

Tr(AXBT ).

(9)min
X

‖X‖∗ − max
AA

T=Ir×r ,BB
T=Ir×r

Tr(AXBT ) + ���X� − D�
��pp,
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4  Efficient implementation

4.1  Three‑steps method to solve problem (9)

For problem (9), we have to solve the problem max
AA

T=Ir×r ,BB
T=Ir×r

Tr(AXBT ) first. 

Inspired by [18], a simple and effective three-step iterative method has been estab-
lished here. Specifically, we first let X(0) = D� as the initial value. Then, in the k-th 
iteration, when X(k) is obtained, A(k) and B(k) may be obtained by the singular value 
decomposition (SVD) procedure, i.e., X(k) = U

(k)
�

(k)
V

(k) , where

with U(k) = (u1, ...um) ∈ Rm×m and V(k) = (u1, ...un) ∈ Rn×n . Then, X(k+1) may be 
updated by solving the following problem

In this way, the maximization problem in minimization can be converted into a 
three-steps iterative process. This process is summarized in Algorithm  1, and the 
stopping criterion will be given in Sect. 4.7.

As can be seen in Algorithm 1, how to effectively solve step 3 is extremely significant. 
Noting that it is still a complex optimization problem, we restate and simplify it as follows

(10)A
(k) = (u1, ...ur)

T ,B(k) = (v1, ...vr)
T ,

(11)min
X

‖X‖∗ − Tr(A(k)
XB

(k)T ) + ���X� − D�
��pp.

(12)min
X

‖X‖∗ − Tr(AXBT ) + ���X� − D�
��pp,
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where A and B are known matrices. It should be noted that ‖X‖∗ and Tr(AXBT ) are 
convex functions, and ‖‖X� − D�

‖‖pp is a concave function, therefore the Augmented 
Lagrangian Method (ALM) and Alternating Direction Multiplier Method (ADMM) 
can be used to optimization. We will describe the solution to problem (12) in Sect. 4.2.

4.2  Augmented lagrangian method to solve problem (12)

Here, we add some equivalent constraints to (12), such that it may be expressed as

The augmented lagrangian function corresponding to the above problem (13) can be 
expressed as

where � 0 denotes the penalty parameter, with � and � denoting the scaled dual variables.
In the interest of brevity, we denote the objective function as f (X) , and the 

two constraints as h(X) = 0 (i.e., h(X) = E� − (X� − D�) ) and g(X) = 0 (i.e., 
g(X) = X −W ). Then, ALM can be used to solve the problem (13), and we summa-
rize the mainly procedure in Algorithm 2.

As may be seen in Algorithm 2, step 2, step 3, and step 4 are relatively easy to 
solve. The main difficulty lies in the solution in step 1. The optimization problem 
that needs to be solved in step 1 can be expressed as

(13)min
X,E�=X�−D� ,X=W

‖X‖∗ − Tr(AWB
T ) + ���E�

��pp.

(14)

L(X,�,�,�,W,E�) = ‖X‖∗ − Tr(AWB
T ) + ���E�

��pp
+

�

2

����E� − (X� − D�) +
1

�
�
����
2

F

+
�

2

����X −W +
1

�
�
����
2

F

,
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It is extremely difficult to accurately minimize X,E�,W in problem (15) simultane-
ously, and the required algorithm’s complexity may be very high. Thus, the alter-
nating direction multiplier method (ADMM) [24] may be employed to simplify the 
problem (15), and we will explain it in detail in Sect. 4.3.

4.3  Alternating direction multiplier method to solve problem (15)

As mentioned above, for the problem (15), it is very difficult to optimize three vari-
ables at the same time, so we employ ADMM to convert this complex problem into 
several sub-problems. Specifically, we may optimize the three variables separately. 
When optimizing for a certain variable, the other two variables will be fixed, leading 
to the following three sub-problems.

– Sub-problem 1: When optimizing X , we fix E� and W . Then, problem (15) may 
be simplified as 

– Sub-problem 2: When optimizing E� , we fix X and W . Then, problem (15) may 
be simplified as 

– Sub-problems 3: When optimizing W , we fix E� and X . Then, problem (15) may 
be simplified as 

In this way, we can transform the complex problem (15) into three simpler sub-prob-
lems. Specific solutions to these sub-problems are given in Sects. 4.4, 4.5, and 4.6 , 
respectively.

4.4  Solution of sub‑problem (16)

We first introduce the definition of singular value threshold operator.

(15)

min
X,E� ,W

‖X‖∗ − Tr(AWB
T ) + ���E�

��pp

+
�

2

����E� − (X� − D�) +
1

�
�
����
2

F

+
�

2

����X −W +
1

�
�
����
2

F

.

(16)min
X

‖X‖∗ + �

2

����E� − (X� − D�) +
1

�
�
����
2

F

+
�

2

����X −W +
1

�
�
����
2

F

.

(17)min
E�

�‖‖E�
‖‖pp +

�

2

‖‖‖‖E� − (X� − D�) +
1

�
�
‖‖‖‖
2

F

.

(18)min
W

−Tr(AWB
T ) +

�

2

‖‖‖‖X −W +
1

�
�
‖‖‖‖
2

F

.
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Definition 3 Consider the SVD of a matrix X ∈ Rm×n of rank r

where U ∈ Rm×r and V ∈ Rn×r denote unit orthogonal matrices, and the i-th sin-
gular values �i are all positive numbers. For given � ≥ 0 , we define the singular 
value threshold operator D� as [16]

Immediately, the following lemma from [16] is given without proof:

Lemma 2 For every � ≥ 0 and a given matrix Y ∈ Rm×n , the singular value thresh-
old operator defined by Definition 3 always satisfies [16]

Then, the problem (16) may be simplifed as

where M� = E� + D� +
1

�
� , N = W +

1

�
�.

Here, we consider another optimization problem first

Let X
�
= {Xij|(i, j) ∉ �} . Then, the optimal solution to problem (22), i.e., X̂ , can be 

expressed as

Exploiting the relationship between problems (21) and (22), the optimal solution of 
problem (21) may be obtained as D 1

�

(X̂) by using Lemma 2. In this way, the iterative 
process of sub-problem (16) may be solved. The k-th iteration process of X can be 
expressed as

where X̂
(k) can be obtained from E(k)

�
,D

(k)

�
,�(k) , and �(k) (see equation (23)).

4.5  Solution to sub‑problem (17)

Problem (17) can be simplified as

(19)X = U�V
T ,� = diag({�i}1≤i≤r),

D�(X) = UD�(�)VT ,D�(�) = diag(max{�i − �, 0}).

(20)D�(Y) = argmin
X

{
1

2
‖X − Y‖2

F
+ �‖X‖∗}.

(21)min
X

‖X‖∗ + �

2
��X� −M�

��2F +
�

2
‖X − N‖2

F
,

(22)min
X

��X� −M�
��2F + ‖X − N‖2

F
.

(23)X̂� =
M� + N�

2
, X̂

�
= N

�
.

(24)X
(k+1) = D 1

�

(X̂
(k)
),
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where C� = X� − D� −
1

�
� . Since each element {Eij|(i, j) ∈ �} of the matrix E� in 

the above problem can be separated and solved separately, one may, reminiscent to 
[19], get the optimized problem for each element

where {Cij|(i, j) ∈ �} denotes the element of the matrix C� and � =
�

�
 ( � 0).

In the interest of brevity, the problem may be rewritten as the following equiva-
lent form

It is easy to know that the objective function �(x) is differentiable when x ≠ 0 , and 
this point is a discontinuous point of the derivative. The symbolic function sgn(x) is 
introduced to represent the first derivative of �(x) when x ≠ 0 , being expressed as

Then, when x ≠ 0 , the first order derivative of �(x) is

Similarly, we can obtain the second and third order derivative of �(x) when x ≠ 0 as

According to the expression of � (3)(x) , we can know that when x 0 , � (3)(x) 0 , which 
means � ��(x) strictly increases monotonically. Also, when x < 0 , 𝜓 (3)(x) < 0 , which 
means � ��(x) is strictly monotonously decreasing. Let � ��(x) = 0 , we can find a con-
stant x0 as follows

We summarize the nature of this function in Table 1. Note that �(0) = 0 holds, we 
may further discuss the objective function �(x) in different situations.

– Case 1: � �(−x0) ≤ 0,� �(x0) ≥ 0.
  In this case, when x < 0 , 𝜓 �(x) < 𝜓 �(−x0) ≤ 0 , which means �(x) is strictly 

monotonously decreasing. And when x 0 , � �(x) � �(−x0) ≥ 0 , meaning �(x) is 

(25)min
E�

�

�
‖‖E�

‖‖pp + 1

2
‖‖E� − C�

‖‖2F,

(26)min
Eij

�|Eij|p + 1

2
|Eij − Cij|2,

(27)min
x

�(x) = �|x|p + 1

2
|x − a|2.

(28)sgn(x) =

{
−1, x < 0,

1, x > 0.

(29)� �(x) = x − a + �p|x|p−1sgn(x).

(30)� ��(x) = 1 − �p(1 − p)|x|p−2,

(31)� (3)(x) = �p(1 − p)(2 − p)|x|p−3sgn(x).

(32)x0 = (�p(1 − p))
1

2−p .
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strictly monotonously increasing. Thus, the optimal solution of problem (27) 
in Case 1 is x∗ = 0.

– Case 2: 𝜓 �(−x0) ≤ 0,𝜓 �(x0) < 0.
  In this case, when x < 0 , 𝜓 �(x) < 𝜓 �(−x0) ≤ 0 , which means �(x) is strictly 

monotonously decreasing. Since 𝜓 �(x0) < 0 , we suppose that when x 0 , 
� �(x) = 0 has two roots x1, x2 ( x1 < x2 ). We use Table  2 to more intuitively 
show the situation of �(x) when x 0.

As can be seen, when x 0 , �(x) ≥ �(x2) , that is, �(x2) is the minimum value 
when x 0 . And x2 is the root of � �(x) = 0 greater than x0 , which becomes a sus-
pected optimal solution of problem (27). Newton’s method [25] can be used to 
iteratively solve the equation � �(x) = 0 to obtain x2 . We can set the initial value to 
2x0 to ensure that the algorithm accurately converge to x2.

Considering all situation comprehensively, the optimal solution to problem 
(27) in Case 2 may be expressed as

– Case 3: � �(−x0) 0,�
�(x0) ≥ 0.

  We follow the ideas of Case 2 to analyze. In this case, �(x) is strictly 
monotonously increasing when x 0 , � �(x) � �(x0) ≥ 0 . Since � �(−x0) 0 , we sup-
pose that � �(x) = 0 has two roots x3, x4 ( x3 < x4 ) when x < 0 . We use Table 3 
to more intuitively show the situation of �(x) when x < 0.

As can be seen, when x < 0 , �(x) ≥ �(x3) , that is, �(x3) is the minimum value 
when x < 0 . And x3 is the root of � �(x) = 0 less than −x0 , which is a suspected 
optimal solution of problem (27). We can also use Newton’s method to iteratively 
solve the equation � �(x) = 0 to obtain x3 . The initial value is recommended to be 
set to −2x0 , ensuring that the algorithm accurately converge to x3.

Considering all situation comprehensively, the optimal solution of problem 
(27) under this condition may be expressed as

– Case 4: 𝜓 �(−x0) 0,𝜓
�(x0) < 0.

  This situation is the combination of Case 2 and Case 3. When 𝜓 �(x0) < 0 , 
according to the analysis result of Case 2, we obtain the minimum value �(x2) 
when x 0 . When � �(−x0) 0 , according to the analysis result of Case 3, we 
obtained the minimum value �(x3) when x < 0 . Among them, the method of 
finding x2 and x3 is consistent with the above two cases. Then, all suspected 
optimal solutions are comprehensively considered, the optimal solution to an 
optimization problem (27) under this condition can be expressed as 

(33)x∗ = argmin
x∈{0,x2}

�(x).

(34)x∗ = argmin
x∈{0,x3}

�(x).
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All in all, we summarize all the cases of the optimization problem (27), such that its 
solution may be expressed as

In this way, sub-problem (17) may also be solved sucessfully.

4.6  Solution to sub‑problem (18)

Exploiting the properties of trace, i.e., Tr(A) = Tr(AT ) and Tr(ABC) = Tr(BCA) , 
problem (18) may be equivalently converted to the following problem as

Adding a constant term, i.e., �
2

‖‖‖
1

�
A
T
B
‖‖‖
2

F
 , the problem (37) may be rewritten as

Then, combining the relationship between the F-norm and trace, the above formula 
may be simplified as

(35)x∗ = argmin
x∈{0,x2,x3}

�(x).

(36)

⎧⎪⎨⎪⎩

𝜓 �(−x0) ≤ 0,𝜓 �(x0) ≥ 0, x∗ = 0,

𝜓 �(−x0) ≤ 0,𝜓 �(x0) < 0, x∗ = argminx∈{0,x2} 𝜓(x),

𝜓 �(−x0)&gt;0,𝜓 �(x0) ≥ 0, x∗ = argminx∈{0,x3} 𝜓(x),

𝜓 �(−x0)&gt;0,𝜓 �(x0) < 0, x∗ = argminx∈{0,x2,x3} 𝜓(x).

(37)min
W

−�Tr(
1

�
A
T
BW

T ) +
�

2

‖‖‖‖W − (X +
1

�
�)

‖‖‖‖
2

F

.
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Table 1  Analysis of �(x)
< −x0 −x0 (−x0, 0) (0, x0) x0 x0

� (3)(x) < 0 0

� ��(x) 0 0 < 0 < 0 0 0

� �(x) ↗ max ↘ ↘ min ↗

Table 2  Analysis of �(x) in 
Case 2

(0, x1) x1 (x1, x0) x0 (x0, x2) x2 x2

� ��(x) < 0 0 0

� �(x) 0 0 < 0 < 0 < 0 0 0

�(x) ↗ max ↘ ↘ ↘ min ↗
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leading to a very straightforward optimal solution, i.e.,

Then, we can obtain the iterative solution to problem (18). In the k-th iteration, the 
corresponding elements of the matrix W(k+1) in set � are kept consistent with W(k) , 
yielding

4.7  Algorithm summary

In our proposed algorithm, the stopping criterion is set to

where tol is the stopping threshold. It is suggested that the stopping threshold, tol, is 
selected from 10−4 to 10−7 . Based on the analysis in Sect. 4, we summarize the algo-
rithm for the proposed Lp-TNN model in Algorithm 3. The MATLAB code for this 
algorithm is available online at https:// github. com/ HauLi ang/ Lp- TNN.

(39)min
W

�

2

‖‖‖‖W − (X +
1

�
� +

1

�
A
T
B)

‖‖‖‖
2

F

,

(40)W
∗ = X +

1

�
� +

1

�
A
T
B.

(41)Ŵ
(k+1)

= X
(k+1) +

1

�
�

(k) −
1

�
A
(k+1)T

B
(k+1),

(42)W
(k+1) = (Ŵ

(k+1)
)
�
+ (W(k))�.

(43)

‖‖‖X
(k+1) − X

(k)‖‖‖F
max(

‖‖‖X
(k+1)‖‖‖F, 1)

≤ tol,

Table 3  Analysis of �(x) in 
Case 3

< x3 x3 (x3,−x0) −x0 (−x0, x4) x4 (x4, 0)

� ��(x) 0 0 < 0

� �(x) < 0 0 0 0 0 0 < 0

�(x) ↘ min ↗ ↗ ↗ max ↘

https://github.com/HauLiang/Lp-TNN
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4.8  Convergence analysis and computational cost

In this section, we first discuss the convergence property of the proposed Lp-TNN. 
In the three-steps procedure, similar to [18], this iterative scheme can be proved to 
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converge to a local minimum. Then, the ADMM is employed to convert a complex 
problem into several sub-problems, which ensures the convergence of the algorithm 
(see e.g., [26]). For the three sub-problems, the convergence of sub-problem  1 is 
ensured by singular value threshold operator [16], the convergence of sub-problem 2 
is ensured by the Newton’s method (see e.g., [27, 28]), while sub-problem 3 has a 
closed-form solution.

Then, we analyze the complexity of the proposed algorithm. From Algorithm 3, 
we can know that the main per-iteration computation cost lies in the SVD operation. 
For a large-scale problem, we may employ some existing technologies, such as [29], 
to accelerate the calculation of SVD and make the algorithm more effective.

5  Numerical results

In this section, we compare the proposed method with the classic matrix comple-
tion methods on synthetic data and real-image data. The selection of parameters for 
the comparison approaches depend on the suggestions in their papers or the default 
parameters of the published code to obtain the best performance. The proposed Lp-
TNN is compared with the following approaches:

– SVT algorithm [16], the singular value threshold algorithm.
– SVP algorithm [17], the singular value projection algorithm.
– TNNR algorithm [18], the truncated nuclear norm regularization algorithm.
– Sp-lp algorithm [19], the Schatten p-norm and �p-norm algorithm.
– FGSR algorithm [22], the factor group-sparse regularization algorithm.

5.1  Parameter setting

Firstly, we set the parameter p. We find that the performance of matrix recovery may 
be slightly worse when the value of p increases. This may be because when p tends 
to 1, the enhancement in robustness to outliers becomes smaller [30]. Simultane-
ously, we find that a smaller p value may lead to a longer running time. For simplic-
ity, p-value is set to 0.2. For other parameters, the regularization parameter, � , is set 
to 1.1, the step size constant, � , to 1.3, the update proportional constant, � , to 0.1, 
the maximum number of iterations, n, to 1000, and the algorithm threshold, tol, to 
10−4 , to make the algorithm have better performance. As for the setting of r, we test 
it from 0 to 20 and choose the best result as the final recovered matrix. If there are 
no special instructions, the parameters of the subsequent experiments are set to the 
same.

5.2  Synthetic data

Consider the randomly generated n × n matrix completion problem with rank r. We 
first randomly generate two matrices, X1 and X2 , where X1 ∈ Rn×r and X2 ∈ Rn×r . 
Thus, the original matrix X can be generated by X = X1X

T
2
 . For the original matrix 



12965

1 3

A robust low‑rank matrix completion based on truncated nuclear…

X , we set different sampling rates, different ranks, and add different signal-to-noise 
ratios (SNRs) of noise to evaluate the performance of the algorithms in various situa-
tions. The relative error (RE) can be used to evaluate the performance of the algorithm, 
which may be defined as [31]

where X and X∗ denote the original matrix and recovered matrix, respectively. The 
smaller the RE, the better the performance.

First, we discuss the impact of different SNRs of noise on model performance. 
The size of the matrix is set to 300 × 300, and the rank is set to 10. The Gaussian 
white noise is added with different SNRs (dB) under different sampling rates. Note 
that the experiment is repeated 50 times and takes the average value. The REs and 
running time of the algorithms are recorded, and the results are shown in Figs. 1 and 
2, respectively.

Then, we discuss the impact of different matrix ranks on model performance. The 
matrix size is also set to 300 × 300 and 0.1 dB Gaussian white noise is added. We 
set different ranks of the original matrix and take the average value after repeating 
50 times under different sampling rates. We observe the REs and running time of the 
algorithms, and the results are shown in Figs. 3 and 4, respectively.

As can be seen in Figs. 1 and 2, the proposed model can maintain a small RE 
at a lower sampling rate and restore the original matrix with less running time and 
extremely high recovery efficiency. Figs. 3 and 4 also verify this. Simultaneously, 
under the influence of various SNR, the proposed method still restore the matrix 
stably and efficiently, which shows that it provides a robust estimation. In addition, 
when the rank of the matrix varies, the model can recover the matrix efficiently, 
showing its strong stability and adaptability.

From the above synthetic data experiments, it may be seen that for completely 
randomly generated matrix data, our model can perform the task of matrix com-
pletion well without causing failure to converge, which also verifies its good 
convergence.

5.3  Real image data

In most cases, an image can be viewed as an approximate low-rank matrix. Some-
times, images may be partially damaged due to encoding and transmission problems. 
Thus, the matrix completion algorithm may be employed to these images to recover 
the lost information. Here, we choose an RGB image and sample it under different 
sampling rates to obtain an image with missing information. The peak signal-to-
noise ratio (PSNR) of the restored image is employed to evaluate the performance of 
different methods, which can be expressed as

(44)RE =
��X∗ − X��F

‖X‖F ,

(45)PSNR = 10 log10(
2552

1

3m1m2

∑3

i=1
��X∗

i
− Xi

��2F
),
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where Xi and X∗

i
 denote the original and recovered image matrix of the i-th RGB 

channel (size: (m1,m2) ). The larger the PSNR, the better the performance.
First, we show the restored pictures by different methods at a sampling rate of 

0.4 in Fig. 5. As may be seen, our model may more clearly recover the picture.
Then, we exploit the sampling rate as an independent variable to calculate the 

PSNRs and running time under different sampling rates. The results are shown in 
Fig. 6.

Figure 6 shows that the proposed method can achieve the highest PSNR under 
various sampling rates, and it has a higher operating efficiency when the sam-
pling rate is low. This may be attributed to the introduction of Lp-norm since it is 
robust to the outliers, and when the sampling rate is low, outlier points are more 
likely to be generated.

Simultaneously, it can be seen that as the sampling rate increases, the PSNR of 
each algorithm increases, which shows the rationality of the experiment. Because 
as the sampling rate increases, more information about the image can be achieved, 
which will reduce the difficulty of image restoration and produce a higher PSNR.

(a) (b)

(c) (d)

Fig. 1  The REs versus the SNRs using the synthetic data under different sampling rates: a 0.05, b 0.10, c 
0.15, and d 0.20
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5.4  MovieLens‑1M dataset

In this subsection, the proposed method is implemented on the real-world MovieLens-
1M dataset, which is available in [32]. This dataset consists of 1 million ratings (1 to 5) 
for 3900 movies by 6040 users. Here, the stopping threshold, tol, is set to 10−2 , and the 
update proportional constant, � , to 0.001. And we set the maximum allowable itera-
tions, n, to 100.

We randomly mask 50% of the known ratings and perform the recovery. The perfor-
mance of the proposed method can be illustrated using the normalized mean absolute 
error (NMAE) and normalized root-mean-squared-error (RMSE) [33]. The measured 
NMAEs and RMSEs are shown in Table 4. It may be seen that the Lp-TNN obtains a 
smaller indicator, again outperforming the alternative methods.

(a) (b)

(c) (d)

Fig. 2  The running time versus the SNRs using the synthetic data under different sampling rates: a 0.05, 
b 0.10, c 0.15, and d 0.20
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6  Conclusion

The matrix completion problem has a wide application in various fields. How-
ever, many matrix completion methods fail to provide a reliable estimation when 
the sample size is small. In this article, we present a matrix completion approach 
by combining truncated nuclear norm and Lp-norm, which can avoid a sharp drop 
when encounting the outliers. The truncated nuclear norm is a more accurate 
and robust approximation function of the rank function, while the Lp-norm as an 
error function can improve the model robustness, both of which provide a founda-
tion for better performance.

(a) (b)

(c) (d)

Fig. 3  The REs versus the ranks using the synthetic data under different sampling rates: a 0.05, b 0.10, c 
0.15, and d 0.20
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Although the objective function of the proposed model is not convex, a simple 
and efficient iterative scheme has been studied. We first decomposed the complex 
original problem into several relatively easy-to-handle sub-problems by the alter-
nating direction multiplier method. Then, for the sub-problems, the function anal-
ysis method, the singular value threshold operator, and the augmented Lagran-
gian method are employed to form an efficient implementation, respectively.

Finally, we conduct a numerical experiment. We perform corresponding 
matrix completion experiments on both synthetic and real data. The experimental 
results of synthetic data show that our algorithm may always obtain better per-
formances under arbitrary random initialization and Gaussian noise interference. 
Additionally, the proposed methods may not introduce too much computational 
cost, which confirms its effectiveness. The experimental results of real images 
show that the proposed method may efficiently restore realistic images, which can 
provide a robust estimation while suffering Gaussian noise. Especially in the case 
of a low sampling rate, the image can be restored with a very high peak signal-to-
noise ratio and a faster rate. The method’s practical potential is illustrated on the 
MovieLens-1M dataset.

(a) (b)

(c) (d)

Fig. 4  The running time versus the ranks using the synthetic dataset under different sampling rates: a 
0.05, b 0.10, c 0.15, and d 0.20
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Fig. 5  The recovered images when the sampling rate is 0.4 by different algorithms: a original image, b 
sampling image, c SVT, d SVP, d TNNR, f Sp-lp, g FGSR, and h Lp-TNN

(a) (b)

Fig. 6  The reconstruction performance by different algorithms, showing the analysis of the a PSNR and 
b running time
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