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Abstract
The contrive principle of the adaptive infinite impulse response (IIR) filter is to find 
the filter parameters based on the error function, thus obtaining the best model of 
the unbeknown plant. Since the error function has a multimodal error surface, it 
is challenging to get the ideal identification result by traditional methods. In this 
work, a modified artificial ecosystem optimizer based on the novel dynamic oppo-
site learning (DOL) strategy and a well-designed nonlinear adaptive weight coef-
ficient, called the DAEO, is proposed to minimize the error function. The DOL 
adopted a random model to dynamically generate the asymmetric opposite solu-
tions of the current population for generation jumping and population formation. To 
obtain more chances to find the optimal parametric solution, the DAEO is formed 
from two phases: The first phase produces the initial population by adopting DOL 
strategy, and the second phase is that DOL is employed as an extra phase to renew 
the AEO population in each iteration. The asymmetric search area of DOL holis-
tically enhances the exploitation ability of DAEO, and the dynamically changing 
feature increases the diversity of the swarm, improving the exploration capability of 
the algorithm. Meanwhile, introducing the well-designed nonlinear adaptive weight 
coefficient makes search agents explore search space adaptively and poises explora-
tion and exploitation phases. The classical set of benchmark problems is employed 
to test the performance of DAEO. The experimental results indicate that DAEO 
ranked first in terms of mean and variance values compared with other algorithms, 
except f13. Furthermore, the DAEO algorithm is also applied to the IIR system iden-
tification problem. Simulation results on five benchmarked IIR systems show DAEO 
outperforms the comparison approach in improving the accuracy of recognition 
results and can obtain the minimum values of 0 and 1.69E-05 for mean square error 
(MSE) in the same-order and reduced-order system, respectively, which proves that 
DAEO is effective and valuable.
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1  Introduction

Adaptive infinite impulse response (IIR) filter has the advantages of high accuracy, 
low order, and fewer parameters. Therefore, it has drawn the increasing concern of 
many researchers and scholars and has been successfully applied to all kinds of com-
plex engineering fields, such as target tracking [1], communication systems [2, 3], 
signal processing [4, 5], navigation and positioning [6], signal denoising [7–9], and 
data transmission [10]. The implementation of IIR system identification primarily 
relies on two aspects: choosing the suitable identification structure and evaluating 
the filter parameters acquired by the adaptive algorithm. Fortunately, the structure 
of the majority of systems has been determined through system rationale and work-
ing experience and can represent the actual system well. Therefore, the IIR filter 
identification problem is generally reduced to the parameter optimization problem, 
which is based on minimization of error from the output of the adaptive filter and 
the output of the plant to model the unknown system to obtain the optimal model 
of the actual system [11]. In other words, when this error is minimum, the best IIR 
filter can be achieved.

However, the error surface (objective function) of the adaptive IIR filter is usually 
multimodal, non-convex, and non-quadratic [12]. Therefore, traditional gradient-
based optimization approaches, such as Newton’s method, least squares method, and 
its variants, can easily fall into local extremes of the error surface and fail to obtain 
the global optimal solution [13].

To overcome the above disadvantages, the researchers utilized an efficient and 
robust metaheuristic algorithm for IIR system identification. For example, Yao et al. 
first adopted genetic algorithm (GA) to estimate parameters for linear and nonlin-
ear systems, which can obtain good results [14]. Krusienski et al. applied particle 
swarm optimization algorithm (PSO) to construct IIR filter [15]. This algorithm can 
obtain the minimum value of the MSE. However, GA and PSO are easy to have pre-
mature convergence problems, and GA cannot perform local search in high-dimen-
sional space. Later, Panda et al. used the cat swarm optimization (CSO) algorithm 
to estimate the parameters of IIR modeling [16]. This method can give the desired 
results. However, this algorithm cannot balance the balance between exploration 
and exploitation and still suffers from the tendency to fall into local optima. Man-
dal et  al. used an improved differential evolution algorithm (DEWM) to structure 
IIR filters [17]. This algorithm increases the diversity of the population by wavelet 
mutation and, to some extent, improves the performance of the algorithm. However, 
the algorithm requires more control parameters to be adjusted, which reduces the 
convergence speed. Saha et al. adopted an improved bat algorithm (OBA) to work 
out IIR identification [18]. Upadhyay et al. applied a modified harmony search algo-
rithm (OHS) to IIR identification [19]. These two methods are based on the opposite 
learning method to expand the search space and improve the exploration capabil-
ity of the algorithm, but for complex optimization problems, the above algorithm 
still suffers from premature convergence. Jiang et al. adopted a novel hybrid algo-
rithm (HPSO–GSA) to deal with filter design problems [20]. Lagos-Eulogio et al. 
presented a hybrid algorithm (CPSO-DE) to obtain optimal filter parameters [21]. 
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These two methods can obtain desirable recognition results, but the performance of 
the algorithms also depends on the parameter values and may be affected by prema-
ture convergence and stagnation. M Kumar et al. applied a modified interior search 
algorithm with Lévy flight to IIR system identification [22]. Luo et al. adopted an 
improved whale optimization algorithm (RWOA) to deal with the identification 
problem [13]. This algorithm can get a fast convergence rate at the beginning of the 
iteration, but the population tends to lose diversity and fall into local extremes at 
the end of the iteration. Despite the advantages of the above studies, most of them 
have the problem of local convergence in the face of complex optimization prob-
lems. Moreover, according to the theory of no-free-lunch (NFL), there is no optimi-
zation algorithm that can solve all optimization problems [23]. Therefore, it inspires 
researchers and scholars to propose new methods to cope with the IIR identification 
problem.

Artificial ecosystem-based optimizer (AEO) is an effective swarm optimization 
algorithm motivated by energy flow in the ecosystem [24]. It mimics the natural 
patterns of living organisms through production, consumption, and decomposition 
phases. The AEO algorithm has the advantages of an uncomplicated structure and 
fewer control parameters. Moreover, the poise between exploration and exploita-
tion of the AEO mainly relied on the degression value in the search process, sav-
ing time, and burden. To further improve the search capabilities of AEO, dynamic 
opposite learning (DOL) is first embedded in AEO, which guides individuals to 
learn in an asymmetrical dynamic search area. This method will significantly boost 
the possibility of obtaining the global solution. Secondly, a self-adaptive nonlinear 
weight coefficient was adopted to better poise the relationship between exploration 
and exploration. The classical test function set entirely verifies the effectiveness of 
the DAEO algorithm. The DAEO algorithm is also utilized for the IIR system iden-
tification and compared with the other algorithms. Experimental results show that 
DAEO can obtain better parameters for adaptive IIR filters, verifying the effective-
ness and excellence of the proposed algorithm. Motivated by the above discussion, 
our aim is to propose a dynamic opposite learning enhanced artificial ecosystem 
algorithm (DAEO) that determines the parameters of the filter to obtain an optimal 
set of parameters so as to the output of the adaptive IIR filter can accurately trace 
that of the unknown system when both systems are supplied with the same input sig-
nal. The main contributions of this paper are as follows: (1) A novel DOL strategy 
is embedded in AEO for the first time, increasing the diversity of the population and 
helping individuals to find the best solution quickly. (2) A new adaptive nonlinear 
weight coefficient is designed to balance the global and local search capability of 
DAEO. (3) The DAEO is proposed as a new optimization tool for IIR system iden-
tification. Experiment on benchmark functions and IIR system cases validates the 
feasibility and effectiveness of the approach.

The research content of the paper is formed as follows: Adaptive IIR filter sys-
tem identification is described in Sect.  2. The basic definition of AEO is shown 
in Sect.  3. Section  4 introduces the DAEO algorithm. To attest to the advanta-
geous performance of the DAEO, two kinds of experimental results are presented 
in Sect. 5. Discussion and analyses of simulation results are conducted in Sect. 6. 
Finally, Sect. 7 gives conclusions and future directions.
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2 � Adaptive IIR system identification

Adaptive IIR filter is one of the effective methods to deal with model identification 
problems. The primary work of system recognition is to adjust the adaptive IIR fil-
ter coefficients through the optimization algorithm to make the output of the filter 
closer to that of the unbeknown actual system when the same input signal is trans-
mitted to both the unbeknown actual system and the adaptive filter [13]. The flow of 
filter identification is presented in Fig. 1.

In Fig. 1, X(t) expresses the input signal values of the filter and unknown actual 
system at time instant t , y0(t) represents the noiseless output value of unbeknown 
actual system at time instant t , V(t) expresses the noise value of the recognition sys-
tem at time instant t , and y(t) represents the actual export of the unbeknown actual 
model with noise added. ŷ(t) expresses the export of the IIR filter at time instant t , 
and e(t) denotes the error between the export of the actual system and the export of 
the adaptive IIR filter.

The relationship between input and output of the IIR system can be denoted by 
the following difference equation [25]:

where N(≥ M) represents the order of the adaptive IIR filter. Based on Eq. (1), the 
transport function of the IIR filter is described as follows [26]:

where b̂i and âi express the input and output optimization parameters of the filter, 
severally.

It is assumed that the transport function construction of the unbeknown real sys-
tem is the same as that of the IIR filter, and the transport function of the unbeknown 
system is given as [11]:

(1)ŷ(t) =

M∑

i=0

b̂iX(t − i) −

N∑

i=1

âiŷ(t − i)

(2)GM(z) =

∑M

i=0
b̂iz

−i

1 +
∑N

i=1
âiz

−i

Fig. 1   System identification of adaptive IIR filter
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where ai and bi represent the real parameters of actual system.
IIR system identification aims to utilize an adaptive IIR filter with the transfer 

function GM(z) to identify an unknown system with the transfer function Gp(z) . In 
this case, the problem transforms into an optimization problem when the adaptive 
IIR filter parameters 

[
âi, b̂i

]T
 approximate the unknown system parameters 

[
ai, bi

]T . 
As shown in Fig. 1, the error e(t) is minimized using an optimization algorithm to 
obtain the optimal parameter vector ŵ =

[
a1, a2,⋯ , aN , b0, b1,⋯ , bM

]T . The error is 
usually expressed by mean square error (MSE), which is computed as follows.

where L represents the number of input samples.
The IIR system identification problem has been extensively studied in the litera-

ture [13–22]. In this paper, we try to apply an improved AEO algorithm (DAEO) to 
the optimal design of the IIR filter GM(z) and thus to fit the system model Gp(z) to 
be identified. In fact, the problem can ultimately be reduced to nonlinear optimiza-
tion problems with multiple local extrema. Equation (4) is the fitness function (error 
surface function) for IIR model identification. The DAEO algorithm uses the fitness 
function to determine the merit of the currently obtained parameters. If the order of 
the IIR filter GM(z) and the order of the unknown system model Gp(z) to be identified 
are equal, then only one global optimum exists for the error surface function MSE. 
Conversely, then there exist multiple local minima for the error surface MSE. In 
practical applications, the system model to be identified is considered as a black box 
structure. Therefore, the order of the IIR filter and the order of the unknown system 
model are usually not equal, which means that the fitness function usually has many 
local minima. In summary, due to the complexity of the error surface of the IIR 
model for identifying, which is actually an optimization problem with multiple local 
extrema, it has essential applications in practical optimization problems. Therefore, 
the use of a suitable optimization algorithm is crucial to the identification results.

3 � Artificial ecosystem optimizer (AEO)

The artificial ecosystem optimizer is an efficient metaheuristic algorithm presented 
by Zhao et  al. in 2019 [24]. There are three main operators in the AEO, which 
are production, consumption, and decomposition. The optimization process goes 
through the following stages:

(3)Gp(z) =

∑M

i=0
biz

−i

1 +
∑N

i=1
aiz

−i

(4)MSE =
1

L

L∑

t=1

(y(t) − ŷ(t))2
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3.1 � Production

In AEO, the best agent ( Xn ) is regarded as decomposer. The producer is consid-
ered the worst agent ( X1 ) in the current population, which can direct other searching 
agents, such as herbivores and omnivores, to search in promising areas. A new agent 
(producer) is created through the production phase between the best agent Xn and a 
randomly selected agent Xrand within the search area to replace the previous posi-
tion. The updated model for the production phase is shown as follows:

where r1 denotes a random number inside the extent from 0 to1, r ∈ [0, 1] is a ran-
dom vector, parameter a is weight coefficient, Tmax is the total iteration times, and t 
expresses present iteration value. lb and ub are lower and upper boundaries of the 
search area.

3.2 � Consumption

The search agents in this phase are called consumers, which can eat either the pro-
ducer or other consumers with low energy levels, or both. There are three types of 
consumers, each using a different strategy to get the best candidate solution.

The first type, named herbivore, can only eat producer and renews itself by 
Eq. (8).

where CF is consumption factor, and it is considered as random walk with levy flight 
behavior to avoid the parameter setting, which is calculated as follows:

where N(0, 1) denotes a normal distribution.
The second mold is carnivore that can only randomly choose other consumers 

with advanced energy levels for food. The model of the carnivore is expressed by 
Eq. (10).

The third type is omnivore, which signifies that not only producers but also con-
sumers with high energy levels can eat randomly. It updates its location by Eq. (11).

(5)a =
(
1 − t∕Tmax

)
r1

(6)Xrand = r(ub − lb) + lb

(7)X1(t + 1) = (1 − a)Xn(t) + aXrand(t)

(8)Xi(t + 1) = Xi(t) + CF
(
Xi(t) − X1(t)

)
, i ∈ [2,⋯ , n]

(9)CF =
1

2

v1
|
|v2

|
|
, v1 ∼ N(0, 1), v2 ∼ N(0, 1)

(10)
Xi(t + 1) = Xi(t) + CF

(
Xi(t) − Xj(t)

)
, i ∈ [3,⋯ , n], j = randi ([2, i − 1])



13046	 Y. Niu et al.

1 3

where r2 ∈ [0, 1] is a random number, and j = randi([2, i − 1]).

3.3 � Decomposition

On the basis of ecosystem function, decomposition is a critical phase that provides 
energy for producers. The decomposition stage is shown as follows:

where DF is the decomposition factor. g and k represent the weight coefficient.
Since the AEO algorithm has been proposed, it has been proved to provide very 

competitive results compared with other well-known swarm intelligence algo-
rithms. This algorithm has attracted the attention of many scholars and has also been 
increasingly used in many application areas [27–29]. Although the basic AEO shows 
good performance, it still has the disadvantage of slow convergence and low accu-
racy. The reasons for this phenomenon are as follows: The first one is that updating 
methods that rely only on linear weight parameters may degrade the performance of 
the algorithm, causing imbalance between exploration and exploitation of the algo-
rithm, resulting in producing suboptimal solutions. The second is that no effective 
means is added to keep the diversity of the swarm from fending off declining into 
local optima. To address the above deficiencies, a novel enhanced AEO algorithm 
(DAEO) is proposed in this paper, which will be described in detail in the following 
sections.

The pseudo-code of AEO is displayed in Algorithm 1. 

(11)
Xi(t + 1) = Xi(t) + CF

(
r2
(
Xi(t) − X1(t)

)
+
(
1 − r2

) (
Xi(t) − Xj(t)

))
,

i = 3,⋯ , n, j = randi([2, i − 1])

(12)
Xi(t + 1) =Xn(t) + DF

(
gXn(t) − kXi(t)

)
, ∀i ∈ n, DF = 3u,

u ∼ N(0, 1), g = r3randi([1 2]) − 1, k = 2r3 − 1
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4 � Proposed DAEO algorithm

In this paper, the variant of the AEO algorithms is proposed to enhance the per-
formance of the algorithm, where two strategies are implemented. In the following 
subsection, we first introduce the nonlinear weight coefficient and dynamic opposite 
learning strategy and then present our DAEO in detail.

4.1 � Proposed nonlinear weight coefficient

For metaheuristic algorithms, exploration and exploitation of the algorithm are exe-
cuted together. Excessive exploitation will prevent the search agent from moving 
toward the global solution. Excessive exploration will decrease the quality of the 
solution. Therefore, the performance of the evolutionary algorithm can be enhanced 
by balancing the two stages. According to the working principle of AEO, parameter 
a controls the exploration and exploitation capability of the algorithm. The higher 
value of a is propitious to the exploration of the algorithm, while the lower value 
of a is propitious to local exploitation of the algorithm. The parameter a that plays 
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an essential role in the transition from exploration to exploitation obtains a smaller 
value as the iteration times grow. According to Eq. (7), the update of the new posi-
tion depends mainly on two components: the product of the position of the randomly 
selected search agent Xrand and a and the product of the current best position and 
(1 − a) . The variation of original parameter a with the number of iterations is shown 
in Fig. 2. The parameter a takes values ranging from 1 to 0 during the iterative pro-
cess. According to Algorithm 1, the proportion of parameters a greater than 0.5 is 
small, which leads to a further reduction of the exploration capability. The algo-
rithm mainly focuses on the exploitation stage. All of these will lead to premature 
convergence and local extremum. Moreover, many optimization issues need good 
nonlinear changes to avoid the local optimal solution. The value of parameter a can-
not imitate the actual situation. Therefore, a nonlinear adaptive weight coefficient 
is proposed. Since the search process of the AEO is nonlinear, our goal is to spend 
more time in the exploration than in the exploitation. Therefore, the nonlinear adap-
tive weight coefficient in DAEO is described as follows:

Compared with the original weight coefficient, the nonlinear weight is more 
focused on exploration during iterations. The nonlinear parameter is compared with 
the original parameter, as shown in Fig. 2. Equation (13) and Fig. 2 indicate that the 
higher value of the proposed nonlinear parameter during the iteration indicates that 
it tends to be an exploration for a longer time.

4.2 � Dynamic opposite learning (DOL) strategy

The opposition-based learning (OBL) is adopted to enhance the quality of the solu-
tion space of the algorithm, which gives more chances to approach the global 

(13)a = r1cos
(
t∕Tmax

)

Fig. 2   Comparison of parameters
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solution by introducing the opposite point[30]. Much literature shows that effective 
expansion of search space can increase the optimization performance of different 
algorithms [31, 32]. However, if the local extremum exists in the searching area 
from the present position to the reverse position, the OBL strategy will tend to con-
verge to the local optimal position. A dynamic opposite learning (DOL) strategy is 
applied to solve these problems, and the idea is exemplified in Fig. 3 [33]. First, a 
random reverse number XAO which is expressed as XAO = rand ∗ XO is set to avoid 
the candidate solution declining into local extremum. XO is opposite number calcu-
lated by OBL. By replacing XO with XAO , the asymmetric search area which is 
dynamically adjusted with the XAO will be formed to change symmetric search 
space. Then, the DOL strategy can get a random number X̂ from X to XAO as the 
asymmetric opposite solution of X 

(
X̂ = X + rand

(
XAO − X

))
 . Although XAO makes 

the search space diverse, as the iteration goes on, the scope of the search space may 
become smaller, which will decrease the exploration capacity of the algorithm. To 
palliate this effect, the weighting factor W is applied to get the optimal performance 
of DOL. DOL is redeclared as X̂ = X +W ∗ rand

(
XAO − X

)
 , where W is an invari-

ant number. The asymmetry of search space can prevent the algorithm from declin-
ing into the local extremum and enhance the exploitation capability. The dynamics 
of the search area enhance the diversity of the swarm and makes it has a good explo-
ration capacity.

The model of the DOL is displayed as follows:

4.2.1 � Dynamic opposite number

X ∈ [lb, ub] is defined as an actual value. The dynamic reverse value X̂ can be com-
puted by Eq. (14), where lb and ub are the boundaries of the search space. rand is 
a random number with a scope of (0,1). (W > 0) is the weighting coefficient and is 
usually set to 1.

(14)X̂ = X + w ∗ rand ∗ (rand ∗ (ub + lb − X) − X)

Fig. 3   DOL asymmetric dynamic search area
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4.2.2 � Dynamic opposite point

X =

(
X1,X2,… ,X

D

)
 represents search agent in the population, which is a point in 

D-dimensional space. Its opposite position in the search area will be expressed by 
X̂ =

(
X̂1, X̂2,… , X̂

D

)
 . Therefore, the values of all multi-dimensional dynamic 

reverse points in X̂ will be calculated by Eq. (15).

4.2.3 � DOL‑based optimization process

1.	 Generate the ecosystem population X as Xi where (i = 1, 2,⋯ , n).
2.	 Dynamically update interval boundaries [lb, ub] by lb = ���(X),ub = ���(X) , 

and determine the dynamic opposite positions of ecosystem X as X̂i where 
(i = 1, 2,⋯ , n) , according to Eq. (15). If X̂i ∉ [l, u] , X̂i should be reset as a ran-
dom number in [lb, ub].

3.	 Select the n search agents with good fitness values from 
{
X ∪ X̂

}
 as new popula-

tion.

4.3 � DAEO framework

The segment describes the primary details of the DAEO algorithm. To overcome the 
shortcoming of the AEO, the nonlinear weight coefficient and DOL strategy are put 
forward to enhance the performance of the algorithm. The steps of the DAEO are 
listed as follows:

Step 1. DAEO initialization: DAEO randomly produces the initial population 
according to the population size and the boundary value of the search space.

Step 2. Apply DOL: According to Eq. (15), the DOL was adopted to obtain the 
reverse solution of each solution. Then, DOL selects n search agents with good fit-
ness values as the new population from the generated population and its reverse 
solutions which are obtained in Step 2.

Step 3. Update position: The weight factor a is calculated by replacing Eq.  (5) 
with Eq.  (13). Then, the position of search agents will be renewed based on 
Eq. (6)–(12). If the search agent is out of the search area, it will be amended.

Step 4. Fitness evaluation: The fitness values of all search agents in the popula-
tion are calculated, which gets the best value as the best solution.

Step 5. Execution termination: The optimum solution will be output if the termi-
nus situation is satisfied. Otherwise, Steps 2–4 are executed.

The pseudo-code of DAEO is displayed in Algorithm 2. The flow diagram of the 
proposed algorithm is shown in Fig. 4. 

(15)X̂j = Xj + w ∗ rand ∗
(
rand ∗

(
ubj + lbj − Xj

)
− Xj

)
j = 1 ∶ D
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4.4 � Time complexity analysis

In this segment, the worst time complexity of the original AEO algorithm and the 
proposed DAEO algorithm is calculated by using big − O . The complexity of AEO 
and DAEO is described as follows:

4.4.1 � Original AEO

The original AEO generates population of ecosystem in O(n × d) , where n is the 
population size and d is dimension.

It takes O(n) to calculate the fitness value.
The position renewal in the original AEO needs O(n × d).
Therefore, for Tmax iterations, the total time complexity of the AEO needs 

O
(
n × d × Tmax

)
.
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4.4.2 � The proposed DAEO

The initial population of DAEO needs O(n × d) , where n is the population size and 
d is dimension.

It takes O(n) to calculate the fitness value.
DOL-based strategy needs O(n × d).
The position renewal in the DAEO needs O(n × d).
In summary, for Tmax iterations, the total time complexity of the DAEO needs 

O
(
n × d × Tmax

)
 . Therefore, from what has been described above, we may safely 

draw the conclusion that the two algorithms are the same in terms of complexity.

5 � Experiment and results

To ensure the efficiency of the proposed DAEO algorithm for the system identifica-
tion optimization problem, the DAEO algorithm should first be evaluated and tested 
on several benchmark test problems. A common way is to use benchmark functions 
with different characteristics to evaluate optimization algorithms with stochasticity. 

Start

Initialize the ecosystem population X 

Compute the ecosystem opposite  
population X  by DOL

Evaluate each individual from X U X
and get the best one X

t<T Output the optimal solution End

i=1 Update producer position by (7) 
and update parameter by (13)

Rand<1/3 Update herbivore position by (8) 

1/3≤ Rand≤ 2/3Update omnivore position by (11) Update carnivore position by (10) 

Evaluate each individual and update the 
best one X

Update decomposition position by (12) 

No

Yes

Yes

Yes

//DOL method//

//Nonlinear weight 
coefficient strategy//

Fig. 4   The proposed DAEO algorithm
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Various scholars have adopted these benchmark functions to verify the performance 
of their algorithms [34, 35]. Using these functions makes it possible to ensure that 
the results obtained by the algorithm are not accidental. Experiment 1: We first pre-
sent the test functions used in this work, and then, in order to evaluate the DAEO 
algorithm, the results of the algorithm are compared with those of other algorithms. 
Experiment 2: DAEO is applied to five benchmark IIR systems using the same-order 
and reduced-order systems to obtain the filter parameters, aiming to verify the capa-
bility of the DAEO to work out actual problems.

5.1 � Experiment 1: test functions

In this segment, a group of challenging functions is employed to validate the per-
formance of DAEO. Table 1 includes 21 functions with various characteristics and 
complexity levels, which are symbolized by the letter f  and numbered f1 , f2,…, f21 
[36, 37]. In Table 1, 

(
f1 ∼ f21

)
 is the objective function that the algorithm needs to 

optimize, "Dim" represents the number of the function variables, "Range" represents 
the search range of the variables, and " fmin " represents the theoretical optimal value 
of the function. The functions 

(
f1 ∼ f7

)
 are high-dimensional unimodal functions, 

which are employed to examine the local search capability of the algorithm. The 
functions 

(
f8 ∼ f15

)
 are high-dimensional multimodal functions, which are used to 

test the global search capability of the algorithm. The functions 
(
f16 ∼ f21

)
 are fixed-

dimensional multimodal functions that can reveal the ability to verify the balance 
between exploration and exploitation of algorithms in realizing more complex and 
challenging landscapes.

5.1.1 � Comparative study

To better validate the performance of the proposed algorithm, DAEO is compared 
with other six algorithms, including moth–flame optimization algorithm (MFO) 
[38], salp swarm algorithm (SSA) [39], a hybrid algorithm of particle swarm opti-
mization and gravitational search algorithm (PSOGSA) [40], grey wolf optimizer 
(GWO) [41], whale optimization algorithm (WOA) [42], and artificial ecosystem-
based optimizer (AEO) [24]. For an impartial comparison, each algorithm executes 
30 times independently, and the total iteration times are 800. The population size 
of all algorithms is 30, and the main parameter settings are set in Table 2. All algo-
rithms were implemented on a PC with an Intel Core i5-10,400 and 8 GB of RAM 
using MATLAB R2017 (a). In this study, the Wilcoxon nonparametric rank-sum test 
[43] was also employed to test significant differences between the DAEO and the 
other algorithms on benchmark function. The P-values of comparisons are listed in 
Table 4.

5.1.2 � Simulation result

In order to fully evaluate the solution quality of the DAEO algorithm, the mean and 
standard deviation values obtained for each benchmark function executed 30 times 
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independently are presented in Table 3. These two indexes are utilized to evaluate 
the overall performance of the algorithm. Moreover, the convergence behavior of the 
average fitness values of all algorithms applied to 21 classic benchmark functions is 
presented in Fig. 5.

The data marked in bold in Table 3 are the best values obtained by comparing the 
results calculated by the seven algorithms under each test function. From Table 3, 
it is clear that DAEO obtained the best results in terms of the mean and standard 
deviation of all unimodal functions f1 ~ f7 . In particular, for f1 ∼ f5 , DAEO can 
obtain the theoretical optimal values of the test function. For unimodal functions, 
the global optimal solution is within a narrow parabolic-shaped valley, thus mak-
ing it difficult for many algorithms to search for the global optimum. But DAEO 
shows superior performance. From the convergence curves of the unimodal func-
tions in Fig. 5, it can be seen that DAEO outperforms all other algorithms in terms 
of convergence speed, converging rapidly toward the optimal solution. It is clear that 
DAEO displays the best mining ability in the comparison algorithm.

Unlike unimodal functions, the number of local optima for multimodal functions 
grows exponentially. Therefore, these functions are more appropriate for verify-
ing the exploration ability of the algorithm. In multimodal functions, compared to 
other algorithms, DAEO obtained the best values on f8 ∼ f15 , except for function 
f13 . In particular, DAEO can obtain the theoretical values of the test functions on 
f8 , f9 , f11 , f14 , and f15 as well. In terms of mean value, although it failed to achieve 
the best results on f13 , DAEO ranked only behind AEO and WOA, indicating that 
DAEO has a strong competitive capability compared to the other algorithms. Fur-
thermore, the convergence curves in Fig. 5 show that DAEO converges faster than 
other algorithms in most multimodal benchmark functions and is more promising 
in other cases. The above results indicate that DAEO gives an excellent exploration 
capability.

The ability to maintain a suitable balance between exploration and exploitation 
can be well verified on the fixed-dimensional test problem. In Table  3, the mean 
value obtained by the DAEO algorithm ranks first compared with other algorithms. 
Good results are obtained for DAEO on all fixed-dimensional functions. The excel-
lent performance of DAEO is well verified on the convergence curve. At the begin-
ning of the iteration, DAEO has converged to the global optimal solution. Among 
the 21 benchmark functions, in addition to f13 , the standard variance obtained by 

Table 2   The parameter settings 
of algorithms

Algorithms Parameter values

MFO During the iteration, r decreases linearly from -2 to -1
SSA C1 = rand,C2 = rand,C3 = rand

PSOGSA G0 = 1, a = 20,C1 = 0.5,C2 = 1.5,w�[0, 1]

GWO During the iteration, �⃗a decreases linearly from 2 to 0
WOA During the iteration, �⃗a decreases linearly from 2 to 0
AEO r = rand, r1 = rand, r2 = rand

DAEO r = rand, r1 = rand, r2 = rand
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Table 3   DAEO optimization results on benchmark functions

ID Result Algorithm DAEO

MFO SSA PSOGSA GWO WOA AEO

f1 Mean 8.91E + 03 1.41E−06 7.72E + 03 4.48E−34 4.38E−115 3.87E−257 0
Std 1.17E + 04 2.28E−06 7.22E + 03 8.59E−34 2.40E−114 0 0

f2 Mean 6.39E + 01 4.99E + 00 8.54E + 01 1.16E−20 3.85E−84 4.93E−128 0
Std 2.99E + 01 2.55E + 00 1.33E + 02 5.75E−21 1.16E−83 2.69E−127 0

f3 Mean 5.52E + 04 7.20E + 03 3.62E + 04 1.39E−03 1.52E + 05 6.54E−249 0
Std 2.66E + 04 3.42E + 03 1.66E + 04 7.20E−03 3.54E + 04 0 0

f4 Mean 8.49E + 01 1.82E + 01 7.04E + 01 3.19E−07 6.41E + 01 4.05E−128 0
Std 4.34E + 00 4.09E + 00 1.44E + 01 4.11E−07 2.78E + 01 1.77E−127 0

f5 Mean 2.52E + 08 2.04E + 06 3.06E + 08 7.27E−31 1.10E−116 2.00E−245 0
Std 1.76E + 08 8.81E + 06 4.60E + 08 9.47E−31 5.86E−116 0 0

f6 Mean 2.65E + 01 1.20E + 01 2.69E + 01 8.58E−01 9.32E−01 1.07E + 00 2.47E−01
Std 4.40E + 00 1.85E + 00 4.34E + 00 2.18E−01 1.37E−01 7.81E−02 7.54E−02

f7 Mean 2.81E + 01 3.42E−01 3.58E−01 1.86E−03 1.40E−03 3.57E−04 1.17E−04
Std 3.42E + 01 1.22E−01 1.04E−01 9.96E−04 1.44E−03 3.09E−04 8.25E−05

f8 Mean 1.37E + 01 3.34E + 00 1.98E + 01 2.03E−01 1.17E−01 3.60E−121 0
Std 5.53E + 00 5.77E−01 4.84E + 00 4.14E−02 7.46E−02 1.96E−120 0

f9 Mean 3.18E + 02 9.27E + 01 2.52E + 02 9.11E−01 0 0 0
Std 5.07E + 01 2.64E + 01 3.69E + 01 1.97E + 00 0 0 0

f10 Mean 1.95E + 01 3.61E + 00 1.84E + 01 5.31E−14 4.44E−15 8.88E−16 8.88E−16
Std 5.49E−01 1.05E + 00 1.42E + 00 6.41E−15 2.80E−15 0 0

f11 Mean 7.69E + 01 2.51E−02 9.29E + 01 2.66E−03 0 0 0
Std 1.16E + 02 1.60E−02 8.11E + 01 6.22E−03 0 0 0

f12 Mean 8.60E + 06 9.91E + 00 5.12E + 07 1.10E−01 1.34E−02 3.81E−07 2.88E−10
Std 4.67E + 07 2.83E + 00 1.04E + 08 6.83E−02 5.86E−03 3.10E−07 1.30E−09

f13 Mean 2.84E + 07 6.24E + 01 8.20E + 07 1.80E + 00 7.51E−01 9.88E−02 9.53E−01
Std 1.04E + 08 2.07E + 01 1.67E + 08 3.23E−01 3.27E−01 1.10E−01 6.14E−01

f14 Mean 1.07E + 01 7.73E + 00 7.81E + 00 3.13E−04 3.23E−83 7.81E−129 0
Std 1.13E + 00 2.75E + 00 3.99E + 00 3.99E−04 1.15E−82 4.26E−128 0

f15 Mean 1.04E + 03 1.54E + 02 4.65E + 02 2.84E−03 1.67E + 03 3.60E−228 0
Std 3.10E + 02 1.23E + 02 2.04E + 02 1.36E−02 2.36E + 02 0 0

f16 Mean 2.71E + 00 1.03E + 00 4.25E + 00 3.87E + 00 2.96E + 00 9.98E−01 9.98E−01
Std 2.04E + 00 1.81E−01 4.63E + 00 3.79E + 00 3.21E + 00 0 0

f17 Mean 1.10E−03 7.85E−04 7.02E−03 5.69E−03 7.18E−04 3.69E−04 3.07E−04
Std 4.45E−03 2.78E−04 1.22E−02 9.00E−03 3.90E−04 2.32E−04 1.12E−19

f18 Mean −6.31E + 00 −7.40E + 00 −5.23E + 00 −9.48E + 00 −8.00E + 00 −9.90E + 00 −1.02E + 01
Std 3.33E + 00 3.50E + 00 3.18E + 00 1.75E + 00 2.67E + 00 1.37E + 00 7.25E−15

f19 Mean −7.55E + 00 −8.87E + 00 −6.71E + 00 −1.00E + 01 −8.05E + 00 −1.02E + 01 −1.04E + 01
Std 3.41E + 00 2.62E + 00 3.59E + 00 1.35E + 00 3.01E + 00 1.22E + 00 1.55E−15

f20 Mean −7.32E + 00 −9.40E + 00 −6.11E + 00 −1.03E + 01 −8.34E + 00 −1.03E + 01 −1.05E + 01
Std 3.60E + 00 2.64E + 00 3.76E + 00 1.48E + 00 2.96E + 00 1.22E + 00 1.81E−15

f21 Mean −3.23E + 00 −3.22E + 00 −3.28E + 00 −3.26E + 00 −3.26E + 00 −3.27E + 00 −3.31E + 00
Std 6.33E−02 4.65E−02 5.99E−02 7.15E−02 9.63E−02 5.92E−02 4.11E−02
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DAEO also ranks first, indicating that the DAEO algorithm has strong robustness. 
To evaluate the statistically meaningful differences between the algorithms, Wilcox-
on’s nonparametric statistical test with a significance level of 5% was used. In par-
ticular, if the P-values are less than 5%, the algorithm has a statistically significant 
advantage. The P-values in Table  4 further demonstrate the advantage of DAEO 
because lots of the P-values are much smaller than 0.05.

5.2 � Experiment 2: DAEO for IIR filter identification

In the segment, the DAEO is applied to the IIR filter identification application to 
verify the effectiveness of the algorithm. Definitions of the IIR system identifica-
tion problem set are shown in Table 5 [13, 22]. Usually, they are split into two cat-
egories: One is the real-order filter model, and the other is the reduced-order filter 
model. The six state-of-the-art algorithms, including PSO[15], BA[12], M-ISA[22], 
RWOA[13], RGWO[44], and LWOA [45], are adopted to compare with the DAEO 
algorithm.

Table 4   p-value results of Wilcoxon.

Functions DAEO vs

MFO SSA PSOGSA GWO WOA AEO

f1 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
f2 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
f3 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
f4 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
f5 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
f6 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
f7 3.02E−11 3.02E−11 3.02E−11 3.02E−11 5.60E−07 9.52E−04
f8 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.17E−12 1.21E−12
f9 1.21E−12 1.21E−12 1.21E−12 5.66E−10 na na
f10 1.21E−12 1.21E−12 1.21E−12 1.05E−12 3.76E−08 na
f11 1.21E−12 1.21E−12 1.21E−12 2.16E−02 na na
f12 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11
f13 3.02E−11 3.02E−11 3.02E−11 3.01E−07 1.86E−01 6.01E−08
f14 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
f15 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12
f16 5.37E−06 5.57E−13 2.20E−06 1.21E−12 1.21E−12 na
f17 2.82E−11 2.82E−11 2.82E−11 2.83E−11 2.83E−11 1.25E−03
f18 8.42E−07 1.21E−12 1.85E−10 1.21E−12 1.21E−12 4.19E−02
f19 7.98E−03 8.87E−12 8.64E−10 8.87E−12 8.87E−12 8.60E−03
f20 6.86E−05 1.21E−12 5.96E−10 1.21E−12 1.21E−12 4.19E−02
f21 5.90E−06 5.23E−11 5.28E−03 5.52E−09 1.63E−08 1.09E−02
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5.2.1 � Parameter setup

In all cases, the input signal is a white sequence, and the number of input samples is 
100. The parameters for all algorithms are listed as follows: The population size of 

Fig. 5   Convergence diagrams of benchmark functions f1 ∼ f21
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each algorithm is 30, and the total iteration times are 500. The main control param-
eter settings for adopted algorithms are set in Table 6. In addition, to remove the 
impact of the randomness of the algorithm, each algorithm is executed 30 times 
independently.

5.2.2 � Experimental results of system identification

Five various model cases are applied to the simulation experiment. Tables 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26 exhibit the simulation 
results, which include the parameter estimates and MSE values for identification. 

Table 5   Five IIR system identification problems

The transfer function Same order Reduced order
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Table 6   The parameter settings of algorithms

Algorithms Parameter values

PSO C1 = rand,C2 = rand,C3 = rand

BA A0 = 0.9, r0 = 0.5

M-ISA a = 0.2

LWOA During the iteration, �⃗a decreases linearly from 2 to 0
RWOA During the iteration, �⃗a decreases linearly from 2 to 0. F = 0.7
RGWO During the iteration, �⃗a decreases linearly from 2 to 0. F = 0.7
DAEO r = rand, r1 = rand, r2 = rand
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In these tables, “Parameter value” indicates the parameter value of system identi-
fication obtained by different algorithms. “Actual values” represent the true value 
of the variable to be evaluated. “Parameters” represent the variables that need to 
be evaluated in the test example. The objective function for system identification is 
the MSE described in Sect. 2 and is used as a metric. The performance analysis for 
all algorithms is ensured by determining the best, worst, mean, and standard vari-
ance of the MSE for the unknown system. These values are calculated by running 
the values obtained from 30 simulations for each example using the algorithm. For 
ease of viewing, in all tested examples, the best results obtained by the identification 
algorithm in terms of each adopted performance metric are marked in bold in the 
respective tables.

Model 1 For the first test example, a second-order system is considered, whose 
transport function is expressed by Eq. (16).

Table 7   Parameter values of all algorithms for model 1 (case 1)

Parameters Actual values Parameter value

PSO BA M-ISA LWOA RWOA RGWO DAEO

a1 1.1314 1.3199 0.2402 1.1314 1.1129 1.1774 1.1301 1.1314
a2 −0.2500 −0.4304 −0.5566 −0.2500 −0.2308 −0.2915 −0.2489 −0.2500
b0 0.0500 0.0372 0.2156 0.0500 0.0515 0.0322 0.0505 0.0500
b1 −0.4000 −0.2615 −0.1239 −0.4000 −0.4078 −0.3661 −0.4010 −0.4000

Table 8   MSE values of all 
algorithms for model 1 (case 1)

Algorithms MSE value

Best Worst Mean Std

PSO 2.69E−03 1.60E−02 8.06E−03 3.14E−03
BA 9.72E−03 2.05E−01 6.68E−02 4.68E−02
M-ISA 6.07E−33 2.70E−03 3.34E−04 8.09E−04
LWOA 1.05E−05 5.38E−03 1.40E−03 1.37E−03
RWOA 4.88E−05 1.97E−02 3.42E−03 5.40E−03
RGWO 7.47E−08 1.84E−04 5.91E−05 6.96E−05
DAEO 0 0 0 0

Table 9   Parameter values of all algorithms for model 1 (case 2)

Parameters Parameter value

PSO BA M-ISA LWOA RWOA RGWO DAEO

a1 0.9167 0.9113 0.9033 0.9183 0.9313 0.9249 0.9053
b1 − 0.2052 − 0.2838 − 0.2733 − 0.2483 − 0.2755 − 0.2198 − 0.3028
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Table 10   MSE values of all 
algorithms for model 1 (case 2)

Algorithms MSE value

Best Worst Mean Std

PSO 1.11E−02 1.88E−02 1.61E−02 1.75E−03
BA 1.03E−02 3.62E−02 2.06E−02 6.50E−03
M-ISA 8.80E−03 1.80E−02 1.13E−02 1.68E−03
LWOA 1.22E−02 1.66E−02 1.46E−02 1.00E−03
RWOA 9.72E−03 1.94E−02 1.31E−02 2.20E−03
RGWO 1.00E−02 1.79E−02 1.20E−02 1.31E−03
DAEO 8.60E−03 1.12E−02 1.02E−02 5.56E−04

Table 11   Parameter values of all algorithms for model 2 (case 1)

Parameters Actual 
values

Parameter value

PSO BA M-ISA LWOA RWOA RGWO DAEO

a1 1.2000 0.8688 − 0.1354 1.1992 1.0571 1.1026 1.1942 1.2000
a2 − 0.5000 − 0.1945 0.4146 − 0.4986 − 0.3422 − 0.2758 − 0.4885 − 0.5000
a3 0.1000 0.1373 0.2481 0.0993 0.0746 − 0.0277 0.0932 0.1000
b0 − 0.3000 − 0.2966 − 0.2736 − 0.2999 − 0.3198 − 0.2959 − 0.2991 − 0.3000
b1 0.4000 0.2845 − 0.0400 0.3998 0.4590 0.3320 0.3974 0.4000
b2 − 0.5000 − 0.4961 − 0.2006 − 0.4998 − 0.5808 − 0.4242 − 0.4982 − 0.5000

Table 12   MSE values of all 
algorithms for model 2 (case 1)

Algorithms MSE value

Best Worst Mean Std

PSO 4.90E−03 3.97E-02 2.38E-02 7.95E-03
BA 1.04E−02 1.56E + 00 2.71E-01 2.82E-01
M-ISA 8.05E−09 1.19E-02 2.08E-03 2.96E-03
LWOA 1.00E−03 1.55E-02 6.68E-03 3.93E-03
RWOA 3.14E−04 1.65E-02 5.65E-03 4.20E-03
RGWO 1.20E−06 5.64E-03 5.93E-04 1.07E-03
DAEO 1.30E−24 4.49E-09 2.13E-10 8.66E-10

Table 13   Parameter values of all algorithms for Test model 2 (case 2)

Parameters Parameter value

PSO BA M-ISA LWOA RWOA RGWO DAEO

a1 0.2000 − 1.1932 0.4453 0.4199 0.2539 0.2903 0.2886
a2 0.6001 − 0.2807 0.3937 0.4112 0.5471 0.5169 0.5170
b0 − 0.3784 − 0.5083 − 0.3957 − 0.3699 − 0.4011 − 0.3421 − 0.4108
b1 − 0.0797 − 0.3860 − 0.0190 0.0245 0.0554 − 0.0531 0.0794
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In this instance, Gp(z) is modeled to demonstrate the superior performance of the 
DAEO using the same-order system described in case 1 and the reduced-order sys-
tem in case 2.

(16)Gp(z) =
0.05 − 0.4Z−1

1 − 1.1314Z−1 + 0.25Z−2

Table 14   MSE values of all 
algorithms for model 2 (case 2)

Algorithms MSE value

Best Worst Mean Std

PSO 1.22E− 02 2.24E− 02 1.73E− 02 2.52E− 03
BA 1.71E− 02 2.75E− 01 7.63E− 02 6.56E− 02
M-ISA 6.39E− 03 1.31E− 02 8.54E− 03 1.31E− 03
LWOA 9.96E− 03 1.62E− 02 1.24E− 02 1.56E− 03
RWOA 7.08E− 03 1.69E− 02 1.01E− 02 2.33E− 03
RGWO 6.76E− 03 9.78E− 03 8.08E− 03 6.89E− 04
DAEO 5.99E− 03 8.27E− 03 7.09E− 03 5.66E− 04

Table 15   Parameter values of all algorithms for model 3 (case 1)

Parameters Actual values Parameter value

PSO BA M-ISA LWOA RWOA RGWO DAEO

a1 − 0.0400 − 0.1438 0.3187 − 0.0386 − 0.0750 − 0.0506 − 0.0266 − 0.0400
a2 − 0.2775 − 0.5783 0.4475 − 0.2771 − 0.4555 − 0.2410 − 0.2526 − 0.2775
a3 0.2101 − 0.0322 0.2692 0.2099 0.0818 0.3111 0.2325 0.2101
a4 − 0.1400 − 0.2661 − 0.2061 − 0.1407 − 0.1776 − 0.0481 − 0.1311 − 0.1400
b0 1.0000 0.4586 0.3551 1.0000 1.0321 0.9916 0.9989 1.0000
b1 − 0.9000 − 0.8491 − 1.6274 − 0.9015 − 0.8740 − 0.8745 − 0.9129 − 0.9000
b2 0.8100 0.5771 1.7131 0.8109 1.0132 0.7789 0.7986 0.8100
b3 − 0.7290 − 0.7051 − 0.3566 − 0.7291 − 0.7577 − 0.8027 − 0.7349 − 0.7290

Table 16   MSE values of 
algorithms for model 3 (case 1)

Algorithms MSE value

Best Worst Mean Std

PSO 2.56E− 02 1.12E− 01 5.73E− 02 1.94E− 02
BA 9.44E− 02 1.41E + 03 4.97E + 01 2.56E + 02
M-ISA 3.32E− 08 6.28E− 03 1.28E− 03 1.63E− 03
LWOA 1.48E− 03 4.48E− 02 1.28E− 02 1.06E− 02
RWOA 4.27E− 04 4.86E− 02 7.37E− 03 9.88E− 03
RGWO 1.07E− 05 6.46E− 03 6.10E− 04 1.21E− 03
DAEO 2.17E− 11 9.91E− 04 7.91E− 05 2.12E− 04
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Case 1.
The second-order filter can simulate the real second-order system well. Hence, 

the transport function of the adaptive filter is expressed by Eq. (17).

Table 17   Parameter values of all algorithms for model 3(case 2)

Parameters Parameter value

PSO BA M-ISA LWOA RWOA RGWO DAEO

a1 − 0.6799 − 1.5618 − 0.7769 − 0.7882 − 0.9747 − 0.8368 − 0.7798
a2 − 0.5357 − 0.8543 − 0.5756 − 0.6615 − 0.8153 − 0.6198 − 0.5939
a3 − 0.0378 − 0.2499 0.0070 − 0.0702 − 0.1177 − 0.0028 − 0.0011
b0 1.2163 1.6016 1.0475 0.9102 1.0578 0.9808 0.9629
b1 − 0.0234 1.2142 − 0.0496 − 0.1496 0.1455 − 0.0337 − 0.075
b2 0.9786 − 0.3570 0.6225 0.6977 0.7091 0.6020 0.6710

Table 18   MSE values of all 
algorithms for model 3 (case 2)

Algorithms MSE value

Best Worst Mean Std

PSO 1.68E− 02 7.12E− 02 4.46E− 02 1.36E− 02
BA 4.32E− 02 2.00E + 00 3.86E− 01 3.95E− 01
M-ISA 3.08E− 03 1.10E− 02 7.02E− 03 2.43E− 03
LWOA 7.45E− 03 2.58E− 02 1.59E− 02 4.80E− 03
RWOA 4.00E− 03 4.22E− 02 1.05E− 02 7.15E− 03
RGWO 3.70E− 03 1.08E− 02 8.15E− 03 2.83E− 03
DAEO 2.65E− 03 9.00E− 03 4.12E− 03 1.65E− 03

Table 19   Parameter values of all algorithms for model 4 (case 1)

Parameters Actual values Parameter value

PSO BA M-ISA LWOA RWOA RGWO DAEO

a1 − 0.9853 − 0.0291 − 0.4841 − 0.1492 − 0.1586 − 0.1151 0.1452 0.1407
a2 − 0.9738 0.5316 − 0.1169 − 0.4186 − 0.3379 − 0.3208 − 0.3622 − 0.3364
a3 − 0.3864 0.4575 − 0.1338 0.1705 − 0.1080 0.3230 0.3801 0.3688
a4 − 0.1112 − 0.0943 0.0986 0.0167 0.0619 0.0293 − 0.0180 − 2.5000
a5 − 0.0113 0.1354 − 0.1853 0.0079 − 0.0699 0.0289 0.0378 0.0321
b0 0.1084 − 0.3156 − 1.3792 0.1096 0.1456 0.1203 0.1077 0.1079
b1 0.5419 0.2126 0.7858 0.4508 0.4468 0.4453 0.4197 0.4210
b2 1.0837 − 0.2747 1.2736 0.6595 0.6689 0.6583 0.5251 0.5247
b3 1.0837 − 0.0941 1.6597 0.3211 0.3538 0.2169 0.1135 0.1063
b4 0.5419 0.1508 0.1532 − 0.0833 − 0.0271 − 0.1794 − 0.2252 − 0.2370
b5 0.1084 0.3264 − 0.8332 − 0.0875 0.0610 − 0.2058 − 0.1244 − 0.1273
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The problem of system identification is simplified to optimize the molecule and 
denominator parameters b0 , b1 and a1 , a2 , separately. The obtained parameters are 

(17)GM(z) =
b0 − b1Z

−1

1 − a1Z
−1 − a2Z

−2

Table 20   MSE values of all 
algorithms for model 4 (case 1)

Algorithms MSE value

Best Worst Mean Std

PSO 1.35E−01 3.88E−01 2.43E−01 6.60E−02
BA 2.23E−01 8.02E + 11 2.68E + 10 1.46E + 11
M-ISA 2.61E−06 5.58E−03 4.83E−04 1.08E−03
LWOA 8.83E−04 3.55E−01 4.09E−02 7.73E−02
RWOA 1.21E−04 8.65E−03 2.20E−03 2.18E−03
RGWO 1.15E−06 8.98E−04 2.02E−04 2.46E−04
DAEO 8.32E−07 2.30E−04 3.58E−05 5.84E−05

Table 21   Parameter values of all algorithms for model 4 (case 2)

Parameters Parameter value

PSO BA M-ISA LWOA RWOA RGWO DAEO

a1 0.7394 −0.3448 0.0188 −0.4972 0.0052 −0.0261 −0.1143
a2 0.7371 0.3383 −0.4824 −0.4204 −0.5614 −0.4994 −0.5407
a3 −0.6376 0.9854 0.1656 −0.1229 0.1619 0.1560 0.1135
a4 −0.0385 0.1567 −0.0406 0.1471 −0.0421 −0.0419 −0.0515
b0 −0.0217 0.2869 0.1027 0.1210 0.1219 0.1030 0.1067
b1 0.7162 −0.5411 0.4381 0.4665 0.4347 0.4440 0.4477
b2 −0.3317 −0.0274 0.5832 0.8194 0.6182 0.6066 0.6533
b3 −0.7868 −0.0048 0.2606 0.4901 0.3022 0.3002 0.3663
b4 0.5699 0.3098 −0.0684 0.0698 0.0047 −0.0511 −0.0050

Table 22   MSE values of all 
algorithms for model 4 (case 2)

Algorithms MSE value

Best Worst Mean Std

PSO 3.99E−02 1.74E−01 9.73E−02 3.43E−02
BA 8.04E−02 8.04E + 01 5.21E + 00 1.56E + 01
M-ISA 4.25E−05 2.24E−03 3.18E−04 3.91E−04
LWOA 9.23E−04 1.35E−01 1.10E−02 2.49E−02
RWOA 6.24E−05 1.75E−02 2.08E−03 3.71E−03
RGWO 4.08E−05 9.76E−04 2.85E−04 2.41E−04
DAEO 1.69E−05 1.46E−04 5.12E−05 3.35E−05
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shown in Table 7, which led to the optimal approximation to the unknown system 
using the swarm intelligence algorithm. As can be seen from Table  7, the values 
of the parameters obtained by the DAEO and M-ISA algorithms are in perfect 

Table 23   Parameter values of all algorithms for model 5 (case 1)

Parameters Actual
values

Parameter value

PSO BA M-ISA LWOA RWOA RGWO DAEO

a2 0.7700 − 0.1423 0.1413 0.2818 − 0.3091 − 0.2218 0.0539 − 0.0203
a4 0.8498 0.6775 0.1177 0.2776 0.6880 0.7674 0.8173 0.8335
a6 − 0.6486 − 0.1917 0.3717 0.3108 0.4115 0.2694 0.0063 0.0266
b0 1.0000 0.5820 0.8524 0.9797 0.9344 0.9760 0.9973 0.9958
b2 − 0.4000 0.4619 0.4517 0.0902 0.6132 0.5820 0.3233 0.3892
b4 − 0.6500 0.1057 − 0.0393 0.098 − 0.1143 − 0.2065 − 0.3550 − 0.3518
b6 0.2600 0.1904 − 0.3525 − 0.2352 − 0.2119 − 0.1498 − 0.0678 − 0.0320

Table 24   MSE values of all 
algorithms for model 5 (case 1)

Algorithms MSE value

Best Worst Mean Std

PSO 3.00E− 02 1.12E− 01 5.77E− 02 1.81E− 02
BA 1.36E− 02 4.98E + 00 5.18E− 01 8.73E− 01
M-ISA 5.15E− 04 1.56E− 03 8.20E− 04 2.19E− 04
LWOA 2.21E− 03 4.41E− 02 1.33E− 02 1.01E− 02
RWOA 2.55E− 04 1.55E− 02 3.75E− 03 4.16E− 03
RGWO 1.50E− 04 2.91E− 03 8.55E− 04 4.90E− 04
DAEO 3.74E− 05 7.75E− 04 3.73E− 04 2.60E− 04

Table 25   Parameter values of all algorithms for model 5 (case 2)

Parameters Parameter value

PSO BA M-ISA LWOA RWOA RGWO DAEO

a1 0.5442 0.9498 0.0402 − 0.4705 0.1964 − 0.0094 0.00063
a2 0.3044 0.1368 0.3150 0.0562 0.0755 0.0536 0.6398
a3 0.6206 − 0.8105 − 0.0357 0.4809 0.2559 0.1121 0.0529
a4 − 0.1435 0.5154 0.4072 0.1626 0.1462 0.6248 0.1811
a5 − 0.3715 − 0.0806 0.0666 0.4437 0.1200 − 0.0212 − 0.0260
b0 1.2539 1.4369 1.0020 0.9195 0.9448 1.0022 0.9981
b1 − 0.4733 0.6104 0.3231 0.7440 0.1403 0.3711 0.3711
b2 − 0.3784 − 0.2745 0.1569 0.5992 0.2964 0.4326 − 0.1544
b3 − 1.0655 − 0.1902 0.1894 0.2449 0.0528 0.1554 0.0021
b4 0.7947 0.1618 − 0.1642 0.1440 0.0073 − 0.2794 − 0.1193
b5 0.3012 0.4951 − 0.0558 − 0.3467 − 0.0756 − 0.0255 0.0104
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agreement with the actual values of the system parameters compared to the other 
algorithms. In Table  8, the MSE values obtained by the DAEO algorithm are all 
0, which is better than those acquired by other algorithms. The best MSE values 
obtained are 2.69E-03, 9.72E-03, 6.07E-33, 1.05E-05, 4.88E-05, 7.47E-08, and 0 
for PSO, BA, M-ISA, LWOA, RWOA, RGWO, and DAEO, respectively. From the 
above discussion, it can be seen that the DAEO-based system identification approach 
produces the best results in terms of MSE compared to PSO, BA, M-ISA, LWOA, 
RWOA, and RGWO.

Figure 6 shows the convergence of the mean values of MSE using different algo-
rithms. It can be seen from Fig. 6 that DAEO requires 400 iterations to obtain the 
minimum value of MSE, while other algorithms fall into local optimum prema-
turely. Furthermore, the convergence speed of DAEO is much faster than that of 
the other six algorithms. From Fig. 7 and the variance values in Table 8, it can be 
concluded that DAEO has better robustness compared to other algorithms. In terms 
of the mean of MSE, the performance ranking of all algorithms is DAEO > RGWO 
> M-ISA > LWOA > RWOA > PSO > BA.

Case 2.
The second-order system can also be simulated by the first-order filter with the 

following transport function:

A reduced-order filter is adopted to recognize the unbeknown system. In this case, 
there is no accurate value but the approximate value. Here, MSE and convergence 
curves are used to evaluate performance metrics for the identification problem of 
the reduced-order system. Statistical results are used to analyze the performance of 
PSO, BA, M-ISA, LWOA, RWOA, RGWO, and DAEO. The MSE values obtained 
for all algorithms are listed in Table  10. The mean values of MSE for PSO, BA, 
M-ISA, LWOA, RWOA, RGWO, and DAEO are 1.61E−02, 2.06E−02, 1.13E−02, 
1.46E−02, 1.31E−02, 1.20E−02, and 1.02E−02, respectively. From Table  10, it 
can be concluded that DAEO outperforms PSO, BA, M-ISA, LWOA, RWOA, and 
RGWO when modeled using the reduced-order system. From the MSE values listed 

(18)G
�

M
(z) =

b
�

0

1 − a
�

1
Z−1

Table 26   MSE values of all 
algorithms for model 5 (case 2)

Algorithms MSE value

Best Worst Mean Std

PSO 7.73E− 02 3.68E− 01 2.45E− 01 7.79E− 02
BA 1.79E− 01 4.92E + 08 1.65E + 07 8.97E + 07
M-ISA 7.28E− 05 1.92E− 02 2.24E− 03 3.60E− 03
LWOA 5.29E− 03 3.49E− 01 5.06E− 02 6.60E− 02
RWOA 1.40E− 03 3.66E− 02 5.97E− 03 6.63E− 03
RGWO 9.26E− 05 3.88E− 03 8.10E− 04 7.83E− 04
DAEO 2.00E− 05 6.18E− 04 2.10E− 04 1.38E− 04
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in Table 10, it can be concluded that DAEO obtains a better approximation for the 
second-order IIR system compared to other algorithms. Figure 8 describes the con-
vergence behavior of the MSE values using various algorithms. As can be seen from 
Fig.  8, DAEO has reached convergence in 300 iterations with the mean value of 
about 1.02E-02. From the variance values in Table 10 and Fig. 9, it can be obtained 
that DAEO has a small variance value indicating that DAEO has better robustness. 
Therefore, in terms of the mean of MSE, the performance of these algorithms is 
ranked as DAEO > M-ISA > RGWO > RWOA > LWOA > PSO > BA.

Fig. 6   Converge diagram for 
model 1, case 1

Fig. 7   ANOVA graph for model 1, case 1
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Model 2 For the second test example, the transport function of the third-order 
system is defined as follow:

Case 1.
The third-order filter can simulate the real third-order system well. Hence, the 

transport function of the filter is expressed by Eq. (20).

(19)Gp(z) =
−0.3 + 0.4Z−1 − 0.5Z−2

1 − 1.2Z−1 + 0.5Z−2 − 0.1Z−3

Fig. 8   Converge diagram for 
model 1, case 2

Fig. 9   ANOVA graph for model 1, case 2
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In this example, optimization of the system parameters, b0,b1,b2,a1,a2,a3 , is per-
formed using PSO, BA, M-ISA, LWOA, RWOA, RGWO, and DAEO. The estimated 
parameters are listed in Table 11. It can be observed from Table 11 that the param-
eter values obtained with DAEO are in perfect agreement with the actual parameter 
values compared to other algorithms. Figure 10 depicts the convergence graph of the 
mean value of MSE for all algorithms. It can be seen that the convergence curve of 
DAEO keeps decreasing after the 100th iteration, while other algorithms fall into 
local optima at the beginning of the iteration. In addition, the MSE values obtained 
by all algorithms are listed in Table 12. The mean values of MSE obtained for PSO, 
BA, M-ISA, LWOA, RWOA, RGWO, and DAEO are 2.38E-02, 2.71E-01, 2.08E-
03, 6.68E-03, 5.65E-03, 5.93E-04, and 2.13E-10, respectively. From these meas-
urements, it can be concluded that the system identified using the DAEO method 
has the smallest MSE and can effectively handle the system identification problem. 
Based on the MSE values in Table 12, it can be finally inferred that the use of DAEO 
to identify the third-order IIR system model outperforms other existing comparative 
algorithms. The variance diagram also displays that the DAEO algorithm has better 
stability (Fig. 11). The performance of the algorithms adopted can be ranked as fol-
lows: DAEO > RGWO > M-ISA > RWOA > LWOA > PSO > BA. 

Case 2.
The third-order system can also be simulated by the second-order filter with the 

following transport function:

Table 13 shows the approximate solutions of the parameters obtained by all the 
algorithms. The MSE values of the system generated by the optimized parameters 
are shown in Table 14. The MSE values obtained using DAEO are better than any 
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other algorithm. From the MSE values obtained in Table 14, it can be concluded 
that the DAEO-based system identification is superior to the other compared algo-
rithms. The excellent performance of DAEO is also well demonstrated in Figs. 12, 
and 13, where DAEO has good convergence speed and accuracy compared to other 
algorithms, and the BA traps in the local optimal solution prematurely. It is well 
suited for achieving optimal MSE values in other algorithms. According to the per-
formance of the system identification, the order of the algorithms is DAEO > RGW
O > M-ISA > RWOA > LWOA > PSO > BA.

Model 3 For the third test example, the transport function of the fourth-order sys-
tem is expressed by Eq. (22).

Case 1.
The fourth-order filter can simulate the real fourth-order system well. Hence, the 

transport function of the filter is expressed by Eq. (23).

The problem of system identification is simplified to optimize the molecule and 
denominator parameters b0,b1,b2 , b3 and a1 , a2 , a3 , a4 , separately. Table 15 shows the 
best parameters obtained for the optimization of the error surface of the unknown 
system using different evolutionary algorithms. As can be seen from Table 15, the 
parameters obtained by DAEO are in full agreement with the actual parameter val-
ues of the system compared to other algorithms. Table 16 shows the MSE values of 
the fourth-order system identification problem. The mean values of MSE obtained 
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Fig. 11   ANOVA graph for model 2, case 1
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are 5.73E-02, 4.97E + 01, 1.28E-03, 1.28E-02, 7.37E-03, 6.10E-04, and 5.65E-05 
for PSO, BA, M-ISA, LWOA, RWOA, RGWO, and DAEO, respectively. From the 
above numerical results, it can be seen that the proposed DAEO-based system iden-
tification approach obtains the optimal results in terms of MSE. Figure 14 shows the 
convergence curves of the mean values for MSE, which DAEO has a better conver-
gence accuracy. In Fig. 15, most of the algorithms show strong robustness. There-
fore, for the optimization of the parameters of the fourth-order IIR system, the per-
formance ranking of the adopted algorithm is DAEO > RGWO > M-ISA > RWOA > 
LWOA > PSO > BA. 

Case 2.
The fourth-order system can also be simulated by the third-order filter with the 

following transport function:

Fig. 12   Converge diagram for 
model 2, case 2

Fig. 13   ANOVA graph for model 2, case 2
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Table  17 shows the approximate solutions of the parameters obtained by all 
the algorithms. The exact parameters are not available since the reduced-order fil-
ter model is used. The MSE values are presented in Table 18. The observed mean 
values of MSE are 4.46E-02, 3.86E-01, 7.02E-03, 1.59E-02, 1.05E-02, 8.15E-03, 
and 4.12E-03 for PSO, BA, M-ISA, LWOA, RWOA, RGWO, and DAEO. From the 
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above results, it can be inferred that the DAEO algorithm produces better effects for 
the IIR system identification compared to other algorithms. The convergence pro-
cess of the MSE values is displayed in Fig. 16. It is obvious that all algorithms fall 
into local optimal solutions in early iterations. However, DAEO reaches the mini-
mum fitness value in about 30 iterations compared to other algorithms. Figure 17 
shows the variance graphs for all algorithms, where DAEO possesses smaller values, 
indicating that DAEO possesses good robustness. Based on the above discussion, it 
can be concluded that DAEO provides a good approximation for fourth-order IIR 
systems compared to other algorithms, which are ranked in terms of performance as 
DAEO > M-ISA > RGWO > RWOA > LWOA > PSO > BA.

Model 4 For the fourth test example, the transport function of the fifth-order sys-
tem is expressed by Eq. (25).

Case 1

The fifth-order filter can simulate the real fifth-order system well. Hence, the 
transport function of the adaptive filter is expressed by Eq. (26).

The assessed parameter values for the same-order system are presented in 
Table 19, and there is no algorithm to obtain the exact parameter values. The MSE 
values (best, worst, mean, and variance) obtained by the various algorithms are 
listed in Table  20. The mean values of MSE are 2.43E-01, 2.68E + 10, 4.83E-04, 
4.09E-02, 2.20E-03, 2.02E-04, and 3.58E-05 for PSO, BA, M-ISA, LWOA, RWOA, 
RGWO, and DAEO. It can be seen that DAEO has the best approximation of the 
actual values for the system parameters compared to other algorithms. Figure  18 
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shows the convergence curve of the mean value of the MSE. As can be seen from 
Fig.  18, DAEO requires about 100 iterations to converge to the minimum fitness 
value, while BA falls prematurely into the local optimal solution. Furthermore, 
based on the convergence curve of DAEO, it can be inferred that the convergence 
rate of DAEO is higher than other algorithms. The MSE variance values in Table 20 
and Fig. 19 also show that DAEO has good robustness. Based on the above values, 
the performance of these algorithms is ranked as DAEO > RGWO > M-ISA > RWO
A > LWOA > PSO > BA.

Case 2.
The fifth-order system can also be simulated by the fourth-order filter with the 

following transport function:

Table 21 shows the approximate solutions of the parameters obtained by seven 
algorithms. Since there is no exact value for case 2, the performance of the algo-
rithm is measured by the MSE value and the convergence rate. The MSE values are 
listed in Table  22. The mean values of MSE are 9.73E-02, 5.21E + 00, 3.18E-04, 
1.10E-02, 2.08E-03, 2.85E-04, and 5.12E-05 for PSO, BA, M-ISA, LWOA, RWOA, 
RGWO, and DAEO, respectively. From the above observations, it can be seen that 
the proposed DAEO algorithm gives the best results in terms of system identifi-
cation compared to other algorithms. Figure  20 shows the convergence graphs of 
the different algorithms. The DAEO algorithm converges rapidly and reaches the 
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minimum fitness value in about 80 iterations. From Fig. 21, the DAEO algorithm 
is very stable in solving the IIR model problem. In summary, in terms of its MSE 
value and convergence rate, the performance ranking of the adopted algorithm is 
DAEO > RGWO > M-ISA > RWOA > LWOA > PSO > BA.

Model 5 For the fifth test example, the transport function of a sixth-order system 
is expressed by Eq. (28).

Fig. 18   Converge diagram for 
model 4, case 1

Fig. 19   ANOVA graph for model 4, case 1
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Case 1.
The sixth-order filter can simulate the real sixth-order system well. Hence, the 

transport function of the filter is expressed by Eq. (29).

Table 23 presents the results of the optimal parameters of the unknown system 
obtained by applying the metaheuristic algorithm, none of which can obtain the 
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exact parameter values. Table  24 shows the MSE values for the sixth-order sys-
tem identification problem. As can be seen from Table 24, the results obtained by 
DAEO are the best compared to other algorithms in terms of the best, worst, and 
mean values of MSE. Based on the MSE values in Table 24, it can be concluded that 
DAEO gives the best approximation of the parameters of the sixth-order IIR system. 
Figure 22 shows the convergence curves of various algorithms for the mean of the 
MSE. In Fig. 22, DAEO requires about 80 iterations to converge to the minimum fit-
ness value, while BA and PSO are prone to fall into local optima at the beginning of 
the iterations. Based on the above discussion, the performance ranking of all algo-
rithms in the system identification problem is DAEO > M-ISA > RGWO > RWOA > 
LWOA > PSO > BA (Fig. 23). 

Case 2.
The sixth-order system can also be simulated by the fifth-order filter with the 

flowing transport function.

Table 25 shows the approximate solutions of the parameters obtained by seven 
algorithms. Due to the use of the reduced-order system, there is no exact value. The 
recognition performance of the algorithm is mainly measured by the MSE value 
and the convergence rate. For the system identification problem, the fitness values 
(MSE) of all algorithms are listed in Table 26. From the MSE values in Table 26, it 
can be summarized that the DAEO-based system identification surpasses all other 
algorithms. Figure  24 shows the convergence graph of the reduced-order system, 
where the DAEO obtains the minimum error at the 100th iteration and has a fast 
convergence rate. In Fig. 25, most of the algorithms have good stability. Based on 
the above numerical results, the algorithms used can be ranked as DAEO > RGWO 
> M-ISA > RWOA > LWOA > PSO > BA.
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6 � Discussion analysis

DAEO is applied to function optimization and IIR system identification problems. 
Experimental results in Sects.  5.1 and 5.2 indicate the effectiveness and practica-
bility of the proposed DAEO algorithm. As can be seen from Fig. 5 in experiment 
1, in terms of convergence behavior, DAEO lies at the bottom on most functions 
and accelerates the detection of the global optimal solution. Taking the function f1 
as an example, DAEO can sustain good acceleration during the iterative process, 
while AEO has good convergence speed but is not as good as DAEO. GWO and 
WOA have poor convergence speed at the beginning of the iteration; although it 

Fig. 23   ANOVA graph for model 5, case 1

Fig. 24   Converge diagram for 
model 5, case 2
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decreases later in the iterations, their convergence accuracy is also not good, while 
MFO, SSA, and PSOGSA fall into stagnation too early. In experiment 2, compared 
with other algorithms for IIR model recognition, the DAEO provides the best evalu-
ation parameters and the best optimization accuracy in all cases. In the same-order 
system for models 1, 2, and 3, it is obtained from Tables 7, 11, and 15 that DAEO 
obtains parameter values in agreement with the actual parameter values. Although in 
Table 7, M-ISA also obtains parameter values in agreement with the actual values, 
the MSE values of M-ISA and other algorithms are not as good as the values of 
DAEO algorithm. In the same-order system for models 4 and 5, it can be seen from 
Tables 19 and 23 that none of the algorithms obtains parameter values consistent 
with the actual parameter values, but DAEO obtains MSE values (except for the 
variance values of DAEO in Table 23) better than the reported algorithms. The MSE 
values obtained for all algorithms in the reduced-order system also indicate that 
DAEO outperforms the other algorithms in terms of recognition performance, con-
vergence, and robustness, while BA ranks the worst among the reported algorithms.

Our proposed DAEO performs better than other comparing algorithms in the 
two experiments due to the nonlinear weight coefficient and the dynamic opposite 
learning strategy. By studying the artificial ecosystem optimizer (AEO), we under-
stand that the consumption stage represents the global search process of AEO. The 
producer in population is presented as the worst individual with the largest object 
function value, and the updated producer will guide consumers to search different 
regions directly or indirectly. Although the producer is updated with the participa-
tion of decomposers (the best individual), to some extent, the exploration capability 
of the algorithm is significantly weakened, and its search space keeps away from 
promising areas. Therefore, before the individuals update their position, we added 
the DOL strategy to form the new population. Its dynamic asymmetric search space 

Fig. 25   ANOVA graph for model 5, case 2
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helps the algorithm enhance the probability of obtaining good solutions and makes 
the global search of AEO more precise. Additionally, the DAEO always got the best 
population during the iteration; therefore, the searching individual could renew its 
position according to the optimal solution space. DAEO will have a higher prob-
ability of seeing the promising areas. Moreover, for any optimization algorithm, the 
poise between exploration and exploitation is essential. In the AEO, � controls the 
balance between exploration and exploitation of the algorithm. In the process of 
iteration, parameter � gets a small value in most cases, which is not conducive to the 
global search of the algorithm. Hence, a nonlinear weight parameter is used to make 
the algorithm more flexible. It enhances the algorithm’s exploration capability at the 
iteration process, which is to achieve a good balance. Finally, DAEO maintains the 
simple structure of AEO, and its control parameters are less than other algorithms. 
Therefore, the above advantages make DAEO more suitable for practical applica-
tions and effectively deal with the function optimization and the IIR model system 
identification problem.

7 � Conclusions and future directions

The paper has posted a modified version of the AEO algorithm adopting the DOL 
strategy and an adaptive nonlinear weight coefficient, and the novel scheme is called 
the DAEO. The DOL strategy forms a dynamic asymmetric search space by com-
puting the reverse solution to the present solution to improve the overall perfor-
mance of the algorithm. Since the search process in the AEO  displayed an inap-
propriate balance relationship between exploration and exploitation. Hence, in the 
DAEO, an adaptive nonlinear weight coefficient was presented to build a better bal-
ance between the two stages during the search. To verify the effectiveness of the 
DAEO algorithm, the experiment is split into two parts. The first part is that DAEO 
outperforms the original AEO and other algorithms in terms of optimal global abil-
ity and convergence performances in the challenging test set. Also, DAEO is exam-
ined with the statistical analysis, i.e., the Wilcoxon nonparametric rank-sum test, and 
compared with the other six comparison algorithms to prove the effectiveness of 
the algorithm. The second part is to choose five typical IIR filter models from the 
related literature, which have the same order and reduced order. Simulation results 
manifest that the proposed algorithm has good optimization precision, convergence 
rate, and stability than other algorithms dealing with filter identification problems.

Although the recognition accuracy obtained by DAEO is better than that of other 
algorithms in the system recognition problem, there is still room for continued 
improvement, and the decomposition mechanism of DAEO tends to fall into local 
optimum in the late iteration, which reduces the mining ability of the algorithm. 
Therefore, effective methods and strategies will be proposed in the future to improve 
the performance of DAEO and further extend the application field of the algorithm.
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