
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:12553–12588
https://doi.org/10.1007/s11227-022-04359-w

1 3

Vectorizing divergent control flow with active‑lane
consolidation on long‑vector architectures

Wyatt Praharenka1 · David Pankratz1 · João P. L. De Carvalho1 · Ehsan Amiri2 ·
José Nelson Amaral1

Accepted: 5 February 2022 / Published online: 7 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Control-flow divergence limits the applicability of loop vectorization, an important
code-transformation that accelerates data-parallel loops. Control-flow divergence
is commonly handled using an IF-conversion transformation combined with vec-
tor predication. However, the resulting vector instructions execute inefficiently with
many inactive lanes. Branch-on-superword-condition-code (BOSCC) instructions
are used to skip over some vector instructions, but their effectiveness decreases as
vector length increases. This paper presents a novel vector permutation, Active-lane
consolidation (ALC), that enables efficient execution of control-divergent loops by
consolidating the active lanes of two vectors. This paper demonstrates the use of
ALC with two loop transformations and applies them to kernels extracted from the
SPEC CPU 2017 benchmark suite leading to up to a 30.9% reduction in dynamic
instruction count compared to optimization using only BOSCCs. Motivated by
ALC, this paper also proposes design changes to the ARM scalable vector extension
(SVE) to improve vectorization of control-divergent loops.

Keywords Vectorization · Scalable vector extension · Control-flow divergence ·
Code generation · Instruction-set architecture design

 * Wyatt Praharenka
 praharen@ualberta.ca

 David Pankratz
 pankratz@ualberta.ca

 João P. L. De Carvalho
 joao.carvalho@ualberta.ca

 Ehsan Amiri
 ehsan.amiri@huawei.com

 José Nelson Amaral
 jamaral@ualberta.ca

1 University of Alberta, Edmonton, Canada
2 Huawei Technologies Canada, Markham, Canada

http://orcid.org/0000-0001-5064-1293
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04359-w&domain=pdf

12554 W. Praharenka et al.

1 3

1 Introduction

Loop vectorization is an important and popular optimization to extract performance
from data-parallel loops. During loop vectorization, multiple independent loop itera-
tions are mapped to the lanes of a single vector instruction that executes quicker
than performing each scalar operation individually. Interest surrounding vector
architectures is growing with the introduction of vector extensions such as ARM’s
SVE and RISC-V “V” that bring new capabilities to accelerate a diverse collection
of workloads using vector hardware. For instance, ARM’s SVE has been success-
fully deployed in the Fugaku supercomputer by Fujitsu, that has taken the lead in the
TOP500 ranking of most powerful supercomputers [1].

The challenges to vectorization presented by control flow in loops—introduced
by if-then-else and goto statements—are commonly addressed by lineariz-
ing the control flow through IF-conversion [2]. IF-conversion is supported through
predicated vector instructions, a common feature in modern vector ISAs such as
Intel’s AVX, ARM’s SVE and RISC-V’s “V" extension. However, predicated vector
code generated after IF-conversion is often inefficient because many of the lanes in
the vector may be inactive during execution and will not produce a useful result. In
VL-time architectures, the presence of inactive lanes does not lower the latency of
the vector instruction [3] and thus executing a vector instruction with a high ratio
of active to inactive lanes is desirable. In contrast, density-time architectures [3] are
designed such that the instruction latency depends on the amount of active lanes so
that executing an instruction with a single active lane takes a shorter amount of time
than executing the same instruction with all lanes active. However, modern vector
architectures are VL-time architectures.

BOSCC instructions [4, 5] can be used to bypass execution of vector instructions
containing only inactive lanes. BOSCC instructions are available in SVE and can
be emulated in RISC-V “V." Figure 1 shows the vector utilization in a loop taken

Fig. 1 Distribution of vector hardware utilization in the LBM program of the SPEC CPU 2017 bench-
mark suite when executing the function StreamCollideTRT . Darker shades indicate a higher vector
utilization. This function accounts for 97% of execution time. ifcvt: naive predicated execution of vector-
ized code using flattened control-flow. ifcvt+boscc: the IF-converted code optimized using BOSCCs.
BOSCCs detect uniform vectors to elide unnecessary execution of basic blocks. At a vector length of
2048-bits, BOSCC optimizations have nearly no effect

12555

1 3

Vectorizing divergent control flow with active‑lane…

from the LBM benchmark, a SPEC CPU2017 benchmark, of IF-converted code
before (ifcvt) and after the use of BOSCCs (ifcvt+boscc).1 IF-conversion [2] is a
compiler pass that enables vectorization of code containing control-flow by lineariz-
ing the basic blocks so that every block in the original CFG is executed and diver-
gent control flow is handled by predicating the blocks with the corresponding con-
dition. Each bar shows the vector utilization distribution of instructions measured
at runtime. Darker bars represent higher utilization of vector registers.2 The results
indicate that BOSCC instructions are effective on short vectors and much less effec-
tive on longer vectors that are becoming increasingly common. For instance, while
executed on 128-bit long vectors, BOSCCs raise the percentage of uniformly active
executions from 55% to 88%; for 2048-bit long vectors, ifcvt and ifcvt+BOSCC are
indistinguishable because BOSCCs inserted in the code are unable to optimize the
partially active vector instructions that dominate when executing with 2048-bit long
vectors. The innovations presented in this paper attempt to increase the efficiency of
execution on long vector architectures in the presence of divergent control flow.

The effectiveness of BOSCC instructions decreases as vector-length grows
because it is more likely that some lanes of the vector evaluate differently than the
others for a given condition causing the vector to become divergent and the BOSCC
instruction to fail. The penalty to the effectiveness of BOSCCs when moving to
longer vectors is concerning given that the industry has been consistently increasing
vector length. For instance, Intel first moved from 128-bit vectors in SSE to 256-
bits with AVX and now to 512-bits in their most current vector extension, AVX-
512. ARM has taken a slightly different approach, moving from 128-bit vectors in
Advanced SIMD to SVE that now allows support for up to 2048-bit long scalable-
vectors. This paper addresses the issues with vector utilization by improving the
handling of control-flow divergence, especially in long-vector architectures.

This paper proposes a new permutation, Active-Lane Consolidation (ALC), to
improve vector utilization in the presence of divergent control flow where state-of-
the-art optimizations fall short. The goal of the ALC permutation is to consolidate
active lanes from two partially active vectors into a single vector register with the
aim of forming uniform vectors that BOSCC instructions are able to optimize. We
propose two loop-transformations that use the ALC permutation to consolidate vec-
tors corresponding to a conditional block in the control-flow graph in attempt to
increase vector utilization. The unrolling ALC transformation consolidates instances
of vector instructions in a vectorized loop from two consecutive iterations exposed
by loop-unrolling. The second transformation, iterative ALC, broadens the range
that lanes can be consolidated from to several iterations by decoupling the consoli-
dated vector from the loop, allowing for active lanes in any iteration during the loop
to be moved into the consolidated vector.

This paper makes the following contributions:

1 For details of the experiment refer to Sect. 6.1.
2 In this paper, vector registers are referred to simply as vectors.

12556 W. Praharenka et al.

1 3

• Active-lane consolidation, a new permutation operation that consolidates
active lanes to increase vector utilization. ALC includes a mechanism to also
retain the inactive lanes, allowing ALC to be applied to arbitrary control flow
(Sect. 3.1).

• An implementation of the ALC permutation to demonstrate that ALC readily
maps to existing vector architectures.

• Two loop transformations, Loop-Unrolling ALC (Sect. 3.2) and Iterative ALC
(Sect. 5), that marry ALC and BOSCCs to improve vector utilization leading to a
reduction in the number of instructions executed.

• A proposal for a new vector permutation instruction, motivated by ALC ’s effi-
cacy, that would provide out-of-the-box lane consolidation (Sect. 4.4).

• Emulation-based case studies that show the applicability of the ALC permutation
and the proposed loop-transformations to the SPEC CPU 2017 benchmark suite
and the resulting benefits (Sect. 6).

2 Background

SIMD execution and vector extensions Often, Single-Instruction stream Multiple-
Data stream (SIMD) architectures [6] operate on vector registers. A vector register
is organized into vector lanes with each lane able to hold a single vector element.
CPUs support SIMD execution through vector ISA extensions—e.g., Intel AVX [7]
and ARM’s Advanced SIMD [8]—that define arithmetic and logic vector instruc-
tions for a number of data types. Vector operations may operate between elements in
the same lane of the operand vectors or across lanes within a single vector.

The size of the vector registers or vector length (VL) can vary greatly between
architectures. For instance, Intel has three popular vector extensions: AVX (128
bits), AVX2 (256 bits), and AVX512 (512 bits) each defining instructions operating
on varying vector lengths. Each vector register can hold data types with different bit
widths. Thus, the number of lanes in a vector register with a certain VL varies with
the data type. For example, if a 128-bit vector register holds 64-bit types it will have
two lanes. In this paper, the number of lanes in a vector register is called the vector
element count (EC).

According to Stephens et al. there is no single best vector length [9]. Logic design
complexity, power consumption, chip area, and the target application domains influ-
ence the choice of VL. For example, the CRAY-1 [10] supercomputer featured 4096-
bit vector registers while a typical low-power Intel processor with the Streaming-
SIMD-Extension (SSE) has 128-bit vector registers. For years, the length of vectors
has been coupled to the instruction encodings leading to an unnecessary prolifera-
tion of instructions when architectures expand the vector length [11]. To prevent this
proliferation while addressing the question of what vector length to use, ARM’s vec-
tor-length-agnostic (VLA) Scalable-vector extension (SVE) [12] decouples the VL
from the vector instruction encoding and delegates the choice of VL to the hardware
implementation. Another ISA choosing to follow the emerging VLA architecture is
the RISC-V “V” vector extension [13].

12557

1 3

Vectorizing divergent control flow with active‑lane…

Listing 1: A simple data-parallel loop with control flow

Listing 2: SVE assembly of the vectorized loop in Listing 1

Loop vectorization Hand-writing SIMD code fine-tunes performance but is a
tedious and error-prone task. Vector intrinsics, exposed in a programming language,
offer a compromise between productivity and performance. However, the most pro-
ductive approach for the generation of vector code relies on a compiler that trans-
forms sequential scalar code into vector code through a process called automatic
vectorization or SIMDization [14]. Often, the majority of the runtime of an appli-
cation is spent in data-parallel loops, as such, loops are a primary target for vec-
torization. Modern compilers implement loop-vectorizers that widens each scalar
operation appearing in a loop into a vector operation where consecutive iterations of
the scalar loop map to lanes of a vector. To ensure correctness, an extensive list of
legality checks is performed prior to loop vectorization. One important check uses
memory dependence analysis [15, 16] to ensure that either there are no loop-carried
dependencies between memory accesses in the loop or that the dependence distance

12558 W. Praharenka et al.

1 3

is greater than the number of elements in each vector. Control structures, such as
an if-then-else statement, introduce control dependencies that must also be
addressed by the vectorizer as discussed below.

Listing 1 shows an example of a vectorizable loop written in C. The vectorized
version of this example, in SVE assembly, is shown in Listing 2. Assuming that a
double data type contains 64 bits and the architecture implements vector registers
that are 512-bits wide, each vector register will have eight lanes (EC = 8). The
comment on line 1 specifies the initial values in the corresponding scalar registers.
After vectorization, lines 5 and 7 from Listing 1 are translated into various predi-
cated vector arithmetic instructions. For example, the fused-multiply-add vector
instruction on line 11 of Listing 2 will each perform eight multiply-add operations
that correspond to iterations i to i+7 of the scalar loop. The governing predicate
p register in each instruction contains Boolean values to indicate which lanes are
active. The values in the p registers are generated by the fcmlt and bic instruc-
tions that compute the predicate for the if and the else block in Listing 1.

While contiguous memory accesses are well-supported by most vector exten-
sions and trivial to generate vectorized code for, non-contiguous accesses are not.
For instance, the load d[i*2] on line 7 has a stride of two with consecutive lanes
of this load accessing memory addresses: {d + 0, d + 2,… , d + 2 ∗ (EC − 1)} .
SVE is equipped with a gather load instruction, shown on line 13, that enables the
vectorization of the load d[i*2]. In ISAs that do not support gather and scatter
instructions, these non-contiguous accesses can be accomplished by scalarizing the
memory access but such a solution is much slower than a tailor-made gather/scatter
instruction.

Vectorizing control dependencies Control dependencies are introduced by con-
ditional statements and must be handled properly when generating vectorized code.
For example, in Listing 1 blocks B1 and B2 are control dependent on the block that
computes the condition a[i] < b[i] (line 4). This control dependency is loop vari-
ant because the condition depends on the value of the loop induction variable i.
A loop-variant dependency is a divergent condition—such conditions are also
referred as varying conditions [17]—while a loop-invariant control-flow depend-
ency, where the condition does not depend on the loop induction variable, is called a
uniform condition. Uniform conditions can often be hoisted out of the loop by loop
unswitching [18].

IF-conversion [2]—also referred to as control-flow linearization [17, 19]—is a
technique to enable the vectorization of loops containing control flow. IF-conversion
is applied to the control-flow graph of a loop prior to loop vectorization to convert
control dependencies into data dependencies. IF-conversion replaces a branch state-
ment with the computation of predicates, one for each successor of the branch and
assigns these predicates accordingly to each successor block in the IF-converted
code. As the branch in the original code is removed, all successor blocks will exe-
cute at runtime and in this aspect, the blocks are linearized. The predicated state-
ments replace the behavior of the branch to control execution as only predicated
statements whose predicate evaluates to true at runtime produce a result, thus the
control dependence that once existed due to the presence of a branch now exists as a
data dependence on the variable holding the predicate.

12559

1 3

Vectorizing divergent control flow with active‑lane…

A vector is uniform either when all of the lanes are active or all of the lanes are
false and is divergent when some of the lanes are active while others are not. The IF-
converted and vectorized code for Listing 1 is shown in Listing 2 where all branches
are removed and replaced by instructions to produce vector predicates. Line 7 shows
the fcmlt instruction to generate the predicate for B1 and the bic instruction on
line 8 that generates the predicate for B2 . Operations inside blocks B1 and B2 are vec-
torized and predicated by these predicates.

In ISAs that do not support predicated execution the control dependencies can be
handled via IF-selection [20] or scalarization. Vector select instructions perform
an element permutation that retrieves values from the first input vector if the lane
is active or from the second otherwise. Scalarization performs scalar operations on
each lane of the vector iteratively and may require expensive packing and unpacking
of the lanes of the vector register into scalar registers.

Branches on super-word condition codes Predicated vector instructions selec-
tively enable and disable lanes, with disabled lanes producing no result. The ratio of
active lanes to total lanes in a vector is called the vector utilization. Lower utiliza-
tion leads vector instructions to consume CPU resources while producing few or no
useful results. In addition, most modern vector architectures feature VL-time per-
formance rather than density-time performance where the number of inactive lanes
present in a vector does not affect the latency of the predicated instruction [3]. Inac-
tive lanes in VL-time architectures are wasted opportunity and thus, it is desirable to
have code with high vector utilization.

BOSCC [4, 5] instructions can be used to elide execution of vector instructions
that have no active lanes. A BOSCC instruction is a branch instruction that branches
based on whether a super-word (vector) satisfies a certain condition. For instance,
SVEs condition codes NZCV are set as the result of vector compare instructions,
e.g., cmpeq. Vector compares clear the flag Z if any lane of the resulting predicate
becomes active. A b.none BOSCC in SVE, as shown in Fig. 3, branches when
the flag Z is set, only taking the branch if at least one active element exists in the
predicate.

Two common BOSCCs are the any BOSCC that branches when any lane of the
vector is active and the all BOSCC that branches only if all lanes are active. Figure 2
shows how any and all BOSCCs can be used to optimize vectorized code for List-
ing 1. A dashed line indicates the edge a BOSCC branch introduces into the control
flow graph. Figure 2a inserts an all BOSCC in a manner described in WCCV [21]
to branch to block B1U if every lane is active for the B1 block. Since B1U is only
executed if all lanes are active, this block can contain unpredicated vector code. Fig-
ure 2b uses an any BOSCC instruction to skip the execution of a predicated block

Fig. 2 BOSCCs used to opti-
mize the IF-converted code

(a) (b)

12560 W. Praharenka et al.

1 3

when no lanes are active; this method of utilizing an any BOSCC is described in
Partial Control Flow Linearization [17]. The all BOSCC instruction improves
lane utilization in the presence of biased branches while any BOSCC instruction
bypasses IF-converted code in blocks that rarely execute with active lanes [21].

Figure 3 shows one example of a possible execution of the control flow graph in
Fig. 2b once vectorized. This example execution illustrates how BOSCCs can break
down in the presence of divergent vectors. In the example, the predicate for B1P
contains only a single active lane, as the BOSCC condition is true when none of the
lanes are active, the branch to skip B1P is not taken and executes the vector code
with only a single active lane (25% utilization). Increasing vector length reduces the
effectiveness of BOSCC instructions as divergent vectors may become more likely.

3 Optimizing divergent vectors with ALC

Figure 1 shows that using BOSCCs after vectorization and IF-conversion works
well to optimize execution on short vectors as they are likely uniform because of the
small amount of lanes they hold. The figure also indicates that the benefit of optimi-
zation with BOSCCs decreases as the vector size increases with the improvement
becoming negligible at a vector length of 2048 bits. Thus, architectures that imple-
ment modern vector ISAs, which are supporting increasingly longer vectors, require
new compilation approaches. In the effort towards this goal, this section introduces
Active-Lane Consolidation (ALC), a vector permutation that increases vector uni-
formity to create more opportunities for profitable deployment of BOSCC instruc-
tions. In addition, Sect. 3.2 presents loop-unrolling ALC, a loop transformation in
which ALC can be used to improve performance.

An application of ALC to a hot loop from the NAB (Nucleic Acid Builder)
benchmark—a molecular-dynamics application that is part of the SPEC CPU
2017 suite—illustrates how this transformation can lead to performance improve-
ments. Listing 3 shows a simplified excerpt of one of NAB’s hot loops where, for
each iteration of the loop, only one of the blocks, B1 − B5 , in the if-else-if

Fig. 3 Example vector execution
of Listing 1 with an any BOSCC
inserted to skip B1

12561

1 3

Vectorizing divergent control flow with active‑lane…

chain is executed. No loop-carried memory dependencies exist within this loop
and thus it can be vectorized. Profiling the run-time branch behavior reveals that
B2 is executed in approximately 85% of the iterations. However, iterations that
do not execute block B2 are interspersed with iterations that execute B2 , leading
to divergent vectors when this loop is vectorized. To improve the performance
of this vectorized loop, ALC consolidates active lanes from divergent vectors in
consecutive iterations into uniform vectors.

Listing 3: Simplified loop from NAB

The runtime bias toward condition C2 implies that in many iterations of the
vectorized loop, the linearized basic blocks B1,B3,B4,B5 in the IF-converted code
are unnecessarily executed. One solution is to unroll the vectorized loop and then
to use ALC to consolidate the active lanes of divergent vectors into a single vec-
tor but this approach is limited to consolidating active lanes only from two con-
secutive iterations. The other solution, iterative ALC, decouples the consolidat-
ing vector from the loop iteration allowing active lanes from any iteration during
the loop to be consolidated. In both schemes, the consolidated vector is stealing
active lanes from future iterations of the vectorized loop in an attempt to form
a uniform vector. If ALC is able to re-organize the lanes of two divergent vec-
tors into a uniform vector, then BOSCCs can ensure that the vector loop executes
only the necessary conditional block for this uniform vector. In the NAB exam-
ple, ALC finds new opportunities to skip unnecessary executions of basic blocks
B1,B3,B4, and B5 by consolidating the lanes in divergent vectors from subsequent
iterations of the vectorized loop that execute block B2.

12562 W. Praharenka et al.

1 3

Based on the predicates generated by IF-conversion, ALC moves as many active-
lanes of two vectors as possible into a single vector and fills a second vector with
the remaining inactive lanes to handle the case when those inactive lanes follow a
different path of control. Once the ALC permutation is applied on a pair of vectors,
the order of the lanes will have changed and for correctness, all vectors that are used
as an operand inside a consolidated block must be permuted in the same fashion.
This section introduces the indexed-based inter-register permutation to solve this in
light of the large number of instructions required by ALC in actual implementation.
The ALC permutation is complex in comparison to existing vector permutations so
that an implementation using only current instructions may be expensive depending
on the capability of the chosen ISA. This section details a proposal for a new vector
permutation using SVE as the base ISA that would solve some of the shortcomings
of implementing ALC using only existing instructions.

3.1 Active‑lane consolidation permutation

Figure 4 illustrates the application of ALC to two vector registers based on their
predicate values. In this example, the vectors v0 and v1 contain the indices of the
loop (created with an index instruction) and the predicate vectors p0 and p1 indi-
cate the lanes that are active (light gray) or inactive (dark gray). ALC attempts to fill
the merged vector (vM) with active lanes spread between the two input vectors. The
remaining lanes, active or not, are placed into the remainder vector (vR). Let AL be
the number of active lanes. If AL ≥ VL, then vM is uniform with all lanes active. If
AL ≤ VL, then vR is uniform with all lanes inactive.

If vM is a uniformly active vector with respect to a condition C2 after consoli-
dation then BOSCCs will execute only B2 . Given that the conditions of the if-
else-if statement are mutually exclusive, the consolidated vector will have an
all-false predicate for conditions other than C2 and thus BOSCCs can bypass execu-
tion of the blocks these conditions guard. In general, there are no guarantees about
the uniformity of the remainder vector vR and it may have to be processed through
the entire linearized graph. However, an additional BOSCC can be inserted to check
if vR is all-false for C2 to further optimize execution.

Figure 4 presents ALC as a permutation of the two vectors v0 and v1 to create
two new vectors vM and vR. Abstractly, ALC can be viewed as a compaction on a
vector created by concatenating v0 and v1. The AVX512 compress and the SVE

Fig. 4 The ALC permutation
performed on two divergent
vectors. Light colored squares
represent active lanes while dark
colored lanes inactive

12563

1 3

Vectorizing divergent control flow with active‑lane…

compact instructions already perform the compaction but only on a single vector
register and do not retain inactive lanes in the result.

Similar to the compact permutation, the ALC permutation retains the relative
order of the active lanes. However, due to complexities encountered in the imple-
mentation for SVE, this is not the case for inactive lanes. The lack of relative order
in the inactive lanes did not have an impact in our experiments but may become
important later when new features are added to vector ISAs, for example, instruc-
tions to detect intra-vector dependencies [22].

3.2 Loop‑unrolling ALC

The goal of ALC is to consolidate lanes from multiple vectors to create a uniform
vector. Thus, multiple vectors must be available for this consolidation. Unrolling the
vectorized and IF-converted loop by a factor of two yields two vectors that can be
consolidated by the ALC permutation into two new vectors, one containing mostly
active lanes and the other containing mostly inactive lanes. This transformation is
called “Unrolling ALC.”

Figure 5a shows the control flow graph of the scalar loop from the NAB ker-
nel in Listing 3. The conditions C1 to C5 control the execution of blocks B1 to B5 .
Two transformations are applied to the code from Fig. 5a to Fig. 5b: IF-conversion
and vectorization. Vectorization widens each scalar instruction in Fig. 5a so that
each vector instruction in Fig. 5b performs the operation for EC iterations of the
scalar loop. The letter P after the block name in Fig. 5b indicates that the block is
predicated by a Boolean expression composed of the conditions that control each
block’s execution. For instance, the condition for the predicated block B2P in Fig. 5b
is C2 ∧ ¬C1 because B2 executes when C2 is true (Listing 3, Line 9) and C1 is false
(Listing 3, Line 6). From Fig. 5b–c the linearized and vectorized loop is unrolled
by two so that each iteration of the new loop contains two copies of the body of
the loop in Fig. 5b. Blocks to process the second iteration are annotated with I2 in
Fig. 5c.

The most executed block in this loop, B2 , is the target for consolidation. In
Fig. 5d the active lanes of the vectors from the first and second iterations of the
unrolled loop are consolidated by ALC based on the predicates for B2P and the other
in B2I2P . Let P2I be the predicate of B2P and P2I2 be the predicate of B2I2P , then,
after ALC, vM is a uniform vector if and only if popcnt(P2I) + popcnt(P2I2) ≥ VL .
This condition is checked by counting the number of active lanes using population-
count instructions on the pair of predicate registers corresponding to the condi-
tion that is being consolidated. If this condition in Fig. 5d is true, then the code
can branch to the optimized path, labeled p_opt. Otherwise, the unoptimized path
that executes the if-converted code p_unroll is taken. The p_opt path bypasses
execution of B1P,B3P,B4P and B5P for the merged vector vM because it is uniform
with respect to C2 . This is reflected in Fig. 5d as B2U is the only block that pro-
cesses vM. The p_opt path must still conservatively process vR through the fully
if-converted path represented by blocks B1RP to B5RP for correct execution because

12564 W. Praharenka et al.

1 3

vR is not guaranteed to be uniform. In some instances, vR may have no lanes active
for this predicate and thus, inserting an any BOSCC to skip the block B2RP , may be
worthwhile.

The idea of consolidating active lanes is applicable to more than a pair of vectors;
ALC could unroll the loop by a factor greater than two to expose three, four, or more
vectors for consolidation. Given the limitations of permutation instructions currently
in SVE, this paper only considers unrolling by a factor of two and consolidating the
resulting pair of vectors. Unrolling the loop further and consolidating more than a
pair of vectors would add additional complexity into the ALC permutation.

3.3 Tracking lane indices through permutation

Often, several vector operands within a single conditional block must be consoli-
dated in the same fashion. This is necessary in order to ensure that the lanes of vectors
defined outside of the block being consolidated are in the correct consolidated order
when used within the consolidated block. Listing 4 illustrates this issue: after vectoriza-
tion, the order of the lanes of variable op matches the unit-stride of the loop induction

(a) (b)

(d)(c)

Fig. 5 Control flow graphs after: a Scalar, b IF-conversion and vectorization of a, c Unrolling of (b), (d)
ALC on (c)

12565

1 3

Vectorizing divergent control flow with active‑lane…

variable i with lane 0 holding the value for iteration i, lane 1 holding the value for
iteration i+1 and so forth. After the ALC permutation is performed, the variable op
must also be permuted so the lanes match the order resulting from ALC.

In some vector extensions, such as in SVE, the implementation of the ALC permu-
tation shown in Fig. 4 is expensive and therefore a more efficient solution consists of
performing ALC on a pair of vectors holding the indices 0 to VL-1 and VL to 2*VL-1
and using the result in an index-based inter-register permutation. For instance, in Fig. 4
EC = 4 and the vectors v0 and v1 hold the indices in the original order that the induc-
tion variable is incremented. After ALC, the consolidated index vectors are vM and vR,
which are used to permute all other operands used in the conditional block. The indices
in vM and vR are also used to compute the addresses of gather loads and scatter stores
appearing inside the consolidated block.

3.4 Permuting instruction operands

Two issues deserve further examination: 1. a consolidated block may use an operand
that was defined outside of the block; and 2. a load inside a consolidated block may
depend on the loop induction variable. For instance, Listing 4 shows a scalar loop while
Listing 5 shows the loop after vectorization, unrolling, and ALC is applied on the if
condition. The variable op is defined outside of the conditional block B1 being consoli-
dated; and the load C[i] depends on the loop induction variable i.

The notation (pred) expr; in lines 28-26 of Listing 5 represents predicated exe-
cution where pred is the predicate and expr is the expression executed if pred eval-
uates to true. The annotation _0 or _1 indicates to which of the two iterations exposed
by unrolling each variable belongs. The original consecutive index vectors are created
in lines 2 and 3. Line 19 performs ALC based on the predicates generated by the con-
dition in line 4 of Listing 4 to create the new index vectors idxM and idxR. These
indices are used to permute vectors op_1 and op_2, in lines 22 and 26 before their use
in the consolidated block. Figure 6 illustrates the index-based inter-vector permutation
that appears in line 22 in Listing 5 within the consolidated block (B1).

Fig. 6 Inter-vector permutation
to create the merged operand
by permuting the concatenated
vectors of the unrolled iterations
based on the consolidated index
vector idxM

12566 W. Praharenka et al.

1 3

Listing 5: Example loop from Listing 4 with vectorization,unrolling and ALC
applied. Operands are merged accordingly and contiguous loads inside the
consolidate block are converted to gather loads.

12567

1 3

Vectorizing divergent control flow with active‑lane…

Load/store operations that are inside a consolidated block are converted to gather/
scatter operations indexed by the consolidated induction vectors. For instance, ALC
requires that the contiguous load C[i] in Listing 4 be converted to the gather loads
indexed by idxM or by idxR in lines 23 and 28 of Listing 5. Gather and scatter
accesses tend to be slower than contiguous accesses because they issue more micro-
operations and may access a larger number of cache lines.

4 Active‑lane consolidation in SVE

To demonstrate the efficacy of ALC in mitigating divergence we develop an imple-
mentation using ARM’s SVE [12], a widely adopted extension with supporting tools
for code generation and emulation. The permutation primitives and transformations
presented in Sect. 3 are also applicable to other long-vector architectures such as
RISCV “V." This section details how the ALC primitives map to SVE instructions
and presents a brief overview of the instructions’ semantics. An analogous mapping
could be developed to apply ALC to other vector ISAs. This section concludes by
outlining challenges discovered in mapping ALC to SVE and presenting additions to
SVE that help mitigate these challenges.

4.1 SVE permutations

The following SVE instructions are illustrated with examples in Fig. 7 where a light-
grey predicate is true and a dark-grey predicate is false.

Select For each true predicate, take the elements from the first input vector reg-
ister and for each false predicate take the elements from the second input vector
register.

Splice The predicate register defines a range from the first true predicate to the
last true predicate. Elements within this range are taken from the first vector and
placed at the start of the result register. The remainder of the result register is filled
with elements from the second vector register starting from the element in the low-
est position.

Tbl In this programmable table lookup illustrated in Fig. 7c, z0 is the data regis-
ter and z1 holds indices into z0. The result register receives elements from the data
register based on the values in the index register. Lanes where the index register has
a value outside of the interval [0,VLEN − 1] , where VLEN is the vector length, lead
to the result register receiving the zero value. For instance, in Fig. 7c the index 4 is
outside of the [0,3] range.

Compact Active elements of the input vector register are placed compactly at the
start of the output register. The remaining elements in the output register are zeroed.

Index Creates a vector of incrementing values. Two scalar values, supplied either
in registers or as immediate values, specify the start value and the incrementing step.

Whilelt Given two scalar registers x0 and x1, generates a predicate register
where the first x1-x0 lanes are active and all other lanes are inactive.

12568 W. Praharenka et al.

1 3

The name whilelt highlights that the value of the predicate for each lane is set
by testing the condition x0 < x1 and then incrementing x0 before testing for the
next lane.

4.2 Active‑Lane Consolidation in SVE

Listing 6 shows the implementation of the ALC permutation in SVE. The variables
in lines 2–6 are the input to the permutation: the original loop indices z0 and z1;
the predicate registers p0 and p1; and the governing predicate p2. The governing
predicate controls the execution of the loop-trip and is all true except for the tail-end
of the loop when the trip count is not a multiple of VL or if the loop has a data-
dependent exit that is taken before the loop terminates by reaching the loop bound.
The comments on each line provide an example value for the initialization of these
variables and later show the value that results from the execution of each instruction.
In this example, the value of the predicates p0 and p1 in lines 4 and 5 correspond to
the values of cond_0 and cond_1 in lines 11 and 12 of Listing 4. The SVE popu-
lation count instruction, cntp in shown on line 14 and counts the number of active
lanes in a predicate. The .s in the instruction indicates the vector element width
which is 32 bits in this example.

(a) (b) (c)

(d) (e) (f)

Fig. 7 Semantics of SVE permutation instructions and index/whilelt instructions used to implement the
active-lane consolidation and multi-register permutation

12569

1 3

Vectorizing divergent control flow with active‑lane…

Listing 6: Implementation of the ALC permutation in SVE described in
Section 3.1. Example values show in this listing are consistent with the
prior examples.

The SVE ALC permutation shown in Listing 6, and illustrated in Fig. 8, is used to
create the consolidated loop induction vectors that are used both for the index-based
inter-register permutation of all the operands in the block and for the gather-load and
scatter-store operations. After this sequence the merged vector, z2.s, contains up
to VLEN elements from both z0 and z1 corresponding to the active lanes in p0 and
p1 while the remainder vector, z3, contains all other elements in z0 and z1 that
were not consolidated into z2. If the sum of the number of active lanes between p0
and p1 is greater than the vector length, then z2 is guaranteed to be uniform with
respect to the condition that created the predicates p0 and p1.

4.3 Inter‑register indexed permutation in SVE

In SVE an index-based inter-register permutation can be implemented using a chain
of tbl instructions as shown in Listing 7. The tbl on line 7 selects elements from
the first vector data register that corresponds to the first iteration in the unrolled

12570 W. Praharenka et al.

1 3

loop. The last lane receives a zero value because the index 5 is out of range for VL
= 4. Line 10 normalizes the indices to the second vector data register by subtracting
the element count from all lanes. Line 11 gathers the values from the second data
vector with another tbl and the first three lanes take a zero value again because −4 ,
−3 and −1 are outside the range of valid indices. Finally, adding the result of the two
tbl instructions gives the final merged operand in the order created by performing
the ALC permutation.

Listing 7: SVE-specific pseudo-code for the inter-register permute as intro-
duced in Section 3.4.

The inter-register indexed permute makes extensive use of the tbl instruction.
ARM’s previous vector extension, Advanced SIMD, featured a tbl instruction that
took a register-table as input i.e., two or three consecutive vector registers. How-
ever, the tbl in the SVE specification does not include this feature because the SVE
designers considered them not naturally vector-length agnostic [12]. The proposed
inter-register indexed permute presents a case for the inclusion of a multi-register-
table permutation in SVE because indices into the vector table can be generated by
other VLA instructions such as index.

4.4 Proposal for native support in SVE

There are two shortcomings in the SVE design that introduce inefficiencies when
implementing ALC: there are no native instructions that directly map to the ALC
permutation, and there is no support for indexed permutations on multi-register
tables. These shortcomings make it difficult to re-order the lanes between a pair of
vectors.

12571

1 3

Vectorizing divergent control flow with active‑lane…

Listing 8: Proposed instruction to support the active-lane consolidation
permutation in SVE

Fig. 8 Visual example of the ALC permutation implemented in SVE. Active lanes are shown as light
colored squares while inactive as dark colored squares. For brevity, we use cntp as a function but
requires another instruction that returns the count of active lanes. In addition, we use ̃ p0 to represent
the logical NOT of predicate register p0. In 1, once compacted, there are additional zero values appended
at the end of the vector which are empty lanes rather than a valid zero index. These are not problematic
when used as the predicate will prevent any instruction from using the zeros at the end

12572 W. Praharenka et al.

1 3

Listing 9: Proposed extension of tbl to perform an multi-vector table
lookup

This section proposes two additional instructions to SVE that introduce the
active-lane-consolidation permutation as an instruction and support for the multi-
register-table permutation. Listing 8 shows the proposed syntax for this new instruc-
tion consolidate illustrating the consolidation of the adjacent register group {
zN, zN+1 ... zY} based on the active lanes given by the predicate group
{pN.t, pN+1.t .. pY.t} with an element size of t. Similar to the fixed-length
tbl, the input operands for the proposed consolidation instruction are provided as a
list of consecutive vector registers to allow consolidation of more than two registers.
Following SVE’s destructive operation scheme, the input register group is also used
as output.

Alternatively, a design could extend the existing compact instruction to oper-
ate on a register group because the semantics of compact are very similar to the
semantics of consolidate. Such extension would need to change the semantics
of compact so that the inactive lanes are retained instead of being zeroed as the
compact instruction currently does.

The second shortcoming of SVE in the context of ALC is the lack of an indexed
permutation on a scalable vector. In the current SVE design, tbl takes a single
vector register as input while in Advanced SIMD the fixed-length version of tbl
allows up to four consecutive registers as input. Listing 9 shows a proposed exten-
sion of tbl where the last vector operand is a vector of indices into the register
group defined within the curly braces. The proposed consolidate operation
could also be used to achieve the same result but requires a predicate group to be
supplied to the instruction.

5 Iterative ALC

A limitation of relying on the unrolling of vectorized loops to apply ALC is that
consolidation will consider active lanes only within the vectors exposed by unroll-
ing. Practically, there may be many more opportunities to form a uniform vector
if not limited to consolidating consecutive iterations. This section presents Iterative
ALC, a code transformation that overcomes this limitation by consolidating active
lanes across an arbitrary number of iterations of a loop. The insight that led to the
design of this Iterative ALC transformation is that the merged vector can persist

12573

1 3

Vectorizing divergent control flow with active‑lane…

across loop iterations and consolidate active lanes until the merged vector becomes
uniform, at which point it can be processed with 100% utilization.

Figure 9 shows an example of Iterative ALC applied to a loop with an if-else
statement. The ALC permutation primitives and their applications are detailed in
Sect. 3. In the figure, a thin line indicates a control line and a thick line indicates that
all the lanes of the vector are used in the operation. Greyed lines and blocks indicate
code that is not executed in this example. Iterative ALC initializes the merged vector
using the first iteration of the vectorized loop 1 . In each iteration, an any BOSCC
checks for active lanes in the incoming iteration 2 to determine if the ALC permu-
tation should be applied 3 . If the incoming vector is already uniform then ALC
is not applied as a BOSCC can already exploit this vector. The ALC permutation
produces the updated merged vector 4 that now contains any active lanes that were
present in the incoming vector and also produces remainder vector 5 . In iteration 1,
after ALC, the remainder vector 5 is uniformly inactive so that the BOSCC check
fails and the else block 6 is executed. In iteration 2, the any BOSCC 9 on the
remainder vector 8 succeeds, revealing that not all active lanes could be moved into
the merged vector 7 and thus the merged vector must now be uniform. The then
block 10 can then be executed with 100% utilization. Once the uniform merged
block is executed, the remainder vector in that iteration is set as the merged vector
for the next iteration 11 as illustrated in iteration 3.

Iterative ALC is most beneficial in loops where a single condition needs to be
evaluated to determine the flow of control—loops that contain a simple if-else
control flow or with a single if statement rather than loops containing long if-
else-if statements—because in the presence of more complex control flow itera-
tive ALC would have to save all lanes of operands appearing in each control path. In
addition, if ALC is performed to consolidate active lanes, all saved vector operands
must also be permuted to correct the order, further adding to the complexity of oper-
and merging. In the case of a single if statement with no else block, execution
can be completely bypassed. In addition, because there is no need to retain inactive
lanes, the ALC permutation shown in Listing 6 can be simplified. This simplifica-
tion is not shown in detail but involves removing instructions in Listing 6 dealing
with retaining the inactive lanes of the vectors being consolidated.

In the first transformation to enable ALC, described in Sect. 3.2, the number
of active lanes available to be consolidated is limited by the unrolling factor. The
unrolling transformation uses an unrolling factor of two because the combinato-
rial complexity of the ALC permutation increases with the unrolling factor. Larger
unrolling factors are also limited by the number of vector registers available because
unrolling increases register pressure. In contrast, iterative ALC is able to consolidate
active lanes of vectors from any subsequent iteration of the vectorized loop, leading
to better utilization at any vector length without additional register pressure.

12574 W. Praharenka et al.

1 3

6 Evaluation

This benchmark-based study assesses the opportunities to apply, and potential ben-
efit of, ALC and iterative ALC in future programs. Using the SPEC CPU 2017
benchmark suite, this study tries to answer the following questions:

Q1: How many opportunities exist for applying ALC and iterative ALC in the SPEC
CPU 2017 benchmark suite?

Q2: Can the ALC permutation, through loop transformations, be used to non-trivially
increase vector utilization in loops that experience divergent control flow?

Q3: What is the overhead of performing the ALC permutation and index-based inter-
register permutation?

6.1 Methodology

In order for a loop to contain an opportunity to apply ALC it must: 1. Not have any
loop-carried dependencies; 2. Contain a block that is terminated by a conditional
branch; 3. Not contain function calls. To answer Q1 we designed a static analysis
that detects loops with these properties. Table 1 shows the total number of loops
found and the number of loops that meet the ALC conditions in each benchmark of
the SPEC CPU 2017 benchmark suite compiled with vectorization, loop unrolling
disabled and function inlining enabled. The same static analysis answers two addi-
tional questions of interest: how many conditional branches each loop contains; and
how large are the executed blocks. Figure 10a shows a histogram of the number of
conditional branches in ALC opportunity loops. Figure 10b shows a histogram of
the number of LLVM IR operations in blocks inside the loop. The counts used to

Fig. 9 Example of iterative ALC

12575

1 3

Vectorizing divergent control flow with active‑lane…

construct the histograms in Fig. 10 exclude the latch, exit, and header blocks whose
predecessors are terminated by a conditional branch. This analysis reveals that
a large portion of the loops to which ALC can be applied contain few conditional
branches and the conditional blocks contain a small number of operations.

For a profitable application of ALC, a loop also must exhibit divergent control
flow during its execution. Therefore, the dynamic behavior of a loop also has to be
examined. The remainder of this Section investigates four loops reported by the
static analysis whose runtime branching behavior is divergent. These loops illustrate
how ALC and iterative ALC affect the vector execution and performance. Diver-
gency was confirmed by running the benchmark and inspecting the branch direc-
tions at runtime. The criteria for divergency were simply a non-uniform list of
branch outcomes. When implemented inside a production compiler, the application
of ALC must also check for other factors, such as non-vectorizable statements, that
may prevent the application of these transformations.

As of writing, the only SVE-enabled processor available is the Fujitsu
A64FX [23] that we are unable to access. Thus, this performance estimation uses
the Arm Instruction Emulator (ARMIE) [24] running on the non-SVE-enabled
AArch64 hardware. ARMIE uses DynamoRIO [25] to perform dynamic binary
translation. ARMIE replaces SVE instructions with an equivalent sequence of scalar
AArch64 instructions. Because the SVE instructions are being emulated, wall-clock
runtime cannot be used as a result.

The goal of ALC is to increase uniformity in vectors to improve the efficacy of
traditional compiler optimizations such as BOSCCs. BOSCCs elide the execution of
redundant instructions by exploiting uniform vectors and thus reducing the dynamic
instruction count. ARMIE collects these key measurements and enables an assess-
ment of the efficacy of ALC. Dynamic runtime statistics collected through ARMIE
include dynamic instruction count, control-flow-path frequency, and vector-instruc-
tion utilization. These statistics are used to compare ALC to the previous state of the
art. Each version of the loop is compiled using Clang 10 with the -fno-vector-
ize -fno-slp-vectorize -fno-unroll-loops compiler flags. Emu-
lated executions take much longer to complete than native executions, therefore, the
TRAIN workload of the SPEC CPU 2017 benchmark suite is used for all ARMIE-
based measurements. A comparison of the frequency of execution of the branch
instructions and of the branch outcomes with executions of the REFRATE workload
revealed that they are very similar to the TRAIN workload.

6.2 Case studies

The four test cases used in this study are loops taken from the following C/C++
SPEC CPU2017 benchmarks: NAB, LBM, and MCF. Open-source production
compilers’ implementations of SVE are in very early development. Until the req-
uisite infrastructure necessary to write an automatic compiler pass—which requires
effort from a team of developers—is available, the potential for applying ALC can

12576 W. Praharenka et al.

1 3

be assessed by rewriting each loop by hand using the ARM C language extensions
(ACLE) [22]. This laborious process limits the number of case studies reported.

LBM LBM is a fluid-dynamic benchmark that implements the Lattice-Boltz-
mann method to simulate incompressible fluids in 3D [26]. The case study from
LBM is extracted from the function StreamCollideTRT , which takes 97% of
the runtime when LBM is run on the TRAIN workload. Figure 11 shows the two
main paths of control in this loop, B1 performs 19 loads and stores while B2 per-
forms 49 loads and 19 stores. The block B2 also performs many multiply, add and
subtract arithmetic operations. The step increment of the loop induction variable is
not unitary. Therefore, after vectorization, load and store operations in B1 and B2

Table 1 Loops where ALC may
be applicable discovered by
the static analysis described in
Sect. 6.1

Total Applicable

500.perlbench 4667 11
502.gcc 17,658 115
505.mcf 85 2
520.omnetpp 2170 1
523.xalan 10,886 24
525.x264 1127 5
531.deepsjeng 148 8
541.leela 189 8
557.xz 247 0
508.namd 1449 0
510.parest 5486 35
511.povray 2450 35
519.lbm 2450 28
526.blender 19 4
538.imagick 36,337 928
544.nab 2034 142
Sum 85,230 1322

(a) (b)

Fig. 10 Results of a static analysis on the loops matching the basic criteria for ALC to be applicable in
the SPEC CPU 2017 benchmark suite

12577

1 3

Vectorizing divergent control flow with active‑lane…

are translated into gather loads and scatter stores. The predicate computation for the
condition C1 in the vectorized version is simple because it depends only on a load.
Also of importance, the statements inside the conditional blocks do not depend on
values computed outside and therefore the ALC loop transformation does not need
to permute operands.

NAB The NAB (Nucleic acid builder) is a molecular-dynamic program in the
SPEC CPU2017 benchmark suite [26]. The case study from NAB is from the egb
function and contains parallel hot loops with complex control flow. The control-flow
excerpt for the first of the three loops is shown in Fig. 11a and was also used in the
study that evaluated the effect of simple BOSCCs on this loop [17].

MCF_1 The first case study from the MCF benchmark, MCF_1, is from the
flow_cost function. The MCF benchmark solves a network-flow problem to com-
pute schedules for public transportation [26]. The loop in this case study takes
around 1% of the execution time of the benchmark.

MCF_2 The second case study from the MCF benchmark, MCF_2, is found in
the read_min function. This loop calls the function getArcPosition, which
contains an if-else statement and is inlined into the loop during compilation.

6.3 Loop transformations

For these case studies, each loop is vectorized using ACLE intrinsics to insert
BOSCC instructions and apply the unrolling ALC and iterative ALC transforma-
tions. The different versions of the loop implemented and evaluated are as follows:

ifcvt: In this baseline the loop is vectorized with IF-conversion and no BOSCC
instructions are inserted. This version is similar to how the LLVM and GCC vector-
izers currently transform these loops.

boscc: After vectorization and IF-conversion, additional BOSCC instructions are
inserted, where appropriate, to optimize execution.

alc_unroll: The unrolling ALC transformation described in Sect. 3.2 is applied
to the vectorized and IF-converted loop to consolidate active lanes of a conditional
block.

alc_iter: In applicable benchmarks, the iterative ALC transformation described
in Sect. 5 is applied to the loop. Iterative ALC was only applied to the LBM and
MCF_1 loops because the long if-else-if statement in the NAB kernel and the
small conditional blocks in MCF_2 prevented application on these kernels.

For the comparison with boscc one must establish the location in the execution
path where BOSCC instructions should be placed and the type of instruction—all,
any or none—to be placed. Both factors can greatly affect performance. At the
time, there is no automated compiler analysis to determine a suitable placement of
BOSCC instructions into a vectorized and if-converted control flow graph. Thus,
in order to present a fair comparison with the ALC approaches for this study, we
empirically vary the placement and type of BOSCC and use the best-performing
kernel as a baseline for the comparison. For instance, the NAB loop contains an
if-else-if statement that creates five conditional blocks in the IR. As shown

12578 W. Praharenka et al.

1 3

in Fig. 11a, block B2 is by far the most frequently executed conditional block in
the NAB kernel. Thus, the insertion of an all BOSCC on the condition computed
in C2 that predicates B2 leads to the execution of B2 only if all lanes are active and
results in good performance. However, another performant solution is to insert an
any BOSCC after B2 , before the execution of B3 to elide execution of the remain-
ing linearized blocks in the case where all lanes were active for either B2 or B1 . In
this study, we run experiments for both and report the best-performing kernel. The
locations in the control flow graphs where BOSCC instructions are inserted for each
case study are shown as dashed edges in Fig. 12d.

For alc_unroll, future compiler analysis will be needed to decide which condi-
tional block should be consolidated. In most cases, consolidating on the most fre-
quently executed block is a good heuristic. However, there are cases where consoli-
dating a less frequently taken block, such as B1 in the LBM benchmark, is more
beneficial. In this study, a similar empirical approach to the one used for boscc
decides which block to consolidate for alc_unroll.

6.4 Results

Figure 12 reports the dynamic instruction-count reduction in the region-of-interest
(ROI) for each benchmark for the three code transformations. The baseline is ifcvt.
In comparison to the boscc kernels, the instruction reduction in alc_unroll is greater
for longer vectors in the LBM and NAB case studies (12% and 39% at 2048 bits).
For the MCF_2 case study, no results are reported because all three code transfor-
mations failed to reduce dynamic instruction count over baseline.

(a) (b) (c) (d)

Fig. 11 Control flow graphs of the body of the loops of the benchmarks. Percentages attached to edges
indicate the runtime probability the branch is taken in the TRAIN workload

12579

1 3

Vectorizing divergent control flow with active‑lane…

In the alc_unroll kernels, the control flow path which consolidates active lanes of
vectors is followed only when there are enough active lanes to create a uniform vec-
tor and none of the input vectors are already uniform before the ALC permutation.
To handle situations where uniform vectors are encountered before ALC, BOSCCs
are inserted in the fallback path that executes the regular if-converted code. BOSCCs
inserted in the fallback path can account for a large portion of the instruction reduc-
tion in the unrolling ALC versions. In fact, at lower vector lengths, such as 128-bits
and 256-bits, most of the instruction reduction reported in Fig. 12 is due to these
BOSCCs.

A downward trend emerges in the graphs as VL increases because a larger por-
tion of the vectors in the loop become divergent causing BOSCCs to lose effective-
ness. In the alc_unroll kernels, the effect is lessened because the divergent vectors
are consolidated into a uniform vector, leading ALC to out-perform the boscc ker-
nels in the LBM and NAB benchmarks after a certain vector length (1024 bits in
LBM and 512 bits in NAB).

There is a clear correlation between lower dynamic instruction count and the
loop kernels that execute more efficiently, i.e., higher vector utilization reported in
Fig. 13. In the LBM loop, the unrolling ALC transformation only begins to yield
instruction reduction (Fig. 12a) over the boscc kernel once there is a clear gap
between utilization, as seen in vectors greater than 1024 bits on alc_unroll, com-
pared with the boscc kernel in Fig. 13a. This trend is also observed in the NAB loop
between boscc and alc_unroll.

alc_unroll finds many opportunities to consolidate vector lanes in MCF_1 (21%
of iterations consolidate vectors at 2048 bits). However, it fails to out-perform boscc
regardless of vector length because bypassing the vectorized code for the small
basic blocks does not amortize the overhead introduced by performing the ALC
permutation.

6.5 Iterative ALC

When alc_unroll encounters a vector that is uniform prior to the ALC permutation,
the fallback path is taken because consolidation does not benefit this case. This fall-
back path contains IF-converted code with BOSCCs applied to exploit the existing
uniform vector as done for boscc. When one of the two vectors exposed by unroll-
ing is uniform and the other is divergent, the divergent vector must be processed by
the inefficient if-converted code similar as is done for ifcvt. When both candidate
vectors are divergent but do not contain enough active lanes to consolidate into a
uniform vector, both vectors are processed by the inefficient if-converted code in the
fallback path. alc_iter addresses these inefficiencies by consolidating active lanes
from several iterations until a uniform vector is formed instead of being limited to
consolidating lanes only from the vectors exposed by unrolling.

Iterative ALC out-performs both boscc and alc_unroll kernels in the two loops
where it was applied: LBM and MCF_1. We only apply iterative ALC to these two
loops as the simple control flow structures present in the kernels make the imple-
mentation of iterative ALC straightforward. Iterative ALC was not applied on the

12580 W. Praharenka et al.

1 3

Fig. 12 Reduction in dynamic
instruction count of loops opti-
mized with BOSSCs (boscc) or
the ALC transformations (alc_
unroll, alc_iter) over the kernel
with only vectorization and
if-conversion (ifcvt) applied.
Figure 12d shows the control-
flow graphs of the kernels with
the locations of the BOSSC
branches that are indicated by a
dashed line

(a)

(b)

(c)

(d)

12581

1 3

Vectorizing divergent control flow with active‑lane…

NAB kernel as the nature of iterative ALC requires that all operands used within
every conditional block be saved for later permutation. The five-long if-else-if
cascade present in the NAB loop leads to a prohibitive state-saving space require-
ment. Furthermore, iterative ALC is less applicable to loops with long if-else-
if cascades because an automatic compiler pass to perform the transformation
would require a well-informed decision about which conditional block to consoli-
date compared to loops with simple single-if constructs.

Overall, fewer instructions are executed by alc_iter because vectors are utilized
more efficiently. Where the boscc and alc_unroll would sub-optimally process a
vector with a partially active predicate, alc_iter trades inactive lanes in this vector
with active lanes encountered in other iterations of the loop.

The MCF_1 case study contains a nested if-statement that sparsely takes the
branch to block C1 shown in Fig. 11. BOSCC instructions are not effective for longer
vectors in this case because the long vectors will often contain a few active lanes and
cause the any-true BOSCC to succeed so that the branch to C1 is taken. This gradual
degradation of boscc due to it executing instructions with "near-empty" predicates
as vector length increases is observed in Fig. 13b. The sparsity of C1—taken 5% of
the time—leads alc_unroll to struggle to find opportunities to merge vectors from
consecutive iterations. In comparison, iterative ALC steals active lanes from several
iterations to create a uniform merged vector with active lanes. The consolidation
of active lanes into the merge vector leaves a uniform remainder vector with only
false lanes whose execution can be completely bypassed because the control-flow
structure of the kernel only contains a single if statement with no else. The result
is that alc_iter outperforms both boscc and alc_unroll in both vector utilization
(Fig. 13b) and dynamic instruction reduction (Fig. 12b).

6.6 Under‑utilization of vector instructions

Figure 13 shows the percentage of vector instructions that are executed with a cer-
tain predicate utilization. Darker shades indicate more lanes of the predicate are
active while lighter shades indicate less. The ifcvt kernel shows the results from
the version of the loop vectorized with naive IF-conversion and is similar to how
LLVM and GCC would currently vectorize these loops. Figure 13 shows that a very
large portion of vector instructions execute with a predicate that is either all-false or
has low utilization. This illustrates the poor execution efficacy that traditional IF-
conversion leads to especially when control divergence becomes more prevalent as
the vector length increases.

The results in Fig. 13 indicate that when properly placed, BOSCC instructions
can effectively avoid executing instructions with all-false predicates. For instance,
an all BOSCC inserted on B2 in NAB and an any BOSCC inserted on B1 in LBM
result in the largest instruction reduction because B2 is the hottest block in NAB and
B1 is the least frequent block in LBM. However, a disadvantage of both boscc and
alc_unroll is that they both depend on a yet-to-be-created compiler analysis. Such
analysis has to determine the place and type of BOSCC instructions to insert for
boscc and which block to consolidate for alc_unroll. These decisions depend on

12582 W. Praharenka et al.

1 3

Fig. 13 Percent divergence of
vector instructions. Dotted black
bars indicate 100% utiliza-
tion while dotted white bars
indicate 0% utilization. Shaded
bars indicate partial utilization
with darker shades representing
higher utilization

(d)

(c)

(b)

(a)

12583

1 3

Vectorizing divergent control flow with active‑lane…

accurately predicting the branch probabilities at runtime. For some programs, such
probabilities depend on the workload and thus vary from run to run.

In comparison, alc_iter fills the merged vector as it encounters active lanes in the
loop and therefore it does not depend on accurate branch-outcome information. For
instance, the block being consolidated in Fig. 13a is the lesser executed block B1 .
Even so, alc_iter achieves perfect utilization and significant instruction reduction
over the best results for boscc and alc_unroll.

6.7 Overhead of the ALC permutation

This section addresses question Q3. As discussed in Sect. 4 the ALC permutation
requires at most fifteen instructions while the inter-register permutation requires
three instructions per operand that needs permuting. To be profitable, the ALC loop
transformations must amortize the cost of executing instructions to perform these
permutations.

Table 2 shows the instruction count for the primary control flow paths in the
loop kernels. As illustrated in Fig. 12d BOSCC branches introduce control flow for
boscc, alc_unroll and alc_iter to allow bypassing sections when all the lanes of a
vector are inactive. If any of the lanes are active, the BOSCC branch is not taken
and the entire sequence of partially active predicated vector instructions must be
executed. The number of instructions for each of these paths is reported under the
columns boscc not-taken and boscc taken in Table 2.

The slight increase in the number of instructions from ifcvt to boscc not taken
is indicative of the low overhead introduced by the BOSCC instruction. The dras-
tic instruction-count reduction from ifcvt to boscc taken for the LBM, MCF_1 and
NAB kernels underscores the inefficiency of applying only IF-conversion to the
loop. This inefficiency results from ifcvt executing predicated code to account for all
paths, including some which may be predicated by an all-false predicate.

In the alc_unroll kernels, there is a taken and a not-taken path. In the taken path,
ALC is performed and thus, it includes instructions to perform the ALC and index-
based inter-register permutations. In the not-taken path, ALC is not performed either
because candidate vectors for consolidation are already uniform or because there is
an insufficient number of active lanes to form a uniform vector. Note that alc_unroll
executes two iterations of the loop while ifcvt to boscc execute a single one—this
difference accounts for static instruction counts for alc_unroll being close to twice
the amount reported in the ifcvt column.

For alc_unroll in MCF_2 the taken path is longer than the not-taken path and
thus consolidation will result in performance degradation because several operands
must be permuted. The issue is compounded by the small size of the basic blocks,
which lowers the benefit of a BOSCC branch. Larger blocks would result in more
savings from bypassing execution and would amortize the operand permutation
costs. For kernels exhibiting similar characteristics where many operands need to be
permuted to correctly execute a small consolidated block, it is not beneficial to con-
solidate execution of vectors through the unrolling ALC transformations.

12584 W. Praharenka et al.

1 3

With the proposed ISA design changes described in Sect. 4.4 both the ALC
permutation and the index-based inter-register permutation would require a single
instruction each. Such change would significantly reduce the overhead of ALC. For
instance, for MCF_2, the overhead could be reduced to seven instructions: one for
ALC and six for index-based inter-register permutation of operands for the consoli-
dated block and for the remainder block. Significant overhead reduction, such as this
one for MCF_2, will enable the use of ALC for loops with small block sizes. This
is especially interesting given the findings presented in Fig. 10 that show that small
conditional blocks, containing only two to eight instructions are most common.

The alc_iter kernels contain two paths, filled and continue. The filled path pro-
cesses the merged vector once it becomes full, this is illustrated in iteration 2 of
Fig. 9. The continue path represents the path that control follows when the ALC
permutation is performed but the merged vector does not become full. In the case
of a single if statement with no else block, such as in the MCF_1 benchmark, no
additional code is executed. Furthermore, because there is no need to retain the inac-
tive lanes, a simplified version of the ALC permutation, that requires fewer instruc-
tions, can be used. These characteristics make iterative ALC very appealing to opti-
mize loops with lone if statements. In contrast, the LBM benchmark contains an
if-else statement so that the continue path executes code to process the lanes
that were inactive for the if block. In, MCF_1, 27 of the 48 instructions present
in the filled path are related to the actual execution of the conditional block. The
remaining 21 instructions execute the ALC permutation to consolidate active lanes.
The difference between the 15 required instructions presented in Sect. 5 and the 21
listed here is due to imperfections in the compiler’s code generation. Even with the
large number of instructions required to perform the ALC permutation, the iterative
ALC kernel outperforms the best boscc kernel because of the large increase in vec-
tor utilization provided by iterative ALC.

7 Related work

Control flow has long been an obstacle for SIMD execution. IF-conversion is the
canonical method that enables vectorization of codes containing control flow and
works by linearizing the control flow graph so that all possible paths of control are
executed [2]. IF-conversion linearizes execution by associating a predicate to each

Table 2 Static instruction counts for the control flow paths in each kernel

Kernel ifcvt boscc alc_unroll alc_inter

Not-taken Taken Not-taken Taken Filled Continue

lbm 583 589 74 1212 114 96 546
nab 204 205 98 470 331
mcf_1 25 32 15 74 66 48 21
mcf_2 45 46 40 90 130

12585

1 3

Vectorizing divergent control flow with active‑lane…

block. Blocks that would execute in the original code receive a true predicate and
produce results while the remaining blocks do not produce results. In loops suffering
from control flow divergence, IF-converted and vectorized code leads to underuti-
lized vector units and inefficient execution; in the worst case, a vector instruction
will execute with all lanes inactive, producing no result while still occupying proces-
sor resources. Shin et. al. use Branch-on-superword-condition-codes (BOSCCs) to
alleviate vector under-utilization by inserting BOSCC instructions that elide execu-
tion of unnecessary instructions [4, 5].

A technique to prevent the deterioration of SIMD utilization consists of par-
tially linearizing the control flow [17]. This algorithm retains branches proven to
be uniform by divergence analysis [27]. Partial linearization also inserts uniform
branches with the same semantics as BOSCCs, called BOSCC gadgets, which are
later lowered to their respective BOSCC instruction in the vectorized code. Moll et.
al describe the insertion of any BOSCC gadgets to bypass execution of infrequently
executed blocks and evaluate its effect with Intel AVX-512 and Arm Advanced
SIMD processors in the NAB benchmark yielding a runtime improvement of up to
30%.

Warp-coherent-condition vectorization (WCCV) extends partial control-flow lin-
earization by proposing methods to detect warp-coherent conditions and to trans-
form loops containing them [21] . Warp-coherent conditions are conditions that,
when vectorized, exhibit similar behavior between lanes. In contrast to the use of
any BOSCCs in partial linearization, WCCV inserts all BOSCCs in a code trans-
formation that executes only the block for which the condition is true, thus bypass-
ing redundant code when the vector is uniform or "warp-coherent."

Both partial control-flow linearization and WCCV suffer when faced with heav-
ily divergent control flow because BOSCCs fail to optimize the resulting divergent
vectors. This paper presents the ALC vector permutation that consolidates active
lanes between two vectors. The permutation creates more cases of uniform vectors
that all BOSCCs can detect and optimize during runtime. ALC is integrated into
two code transformations to expose additional vectors to consolidate: unrolling and
iterative. The unrolling ALC transformation unrolls the loops by a factor of two to
consolidate the lanes from different iterations of the vectorized loop. Lanes that are
not consolidated into the uniform vector, called the remainder vector, need to be
handled and can be processed through the IF-converted graph. Also, any BOSCCs
can be inserted within the IF-converted graph to further optimize execution. With
iterative ALC, active lanes from multiple iterations can be consolidated into a single
vector for uniform execution.

The concept of increasing vector utilization through “stealing” lanes already
exists and has been proposed for other use cases and architectures. Lang et al [28]
present a method to refill vector lanes in vectorized database queries with the per-
mute, compress and expand instructions in Intel AVX-512. This work did not
address the issue when inactive lanes must be saved for their own processing. In
contrast, the ALC permutation presented in this paper swaps inactive lanes in one
vector for active lanes in another vector thereby saving the inactive lanes if they
are still required. In addition, Lang et al.’s work focused on applying their methods
to database queries and implemented them in AVX-512; the ALC transformations

12586 W. Praharenka et al.

1 3

presented in this work are applicable to any vectorizable loop with divergent control
flow and we present an implementation using ARM’s SVE.

Both Intel AVX-512 and ARM SVE are CPU extensions and hence, the ALC
permutation and loop transformation target SIMD execution on CPUs only. How-
ever, the concept of reorganizing lanes to increase vector utilization is analo-
gous to the re-organization of threads in a warp to increase SIMD utilization in
GPUs. Hardware-based approaches that perform fine-grain lane reorganization on
GPUs [29, 30] dynamically create new warps to mitigate control-flow divergence.
Software approaches [31] have limited applicability as they must emulating mov-
ing lanes by copying data to shared memory. In general, reorganizing lanes on
GPUs is problematic due to the large amount of state associated with each lane in
the SIMT paradigm.

Barredo et al. present the Compaction/Restoration (CR) technique to improve
SIMD utilization [3]. CR proposes a hardware mechanism on top of the exist-
ing vector processing unit (VPU) to catch “compactable" instructions as they
move through the out-of-order pipeline. Multiple similar instructions are then
compacted into a single “dense" instruction that is issued to the VPU for execu-
tion. Such a scheme has the potential to improve vector efficiency in many loops
without prior analysis and intervention by the compiler. However, because CR is
implemented in hardware, the distance in which active lanes can be compacted is
limited and thus it is unable to operate in a similar manner to the iterative ALC
transformation introduced in this work where lanes can be consolidated from
many loop iterations.

The ARM Scalable vector extension was introduced to address issues with past
vector extensions such as ISA disorganization and scalability [11] and as a solution
to drive performance in numerous application domains in the face of demanding
power requirements [32, 33]. The popularity of SVE is increasing and mainstream
compilers such as GCC and LLVM are actively working to implement support [34].
Research thus far has focused on using SVE to accelerate applications in specific
workloads such as stencil codes [35] and image processing pipelines [36] and evalu-
ates the resulting performance. ARM SVE is not the only ISA to re-adopt the VLA
architecture. RISC-V [13] is also introducing scalable vectors into their ISA for
which production hardware has already been produced [37].

8 Conclusion

Vectorizing loops with control flow is a long-standing problem. IF-conversion offers
a solution to vectorize these loops but leads to inefficient execution in loops with
divergent control flow. The trend of increasing vector length exacerbates the inef-
ficiency caused by control-flow divergence. This paper presents a novel vector per-
mutation, Active-Lane Consolidation, to consolidate active lanes between two diver-
gent vectors and facilitate the formation of a uniform vector. Traditional BOSCC
branches can then exploit this opportunity by bypassing the execution of unneces-
sary predicated vector code, leading to an increase in vector utilization. The paper

12587

1 3

Vectorizing divergent control flow with active‑lane…

presents two loop transformations to illustrate the use of ALC: unrolling ALC and
iterative ALC.

Performance prediction based on case studies of the ALC transformation on a
set of four kernels found in the SPEC CPU 2017 benchmark suite indicates that
ALC has significant potential to increase vector utilization and to decrease dynamic
instruction count.

Acknowledgements This research was funded by the University of Alberta Huawei Joint Innovation
Collaboration (UAHJIC) and by the National Sciences and Engineering Research Council (NSERC) of
Canada. We thank Giancarlo Pernudi Segura for his great assistance creating some of the assembly-level
coding for the case studies.

References

 1. Monroe D (2020) Fugaku takes the lead. Commun ACM 64(1):16–18
 2. Allen, JR, Kennedy, K, Porterfield, C, Warren, J (1983) Conversion of control dependence to data

dependence. In: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on principles of
programming languages, pp 177–189

 3. Barredo A, Cebrian JM, Moretó M, Casas M, Valero M (2020) Improving predication efficiency
through compaction/restoration of simd instructions. In: 2020 IEEE international symposium on
high performance computer architecture (HPCA), pp 717–728

 4. Jaewook S (2007) Introducing control flow into vectorized code. In: 16th International Conference
on Parallel Architecture and Compilation Techniques (PACT 2007), pp 280–291. IEEE

 5. Shin J, Hall MW, Chame J (2009) Evaluating compiler technology for control-flow optimizations
for multimedia extension architectures. Microprocess Microsyst 33(4):235–243

 6. Flynn MJ (1972) Some computer organizations and their effectiveness. IEEE Trans Comput
C–21(9):948–960

 7. Intel Corporation (2021) Intel AVX-512. https:// www. intel. com/ conte nt/ www/ us/ en/ archi tectu re-
and- techn ology/ avx- 512- overv iew. html

 8. ARM Corporation (2021) ARM Advanced SIMD. https:// devel oper. arm. com/ archi tectu res/ instr
uction- sets/ simd- isas/ neon

 9. Arm Limited (2021) Arm®Architecture Reference Manual Armv8, for Armv8-A Architecture
Profile

 10. Russell RM (1978) The CRAY-1 computer system. Commun ACM 21(1):63–72
 11. David Patterson (2017) SIMD Instructions Considered Harmful. https:// www. sigar ch. org/ simd- instr

uctio ns- consi dered- harmf ul
 12. Arm Limited (2021) Arm®Architecture Reference Manual Supplement The Scalable Vector Exten-

sion (SVE), for Armv8-A
 13. RISC-V® International Members (2021) The RISC-V “V” vector extension. version 0.10 (Visited

on April 26, 2021). https:// github. com/ riscv/ riscv-v- spec/ relea ses/ downl oad/ v0. 10/ riscv-v- spec-0.
10. pdf

 14. Sreraman N, Govindarajan R (2000) A vectorizing compiler for multimedia extensions. Int J Paral-
lel Prog 28(4):363–400

 15. Kennedy K, Allen JR (2001) Optimizing compilers for modern architectures: a dependence-based
approach. Morgan Kaufmann Publishers Inc., Massachusetts

 16. Wolfe MJ (1995) High performance compilers for parallel computing. Addison-Wesley Longman
Publishing Co. Inc, New York

 17. Moll S, Hack S (2018) Partial control-flow linearization. ACM SIGPLAN Notices 53(4):543–556
 18. Allen F, Cocke J (1971) A catalogue of optimizing transformations. Prentice-Hall, New Jersey
 19. Anantpur J, Govindarajan R (2014) Taming control divergence in gpus through control flow lineari-

zation. In: Albert C (ed) Compiler construction. Springer, Berlin Heidelberg, pp 133–153

https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://www.sigarch.org/simd-instructions-considered-harmful
https://www.sigarch.org/simd-instructions-considered-harmful
https://github.com/riscv/riscv-v-spec/releases/download/v0.10/riscv-v-spec-0.10.pdf
https://github.com/riscv/riscv-v-spec/releases/download/v0.10/riscv-v-spec-0.10.pdf

12588 W. Praharenka et al.

1 3

 20. Sun H, Gorlatch S, Zhao R (2018) Refactoring loops with nested ifs for simd extensions without
masked instructions. In: European Conference on Parallel Processing, pp 769–781. Springer

 21. Sun, H, Fey F, Zhao J, Gorlatch S (2019) WCCV: improving the vectorization of IF-statements with
warp-coherent conditions. In: Proceedings of the ACM International Conference on Supercomput-
ing, pp 319–329

 22. ARM (2020) The arm C language extensions https:// devel oper. arm. com/ archi tectu res/ system- archi
tectu res/ softw are- stand ards/ acle

 23. Fujitsu Limited (2021) A64FX®Microarchitecture Manual. Version 1.4
 24. ARM (2020) The ARM instruction emulator. https:// devel oper. arm. com/ tools- and- softw are/ server-

and- hpc/ compi le/ arm- instr uction- emula tor
 25. Bruening D, Amarasinghe S (2004) Efficient, transparent, and comprehensive runtime code manipu-

lation. PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineering
 26. SPEC (2021) SPEC2017 Benchmark overview. https:// www. spec. org/ cpu20 17/ Docs/ overv iew. html
 27. Coutinho B, Sampaio D, Pereira FMQ, Meira Jr W (2011) Divergence analysis and optimizations.

In: 2011 International Conference on Parallel Architectures and Compilation Techniques, pp 320–
329. IEEE

 28. Lang H, Passing L, Kipf A, Boncz P, Neumann T, Kemper A (2020) Make the most out of your
SIMD investments: counter control flow divergence in compiled query pipelines. VLDB J
29(2):757–774

 29. Fung WWL, Sham I, Yuan G, Aamodt TM (2007) Dynamic warp formation and scheduling for effi-
cient gpu control flow. In: 40th annual IEEE/ACM international symposium on microarchitecture
(MICRO 2007), pp 407–420. IEEE

 30. Fung WWL, Aamodt TM (2011) Thread block compaction for efficient simt control flow. In: 2011
IEEE 17th international symposium on high performance computer architecture, pp 25–36. IEEE,

 31. Khorasani F, Gupta R, Bhuyan LN (2015) Efficient warp execution in presence of divergence with
collaborative context collection. In: Proceedings of the 48th international symposium on micro-
architecture, MICRO-48, pp 204-215

 32. Stephens N, Biles S, Boettcher M, Eapen J, Eyole M, Gabrielli G, Horsnell M, Magklis G, Martinez
A, Premillieu N et al (2017) The ARM scalable vector extension. IEEE Micro 37(2):26–39

 33. Sato M, Ishikawa Y, Tomita H, Kodama Y, Odajima T, Tsuji M, Yashiro H, Aoki M, Shida N,
Miyoshi I, et al (2020) Co-design for A64FX manycore processor and “Fugaku”. In: SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis, pp 1–15.
IEEE

 34. Lovett (2021) SVE in LLVM. https:// hps. vi4io. org/_ media/ events/ 2020/ llvm- cth20_ lovett. pdf
 35. Armejach A, Caminal H, Cebrian JM, Langarita R, González-Alberquilla R, Adeniyi-Jones C,

Valero M, Casas M, Moretó M (2020) Using Arm® scalable vector extension on stencil codes. J
Supercomput 76(3):2039–2062

 36. Cococcioni M, Rossi F, Ruffaldi E, Saponara S (2020) Fast deep neural networks for image process-
ing using posits and arm scalable vector extension. J Real-Time Image Process 17:759–771

 37. Chen C, Xiang X, Liu C, Shang Y, Guo R, Liu D, Lu Y, Hao Z, Luo J, Chen Z, et al (2020) Xuan-
tie-910: a commercial multi-core 12-stage pipeline out-of-order 64-bit high performance RISC-V
processor with vector extension: industrial product. In: 2020 ACM/IEEE 47th annual international
symposium on computer architecture (ISCA), pp 52–64. IEEE

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://developer.arm.com/architectures/system-architectures/software-standards/acle
https://developer.arm.com/architectures/system-architectures/software-standards/acle
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://www.spec.org/cpu2017/Docs/overview.html
https://hps.vi4io.org/_media/events/2020/llvm-cth20_lovett.pdf

	Vectorizing divergent control flow with active-lane consolidation on long-vector architectures
	Abstract
	1 Introduction
	2 Background
	3 Optimizing divergent vectors with ALC
	3.1 Active-lane consolidation permutation
	3.2 Loop-unrolling ALC
	3.3 Tracking lane indices through permutation
	3.4 Permuting instruction operands

	4 Active-lane consolidation in SVE
	4.1 SVE permutations
	4.2 Active-Lane Consolidation in SVE
	4.3 Inter-register indexed permutation in SVE
	4.4 Proposal for native support in SVE

	5 Iterative ALC
	6 Evaluation
	6.1 Methodology
	6.2 Case studies
	6.3 Loop transformations
	6.4 Results
	6.5 Iterative ALC
	6.6 Under-utilization of vector instructions
	6.7 Overhead of the ALC permutation

	7 Related work
	8 Conclusion
	Acknowledgements
	References

