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Abstract
It is essential to use fault tolerance techniques on exascale high-performance com-
puting systems, but this faces many challenges such as higher probability of fail-
ure, more complex types of faults, and greater difficulty in failure detection. In this 
paper, we designed the Fail-Lagging model to describe HPC process-level failure. 
The failure model does not distinguish whether the failed process is crashed or slow, 
but is compatible with the possible behavior of the process due to various failures, 
such as crash, slow, recovery. The failure detection in Fail-Lagging model is imple-
mented by local detection and global decision among processes, which depend on a 
robust and efficient communication topology. Robust means that failed processes do 
not easily corrupt the connectivity of the topology, and efficient means that the time 
complexity of the topology used for collective communication is as low as possi-
ble. For this purpose, we designed a torus-tree topology for failure detection, which 
is scalable even at the scale of an extremely large number of processes. The Fail-
Lagging model supports common fault tolerance methods such as rollback, replica-
tion, redundancy, algorithm-based fault tolerance, etc. and is especially able to better 
enable the efficient forward recovery mode. We demonstrate with large-scale experi-
ments that the torus-tree failure detection algorithm is robust and efficient, and we 
apply fault tolerance based on the Fail-Lagging model to iterative computation, ena-
bling applications to react to faults in a timely manner.
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1  Introduction

The application scenario of large-scale supercomputing is becoming more and 
more extensive. With the development of technology, the computing power of 
supercomputers is constantly increasing, and the scale has been able to reach tens 
of millions of cores. Scaling up the system increases computing power, but also 
shortens the Mean Time Between Failure (MTBF), which means that the sys-
tem will have a higher probability of encountering faults. Without fault tolerance 
mechanisms, applications can waste a lot of time in the event of failure, causing 
unbearable financial losses to users and providers of computing services.

Current high-performance computing (HPC) platforms mostly use distrib-
uted storage and message passing in parallel. If the HPC application is unable 
to identify abnormally slow or crashed processes in time during operation, once 
the processes need to communicate with each other, the normal processes will 
continuously wait for the response from the abnormal processes, resulting in the 
task progress not being able to advance further. If the application is large, with 
millions of computer cores, every second wasted can cost a lot of money. Fail-
ure detection is essential for fault-tolerance mechanisms, allowing applications 
to detect failure in time and take recovery measures. However, it is very difficult 
to implement failure detection on large-scale HPC systems, and the difficulties 
include:

–	 The large number of processes makes detection very costly and difficult. Some 
detection methods used on small-scale distributed systems are not scalable to 
cases where the number of processes is large, for example, using a master pro-
cess or a manager to monitor the activity of each process in real time; using an 
all-to-all approach to connect processes that each process monitors each other 
by receiving and sending heartbeats. These methods require tremendous cost, 
and the latency resulting from intensive communication and managing a large 
amount of processes may cause some errors in the detection results.

–	 It is impossible to distinguish whether the failed process is crashed or very 
slow with the asynchronous assumption, and it can only suspect but not con-
clude the failure of the process. In HPC, researchers strengthen asynchroni-
zation to partial synchronization [7, 10, 18] so as to be able to detect fail-
ure using a timeout-based approach, even so, the setting of the timeout value 
remains a tricky issue. Too short timeout settings are prone to misclassifica-
tion; too long timeout settings degrade efficiency.

–	 The variety of faults in HPC systems makes it difficult to find a suitable model 
to describe them. Fail-Stop [21] is the failure model used by most HPC fault-
tolerant techniques, in which processes either work or stop. The model is simple 
and intuitive, but is not sufficient to cover the multifarious types of faults in HPC. 
The Byzantine [19] can cope with various types of faults, but implementing Byz-
antine fault tolerance requires high redundancy costs. For this reason, researchers 
are working to explore a more suitable failure model, seeking a balance between 
the effectiveness and cost of Fail-Stop and Byzantine models.
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–	 There may be hard-to-detect faults or “false negative” processes. Such faults 
can cause applications to run much longer than anticipated, with multiple runs 
struggling to complete a valid calculation. Some famous supercomputers such 
as Sunway and Tianhe-2 users have encountered this type of error [24]. The 
users are more likely to encounter such errors and waste a lot of money when 
calling computing resources with millions of cores or more.

–	 Failed processes can break the connectivity of the original communica-
tion structure. Results of fault detection require fault propagation with the 
help of communication topologies. The topologies employed by HPC can be 
reconnected to maintain connectivity. However, as the number of processes 
increases, the number of failed processes as a proportion of the total number 
of processes does not decrease, so that maintaining topology connectivity will 
be more expensive and challenging.

The implementation of failure detection on HPC should be as accurate, efficient, 
low cost, scalable to exascale, and avoid “false negative” detection results, which 
cannot be fully satisfied by existing methods, which motivates us to propose a 
new failure model to explore a more suitable solution for exascale HPC. We focus 
on the running state of processes, and the stable performance of HPC applica-
tions depends on the proper execution of each process. We are concerned about 
the running state of the processes, because the stable performance of HPC appli-
cations depends on the proper execution of each process. Process failure can be 
due to a variety of errors. Failed processes may stop running, run slowly, fail to 
communicate properly, resume from an unresponsive state, etc. Static data errors 
can be corrected by checksum without affecting the speed of the process, which is 
out of the scope of this paper.

The response speed of abnormal processes will be significantly slower than other 
normal processes, or even no response, and the failed processes will affect the pro-
gress of other processes during the communication phase, thus causing blocking. 
The application needs to find and isolate the abnormal processes in time to avoid 
being dragged down. To this end, we design the Fail-Lagging model where once the 
processes appear to be severely slower than others, regardless of crash or slow, they 
are judged as “lagging” by others. Normal processes will skip all “lagging” pro-
cesses, take appropriate fault-tolerant measures and continue to work.

The Fail-Lagging model provides a novel solution idea for failure detection and 
fault-tolerant recovery for HPC. Failure detection no longer uses heartbeats and uses 
an idea similar to loose synchronization, replacing periodic communication with the 
overhead of collective communication. Loose synchronization [2] means that pro-
cesses do not have to wait for all processes to arrive before they can pass the barrier. 
Processes that have arrived can pass the barrier if they meet the release conditions 
and no longer wait for the late processes, at which point the unreached processes are 
determined to be failed processes by the other processes. In this way, non-arrived 
processes, regardless of the crash, performance failure or other reasons, are uniformly 
treated as “Lagging” processes, simplifying the definition of faults to the greatest 
extent possible and adapting to the complicated types of faults in HPC systems.
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Fail-Lagging model blurs process crashes and slowness and does not require a 
perfect failure detector, only a strong failure detector, as long as all the correct pro-
cesses are ensured to be able to perform appropriately. Some processes may recover 
from failure, but are already considered as failed processes because of their slow 
operation. For those processes that are still able to run, they are also allowed to be 
retrieved and then re-engage in the computation when they resume running when 
certain conditions are met.

The detection algorithm is implemented in a torus-tree topology, where processes 
detect adjacent processes according to the torus-tree topology, count the number 
of arrived processes, and the arrived processes collectively decide whether the late 
processes are lagging or not. The torus-tree topology does not require a master to 
manage all processes, and the connectivity of the topology can be maintained if any 
process fails.

The detection algorithm is implemented in the torus-tree topology, where pro-
cesses detect adjacent processes according to the torus-tree, count the number of 
arrived processes, and the arrived processes collectively decide whether the late 
processes are lagging or not. The torus-tree topology does not require a master to 
manage all processes, and the connectivity of the topology can be maintained if any 
process fails. As the scale of processes increases, the probability and proportion of 
failed processes per unit time increases, but the proportion of failures that the torus-
tree can withstand does not decrease, and the time complexity grows logarithmi-
cally, two features that ensure the scalability of the communication topology.

The processes take fault-tolerant recovery measures based on the results of fail-
ure detection. When the number of processes is large, it is expensive to back up 
data, save the running state of processes, restart, and other methods. The approach 
of disk rollback is difficult to be scaled to the case of large number of processes 
and short MTBF. In general, faults of HPC are spatially localized [15], i.e., they are 
insignificant in proportion but concentrated in distribution. If the failed processes 
can be identified and isolated at the application level, allowing normal processes to 
continue running, the frequency of application restarts can be reduced and unneces-
sary storage costs can be minimized. To achieve such a fault-tolerant pattern, this 
paper initially conceptualizes a scheme of data intersection storage, fault-tolerant 
collective communication, and process task substitution to support the requirements 
of application running across failure, and initially applies it to iterative computing.

2 � Background and motivation

2.1 � Failure model

Failure model is critical to the design of fault tolerance mechanisms. At present, 
most fault-tolerant methods are established based on the Fail-Stop [21]. However, 
researchers are aware of the limitations of the fail-stop model; failure can be perma-
nent, transient, and unstable. It is clearly not the best solution to terminate the exe-
cution of the application directly [11]. The Byzantine model [19] can cope with any 
type of failure and is suitable for redundancy and replication fault-tolerant solutions, 
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but it is expensive and cannot be achieved with more redundancy in extreme scales. 
Some of the failure models under exploration try to provide an intermediate model 
between the two extreme models of Byzantine and Fail-Stop. For example, the Fail-
Stutter [5] and Fail-Slow [14] that take into account performance failures. In the dis-
tributed field, there is a Crash-Recovery [16] that considers the possibility of recov-
ery after processes crash. We wish to explore a simple and adaptable failure model 
for HPC that does not make fault tolerance too difficult and can accommodate more 
complex failure scenarios. We will explore a simple and adaptable fault model for 
HPC that does not make failure detection and fault tolerance excessively challeng-
ing, while in a position to adapt to complex HPC scenarios.

2.2 � Failure detection

In the distributed field, Chandra and Toueg proposed the first unreliable failure 
detector [8]. Many fault tolerance methods rely on the powerful characteristics of 
the perfect failure detector(see, e.g., [22]). Using a non-all-to-all heartbeat detection 
method, it is difficult to complete fault propagation effectively if the coverage topol-
ogy is corrupted. For this reason we want to design a failure detection algorithm that 
can repair the communication topology in case of encountering a failure. The detec-
tor satisfies at least the eventual strong completeness.

George Bosilca et al. [25]. proposed a failure detector based on the ring network 
overlay, where the processes can reconnect to repair the ring in case of failure and 
complete fault propagation via the hypercube topology [13], which provides a 
remarkably enlightening solution for the implementation of communication-based 
failure detection. The results of the detection have to be propagated to each process. 
Although hypercubes have high communication efficiency, the number of failed pro-
cesses that a hypercube consisting of n processes can tolerate in a single detection is 
log n [6]. As the scale of the process increases, the percentage of faults that can be 
tolerated tends to zero due to lim

n→∞

log n

n
= 0 , which is a significant limitation at 

exascale and larger. To find a suitable topology, we designed the torus-tree [23], 
which is easy to repair, robust, and has high communication efficiency.

2.3 � Fault tolerance

The main common fault tolerance techniques for HPC are checkpointing/restart 
[11], replication and redundancy [12], and algorithm-based fault tolerance [9]. Each 
of these fault-tolerance techniques has its own advantages, and current research on 
HPC is increasingly tending to use a combination of technologies to achieve fault 
tolerance. However, the current version of MPI does not support continuous delivery 
in case of failure yet, hindering the availability of many technologies for direct use. 
For this reason, User-Level Fault Mitigation (ULFM) [20] is proposing an extension 
to MPI that would allow control to be handed over to the user when encountering 
faults, rather than immediately terminating the application, thus enabling applica-
tion to run across faults. Future expansion to larger applications will require more 
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cross-fault capability to break through the bottleneck of increasing failure frequency 
as scale increases.

2.4 � Motivation

This paper presents a natural idea of fault tolerance from the perspective of an 
application: 

1.	 The application performs failure detection at the appropriate time.
2.	 In case of failure, when the number of processes reaches an user-defined percent-

age during the detection phase, the processes that have not arrived are temporarily 
identified as “failed” processes.

3.	 Normal processes will skip the failed process and continue to execute the task.
4.	 The input data required for fault-tolerant recovery need to be saved in advance.
5.	 The failed process may recover and can be retrieved and reused in subsequent 

calculations.

This idea of fault tolerance is best suited for Bulk Synchronous Parallelism (BSP), 
where failure detection, fault-tolerant recovery, data backup, and other related opera-
tions are done in one super step. The idea of failure detection algorithm is somewhat 
similar to loose synchronization [2], a concept that was earlier proposed in appli-
cations such as distributed computing and network systems. The main reason why 
it has not been used on HPC systems is that the previously implemented approach 
requires a manager to accomplish the detection task and ensure consistency among 
nodes, which can be an extremely high cost for HPC systems.

In order to implement the above fault-tolerant idea, this paper designs Fail-
Lagging model, implements failure detection using the definition of failure by the 
model, implements fault-tolerant recovery using the results of failure detection, and 
explores a fault-tolerant model that can empower applications to run across failures 
on large-scale systems.

3 � Fail‑Lagging model

The failure model proposed in this paper is applicable to HPC platforms. The time-
out mechanism can be used to determine if a process fails, but the asynchronous 
model needs to be strengthened with the assumption of partial synchronization, i.e., 
the assumption of “unbounded message latency” is strengthened with the assump-
tion of “unknown upper time limit for computation and network.” The communica-
tion speed of HPC system components tends to be quite fast and should not normally 
experience too long message delays. The assumption of partial synchronization for 
HPC is reasonable. Processes cannot use the global clock to determine timeout. 
They can only infer the state of the process based on the local clock and communi-
cation. Processes follow the rules of MPI, each process is able to communicate with 
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any process, and the communication topology is used to specify the communication 
routes of the processes at the time of collective communication.

The Fail-Lagging model is used to deal with non-fatal faults, that is, various pos-
sible causes such as memory leaks, message omissions, performance failure, etc. 
that cause processes to crash, deadlock, slow down, failure to communicate, etc. 
Applications that fail to detect these faults in time can easily suffer from a run time 
that is far longer than expected or even fails to produce results. The application has 
to be able to identify processes that slow down the overall running schedule in a 
timely and efficient manner. Our model describes the definition of failed processes, 
detection methods and fault tolerance schemes.

3.1 � Definition of "Lagging" process

Failure definition and detection are important parts of the failure model. Fail-Lag-
ging uses failure detectors with epoch numbers, that is similar to the Crash-Recov-
ery model [1], since it takes into account the possible recovery of the failed pro-
cesses. For the sake of description, we define as follows:

The set P = {p1,… , pn} consists of n processes, and the undirected graph 
G(V, E) represents the communication topology used by the set of processes P in 
the detection phase, V is the set of points corresponding to the bijection of the set of 
processes P, and E is the set of edges indicating that two processes on this commu-
nication topology are able to directly communicate with each other communication.

Since the global clock is not available, processes obtain their respective local 
time, and usually take time fragments as the basis for timing, e.g., start timing after 
entering the detection phase. The time progress can be described by the macroscopic 
time t, and the set of local time read by the processes individually is denoted as 
D(t) = {d1(t),… , dn(t)} . D(t) has the following properties:

–	 t = maxi(D(t)) . That is, t starts timing with the first process that enters the cur-
rent detection phase.

–	 d(t+ ▵ t) = d(t)+ ▵ t

In the detection of epoch k, using the set A(k, t) = {a1(k, t),… , an(k, t)} denotes 
the actual arrival state of the process at time t,Arri(k, t) denotes that process pi has 
arrived at time t, ¬Arri(k, t) then denotes that process pi has not arrived at time t. For 
the set A(k, t) we have:

Similarly, A�(k, t) = {a�
1
(k, t),… , a�

n
(k, t)} denotes the arrival status of the process 

being detected.
Lagging processes are identified based on the fact that when a sufficient 

number of processes have reached the detection phase and all have waited long 
enough, if there are still processes that have not arrived, the processes that have 
arrived determine the processes that have not arrived as “Lagging” processes. 

(1)ai(k, t) = IArri(k,t) =

{
1 Arri(k, t)

0 ¬Arri(k, t)
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The determination of failure is implemented with the help of local timing and 
global counting among processes that have arrived. In order to explain the condi-
tions in detail, the following parameters are listed:

◦ Rrelease is the minimum release ratio, assuming that there are M processes 
participating in this detection. The number of processes that have arrived at the 
detection phase must be at least Rrelease ×M before they can be released.
◦ Trelease is the minimum release time, the number of arrived processes exceeds 
Rrelease ×Mk , but is less than Mk . If all arrived processes are waiting for more 
than Trelease , they can pass the detection phase. That is, in the detection epoch e, 
if ¬Arri(k, t) ≠ ∅ , condition for∀pi ∈ Arri(k, t), di(k, t) > Trelease must be met to 
determine failure of processes.
◦ Ttimeout . If execution exceeds Ttimeout during the detection phase, the detection 
is time-out. The program exits the failure detection and reports an error. Ttimeout 
is used to avoid some situations that the detector cannot handle that lead to 
exceeding the expected detection time. Generally Ttimeout will be much longer 
than the time necessary for the collective communication to complete. In order 
to ensure that the program can complete the detection as much as possible, the 
Ttimeout can also be extended appropriately using dynamic adaptive methods.
◦ Trecon is used for reconnection. The process looks for the next valid process 
to connect when the neighboring processes do not respond for more than Trecon 
time. In fact, this parameter is related to the connection policy and some topol-
ogies with a higher degree can do without this parameter.

The result of one detection is first defined from a global perspective. For ease of 
illustration, it is first assumed that the processes arriving at the detection phase 
can form a connectivity graph. It is guaranteed that each arriving process can 
achieve collective communication to obtain arrival information of other pro-
cesses. A simple proof can be made according to  1.

Theorem 1  The processes on the connectivity graph are able to get the set of all pro-
cesses on the connectivity graph.

Proof  The set of processes G is connected and for ∀p ∈ G,∀p ≠ q ∈ G , p and q 
have communication paths and p can obtain information about q. Therefore, ∀p ∈ G 
can obtain the set of processes G − {p} through communication, so ∀p ∈ G can hold 
the set of processes G. 	�  ◻

Arrived processes have to maintain the topology connectivity by means of 
communication, which depends on the initial topology and the reconnection strat-
egy. How to maintain topological connectivity is an important scientific issue that 
will be discussed in the next section. For now, it is assumed that processes can 
obtain global information based on the connectivity graph. The detection results 
in the following three cases:
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–	 In the detection of one epoch, the total number of processes that participate in the 
detection is Mk . All processes arrive and all processes pass the detection directly, 
which can be expressed as: 

Success(D(k,  t), A(k,  t)) indicates that the result is that all processes arrive and 
pass. The right side of the arrow indicates the condition that the detection result 
is fault-free.

–	 If there are non-arrived processes, but the number of late processes is low enough 
to satisfy the release condition, i.e., there are Lagging processes as a result of the 
failure detection, this can be expressed as: 

 In this case, the arrived processes have to perform collective communica-
tion to obtain the complete detection result, i.e., the Lagging processes set 
L = {pj|pj ∈ P, a�(j) = 0}

–	 Detection timeout, that is, the processes fail to complete the detection within 
Ttimeout . Processes will exit the detector one after another because of timeout, 
which is: 

The detector will time out once condition 4 is satisfied. This is because if only a 
small number of processes time out. These processes are determined to be Lagging 
processes. When the number of arrivals is larger than RM, the detection does not 
time out, although a few “false positives” are generated. However, once the num-
ber of non-arrived processes is too large and exceeds the maximum tolerated by the 
detector. Arrived processes never satisfy the release condition 3.

3.2 � Detecting “Lagging” processes

A connectivity graph is required for processes to obtain global information as a 
communication topology. To count the number of arrived processes in the absence 
of a manager, it is necessary to complete collective communication among the 
arrived processes, which is equivalent to performing All-Reduce among the arrived 
processes. Failed processes break the original topology. Normal processes have to 
maintain the connectivity of the topology. The processes have to confirm the arrival 

(2)Success (D(k, t),A(k, t)) ⇐

Mk∑

i=1

I(di(k,t)<Ttimeout)
⋅ ai(k, t) = Mk

(3)

Pass (D(k, t),A(k, t)) ⇐

(
Mk∑

i=1

I(di(k,t)≥Trelease) =

Mk∑

i=1

ai(k, t)

)

∧

(
Mk∑

i=1

I(di(k,t)<Ttimeout) ⋅ ai(k, t) ≥ Rrelease ⋅Mk

)

(4)Timeout (D(k, t),A(k, t)) ⇐

Mk∑

i=1

I(di(k,t)≥Ttimeout )
⋅ ai(k, t) > (1 − Rrelease) ⋅Mk
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of the neighboring processes in the communication graph to establish connection 
with them. If an adjacent process does not arrive, it needs to find a new process to 
establish a connection, which ensures that the arrived processes can form a connec-
tivity graph.

Each process enters the detection phase and performs the following actions, 
which are described in Fig. 1 and as follows:

* Process establishes connection with adjacent processes based on the current 
communication topology. If an adjacent process response time out and this loca-
tion needs to be reconnected, the process will find a valid process to replace it. 
It will continuously wait for responses from unresponsive processes, so use non-
blocking communication.
* Processes perform counting while establishing connection. The counting opera-
tion is equivalent to a multi-gather operation that counts the number of currently 
arrived processes according to the connectivity graph composed by the currently 
arrived processes.
* During the detection phase, the process needs to complete two operations, 
process connection and process count, to obtain local detection information 
and global information, respectively. Task T1 builds the connectivity graph, 
and task T2 in fact not only counts the number of arrived processes, but also 
accumulates the value of I(di(k,t)≥Trelease) , which can be done in the same collec-

Fig. 1   Failure detection flow chart
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tive communication. In this way, after the normal process completes tasks T1 
and T2, the result obtained is 

∑Mk

i=1
a�
i
(k, t) ≤

∑Mk

i=1
ai(k, t) . According to the 

results process do that:

–	 The release condition is not met, recount and continue to wait for other pro-
cesses to arrive.

–	 As long as all processes arrive, that is 
∑Mk

i=1
a�
i
(k, t) = Mk , the process can pass 

the failure detection directly.
–	 If there are failed processes and 

∑m

i=1
a�
i
(t) =

∑m

i=1
I(di(t)≥Trelease) , the processes 

can pass the detection, but they have to perform an additional collective com-
munication, i.e., task T3, to multi-gather the set of Lagging processes.

* If the process is notified by another process that it is timed out during the con-
nection, the process actively goes into blocking and waits for being retrieved.
* If the time spent of the detection phase exceeds Ttimeout , the detector returns and 
reports errors.

At this point for process pj , if 
(
a�
j
(k, t) = 0 ∧ aj(k, t) = 1

)
= 1 , an isolated point is 

created. This is one of the manifestations of false positives, and another is that the 
process has a performance failure and fails to arrive on time in this epoch. The result 
of a false positive does not affect the judgment of other processes, and other pro-
cesses that are on the connectivity graph can still pass the failure detection after 
meeting the release conditions. Even if a false positive result is generated, the detec-
tion result is still valid if the release conditions are met.

Theorem  2  As long as 
∑m

i=1
a�
i
(t) =

∑m

i=1
I(di(t)≥Trelease) is satisfied, condition 3 

Pass(D(k, t), A(k, t)) can eventually be satisfied even if there are isolated points.

Proof  The processes get the Lagging process set after T3 and will send message 
notifications to the processes belonging to set L = {pj|pj ∈ P, a�(j) = 0} . The mes-
sages will be stored in the message cache to which the process belongs.

In this way, ∀p ∈ L that encounters 
(
a�(k, t) = 0 ∧ a(k, t) = 1

)
= 1 will enter 

blocking during this detection. It also means that the normal processes on the con-
nectivity graph judge the processes that become isolated points as “Lagging” pro-
cesses based on the current decision and let them change their state into blocking 
(processes in the MPI communication domain can communicate directly, and the 
communication topology used for failure detection only constrains the communica-
tion rules). Thus, we have: 

∑Mk

i=1
a�
i
(k, t) =

∑Mk

i=1
I(di(k,t)≥Trelease) ⇒ Pass(D(k, t),A(k, t)) 	

� ◻

3.3 � Handling “Lagging” processes

Each process that completes failure detection holds the set of late processes, and the 
late processes are identified as “Lagging.” The treatment of failed processes follows:
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–	 The normal process no longer actively communicates with the Lagging process, 
but can probe messages from the Lagging process. This ensures that the “Lag-
ging” process does not interfere with the normal process, while the “Lagging” 
process is able to be informed of its own status even though and go into blocking 
waiting for other processes to retrieve it.

–	 The missing data and tasks of the “Lagging” process are replaced by the nor-
mal process. There are two ways to implement this, either by redundancy or by 
the processes involved in the computation additionally taking on the tasks of the 
“Lagging” process.

–	 The “Lagging” process, due to its lagging schedule, has already been replaced by 
other processes even if it resumes operation. Therefore, it cannot join the calcula-
tion directly after resuming, but needs to wait for other processes to retrieve and 
reuse it.

–	 The processes that pass the detector need to exclude all “Lagging” processes and 
reconstruct the topology for operations such as collective communication.

If the number of failed processes is small and the application can execute across fail-
ure, it directly assigns the tasks of the “Lagging” process to other normal processes. 
If the number of failed processes is too high, or if all data backups of a process are 
lost and cannot be recovered, the application can exit in time to report to the user 
and reduce losses.

3.4 � Retrieving recovery processes

Lagging processes may recover from unstable states, or they may become isolated 
for various reasons such as message omissions, network failure, and so on. If no 
measures are taken to retrieve these lagging processes, they may become less and 
less available over a long period of time. Even with the data backup algorithm, the 
additional tasks to be performed by the available processes increase dramatically, 
raising the cost of fault tolerance and possibly leading to new errors. Therefore, the 
Fail-Lagging model allows reusing the recovered Lagging processes.

Processes belonging to the lagging process set behave in two ways: (1) They 
are unresponsive and do not work. (2) Resume running from the delay. Table 1 
shows the interaction of the processes in different states. “Normal” indicates a 
process that is running normally. “Lagging” indicates a process that is determined 
to be failed. “Recovery” indicates a process that has recovered from failure, but is 
still a “Lagging” process because the “Recovery” process is lagging behind other 

Table 1   Interaction of processes 
with different states

Normal Lagging Recovery

Normal Yes No Yes
Lagging No No Yes
Recovery No No Yes
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normal processes. Table 1 indicates whether the process in the row direction state 
will communicate with the process in the column direction state.

Retrieving recovery processes requires collective communication, just like 
detecting the lagging processes. Figure 2 briefly depicts a pickup activation pro-
cess with the gray process table lagging processes. For the normal processes, 
there are three phases of retrieving the recovered process: 

1.	 Local response, which can probe messages from the lagging process during runt-
ime. If a message is probed, the lagging process is notified to enter blocking and 
wait to be retrieved.

2.	 Multi-gathering recovered processes. The process responds to the recovered pro-
cess, but other processes do not know that. It is necessary to multi-gather the 
restored processes with collective communication.

Fig. 2   Retrieving, activating, and reusing lagging processes
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3.	 Activate and reuse the process. After the process is activated, it needs to get to the 
stage of the task it should perform, skip to that stage, and get the required data. 
This has different solutions on different applications, and the difficulty varies from 
one application to another. The iterative method modifies the number of iterations 
to skip to the same position as the other processes. Some applications skip directly 
the code that does not need to be executed, while others need to determine the 
required task to be executed by using the task pointer.

Retrieval operation should not be too frequent; otherwise, it will slow down 
the whole application performance. The process, in turn, needs to respond as 
promptly as possible to the lagging process that restores, allowing the lagging 
process to enter blocking and wait to be retrieved. This operation only requires 
the process to locally perform a probe operation to detect whether there is a mes-
sage from the lagging process.

A process recovering from the lagging state does not know the state it is in 
until it enters the detection phase. After entering the detector, it will communi-
cate and interact with other processes, at which point it will be notified that it is 
lagging, and therefore get stuck in blocking waiting to be retrieved. To reuse the 
recovered lagging processes and get the recovered processes back into the com-
putation, a collection operation needs to be performed to let all processes know 
which lagging processes are recovered and to update the collection of lagging 
processes. The process responsible for activating and re-enabling the recovered 
process then sends the required data to the recovered process to jump to a phase 
consistent with the other normal processes.

4 � Torus‑tree‑based failure detection algorithm

In Sect.  3, when describing the idea of failure detection, it is assumed that the 
processes that reach the detection phase can compose a connectivity graph. This 
ensures that processes can use the connectivity of the topology to complete col-
lective operations. Failed processes will damage the connectivity of the topol-
ogy, and the efficiency of collective communication depends on the structure of 
the topology, which means that the topology used by the detector must be both 
robust and efficient. But these two features are often contradictory. Topologies 
that are robust and easy to repair usually communicate inefficiently, such as the 
ring. Highly efficient topologies tend to be more fragile, such as the tree.

In exascale systems, the number of processes called can be in the millions of 
cores or more. In such a large scale, the MTBF of the system will be signifi-
cantly shorter. The percentage of failed processes, although small, does not get 
smaller as the system scales, which makes it infeasible to apply repair algorithms 
for many topologies to larger scales. For example, hypercubes and sibling trees 
[4] cannot guarantee the topology connectivity 100% when the fault percentage 
exceeds a certain value. For this reason we design the torus-tree [23].
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4.1 � Torus‑tree

A torus-tree is a composite structure. We define a torus by 
T(d,K),K = {k1, k2,… , kd} , d is the dimension of the torus. K = {k1, k2,… , kd} 
represents the vector of nodes in each dimension, and the total number of nodes 
on each T(d, K) torus is a. The ring is equivalent to an one-dimensional torus. Sup-
pose there are b torus of exactly the same size and shape, and the size of the torus 
is a. Each node on the torus can be marked with unique coordinates for each posi-
tion, and the same coordinates form a tree, so that a tree is formed, resulting in a 
torus-tree with node size a ⋅ b . Figure 3 illustrates the torus-tree, also known as the 
1D torus-tree and 2D torus-tree, with the dashed lines indicating the edges of the 
topology.

The robustness and repairability of the torus-tree structure benefit from the torus, 
because the ring is the easiest topology to repair, and remains ring-shaped after 
repair. Each dimension of the torus is a ring, and the rings in each dimension are 
able to complete communication independently and concurrently, thus improving 
communication efficiency to some extent. Moreover, the degree of each node on the 
torus T(d, K) is equal to 2d, and node failure will not easily disrupt the connectivity. 
The high communication efficiency of the torus-tree is due to the tree shape, where 
each ring completes the collective communication concurrently, and then completes 
the collective communication concurrently through the tree topology. d-dimensional 
torus-tree has a time complexity of O

�∑d

i=1
�ki� + n

∏d

i=1
�ki�

�

Fig. 3   Examples of torus-tree
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4.2 � Failure detection algorithm

The detection algorithm follows the flow described in Fig. 1. The process enters the 
detection phase and establishes connection with neighboring processes on the topol-
ogy. The detector comes with epoch, which needs to be confirmed with the current 
epoch when establishing connection. A connection is established using two pairs of 
send and receive, sending an empty message and Epoch, respectively. The reasons 
are: 

1.	 To avoid errors and delays caused by MPI messages stored in the cache, and the 
process can reconfirm the arrival status of the process after receiving the message.

2.	 If a process time out, it can find a new valid process to connect to, and it does not 
affect the message reception of the originally connected object. And it can try to 
connect multiple processes at the same time.

3.	 Processes that have recovered from a failure can actively enter blocking. The 
process judged as lagging may recover from the fault, but its progress has lagged 
behind the normal process. When the process resumes and enters the connection 
phase of the detector, it may receive the connection information of the process 
from the cache, and it needs to confirm again at this time.

For the sake of illustration, the detection algorithm is first described with the sim-
plest ring, and then directly expanded to the torus-tree based on topological features.

According to Fig. 4. Processes can start performing counting after there are pro-
cesses successfully connected in both directions of the ring, counting according to 
the currently reserved connection status. Processes in the ring can judge their own 
position in the current ring based on their own logical coordinates and the logical 
coordinates of neighboring processes. Processes in the ring can determine their own 

Fig. 4   Connetion, counting, and multi-gather lagging processes on ring
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position in the current ring based on their own logical coordinates and the logical 
coordinates of neighboring processes. From the process with the smallest current 
coordinate number, messages are passed and added up in turn, which is equivalent 
to reduce, and the process with the largest coordinate number can get the number of 
processes on the current ring. The processes then broadcast with the process with 
the largest current coordinate as the root.

The communication topology among processes is determined at the beginning. 
However, as the application runs, processes may fail, at which point the communica-
tion topology is changed by process reconnection. Reconnection is done to repair 
and maintain the connectivity of the communication topology, so that all surviving 
processes form a maximally connected subgraph of the initial topology. In this way, 
processes can complete collective operations such as counting, fault propagation and 
retrieve recovered processes on the current connectivity graph.

The ring is easy to implement this operation. Multi-reduce is equivalent to 
reduce then broadcast, and multi-gather is equivalent to gather then broadcast, and 
the root processes are the processes with the largest coordinates, following linear 
propagation.

The torus-tree also performs similar operations. Processes enter the detection 
phase and establish connection with neighboring processes in the torus-tree. Count-
ing and fault propagation follow concurrent communication first in the torus direc-
tion and then from the tree direction to finalize the detection. If adjacent processes 
in the torus direction fail, the torus need to be reconnected. If neighboring processes 
in the tree direction fail, the trees do not need to be reconnected, and the missing 
data will be replenished by the neighboring processes on the torus direction. The 
detection algorithm is described in algorithm 1 
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5 � Experiments and discussions

The experiments in this section are mainly designed to verify and compare the effec-
tiveness of the detection algorithms, as well as to give reference suggestions on the 
selection of parameters. Meanwhile, this paper initially designs a fault-tolerant sys-
tem based on Fail-Lagging model and also applies the system to some computing 
examples to verify the effectiveness of the fault-tolerant algorithm. The experiments 
are conducted in different cluster environments and supercomputing environments, 
including ordinary clusters, Tianhe-2, and Chengdu Dawning supercomputers. In 
this paper, we focus on the problem of fault tolerance, which needs to be adapted to 
various compilation environments, so no restrictions are imposed on the compilation 
environments.



14027

1 3

Failure detection algorithm for Fail‑Lagging model applied…

5.1 � Repairability and detection success rate

The key to effective failure detection lies in the connectivity of the communication 
topology. That is, even if there are failed processes, the normal processes can remain 
connected to each other to achieve a strong detector. The number of failed processes 
as a percentage affects the repairability of the communication topology. The larger 
the � , the lower the probability of success of r. However, it is important to ensure 
that � is in the range less than a certain range and R(�) is 1, which means that it is 
definitely repairable. Since it is very difficult to calculate the probability of R(�) 
directly, the experiments estimate the repairability of the detector by a Monte Carlo 
method that randomly generates faults according to the probability of failure and 
allows the detector to detect them, counting the number of successful detections.

Experiments are conducted to compare the variation in repairable probability of 
sibling-tree, ring-tree, and torus-tree at the scale of 10,000 processes. Since the pro-
portion of faults tolerated by a single hypercube is log n

n
 , it cannot be used to imple-

ment the fault detector in this paper. Therefore, the only thing that can be done for 
comparison is the sibling tree topology. The fault rate is incremented from 0.01 to 
0.6, the ring size is 20 for the ring-tree, and the ring size is 10 × 5 for the torus-tree, 
10,000 simulations are performed for each fault rate, the detection success rate of 
each detector is counted, and the ratio is derived, and the results are obtained as in 
Fig. 5. The experimental results show that the torus-tree can withstand a certain per-
centage of failures.

5.2 � Efficiency of the torus‑tree

Time complexity of the torus-tree is O
�∑d

k=1
�ki� + n

∏d

i=1
�ki�

�
 . This section exam-

ines whether the communication efficiency is the same as the theoretical value for 
the detection algorithms implemented in various topologies. We increment the 
process size from 1200 to 12,000 and compare the running time of ring-tree, 

Fig. 5   Detection success rate of different topologies
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torus-tree topology and standard MPI_Barrier, and experimentally run 100 times 
to take the average value. MPI_Barrier uses a communication algorithm with 
time complexity O(log n) by default.

The experiment is run in the Tianhe-2 environment, and the experimental 
results are shown in Fig. 6. The ring size of the ring-tree is taken as 1% of the 
total number of processes, and the ring size of the torus-tree is also taken as 1% 
of the total number of processes, and the time unit is ms. Under the experiment 
at the scale of 10,000 cores, the completion time of the torus-tree is about 1 ms 
more time consuming than that of the Barrier algorithm.

Assume that the process size expands to 100 million processes and keeps the 
torus size at 1%. Compare the time complexity of 2-d, 3-d, and 6-d torus-tree, 
respectively, as shown in Fig. 7, the 6-d torus-tree topology will have better com-
munication efficiency.

Fig. 6   Efficiency of detection algorithms

Fig. 7   Detection algorithm time complexity
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5.3 � Selection of torus size

The choice of torus size and dimensionality is based on the total number of 
processes and the proportion of system failure. The problem of balancing top-
ological robustness and efficiency is the optimization problem, and the opti-
mization objective can be measured simply by the robustness-efficiency ratio 
H(�, s) = R(�) ⋅ G(s) R(�) measures the repairability of the topology; the higher 
the probability of repairability, the more robust it is. The more robust the topol-
ogy, the more effective the detector is. G(s) measures the time complexity, com-
munication topology, and number of processes are related. The higher the time 
complexity, the worse the efficiency and the lower the score.

We use the metric H̄(𝜇, s) = R̄(𝜇) ⋅
1√

s+log(
n

s
)
 to measure the torus-tree. R(�) 

measures the repairability of the topology. G(s) measures the time complexity, s 
is the ratio of the size of the torus to the size of the total process, and the size of 
each dimension of the torus is the same by default.

Take the 2D torus-tree as an example. When the torus size growth step is 0.01, 
the experimental results are obtained as Fig.  8, by observing that the optimal 
torus ratio is roughly around 0.01, when the restorability and communication effi-
ciency are optimal.

Further refining the growth step of the torus size, the experimental results are 
obtained in Fig. 9, and it can be seen that if the probability of failure is not high 
(less than 20%), the torus size is best detected at about 1% of the total number 
of processes. In fact, for high-performance computing, 1% is already a very high 
percentage of faults. If the approximate percentage of system faults is estimated 
to be known in advance, and the percentage of faults occurring within the MTBF 
time does not exceed 1%, the lower the percentage of faults, the smaller the torus 
size can be as a percentage, and the more efficient the detector can be. The princi-
ple is to keep both the torus size and dimension as small as possible while ensur-
ing the detection success rate.

Fig. 8   Step size of 0.01
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5.4 � Fault tolerance for SART parallel iteration

The SART iterative algorithm is commonly used in CT image reconstruction. The 
problem Ax = b is solved by the iterative Formula (5), xk

j
 denotes the value 

j = 1, 2,… , n with coordinates j in the kth iteration of the solution vector, n is the 
dimension of the vector, � and � are the parameters related to the iteration step.

During the computation, Ai,+ and A+,j are fixed values that can be computed when 
the sparse matrix is read in and then broadcast to all processes. Using the checker-
board parallel approach. Decomposition of the iterative Formula (5) as: 

1.	 Compute u = Axk − b . This step requires the multiplication of sparse matrices 
and dense vectors, Allreduce in the row direction.

2.	 Compute ti =
ui

Ai,+

 . Ai,+ is stored as a constant, this step does not require collective 
communication, the process can calculate locally.

3.	 Compute xk+1
j

= xk
j
−

�

�A
+,j

∑m

i=1
aij ⋅ ti . In fact, for 

∑m

i=1
aij ⋅ ti , it is the inner prod-

uct of a column of A with a column vector of t. This is written in matrix form as 
xk+1 = xk −

�

�A
+,j

ATt . Computing ATt requires multiplication of sparse matrices 

and dense vectors, Allreduce in the column direction.

After completing the vector update, the iteration error is calculated and Allreduce 
according to the row direction. During an iterative computation, three Allreduce 
operations will be performed. Allreduce in the row direction when computing 
u = Axk − b , and in the column direction when computing ATt . Allreduce in the 
row direction when computing the error.

Fault-tolerant computing adds the following operations to each iteration:

(5)xk+1
j

← xk
j
−

�

�A+,j

m∑

i=1

aij

Ai,+

(Axk − b)i,Ai,+ =

n∑

j=1

aij,A+,j =

m∑

i=1

aij

Fig. 9   Step size of 0.002
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–	 Failure Detection. The frequency of failure detection is determined by the user. 
The detection function can be called once in several iterations, or multiple times 
in one iteration.

–	 Data Backup. The data backup scheme uses a row Shift and column Shift backup 
matrix, which is a call to MPI_Cart_shift. This ensures that fault-tolerant All-
reduce operations can be executed in both the row and column directions.

–	 Fault-tolerant collective communications. If there are failed processes, the col-
lective functions of MPI will not be available. Fault-tolerant collective communi-
cation can be implemented by splitting the collective communication into point-
to-point communication, where the communication location of the failed process 
is communicated by the process holding the backup data of the failed process 
instead.

–	 Fault-tolerant computing. The computation is substituted by the process that 
holds the backup data of the failed process. Since redundant recovery is not used, 
efficiency is reduced during subsequent fault-tolerant calculations.

–	 Process retrieval and reuse. After the failed process is restored, it can rejoin the 
computation after obtaining the current iteration steps and the new set of failed 
processes.

The iterative algorithm is modified as described above to allow the application to 
cope with a certain level of failure. We simulate process failure for experiments and 
all eventually get the correct solution.

6 � Conclusion and future work

This paper is devoted to the problem of fault tolerance and failure detection of 
applications on exascale HPC systems. The success rate of running applications on 
exascale systems will be greatly reduced. If the application fails to react to the fail-
ure in time, it can cause financial losses. It is hard to detect process failures because 
many times failed processes just behave as running abnormally slow and do not crash 
or report errors. To overcome this difficulty, we propose the Fail-Lagging model to 
describe how the application determines and reacts to process faults, and design a 
failure detection algorithm for fail-lagging model. As the failure process can break 
the communication path among processes, we also design the torus-tree communica-
tion structure to implement the failure detection with both robustness and efficiency.

In our future work, we will gradually promote the following items. (1) To fur-
ther improve the fault-tolerant collective communication. (2) Further standardize 
the operation of the retrieval recovery process and how the recovery processes are 
reused. (3) Design more mature data backup and recovery algorithms so that algo-
rithm-based fault tolerance can be better supported. (4) Abstract a more universal 
and common fault-tolerance solution.
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