
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:14009–14033
https://doi.org/10.1007/s11227-022-04347-0

1 3

Failure detection algorithm for Fail‑Lagging model applied
to HPC

Yingjun Ye1 · Yongdong Zhang1 · Weicai Ye1

Accepted: 30 January 2022 / Published online: 27 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
It is essential to use fault tolerance techniques on exascale high-performance com-
puting systems, but this faces many challenges such as higher probability of fail-
ure, more complex types of faults, and greater difficulty in failure detection. In this
paper, we designed the Fail-Lagging model to describe HPC process-level failure.
The failure model does not distinguish whether the failed process is crashed or slow,
but is compatible with the possible behavior of the process due to various failures,
such as crash, slow, recovery. The failure detection in Fail-Lagging model is imple-
mented by local detection and global decision among processes, which depend on a
robust and efficient communication topology. Robust means that failed processes do
not easily corrupt the connectivity of the topology, and efficient means that the time
complexity of the topology used for collective communication is as low as possi-
ble. For this purpose, we designed a torus-tree topology for failure detection, which
is scalable even at the scale of an extremely large number of processes. The Fail-
Lagging model supports common fault tolerance methods such as rollback, replica-
tion, redundancy, algorithm-based fault tolerance, etc. and is especially able to better
enable the efficient forward recovery mode. We demonstrate with large-scale experi-
ments that the torus-tree failure detection algorithm is robust and efficient, and we
apply fault tolerance based on the Fail-Lagging model to iterative computation, ena-
bling applications to react to faults in a timely manner.

Keywords  Failure model · Fault tolerance · Failure detection · HPC

 *	 Yongdong Zhang
	 Lnszyd@mail.sysu.edu.cn

1	 Guangdong Province Key Laboratory of Computational Science, School of Computer Science
and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04347-0&domain=pdf

14010	 Y. Ye et al.

1 3

1  Introduction

The application scenario of large-scale supercomputing is becoming more and
more extensive. With the development of technology, the computing power of
supercomputers is constantly increasing, and the scale has been able to reach tens
of millions of cores. Scaling up the system increases computing power, but also
shortens the Mean Time Between Failure (MTBF), which means that the sys-
tem will have a higher probability of encountering faults. Without fault tolerance
mechanisms, applications can waste a lot of time in the event of failure, causing
unbearable financial losses to users and providers of computing services.

Current high-performance computing (HPC) platforms mostly use distrib-
uted storage and message passing in parallel. If the HPC application is unable
to identify abnormally slow or crashed processes in time during operation, once
the processes need to communicate with each other, the normal processes will
continuously wait for the response from the abnormal processes, resulting in the
task progress not being able to advance further. If the application is large, with
millions of computer cores, every second wasted can cost a lot of money. Fail-
ure detection is essential for fault-tolerance mechanisms, allowing applications
to detect failure in time and take recovery measures. However, it is very difficult
to implement failure detection on large-scale HPC systems, and the difficulties
include:

–	 The large number of processes makes detection very costly and difficult. Some
detection methods used on small-scale distributed systems are not scalable to
cases where the number of processes is large, for example, using a master pro-
cess or a manager to monitor the activity of each process in real time; using an
all-to-all approach to connect processes that each process monitors each other
by receiving and sending heartbeats. These methods require tremendous cost,
and the latency resulting from intensive communication and managing a large
amount of processes may cause some errors in the detection results.

–	 It is impossible to distinguish whether the failed process is crashed or very
slow with the asynchronous assumption, and it can only suspect but not con-
clude the failure of the process. In HPC, researchers strengthen asynchroni-
zation to partial synchronization [7, 10, 18] so as to be able to detect fail-
ure using a timeout-based approach, even so, the setting of the timeout value
remains a tricky issue. Too short timeout settings are prone to misclassifica-
tion; too long timeout settings degrade efficiency.

–	 The variety of faults in HPC systems makes it difficult to find a suitable model
to describe them. Fail-Stop [21] is the failure model used by most HPC fault-
tolerant techniques, in which processes either work or stop. The model is simple
and intuitive, but is not sufficient to cover the multifarious types of faults in HPC.
The Byzantine [19] can cope with various types of faults, but implementing Byz-
antine fault tolerance requires high redundancy costs. For this reason, researchers
are working to explore a more suitable failure model, seeking a balance between
the effectiveness and cost of Fail-Stop and Byzantine models.

14011

1 3

Failure detection algorithm for Fail‑Lagging model applied…

–	 There may be hard-to-detect faults or “false negative” processes. Such faults
can cause applications to run much longer than anticipated, with multiple runs
struggling to complete a valid calculation. Some famous supercomputers such
as Sunway and Tianhe-2 users have encountered this type of error [24]. The
users are more likely to encounter such errors and waste a lot of money when
calling computing resources with millions of cores or more.

–	 Failed processes can break the connectivity of the original communica-
tion structure. Results of fault detection require fault propagation with the
help of communication topologies. The topologies employed by HPC can be
reconnected to maintain connectivity. However, as the number of processes
increases, the number of failed processes as a proportion of the total number
of processes does not decrease, so that maintaining topology connectivity will
be more expensive and challenging.

The implementation of failure detection on HPC should be as accurate, efficient,
low cost, scalable to exascale, and avoid “false negative” detection results, which
cannot be fully satisfied by existing methods, which motivates us to propose a
new failure model to explore a more suitable solution for exascale HPC. We focus
on the running state of processes, and the stable performance of HPC applica-
tions depends on the proper execution of each process. We are concerned about
the running state of the processes, because the stable performance of HPC appli-
cations depends on the proper execution of each process. Process failure can be
due to a variety of errors. Failed processes may stop running, run slowly, fail to
communicate properly, resume from an unresponsive state, etc. Static data errors
can be corrected by checksum without affecting the speed of the process, which is
out of the scope of this paper.

The response speed of abnormal processes will be significantly slower than other
normal processes, or even no response, and the failed processes will affect the pro-
gress of other processes during the communication phase, thus causing blocking.
The application needs to find and isolate the abnormal processes in time to avoid
being dragged down. To this end, we design the Fail-Lagging model where once the
processes appear to be severely slower than others, regardless of crash or slow, they
are judged as “lagging” by others. Normal processes will skip all “lagging” pro-
cesses, take appropriate fault-tolerant measures and continue to work.

The Fail-Lagging model provides a novel solution idea for failure detection and
fault-tolerant recovery for HPC. Failure detection no longer uses heartbeats and uses
an idea similar to loose synchronization, replacing periodic communication with the
overhead of collective communication. Loose synchronization [2] means that pro-
cesses do not have to wait for all processes to arrive before they can pass the barrier.
Processes that have arrived can pass the barrier if they meet the release conditions
and no longer wait for the late processes, at which point the unreached processes are
determined to be failed processes by the other processes. In this way, non-arrived
processes, regardless of the crash, performance failure or other reasons, are uniformly
treated as “Lagging” processes, simplifying the definition of faults to the greatest
extent possible and adapting to the complicated types of faults in HPC systems.

14012	 Y. Ye et al.

1 3

Fail-Lagging model blurs process crashes and slowness and does not require a
perfect failure detector, only a strong failure detector, as long as all the correct pro-
cesses are ensured to be able to perform appropriately. Some processes may recover
from failure, but are already considered as failed processes because of their slow
operation. For those processes that are still able to run, they are also allowed to be
retrieved and then re-engage in the computation when they resume running when
certain conditions are met.

The detection algorithm is implemented in a torus-tree topology, where processes
detect adjacent processes according to the torus-tree topology, count the number
of arrived processes, and the arrived processes collectively decide whether the late
processes are lagging or not. The torus-tree topology does not require a master to
manage all processes, and the connectivity of the topology can be maintained if any
process fails.

The detection algorithm is implemented in the torus-tree topology, where pro-
cesses detect adjacent processes according to the torus-tree, count the number of
arrived processes, and the arrived processes collectively decide whether the late
processes are lagging or not. The torus-tree topology does not require a master to
manage all processes, and the connectivity of the topology can be maintained if any
process fails. As the scale of processes increases, the probability and proportion of
failed processes per unit time increases, but the proportion of failures that the torus-
tree can withstand does not decrease, and the time complexity grows logarithmi-
cally, two features that ensure the scalability of the communication topology.

The processes take fault-tolerant recovery measures based on the results of fail-
ure detection. When the number of processes is large, it is expensive to back up
data, save the running state of processes, restart, and other methods. The approach
of disk rollback is difficult to be scaled to the case of large number of processes
and short MTBF. In general, faults of HPC are spatially localized [15], i.e., they are
insignificant in proportion but concentrated in distribution. If the failed processes
can be identified and isolated at the application level, allowing normal processes to
continue running, the frequency of application restarts can be reduced and unneces-
sary storage costs can be minimized. To achieve such a fault-tolerant pattern, this
paper initially conceptualizes a scheme of data intersection storage, fault-tolerant
collective communication, and process task substitution to support the requirements
of application running across failure, and initially applies it to iterative computing.

2 � Background and motivation

2.1 � Failure model

Failure model is critical to the design of fault tolerance mechanisms. At present,
most fault-tolerant methods are established based on the Fail-Stop [21]. However,
researchers are aware of the limitations of the fail-stop model; failure can be perma-
nent, transient, and unstable. It is clearly not the best solution to terminate the exe-
cution of the application directly [11]. The Byzantine model [19] can cope with any
type of failure and is suitable for redundancy and replication fault-tolerant solutions,

14013

1 3

Failure detection algorithm for Fail‑Lagging model applied…

but it is expensive and cannot be achieved with more redundancy in extreme scales.
Some of the failure models under exploration try to provide an intermediate model
between the two extreme models of Byzantine and Fail-Stop. For example, the Fail-
Stutter [5] and Fail-Slow [14] that take into account performance failures. In the dis-
tributed field, there is a Crash-Recovery [16] that considers the possibility of recov-
ery after processes crash. We wish to explore a simple and adaptable failure model
for HPC that does not make fault tolerance too difficult and can accommodate more
complex failure scenarios. We will explore a simple and adaptable fault model for
HPC that does not make failure detection and fault tolerance excessively challeng-
ing, while in a position to adapt to complex HPC scenarios.

2.2 � Failure detection

In the distributed field, Chandra and Toueg proposed the first unreliable failure
detector [8]. Many fault tolerance methods rely on the powerful characteristics of
the perfect failure detector(see, e.g., [22]). Using a non-all-to-all heartbeat detection
method, it is difficult to complete fault propagation effectively if the coverage topol-
ogy is corrupted. For this reason we want to design a failure detection algorithm that
can repair the communication topology in case of encountering a failure. The detec-
tor satisfies at least the eventual strong completeness.

George Bosilca et al. [25]. proposed a failure detector based on the ring network
overlay, where the processes can reconnect to repair the ring in case of failure and
complete fault propagation via the hypercube topology [13], which provides a
remarkably enlightening solution for the implementation of communication-based
failure detection. The results of the detection have to be propagated to each process.
Although hypercubes have high communication efficiency, the number of failed pro-
cesses that a hypercube consisting of n processes can tolerate in a single detection is
log n [6]. As the scale of the process increases, the percentage of faults that can be
tolerated tends to zero due to lim

n→∞

log n

n
= 0 , which is a significant limitation at

exascale and larger. To find a suitable topology, we designed the torus-tree [23],
which is easy to repair, robust, and has high communication efficiency.

2.3 � Fault tolerance

The main common fault tolerance techniques for HPC are checkpointing/restart
[11], replication and redundancy [12], and algorithm-based fault tolerance [9]. Each
of these fault-tolerance techniques has its own advantages, and current research on
HPC is increasingly tending to use a combination of technologies to achieve fault
tolerance. However, the current version of MPI does not support continuous delivery
in case of failure yet, hindering the availability of many technologies for direct use.
For this reason, User-Level Fault Mitigation (ULFM) [20] is proposing an extension
to MPI that would allow control to be handed over to the user when encountering
faults, rather than immediately terminating the application, thus enabling applica-
tion to run across faults. Future expansion to larger applications will require more

14014	 Y. Ye et al.

1 3

cross-fault capability to break through the bottleneck of increasing failure frequency
as scale increases.

2.4 � Motivation

This paper presents a natural idea of fault tolerance from the perspective of an
application:

1.	 The application performs failure detection at the appropriate time.
2.	 In case of failure, when the number of processes reaches an user-defined percent-

age during the detection phase, the processes that have not arrived are temporarily
identified as “failed” processes.

3.	 Normal processes will skip the failed process and continue to execute the task.
4.	 The input data required for fault-tolerant recovery need to be saved in advance.
5.	 The failed process may recover and can be retrieved and reused in subsequent

calculations.

This idea of fault tolerance is best suited for Bulk Synchronous Parallelism (BSP),
where failure detection, fault-tolerant recovery, data backup, and other related opera-
tions are done in one super step. The idea of failure detection algorithm is somewhat
similar to loose synchronization [2], a concept that was earlier proposed in appli-
cations such as distributed computing and network systems. The main reason why
it has not been used on HPC systems is that the previously implemented approach
requires a manager to accomplish the detection task and ensure consistency among
nodes, which can be an extremely high cost for HPC systems.

In order to implement the above fault-tolerant idea, this paper designs Fail-
Lagging model, implements failure detection using the definition of failure by the
model, implements fault-tolerant recovery using the results of failure detection, and
explores a fault-tolerant model that can empower applications to run across failures
on large-scale systems.

3 � Fail‑Lagging model

The failure model proposed in this paper is applicable to HPC platforms. The time-
out mechanism can be used to determine if a process fails, but the asynchronous
model needs to be strengthened with the assumption of partial synchronization, i.e.,
the assumption of “unbounded message latency” is strengthened with the assump-
tion of “unknown upper time limit for computation and network.” The communica-
tion speed of HPC system components tends to be quite fast and should not normally
experience too long message delays. The assumption of partial synchronization for
HPC is reasonable. Processes cannot use the global clock to determine timeout.
They can only infer the state of the process based on the local clock and communi-
cation. Processes follow the rules of MPI, each process is able to communicate with

14015

1 3

Failure detection algorithm for Fail‑Lagging model applied…

any process, and the communication topology is used to specify the communication
routes of the processes at the time of collective communication.

The Fail-Lagging model is used to deal with non-fatal faults, that is, various pos-
sible causes such as memory leaks, message omissions, performance failure, etc.
that cause processes to crash, deadlock, slow down, failure to communicate, etc.
Applications that fail to detect these faults in time can easily suffer from a run time
that is far longer than expected or even fails to produce results. The application has
to be able to identify processes that slow down the overall running schedule in a
timely and efficient manner. Our model describes the definition of failed processes,
detection methods and fault tolerance schemes.

3.1 � Definition of "Lagging" process

Failure definition and detection are important parts of the failure model. Fail-Lag-
ging uses failure detectors with epoch numbers, that is similar to the Crash-Recov-
ery model [1], since it takes into account the possible recovery of the failed pro-
cesses. For the sake of description, we define as follows:

The set P = {p1,… , pn} consists of n processes, and the undirected graph
G(V, E) represents the communication topology used by the set of processes P in
the detection phase, V is the set of points corresponding to the bijection of the set of
processes P, and E is the set of edges indicating that two processes on this commu-
nication topology are able to directly communicate with each other communication.

Since the global clock is not available, processes obtain their respective local
time, and usually take time fragments as the basis for timing, e.g., start timing after
entering the detection phase. The time progress can be described by the macroscopic
time t, and the set of local time read by the processes individually is denoted as
D(t) = {d1(t),… , dn(t)} . D(t) has the following properties:

–	 t = maxi(D(t)) . That is, t starts timing with the first process that enters the cur-
rent detection phase.

–	 d(t+ ▵ t) = d(t)+ ▵ t

In the detection of epoch k, using the set A(k, t) = {a1(k, t),… , an(k, t)} denotes
the actual arrival state of the process at time t,Arri(k, t) denotes that process pi has
arrived at time t, ¬Arri(k, t) then denotes that process pi has not arrived at time t. For
the set A(k, t) we have:

Similarly, A�(k, t) = {a�
1
(k, t),… , a�

n
(k, t)} denotes the arrival status of the process

being detected.
Lagging processes are identified based on the fact that when a sufficient

number of processes have reached the detection phase and all have waited long
enough, if there are still processes that have not arrived, the processes that have
arrived determine the processes that have not arrived as “Lagging” processes.

(1)ai(k, t) = IArri(k,t) =

{
1 Arri(k, t)

0 ¬Arri(k, t)

14016	 Y. Ye et al.

1 3

The determination of failure is implemented with the help of local timing and
global counting among processes that have arrived. In order to explain the condi-
tions in detail, the following parameters are listed:

◦ Rrelease is the minimum release ratio, assuming that there are M processes
participating in this detection. The number of processes that have arrived at the
detection phase must be at least Rrelease ×M before they can be released.
◦ Trelease is the minimum release time, the number of arrived processes exceeds
Rrelease ×Mk , but is less than Mk . If all arrived processes are waiting for more
than Trelease , they can pass the detection phase. That is, in the detection epoch e,
if ¬Arri(k, t) ≠ ∅ , condition for∀pi ∈ Arri(k, t), di(k, t) > Trelease must be met to
determine failure of processes.
◦ Ttimeout . If execution exceeds Ttimeout during the detection phase, the detection
is time-out. The program exits the failure detection and reports an error. Ttimeout
is used to avoid some situations that the detector cannot handle that lead to
exceeding the expected detection time. Generally Ttimeout will be much longer
than the time necessary for the collective communication to complete. In order
to ensure that the program can complete the detection as much as possible, the
Ttimeout can also be extended appropriately using dynamic adaptive methods.
◦ Trecon is used for reconnection. The process looks for the next valid process
to connect when the neighboring processes do not respond for more than Trecon
time. In fact, this parameter is related to the connection policy and some topol-
ogies with a higher degree can do without this parameter.

The result of one detection is first defined from a global perspective. For ease of
illustration, it is first assumed that the processes arriving at the detection phase
can form a connectivity graph. It is guaranteed that each arriving process can
achieve collective communication to obtain arrival information of other pro-
cesses. A simple proof can be made according to 1.

Theorem 1  The processes on the connectivity graph are able to get the set of all pro-
cesses on the connectivity graph.

Proof  The set of processes G is connected and for ∀p ∈ G,∀p ≠ q ∈ G , p and q
have communication paths and p can obtain information about q. Therefore, ∀p ∈ G
can obtain the set of processes G − {p} through communication, so ∀p ∈ G can hold
the set of processes G. 	� ◻

Arrived processes have to maintain the topology connectivity by means of
communication, which depends on the initial topology and the reconnection strat-
egy. How to maintain topological connectivity is an important scientific issue that
will be discussed in the next section. For now, it is assumed that processes can
obtain global information based on the connectivity graph. The detection results
in the following three cases:

14017

1 3

Failure detection algorithm for Fail‑Lagging model applied…

–	 In the detection of one epoch, the total number of processes that participate in the
detection is Mk . All processes arrive and all processes pass the detection directly,
which can be expressed as:

Success(D(k, t), A(k, t)) indicates that the result is that all processes arrive and
pass. The right side of the arrow indicates the condition that the detection result
is fault-free.

–	 If there are non-arrived processes, but the number of late processes is low enough
to satisfy the release condition, i.e., there are Lagging processes as a result of the
failure detection, this can be expressed as:

 In this case, the arrived processes have to perform collective communica-
tion to obtain the complete detection result, i.e., the Lagging processes set
L = {pj|pj ∈ P, a�(j) = 0}

–	 Detection timeout, that is, the processes fail to complete the detection within
Ttimeout . Processes will exit the detector one after another because of timeout,
which is:

The detector will time out once condition 4 is satisfied. This is because if only a
small number of processes time out. These processes are determined to be Lagging
processes. When the number of arrivals is larger than RM, the detection does not
time out, although a few “false positives” are generated. However, once the num-
ber of non-arrived processes is too large and exceeds the maximum tolerated by the
detector. Arrived processes never satisfy the release condition 3.

3.2 � Detecting “Lagging” processes

A connectivity graph is required for processes to obtain global information as a
communication topology. To count the number of arrived processes in the absence
of a manager, it is necessary to complete collective communication among the
arrived processes, which is equivalent to performing All-Reduce among the arrived
processes. Failed processes break the original topology. Normal processes have to
maintain the connectivity of the topology. The processes have to confirm the arrival

(2)Success (D(k, t),A(k, t)) ⇐

Mk∑

i=1

I(di(k,t)<Ttimeout)
⋅ ai(k, t) = Mk

(3)

Pass (D(k, t),A(k, t)) ⇐

(
Mk∑

i=1

I(di(k,t)≥Trelease) =

Mk∑

i=1

ai(k, t)

)

∧

(
Mk∑

i=1

I(di(k,t)<Ttimeout) ⋅ ai(k, t) ≥ Rrelease ⋅Mk

)

(4)Timeout (D(k, t),A(k, t)) ⇐

Mk∑

i=1

I(di(k,t)≥Ttimeout)
⋅ ai(k, t) > (1 − Rrelease) ⋅Mk

14018	 Y. Ye et al.

1 3

of the neighboring processes in the communication graph to establish connection
with them. If an adjacent process does not arrive, it needs to find a new process to
establish a connection, which ensures that the arrived processes can form a connec-
tivity graph.

Each process enters the detection phase and performs the following actions,
which are described in Fig. 1 and as follows:

* Process establishes connection with adjacent processes based on the current
communication topology. If an adjacent process response time out and this loca-
tion needs to be reconnected, the process will find a valid process to replace it.
It will continuously wait for responses from unresponsive processes, so use non-
blocking communication.
* Processes perform counting while establishing connection. The counting opera-
tion is equivalent to a multi-gather operation that counts the number of currently
arrived processes according to the connectivity graph composed by the currently
arrived processes.
* During the detection phase, the process needs to complete two operations,
process connection and process count, to obtain local detection information
and global information, respectively. Task T1 builds the connectivity graph,
and task T2 in fact not only counts the number of arrived processes, but also
accumulates the value of I(di(k,t)≥Trelease) , which can be done in the same collec-

Fig. 1   Failure detection flow chart

14019

1 3

Failure detection algorithm for Fail‑Lagging model applied…

tive communication. In this way, after the normal process completes tasks T1
and T2, the result obtained is

∑Mk

i=1
a�
i
(k, t) ≤

∑Mk

i=1
ai(k, t) . According to the

results process do that:

–	 The release condition is not met, recount and continue to wait for other pro-
cesses to arrive.

–	 As long as all processes arrive, that is
∑Mk

i=1
a�
i
(k, t) = Mk , the process can pass

the failure detection directly.
–	 If there are failed processes and

∑m

i=1
a�
i
(t) =

∑m

i=1
I(di(t)≥Trelease) , the processes

can pass the detection, but they have to perform an additional collective com-
munication, i.e., task T3, to multi-gather the set of Lagging processes.

* If the process is notified by another process that it is timed out during the con-
nection, the process actively goes into blocking and waits for being retrieved.
* If the time spent of the detection phase exceeds Ttimeout , the detector returns and
reports errors.

At this point for process pj , if
(
a�
j
(k, t) = 0 ∧ aj(k, t) = 1

)
= 1 , an isolated point is

created. This is one of the manifestations of false positives, and another is that the
process has a performance failure and fails to arrive on time in this epoch. The result
of a false positive does not affect the judgment of other processes, and other pro-
cesses that are on the connectivity graph can still pass the failure detection after
meeting the release conditions. Even if a false positive result is generated, the detec-
tion result is still valid if the release conditions are met.

Theorem 2  As long as
∑m

i=1
a�
i
(t) =

∑m

i=1
I(di(t)≥Trelease) is satisfied, condition 3

Pass(D(k, t), A(k, t)) can eventually be satisfied even if there are isolated points.

Proof  The processes get the Lagging process set after T3 and will send message
notifications to the processes belonging to set L = {pj|pj ∈ P, a�(j) = 0} . The mes-
sages will be stored in the message cache to which the process belongs.

In this way, ∀p ∈ L that encounters
(
a�(k, t) = 0 ∧ a(k, t) = 1

)
= 1 will enter

blocking during this detection. It also means that the normal processes on the con-
nectivity graph judge the processes that become isolated points as “Lagging” pro-
cesses based on the current decision and let them change their state into blocking
(processes in the MPI communication domain can communicate directly, and the
communication topology used for failure detection only constrains the communica-
tion rules). Thus, we have:

∑Mk

i=1
a�
i
(k, t) =

∑Mk

i=1
I(di(k,t)≥Trelease) ⇒ Pass(D(k, t),A(k, t)) 	

� ◻

3.3 � Handling “Lagging” processes

Each process that completes failure detection holds the set of late processes, and the
late processes are identified as “Lagging.” The treatment of failed processes follows:

14020	 Y. Ye et al.

1 3

–	 The normal process no longer actively communicates with the Lagging process,
but can probe messages from the Lagging process. This ensures that the “Lag-
ging” process does not interfere with the normal process, while the “Lagging”
process is able to be informed of its own status even though and go into blocking
waiting for other processes to retrieve it.

–	 The missing data and tasks of the “Lagging” process are replaced by the nor-
mal process. There are two ways to implement this, either by redundancy or by
the processes involved in the computation additionally taking on the tasks of the
“Lagging” process.

–	 The “Lagging” process, due to its lagging schedule, has already been replaced by
other processes even if it resumes operation. Therefore, it cannot join the calcula-
tion directly after resuming, but needs to wait for other processes to retrieve and
reuse it.

–	 The processes that pass the detector need to exclude all “Lagging” processes and
reconstruct the topology for operations such as collective communication.

If the number of failed processes is small and the application can execute across fail-
ure, it directly assigns the tasks of the “Lagging” process to other normal processes.
If the number of failed processes is too high, or if all data backups of a process are
lost and cannot be recovered, the application can exit in time to report to the user
and reduce losses.

3.4 � Retrieving recovery processes

Lagging processes may recover from unstable states, or they may become isolated
for various reasons such as message omissions, network failure, and so on. If no
measures are taken to retrieve these lagging processes, they may become less and
less available over a long period of time. Even with the data backup algorithm, the
additional tasks to be performed by the available processes increase dramatically,
raising the cost of fault tolerance and possibly leading to new errors. Therefore, the
Fail-Lagging model allows reusing the recovered Lagging processes.

Processes belonging to the lagging process set behave in two ways: (1) They
are unresponsive and do not work. (2) Resume running from the delay. Table 1
shows the interaction of the processes in different states. “Normal” indicates a
process that is running normally. “Lagging” indicates a process that is determined
to be failed. “Recovery” indicates a process that has recovered from failure, but is
still a “Lagging” process because the “Recovery” process is lagging behind other

Table 1   Interaction of processes
with different states

Normal Lagging Recovery

Normal Yes No Yes
Lagging No No Yes
Recovery No No Yes

14021

1 3

Failure detection algorithm for Fail‑Lagging model applied…

normal processes. Table 1 indicates whether the process in the row direction state
will communicate with the process in the column direction state.

Retrieving recovery processes requires collective communication, just like
detecting the lagging processes. Figure 2 briefly depicts a pickup activation pro-
cess with the gray process table lagging processes. For the normal processes,
there are three phases of retrieving the recovered process:

1.	 Local response, which can probe messages from the lagging process during runt-
ime. If a message is probed, the lagging process is notified to enter blocking and
wait to be retrieved.

2.	 Multi-gathering recovered processes. The process responds to the recovered pro-
cess, but other processes do not know that. It is necessary to multi-gather the
restored processes with collective communication.

Fig. 2   Retrieving, activating, and reusing lagging processes

14022	 Y. Ye et al.

1 3

3.	 Activate and reuse the process. After the process is activated, it needs to get to the
stage of the task it should perform, skip to that stage, and get the required data.
This has different solutions on different applications, and the difficulty varies from
one application to another. The iterative method modifies the number of iterations
to skip to the same position as the other processes. Some applications skip directly
the code that does not need to be executed, while others need to determine the
required task to be executed by using the task pointer.

Retrieval operation should not be too frequent; otherwise, it will slow down
the whole application performance. The process, in turn, needs to respond as
promptly as possible to the lagging process that restores, allowing the lagging
process to enter blocking and wait to be retrieved. This operation only requires
the process to locally perform a probe operation to detect whether there is a mes-
sage from the lagging process.

A process recovering from the lagging state does not know the state it is in
until it enters the detection phase. After entering the detector, it will communi-
cate and interact with other processes, at which point it will be notified that it is
lagging, and therefore get stuck in blocking waiting to be retrieved. To reuse the
recovered lagging processes and get the recovered processes back into the com-
putation, a collection operation needs to be performed to let all processes know
which lagging processes are recovered and to update the collection of lagging
processes. The process responsible for activating and re-enabling the recovered
process then sends the required data to the recovered process to jump to a phase
consistent with the other normal processes.

4 � Torus‑tree‑based failure detection algorithm

In Sect. 3, when describing the idea of failure detection, it is assumed that the
processes that reach the detection phase can compose a connectivity graph. This
ensures that processes can use the connectivity of the topology to complete col-
lective operations. Failed processes will damage the connectivity of the topol-
ogy, and the efficiency of collective communication depends on the structure of
the topology, which means that the topology used by the detector must be both
robust and efficient. But these two features are often contradictory. Topologies
that are robust and easy to repair usually communicate inefficiently, such as the
ring. Highly efficient topologies tend to be more fragile, such as the tree.

In exascale systems, the number of processes called can be in the millions of
cores or more. In such a large scale, the MTBF of the system will be signifi-
cantly shorter. The percentage of failed processes, although small, does not get
smaller as the system scales, which makes it infeasible to apply repair algorithms
for many topologies to larger scales. For example, hypercubes and sibling trees
[4] cannot guarantee the topology connectivity 100% when the fault percentage
exceeds a certain value. For this reason we design the torus-tree [23].

14023

1 3

Failure detection algorithm for Fail‑Lagging model applied…

4.1 � Torus‑tree

A torus-tree is a composite structure. We define a torus by
T(d,K),K = {k1, k2,… , kd} , d is the dimension of the torus. K = {k1, k2,… , kd}
represents the vector of nodes in each dimension, and the total number of nodes
on each T(d, K) torus is a. The ring is equivalent to an one-dimensional torus. Sup-
pose there are b torus of exactly the same size and shape, and the size of the torus
is a. Each node on the torus can be marked with unique coordinates for each posi-
tion, and the same coordinates form a tree, so that a tree is formed, resulting in a
torus-tree with node size a ⋅ b . Figure 3 illustrates the torus-tree, also known as the
1D torus-tree and 2D torus-tree, with the dashed lines indicating the edges of the
topology.

The robustness and repairability of the torus-tree structure benefit from the torus,
because the ring is the easiest topology to repair, and remains ring-shaped after
repair. Each dimension of the torus is a ring, and the rings in each dimension are
able to complete communication independently and concurrently, thus improving
communication efficiency to some extent. Moreover, the degree of each node on the
torus T(d, K) is equal to 2d, and node failure will not easily disrupt the connectivity.
The high communication efficiency of the torus-tree is due to the tree shape, where
each ring completes the collective communication concurrently, and then completes
the collective communication concurrently through the tree topology. d-dimensional
torus-tree has a time complexity of O

�∑d

i=1
�ki� + n

∏d

i=1
�ki�

�

Fig. 3   Examples of torus-tree

14024	 Y. Ye et al.

1 3

4.2 � Failure detection algorithm

The detection algorithm follows the flow described in Fig. 1. The process enters the
detection phase and establishes connection with neighboring processes on the topol-
ogy. The detector comes with epoch, which needs to be confirmed with the current
epoch when establishing connection. A connection is established using two pairs of
send and receive, sending an empty message and Epoch, respectively. The reasons
are:

1.	 To avoid errors and delays caused by MPI messages stored in the cache, and the
process can reconfirm the arrival status of the process after receiving the message.

2.	 If a process time out, it can find a new valid process to connect to, and it does not
affect the message reception of the originally connected object. And it can try to
connect multiple processes at the same time.

3.	 Processes that have recovered from a failure can actively enter blocking. The
process judged as lagging may recover from the fault, but its progress has lagged
behind the normal process. When the process resumes and enters the connection
phase of the detector, it may receive the connection information of the process
from the cache, and it needs to confirm again at this time.

For the sake of illustration, the detection algorithm is first described with the sim-
plest ring, and then directly expanded to the torus-tree based on topological features.

According to Fig. 4. Processes can start performing counting after there are pro-
cesses successfully connected in both directions of the ring, counting according to
the currently reserved connection status. Processes in the ring can judge their own
position in the current ring based on their own logical coordinates and the logical
coordinates of neighboring processes. Processes in the ring can determine their own

Fig. 4   Connetion, counting, and multi-gather lagging processes on ring

14025

1 3

Failure detection algorithm for Fail‑Lagging model applied…

position in the current ring based on their own logical coordinates and the logical
coordinates of neighboring processes. From the process with the smallest current
coordinate number, messages are passed and added up in turn, which is equivalent
to reduce, and the process with the largest coordinate number can get the number of
processes on the current ring. The processes then broadcast with the process with
the largest current coordinate as the root.

The communication topology among processes is determined at the beginning.
However, as the application runs, processes may fail, at which point the communica-
tion topology is changed by process reconnection. Reconnection is done to repair
and maintain the connectivity of the communication topology, so that all surviving
processes form a maximally connected subgraph of the initial topology. In this way,
processes can complete collective operations such as counting, fault propagation and
retrieve recovered processes on the current connectivity graph.

The ring is easy to implement this operation. Multi-reduce is equivalent to
reduce then broadcast, and multi-gather is equivalent to gather then broadcast, and
the root processes are the processes with the largest coordinates, following linear
propagation.

The torus-tree also performs similar operations. Processes enter the detection
phase and establish connection with neighboring processes in the torus-tree. Count-
ing and fault propagation follow concurrent communication first in the torus direc-
tion and then from the tree direction to finalize the detection. If adjacent processes
in the torus direction fail, the torus need to be reconnected. If neighboring processes
in the tree direction fail, the trees do not need to be reconnected, and the missing
data will be replenished by the neighboring processes on the torus direction. The
detection algorithm is described in algorithm 1

14026	 Y. Ye et al.

1 3

5 � Experiments and discussions

The experiments in this section are mainly designed to verify and compare the effec-
tiveness of the detection algorithms, as well as to give reference suggestions on the
selection of parameters. Meanwhile, this paper initially designs a fault-tolerant sys-
tem based on Fail-Lagging model and also applies the system to some computing
examples to verify the effectiveness of the fault-tolerant algorithm. The experiments
are conducted in different cluster environments and supercomputing environments,
including ordinary clusters, Tianhe-2, and Chengdu Dawning supercomputers. In
this paper, we focus on the problem of fault tolerance, which needs to be adapted to
various compilation environments, so no restrictions are imposed on the compilation
environments.

14027

1 3

Failure detection algorithm for Fail‑Lagging model applied…

5.1 � Repairability and detection success rate

The key to effective failure detection lies in the connectivity of the communication
topology. That is, even if there are failed processes, the normal processes can remain
connected to each other to achieve a strong detector. The number of failed processes
as a percentage affects the repairability of the communication topology. The larger
the � , the lower the probability of success of r. However, it is important to ensure
that � is in the range less than a certain range and R(�) is 1, which means that it is
definitely repairable. Since it is very difficult to calculate the probability of R(�)
directly, the experiments estimate the repairability of the detector by a Monte Carlo
method that randomly generates faults according to the probability of failure and
allows the detector to detect them, counting the number of successful detections.

Experiments are conducted to compare the variation in repairable probability of
sibling-tree, ring-tree, and torus-tree at the scale of 10,000 processes. Since the pro-
portion of faults tolerated by a single hypercube is log n

n
 , it cannot be used to imple-

ment the fault detector in this paper. Therefore, the only thing that can be done for
comparison is the sibling tree topology. The fault rate is incremented from 0.01 to
0.6, the ring size is 20 for the ring-tree, and the ring size is 10 × 5 for the torus-tree,
10,000 simulations are performed for each fault rate, the detection success rate of
each detector is counted, and the ratio is derived, and the results are obtained as in
Fig. 5. The experimental results show that the torus-tree can withstand a certain per-
centage of failures.

5.2 � Efficiency of the torus‑tree

Time complexity of the torus-tree is O
�∑d

k=1
�ki� + n

∏d

i=1
�ki�

�
 . This section exam-

ines whether the communication efficiency is the same as the theoretical value for
the detection algorithms implemented in various topologies. We increment the
process size from 1200 to 12,000 and compare the running time of ring-tree,

Fig. 5   Detection success rate of different topologies

14028	 Y. Ye et al.

1 3

torus-tree topology and standard MPI_Barrier, and experimentally run 100 times
to take the average value. MPI_Barrier uses a communication algorithm with
time complexity O(log n) by default.

The experiment is run in the Tianhe-2 environment, and the experimental
results are shown in Fig. 6. The ring size of the ring-tree is taken as 1% of the
total number of processes, and the ring size of the torus-tree is also taken as 1%
of the total number of processes, and the time unit is ms. Under the experiment
at the scale of 10,000 cores, the completion time of the torus-tree is about 1 ms
more time consuming than that of the Barrier algorithm.

Assume that the process size expands to 100 million processes and keeps the
torus size at 1%. Compare the time complexity of 2-d, 3-d, and 6-d torus-tree,
respectively, as shown in Fig. 7, the 6-d torus-tree topology will have better com-
munication efficiency.

Fig. 6   Efficiency of detection algorithms

Fig. 7   Detection algorithm time complexity

14029

1 3

Failure detection algorithm for Fail‑Lagging model applied…

5.3 � Selection of torus size

The choice of torus size and dimensionality is based on the total number of
processes and the proportion of system failure. The problem of balancing top-
ological robustness and efficiency is the optimization problem, and the opti-
mization objective can be measured simply by the robustness-efficiency ratio
H(�, s) = R(�) ⋅ G(s) R(�) measures the repairability of the topology; the higher
the probability of repairability, the more robust it is. The more robust the topol-
ogy, the more effective the detector is. G(s) measures the time complexity, com-
munication topology, and number of processes are related. The higher the time
complexity, the worse the efficiency and the lower the score.

We use the metric H̄(𝜇, s) = R̄(𝜇) ⋅
1√

s+log(
n

s
)
 to measure the torus-tree. R(�)

measures the repairability of the topology. G(s) measures the time complexity, s
is the ratio of the size of the torus to the size of the total process, and the size of
each dimension of the torus is the same by default.

Take the 2D torus-tree as an example. When the torus size growth step is 0.01,
the experimental results are obtained as Fig. 8, by observing that the optimal
torus ratio is roughly around 0.01, when the restorability and communication effi-
ciency are optimal.

Further refining the growth step of the torus size, the experimental results are
obtained in Fig. 9, and it can be seen that if the probability of failure is not high
(less than 20%), the torus size is best detected at about 1% of the total number
of processes. In fact, for high-performance computing, 1% is already a very high
percentage of faults. If the approximate percentage of system faults is estimated
to be known in advance, and the percentage of faults occurring within the MTBF
time does not exceed 1%, the lower the percentage of faults, the smaller the torus
size can be as a percentage, and the more efficient the detector can be. The princi-
ple is to keep both the torus size and dimension as small as possible while ensur-
ing the detection success rate.

Fig. 8   Step size of 0.01

14030	 Y. Ye et al.

1 3

5.4 � Fault tolerance for SART parallel iteration

The SART iterative algorithm is commonly used in CT image reconstruction. The
problem Ax = b is solved by the iterative Formula (5), xk

j
 denotes the value

j = 1, 2,… , n with coordinates j in the kth iteration of the solution vector, n is the
dimension of the vector, � and � are the parameters related to the iteration step.

During the computation, Ai,+ and A+,j are fixed values that can be computed when
the sparse matrix is read in and then broadcast to all processes. Using the checker-
board parallel approach. Decomposition of the iterative Formula (5) as:

1.	 Compute u = Axk − b . This step requires the multiplication of sparse matrices
and dense vectors, Allreduce in the row direction.

2.	 Compute ti =
ui

Ai,+

 . Ai,+ is stored as a constant, this step does not require collective
communication, the process can calculate locally.

3.	 Compute xk+1
j

= xk
j
−

�

�A
+,j

∑m

i=1
aij ⋅ ti . In fact, for

∑m

i=1
aij ⋅ ti , it is the inner prod-

uct of a column of A with a column vector of t. This is written in matrix form as
xk+1 = xk −

�

�A
+,j

ATt . Computing ATt requires multiplication of sparse matrices

and dense vectors, Allreduce in the column direction.

After completing the vector update, the iteration error is calculated and Allreduce
according to the row direction. During an iterative computation, three Allreduce
operations will be performed. Allreduce in the row direction when computing
u = Axk − b , and in the column direction when computing ATt . Allreduce in the
row direction when computing the error.

Fault-tolerant computing adds the following operations to each iteration:

(5)xk+1
j

← xk
j
−

�

�A+,j

m∑

i=1

aij

Ai,+

(Axk − b)i,Ai,+ =

n∑

j=1

aij,A+,j =

m∑

i=1

aij

Fig. 9   Step size of 0.002

14031

1 3

Failure detection algorithm for Fail‑Lagging model applied…

–	 Failure Detection. The frequency of failure detection is determined by the user.
The detection function can be called once in several iterations, or multiple times
in one iteration.

–	 Data Backup. The data backup scheme uses a row Shift and column Shift backup
matrix, which is a call to MPI_Cart_shift. This ensures that fault-tolerant All-
reduce operations can be executed in both the row and column directions.

–	 Fault-tolerant collective communications. If there are failed processes, the col-
lective functions of MPI will not be available. Fault-tolerant collective communi-
cation can be implemented by splitting the collective communication into point-
to-point communication, where the communication location of the failed process
is communicated by the process holding the backup data of the failed process
instead.

–	 Fault-tolerant computing. The computation is substituted by the process that
holds the backup data of the failed process. Since redundant recovery is not used,
efficiency is reduced during subsequent fault-tolerant calculations.

–	 Process retrieval and reuse. After the failed process is restored, it can rejoin the
computation after obtaining the current iteration steps and the new set of failed
processes.

The iterative algorithm is modified as described above to allow the application to
cope with a certain level of failure. We simulate process failure for experiments and
all eventually get the correct solution.

6 � Conclusion and future work

This paper is devoted to the problem of fault tolerance and failure detection of
applications on exascale HPC systems. The success rate of running applications on
exascale systems will be greatly reduced. If the application fails to react to the fail-
ure in time, it can cause financial losses. It is hard to detect process failures because
many times failed processes just behave as running abnormally slow and do not crash
or report errors. To overcome this difficulty, we propose the Fail-Lagging model to
describe how the application determines and reacts to process faults, and design a
failure detection algorithm for fail-lagging model. As the failure process can break
the communication path among processes, we also design the torus-tree communica-
tion structure to implement the failure detection with both robustness and efficiency.

In our future work, we will gradually promote the following items. (1) To fur-
ther improve the fault-tolerant collective communication. (2) Further standardize
the operation of the retrieval recovery process and how the recovery processes are
reused. (3) Design more mature data backup and recovery algorithms so that algo-
rithm-based fault tolerance can be better supported. (4) Abstract a more universal
and common fault-tolerance solution.

Acknowledgements  The authors would like to thank Jianfeng Zheng for interesting discussions related to
this work. The work is partially supported by Key-Area Research and Development of Guangdong Province

14032	 Y. Ye et al.

1 3

(No.2021B0101190003). The work is also partially supported by Guangdong Province Key Laboratory of Com-
putational Science at the Sun Yat-sen University (2020B1212060032).

References

	 1.	 Aguilera MK, Chen W, Toueg S (1998) Failure detection and consensus in the crash-recovery
model. In: Kutten S (ed) Distributed Computing, 12th International Symposium, DISC ’98, Andros,
Greece, September 24-26, Proceedings, Lecture Notes in Computer Science, vol 1499, pp 231–245.
Springer. https://​doi.​org/​10.​1007/​BFb00​56486

	 2.	 Albrecht JR, Tuttle C, Snoeren AC, Vahdat A (2006) Loose synchronization for large-scale net-
worked systems. In: Adya A, Nahum EM (eds) Proceedings of the 2006 USENIX Annual Techni-
cal Conference, Boston, MA, USA, May 30–June 3, pp 301–314. USENIX. http://​www.​usenix.​org/​
events/​useni​x06/​tech/​albre​cht.​html

	 3.	 Angskun T, Bosilca G, Dongarra JJ (2007) Binomial graph: a scalable and fault-tolerant logical
network topology. In: Stojmenovic I, Thulasiram RK, Yang LT, Jia W, Guo M, de Mello RF (eds)
Parallel and Distributed Processing and Applications, 5th International Symposium, ISPA 2007,
Niagara Falls, Canada, August 29–31, 2007, Proceedings, Lecture Notes in Computer Science, vol
4742, pp 471–482. Springer. https://​doi.​org/​10.​1007/​978-3-​540-​74742-0_​43

	 4.	 Angskun T, Fagg GE, Bosilca G, Pjesivac-Grbovic J, Dongarra JJ (2006) Scalable fault tolerant
protocol for parallel runtime environments. In: Mohr B, Träff JL, Worringen J, Dongarra JJ (eds)
Recent Advances in Parallel Virtual Machine and Message Passing Interface, 13th European PVM/
MPI User’s Group Meeting, Bonn, Germany, September 17–20, Proceedings, Lecture Notes in
Computer Science, vol 4192, pp 141–149. Springer. https://​doi.​org/​10.​1007/​11846​802_​25

	 5.	 Arpaci-Dusseau RH, Arpaci-Dusseau AC (2001) Fail-stutter fault tolerance. In: Proceedings of
HotOS-VIII: 8th Workshop on Hot Topics in Operating Systems, May 20–23, Elmau/Oberbayern,
Germany, pp 33–38. IEEE Computer Society. https://​doi.​org/​10.​1109/​HOTOS.​2001.​990058

	 6.	 Bosilca G, Bouteiller A, Guermouche A, Hérault T, Robert Y, Sens P, Dongarra JJ (2016) Failure
detection and propagation in HPC systems. In: West J, Pancake CM (eds) Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis, SC 2016,
Salt Lake City, UT, USA, November 13–18, pp 312–322. IEEE Computer Society. https://​doi.​org/​
10.​1109/​SC.​2016.​26

	 7.	 Bosilca G, Bouteiller A, Guermouche A, Hérault T, Robert Y, Sens P, Dongarra JJ (2018) A failure
detector for HPC platforms. Int J High Perform Comput Appl 32(1):139–158. https://​doi.​org/​10.​
1177/​10943​42017​711505

	 8.	 Chandra TD, Toueg S (1996) Unreliable failure detectors for reliable distributed systems. J ACM
43(2):225–267. https://​doi.​org/​10.​1145/​226643.​226647

	 9.	 Chen Z, Dongarra JJ (2008) Algorithm-based fault tolerance for fail-stop failures. IEEE Trans Paral-
lel Distrib Syst 19(12):1628–1641. https://​doi.​org/​10.​1109/​TPDS.​2008.​58

	10.	 Dwork C, Lynch NA, Stockmeyer LJ (1984) Consensus in the presence of partial synchrony (pre-
liminary version). In: Kameda T, Misra J, Peters JG, Santoro N (eds) Proceedings of the Third
Annual ACM Symposium on Principles of Distributed Computing, Vancouver, B. C., Canada,
August 27–29, pp 103–118. ACM. https://​dl.​acm.​org/​citat​ion.​cfm?​id=​15994​06

	11.	 Egwutuoha IP, Levy D, Selic B, Chen S (2013) A survey of fault tolerance mechanisms and check-
point/restart implementations for high performance computing systems. J Supercomput 65(3):1302–
1326. https://​doi.​org/​10.​1007/​s11227-​013-​0884-0

	12.	 Ferreira K, Stearley J, Laros JH, Oldfield R, Pedretti K, Brightwell R, Riesen R, Bridges PG, Arnold
D (2011) Evaluating the viability of process replication reliability for exascale systems. In: SC ’11:
Proceedings of 2011 International Conference for High Performance Computing, Networking, Stor-
age and Analysis, pp 1–12. https://​doi.​org/​10.​1145/​20633​84.​20634​43

	13.	 Graham N, Harary F, Livingston M, Stout QF (1993) Subcube fault-tolerance in hypercubes. Inf
Comput 102(2):280–314. https://​doi.​org/​10.​1006/​inco.​1993.​1010

	14.	 Gunawi HS, Suminto RO, Sears R, Golliher C, Sundararaman S, Lin X, Emami T, Sheng W,
Bidokhti N, McCaffrey C, Srinivasan D, Panda B, Baptist A, Grider G, Fields PM, Harms K, Ross
RB, Jacobson A, Ricci R, Webb K, Alvaro P, Runesha HB, Hao M, Li H (2018) Fail-slow at scale:

https://doi.org/10.1007/BFb0056486
http://www.usenix.org/events/usenix06/tech/albrecht.html
http://www.usenix.org/events/usenix06/tech/albrecht.html
https://doi.org/10.1007/978-3-540-74742-0_43
https://doi.org/10.1007/11846802_25
https://doi.org/10.1109/HOTOS.2001.990058
https://doi.org/10.1109/SC.2016.26
https://doi.org/10.1109/SC.2016.26
https://doi.org/10.1177/1094342017711505
https://doi.org/10.1177/1094342017711505
https://doi.org/10.1145/226643.226647
https://doi.org/10.1109/TPDS.2008.58
https://dl.acm.org/citation.cfm?id=1599406
https://doi.org/10.1007/s11227-013-0884-0
https://doi.org/10.1145/2063384.2063443
https://doi.org/10.1006/inco.1993.1010

14033

1 3

Failure detection algorithm for Fail‑Lagging model applied…

evidence of hardware performance faults in large production systems. ACM Trans Storage (TOS)
14(3):1–26. https://​doi.​org/​10.​1145/​32420​86

	15.	 Gupta S, Tiwari D, Jantzi C, Rogers JH, Maxwell D (2015) Understanding and exploiting spatial
properties of system failures on extreme-scale HPC systems. In: 45th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN 2015, Rio de Janeiro, Brazil, June
22–25, pp 37–44. IEEE Computer Society. https://​doi.​org/​10.​1109/​DSN.​2015.​52

	16.	 Hurfin M, Mostéfaoui A, Raynal M (1998) Consensus in asynchronous systems where processes can
crash and recover. In: The Seventeenth Symposium on Reliable Distributed Systems, SRDS 1998,
West Lafayette, Indiana, USA, October 20–22, Proceedings, pp 280–286. IEEE Computer Society.
https://​doi.​org/​10.​1109/​RELDIS.​1998.​740510

	17.	 Hursey J, Graham RL (2011) Building a fault tolerant mpi application: a ring communication exam-
ple. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and
Phd Forum, pp 1549–1556. https://​doi.​org/​10.​1109/​RELDIS.​1998.​740510

	18.	 Kharbas K, Kim D, Hoefler T, Mueller F (2012) Assessing HPC failure detectors for MPI jobs. In:
Stotzka R, Schiffers M, Cotronis Y (eds) Proceedings of the 20th Euromicro International Confer-
ence on Parallel, Distributed and Network-Based Processing, PDP 2012, Munich, Germany, Febru-
ary 15–17, pp 81–88. IEEE. https://​doi.​org/​10.​1109/​PDP.​2012.​11

	19.	 Lamport L, Shostak RE, Pease MC (1982) The byzantine generals problem. ACM Trans Program
Lang Syst 4(3):382–401. https://​doi.​org/​10.​1145/​357172.​357176

	20.	 Losada N, González P, Martín MJ, Bosilca G, Bouteiller A, Teranishi K (2020) Fault tolerance of
MPI applications in exascale systems: the ULFM solution. Future Gener Comput Syst 106:467–481.
https://​doi.​org/​10.​1016/j.​future.​2020.​01.​026

	21.	 Schlichting RD, Schneider FB (1983) Fail-stop processors: an approach to designing fault-toler-
ant computing systems. ACM Trans Comput Syst (TOCS) 1(3):222–238. https://​doi.​org/​10.​1145/​
357369.​357371

	22.	 Sloan J, Kumar R, Bronevetsky G (2013) An algorithmic approach to error localization and partial
recomputation for low-overhead fault tolerance. In: 2013 43rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), Budapest, Hungary, June 24–27, pp 1–12.
IEEE Computer Society. https://​doi.​org/​10.​1109/​DSN.​2013.​65753​09

	23.	 Ye Y, Zhang Y, Ye W (2021) An application-level failure detection algorithm based on a robust
and efficient torus-tree for HPC. In: 2021 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social
Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), New York City, NY, USA,
September 30–Oct. 3, pp 484–492. IEEE. https://​doi.​org/​10.​1109/​ISPA-​BDClo​ud-​Socia​lCom-​Susta​
inCom​52081.​2021.​00073

	24.	 Zhai J, Chen W (2018) A vision of post-exascale programming. Front Inf Technol Electron Eng
19(10):1261–1266. https://​doi.​org/​10.​1631/​FITEE.​18004​42

	25.	 Zhong D, Bouteiller A, Luo X, Bosilca G (2019) Runtime level failure detection and propagation
in HPC systems. In: Hoefler T, Träff JL (eds) Proceedings of the 26th European MPI Users’ Group
Meeting, EuroMPI 2019, Zürich, Switzerland, September 11–13, pp 14:1–14:11. ACM. https://​doi.​
org/​10.​1145/​33432​11.​33432​25

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1145/3242086
https://doi.org/10.1109/DSN.2015.52
https://doi.org/10.1109/RELDIS.1998.740510
https://doi.org/10.1109/RELDIS.1998.740510
https://doi.org/10.1109/PDP.2012.11
https://doi.org/10.1145/357172.357176
https://doi.org/10.1016/j.future.2020.01.026
https://doi.org/10.1145/357369.357371
https://doi.org/10.1145/357369.357371
https://doi.org/10.1109/DSN.2013.6575309
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00073
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00073
https://doi.org/10.1631/FITEE.1800442
https://doi.org/10.1145/3343211.3343225
https://doi.org/10.1145/3343211.3343225

	Failure detection algorithm for Fail-Lagging model applied to HPC
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Failure model
	2.2 Failure detection
	2.3 Fault tolerance
	2.4 Motivation

	3 Fail-Lagging model
	3.1 Definition of "Lagging" process
	3.2 Detecting “Lagging” processes
	3.3 Handling “Lagging” processes
	3.4 Retrieving recovery processes

	4 Torus-tree-based failure detection algorithm
	4.1 Torus-tree
	4.2 Failure detection algorithm

	5 Experiments and discussions
	5.1 Repairability and detection success rate
	5.2 Efficiency of the torus-tree
	5.3 Selection of torus size
	5.4 Fault tolerance for SART parallel iteration

	6 Conclusion and future work
	Acknowledgements
	References

