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Abstract
A multivariate time series is one of the most important objects of research in data 
mining. Time and variables are two of its distinctive characteristics that add the 
complication of the algorithms applied to data mining. Reduction in the dimen-
sionality is often regarded as an effective way to address these issues. In this paper, 
we propose a method based on principal component analysis (PCA) to effectively 
reduce the dimensionality. We call it “piecewise representation based on PCA” 
(PPCA), which segments multivariate time series into several sequences, calculates 
the covariance matrix for each of them in terms of the variables, and employs PCA 
to obtain the principal components in an average covariance matrix. The results of 
the experiments, including retained information analysis, classification, and a com-
parison of the central processing unit time consumption, demonstrate that the PPCA 
method used to reduce the dimensionality in multivariate time series is superior to 
the prior methods.
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1  Introduction

A time series is a type of time-dependent and high-dimension data, which widely 
exist in the economy [1], finance [2], engineering [3], marketing [4], the Inter-
net of things (IoT) [5], and other fields. In recent years, research on time-series 
data mining (TSDM) has attracted researchers in different fields. However, more 
research reports have been conducted on univariate time series (UTS) than mul-
tivariate time series (MTS). The reason is that the relationships among the vari-
ables in MTS are difficult to obtain accurately, and the high dimensionality of the 
variables is also an obstacle in MTS data mining. For example, the IoT temporal 
data collected by different sensors in mobile edge computing (MEC) are typically 
high dimension. To predict them more accurately, it is necessary to this high-
dimensional characteristic.

In order to effectively decrease the complications of data mining in time-
series datasets, some scholars adopt the methods used in dimensionality reduc-
tion, including feature selection [6, 7] and feature representation. Feature rep-
resentation involves local auto patterns [8], discrete wavelet transformation [9, 
10], shape space representation [11, 12], piecewise linear approximation [13, 
14], piecewise aggregate approximation [15–17], and symbolic approximation 
[18–20]. However, these methods mainly focus on UTS in terms of the time axis. 
This means that a long time series can be reduced to a short sequence that retains 
the most important information. However, because MTS has two types of dimen-
sions (time and variable), most of the above-mentioned methods do not succeed 
in reducing the dimensionality of MTS. Therefore, in doing so, the two distinc-
tive characteristics of MTS must be considered simultaneously.

Some  existing methods  can be used to reduce the dimensionality in variable 
characteristics, such as singular value decomposition (SVD) [21, 22], principal 
component analysis (PCA) [23, 24], and independent component analysis (ICA) 
[25]. The principles of SVD and PCA are often the same and are based on projec-
tion transformation so as to ensure that the projected data have the maximum var-
iance. According to the order of the variances, the first few principal components 
are retrieved and used to represent the original time series. ICA is an extension 
of PCA and factor analysis, which is derived from blind source separation. It can 
retrieve some independent components that are hidden in the datasets.

In general, the above-mentioned methods are often combined with distance 
measurements to mine MTS data. Krzanowski [26] presented a similarity method 
using the cosine angle between each corresponding principal component. Singhal 
and Seborg [27] proposed a novel distance measurement method Sdist to determine 
the similarity in the pair of principal components with the same order of variance. 
Karamitopoulos et  al. [28] used PCA to obtain the transformation space of the 
queried time series. Moreover, they projected the other time series into space and 
reconstructed the new time series. The fitting error between two reconstructed 
time series was regarded as the distance between the query time series and the 
queried one. Goetschalckx et al. [29] jointly employed SVD, retraining, pruning, 
and clustering to achieve better compression in neural networks. Weng and Shen 
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[30] proposed a two-dimensional SVD (2dSVD) and applied Euclidean distance 
to measure the similarity between two MTS. Wu and Yu [31] used Fast ICA [32] 
and a suitable distance function to cluster the independent principal components 
for MTS. In addition, some scholars [33] also applied the methods of independent 
component analysis (ICA) and ensemble empirical mode decomposition (EEMD) 
to explore the underlying factors of single financial time series.

Principal components extracted from MTS are based on the covariance of every 
pair of the variables. Each variable is indeed a time series that describes all the infor-
mation on the corresponding variable. However, as the length of MTS increases, 
the covariance might not be able to reflect the relationship between the two vari-
ables, which leads to incomplete principal components. In this paper, we segment 
MTS into subsequences, each of which is used to calculate a covariance matrix that 
reflects the relationships between variables in a more detailed fashion. Moreover, an 
average covariance matrix derived from all the covariance matrices can be obtained. 
We call the method a piecewise representation based on PCA (PPCA).

The proposed method has some advantages over the traditional methods as fol-
lows. (1) The local information described by the covariance matrix of the subse-
quence is taken into consideration, which provides more detailed information for 
representing MTS. (2) The average covariance matrix to some extent reflects the 
overall information on MTS, so some important characteristics are retained by 
PPCA. (3) The experimental results reveal that the quality of TSDM is not propor-
tionate to the quantity of data information. This means that sometimes local infor-
mation, when applied to representation and data mining, can yield good results.

The remainder of this paper is organized as follows. In Sect.  2, we provide 
background materials and discuss related work about PCA. In Sect. 3, we present 
a new algorithm for representing MTS. Three kinds of evaluation experiments are 
described in Sect. 4. Finally, the conclusions and future directions are discussed in 
Sect. 5.

2 � Background and related work

PCA is one of the most important methods used for reducing the dimensionality of 
MTS. It can handle four major distortions that should be considered, namely, offset 
translation, time warping, amplitude scaling, and noise. These properties indicate 
that it is a robust method for reducing dimensionality and retains the most impor-
tant characteristics of MTS. Therefore, in this section, we explain how PCA works 
and the ways often used to measure the similarity between two groups of principal 
components.

2.1 � Principal component analysis

Let us suppose that X denotes a multivariate time series with m variables, and 
its length is n. This means that an MTS can be written as Xn×m , and the n obser-
vations with m variables, according to the time order, comprise the entire time 



9865

1 3

Dimensionality reduction for multivariate time‑series data…

series. Let S denote an orthogonal matrix with m unitary column vectors of 
length m. The goal of PCA is to project MTS Xn×m onto a new space Sm×m through 
a linear transformation of Eq. (1).

In this way, Y  is the representation of X in the new space S . The property qual-
ity of Y  is dependent of the orthogonal matrix S . This means that the better the 
new space S can describe the observations, the more noticeable the features are.

Actually, PCA is the linear transformation of the original variables and the 
coefficients. The coefficients make up the new space. To construct these coef-
ficients (or the new space), PCA is often performed with singular value decom-
position (SVD) to a covariance matrix of MTS X . If Σ denotes the covariance 
matrix of MTS X , it can be calculated with the following equation.

According to the properties of SVD, when a covariance matrix defined by 
Eq. (2) is decomposed by SVD, then we have

The matrix U can be used to denote the new space S and contains the variables’ 
loadings for each principal component. Meanwhile, the diagonal elements of the 
matrix Λ are the corresponding variances. The bigger the variance is, the more 
information that the data project onto the corresponding vector.

However, according to Eq. (1), because Y  is still equal to X in terms of dimen-
sions, the dimensionality of X is not reduced. In fact, the dimensions of Y  depend 
on the size of the space S (here, S = U ). PCA picks up a new space coordinates 
system to describe the observations of MTS X . The new system often consists 
of k orthogonal column vectors of S , that is, S(∶, 1 ∶ k)m×k . Thus, the equation 
becomes

In this way, PCA can reduce the dimensionality of MTS [34, 35]. The dimen-
sion is decreased from m to k , where k < m . The matrix Y  also can be regarded as 
the feature matrix of the original MTS X.

Because of the performance of dimensionality reduction and feature extraction, 
PCA has not only been widely used in facial recognition but also applied to MTS 
data mining. Huang et  al. [36] use PCA to split large MTS clusters into some 
smaller clusters. Barragan et al. [37] propose a method to recognize patterns in 
MTS based on the combination of wavelet features, PCA similarity metrics, and 
fuzzy clustering. The results demonstrate that it is efficient compared with other 
traditional approaches in a fault detection and diagnosis problem. Some other 
applications in MTS data mining are based on some measurements that are intro-
duced in the next section. In addition, some extended versions of PCA are also 
applied to MTS data. 2dSVD is based on two-dimensional MTS matrices rather 

(1)Y
n×m = X

n×mSm×m

(2)Σ = cov(X) = E
[
(X − E[X])(X − E[X])T

]

(3)Σ = UΛUT

(4)Y
n×k = X

n×mSm×k
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than one-dimensional vectors, which considers MTS row-row and column covari-
ance matrices to obtain a feature matrix [30].

Li [38] proposed an approach based on the full dataset and constructed a com-
mon principal component as a common projection space. They called this approach 
common principal component analysis (CPCA), which is based on the notion of a 
common subspace across all multivariate data items, and this subspace should be 
spanned by the orthogonal components. For an MTS datasetD = , the common sub-
space S =

(
S1, S2,… , S

N

)
 can be defined by orthogonal components, as shown in 

Eq. (5).

where Σ is an average covariance matrix, that is, Σ = Σi∕N , and Σi is the covariance 
matrix of the ith MTS. � =

(
�1, �2,… , �k

)
 and S =

(
S1, S2,… , Sk

)
 are the eigen-

value vector and eigenvector matrix of the average covariance matrix Σ̄ , respectively. 
In this way, every MTS can be projected onto this subspace, and we can obtain the 
feature sequences for each MTS according to Eq. (4).

2.2 � PCA‑based measurements

PCA is employed to reduce the dimensionality of data such as images, speech, 
music, and MTS. The features extracted by PCA are the representation of the data. 
However, in most cases, valuable information and knowledge are still hidden in 
these features. In data mining, most of the algorithms, such as clustering, classifica-
tion, and pattern recognition, need to measure the similarity (or distance) between 
two objects. For these reasons, PCA-based measures have been proposed to mine the 
knowledge in MTS datasets.

Krzanowski [26] used PCA to obtain the principal components and retained the 
first k components to represent the features of the original time series. Moreover, 
they regarded the sum of cosine values of every angle between all the combination 
of the selected principal components as similarity ( SPCA ). Later, another method 
[39] modified the previous methods by weighting the angles with the corresponding 
variances. An improvement of similarity measurement (Extended Frobenius norm, 
Eros) based on the acute angles between the corresponding components, instead of 
all the components in the previous method, is proposed by [40]. Karamitopoulos 
et al. [41] proposed a distance measure that does not require the query object to be 
PCA represented for a time-series similarity search.

Because Eros can measure the similarity of two MTS with unequal lengths and 
can obtain better results than other distance functions, such as dynamic time warp-
ing (DTW) [42, 43], Euclidean distance (ED) [44] and SPCA [26], here we describe 
Eros in detail.

Eros is based on observations from both SPCA and the Frobenius norm, which can 
easily calculate the similarity of two matrices. Suppose there are two MTS X1 and 
X2 of size n1 × m and n2 × m , respectively. Let U1 and U2 be two right eigenvector 
matrices of their covariance matrices, Σ1 and Σ2 , respectively. The Eros similarity of 
MTS X1 and X2 can be defined as Eq. (6).

(5)ΣS
i
= �

i
S
i
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where u1i and u2i are the ith column orthonormal vectors of length m . u1i, u2i is the 
internal product of the two vectors. w is a weight vector that can be set by the eigen-
values of MTS datasets. For more detailed information about Eros, see [40].

Because E Eros Eros is based on an eigenvector matrix of the covariance matrix, 
it is easy to see that Eros Eros Eros is suitable for measuring the similarity of 
the MTS with the same number of variables and unequal lengths. However, it is 
independent of the information in other MTS. This means that the Eros Eros Eros 
between two MTS Xi and Xj Xj Xj depends only on information from the two MTS, 
which has nothing to do with the other MTS. By comparison, other methods are 
often based on the entire MTS dataset.

3 � Piecewise representation based on PCA

Over time, the MTS will be longer, which might make the relationships between any 
two variables inaccurate. Moreover, traditional methods based on PCA are used to 
decrease the variable-based dimension by taking MTS as a whole into consideration. 
For an MTS dataset in which the lengths are short, in most cases, they reflect the 
relationships in the data observations. However, when the MTS in the dataset are 
long, the relationships become more complex. In other words, the local relationships 
sometimes are more important than the entire relationships.

To understand why the local relationships are important and motivate this work, 
we provide the following example. Suppose there exists an MTS X with two vari-
ables x1 and x2 , as shown in Fig. 1. The sequences of the two variables are quite sim-
ilar, except for the two parts, with the time ranges (51,100) and (151,200). We draw 
the MTS with two variables in Fig. 2. It is easy to see that the two variables have a 
high correlation. x2 is the drift variable of variable x1 , which can also be regarded 
as an asynchronous relationship [42, 45]. In practice, drift phenomena exist in the 

(6)

Eros(A,B,w) =

m∑

i=1

w
i
|
|u1i, u2i

|
|

=

m∑

i=1

w
i

||
|
cos

(
�
i

)|
|
|

Fig. 1   Two variables, x1 and x2 , in an MTS X
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variables for MTS. For example, the stock portfolio should take the drift phenom-
ena into consideration, which in economics is also called a comovement relationship 
between two stock markets. Therefore, it is necessary to consider the drift phenom-
enon when detecting knowledge in MTS databases.

However, PCA, which is used to calculate the principal components, often takes 
the MTS as a whole into consideration. In other words, the traditional PCA-based 
reduction in dimensionality considers all the information, rather than the local infor-
mation. In some cases, such as the example mentioned earlier, the local information 
is more important than all of it, as it can detect the differences between the two vari-
ables. PCA is based on a covariance matrix or relationship matrix. Before extract-
ing principal components, it must calculate the covariance matrix of MTS. For this 
example, the covariance matrix Σ0 and the correlation coefficient matrix R0 are

According to statistical theory, the larger the absolute value of the covariance is, 
the more correlated the two variables will be. In addition, the closer to one the cor-
relation coefficient is, the more correlated the two variables will be. The elements 
Σ0(1, 2) = Σ0(2, 1) = 0.0557 and R0(1, 2) = R0(2, 1) = 0.0656 deceptively indicate 
that the two variables are not very correlated. However, the two variables are indeed 
highly correlated. So, when PCA is used to reduce dimensionality and represent 
MTS, the true relationship between every pair of variables should be revealed.

To address these issues, we propose a new method using PCA to represent MTS. 
It is called piecewise representation based on PCA (PPCA). Because the local infor-
mation is important for a long MTS, we can segment the original MTS Xn×m along 
with the time direction into several short sequences X̂ =

{
X̂1, X̂2,… , X̂w

}
 . Every 

short sequence X̂i has the local information on MTS. The covariance matrix Σi of 
every sequence X̂i is calculated, and then the average covariance matrix Σa can be 
obtained with Eq. (7).

Σ0 =

(
0.8405 0.0557

0.0557 0.8565

)

and R0 =

(
1.0000 0.0656

0.0656 1.0000

)

(7)Σ
a
=

1

w

w∑

i=1

Σ
i

Fig. 2   The MTS X with two variables, x1 and x2, with a length of 300
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The average covariance matrix Σa in Eq.  (7) is based on the local informa-
tion on MTS. It comprehensively reflects the relationships between every two 
variables for MTS. For this example, when an MTS with a length of 300 is seg-
mented into 6 equal short sequences, the length L is 50—that is, L = 50 . The 
average covariance matrix Σa and the corresponding correlation coefficient matrix 
Ra =

∑w

i=1
Ri

w
 can be obtained as follows:

As shown in Fig.  3, the sequences marked B and D can be used to dis-
tinguish the two variables, and the other sequences, marked A, C, E, and 
F, are the contribution of the correlation. Σa(1, 2) = Σa(2, 1) = 0.1756 and 
Ra(1, 2) = Ra(2, 1) = 0.7051 are larger than Σ0 and R0 . This indicates that the two 
variables are highly correlated, which coincides with the true relationship.

Finally, SVD can be used to decompose Σa and obtain the transformation space 
U according to Eq. (8).

Thus, we can use Eq.  (4) to reduce the dimensionality and obtain the feature 
sequences of MTS. The algorithm of PPCA can be described by the pseudo-code 
in Table 1.

Σ
a
=

(
0.2488 0.1756

0.1756 0.2470

)

and R
a
=

(
1.0000 0.7051

0.7051 1.0000

)

(8)Σ
a
= UΛUT

Fig. 3   An MTS with the variables x1 and x2 is segmented into 6 sequences

Table 1   The pseudo-code of the algorithm of PPCA

Input: An MTS X
n×m and w number of segments

Output: The feature sequence Y  and the transformation space U

(1) Segment the MTS X into w short sequences, that is, X̂ = Segment(X,w)

(2) Calculate the covariance matrix Σ
i
 of the sequences X̂

i
 , namely, Σ

i
= cov

(
X̂
i

)
 and i = 1, 2,⋯ ,w

(3) Calculate the average covariance matrix Σ
a
 according to Eq. (7)

(4) Use Eq. (8) to decompose Σ
a
 and obtain its eigenvector matrix as the transformation space U

(5) Return feature sequence Y  by Y
n×m = X

n×mUm×m
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According to the PPCA algorithm, if we choose the first k eigenvectors as the 
transformation space, that is, Um×k , where k < m , then the dimensionality reduction 
can be achieved with Eq. (4). However, the segment function in the algorithm can 
use either equivalent segmentation or adaptive division. In this paper, we only dis-
cuss feature representation based on equivalent segmentation. So, we can segment 
the MTS of length n into w multivariate sequences of length L = n∕w . In addition, 
the time complexity of PPCA is the same as that of PCA: O

(
nm2

)
+ O

(
m3

)
 . In prac-

tice, PPCA has some additional time cost, which is caused by some auxiliary state-
ments in the PPCA procedure, such as the segment calculation and calculation of the 
average covariance matrix. This analysis of time consumption is confirmed in the 
section on experimental evaluation.

4 � Experimental evaluation

To test the performance of the proposed method, we designed an experimental eval-
uation made up of three parts: comparison of the retained information, classifica-
tion evaluation, and time consumption analysis. Meanwhile, because PCA and other 
traditional PCA-based dimensionality reduction methods consider only the entire 
information, rather than the local information, we compared the proposed PPCA 
method to three existing ones: PCA [23, 23, 24], CPCA [38], and RTS. RTS denotes 
the Euclidean distance based on raw MTS.

In addition, three UCI datasets were selected in the experiments: EEG Eye State 
(EEGEye), the brain computer interface (BCI), and EEG database (EEG), respec-
tively. The lengths of MTS in the first dataset were unequal, and the lengths of MTS 
in the other two datasets were equal, which allows the methods to perform on MTS 
datasets based on different lengths.

EEGEye has 19 MTS with lengths of more than 100. Moreover, each is different 
and has 14 variables. They are labeled 0 or 1, indicating the eye-open and eye-closed 
states. BCI has 2 classes, 316 training and 100 test trials of 28 EEG channels, and 
500 samples. Here we only chose the training dataset with class labels. The EEG 
database has 20 MTS with 2 classes whose lengths are 256 and have 64 attributes.

The experiments were implemented with a Windows 7 system on a one quad-core 
Intel i7-2640 M clocked at 2.80 GHz with 8 GB of memory. Moreover, the related 
programs were compiled with Matlab R2012b.

4.1 � Retained information comparison

The feature representations Yn×k based on PCA of the MTS data are often influenced 
by the component weight matrix (or transformation space) Um×k and the variances 
matrix (or the singular values) Λ . In particular, the eigenvalue (the diagonal element 
of Λ ) provides the variance of the corresponding component Yi . Moreover, the big-
ger the eigenvalue is, the more retained information that can be obtained. So, in this 
experiment, PPCA is compared to the other two methods, PCA and CPCA, for the 
retained information.
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The researchers performed the three methods with the BCI_Train dataset. In this 
case, the reduced length L for PPCA is 100. We obtain the percentage of the sum 
of the first k eigenvalues for each MTS. The average percentage can be regarded 
as the result of the retained information rate to be compared for each method. The 
retained information comparison is shown in Fig. 4, based on the different reduced 
dimensions.

The comparison shows that the three methods yield different retained informa-
tion based on having different k. Moreover, PPCA seems to fall in between PCA and 
CPCA in this respect. However, we should point out that having more retained infor-
mation does not always have good results in data mining. For example, the original 
MTS with full information often need to have its dimensionality reduced so that it 
can obtain better results, which indicates that too much concentration on retained 
information could obscure more important features in MTS. Therefore, the retained 
information from the proposed PPCA method is not the best, but it considers local 
features that can distinguish between two MTS. As analyzed in the previous sec-
tion, we know that PPCA can handle the drift phenomena better than other methods. 
Actually, the information retained by PPCA is close to that of PCA, as shown in 
Fig. 5. When L equals the length of MTS, PPCA will degenerate to PCA.

4.2 � Classification

MTS classification is one of the important technologies applied to data mining. In 
this experiment, we perform the four methods (PPCA, PCA, CPCA and RTS) on 
the three MTS datasets. We choose the nearest-neighbor classification as the classi-
fier. We then let each MTS search the most similar object in the rest of the dataset. 
This means that if MTS Xi searches the most similar object in the datasets D , then 
Xi must compare the rest Xj ∈

{
D − Xi

}
 using the four methods. Because all MTS in 

the datasets have labels, we can check the labels of MTS Xi and Xj . If they are identi-
cal, we regard it as the correct classification; otherwise, it is the wrong classification.

The classification should be combined with the distance functions. Because 
of the superiority of Eros, we use it as the distance function to measure the 

Fig. 4   Comparison of retained information based on different reduced dimensions k 
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similarity of MTS. The more details can refer to the literature [40]. In this experi-
ment, we segment MTS in the corresponding dataset according to different 
lengths of L. The average results can be returned when all the classifications for 
the chosen lengths are completed. As shown in Figs. 6 and 7, the average results 
in the two datasets can be compared based on different reduced dimensions k. For 
more detailed information, we give the classification results of PPCA and PCA 
based on different lengths of L and different reduced dimensions of k in the EEG 
dataset. As shown in Fig. 8, the results of the classification of PPCA according to 
different lengths of L are used to compare it to that PCA.

The comparisons in Figs.  6 and 7 show that PPCA is better than the other 
methods in the classification of MTS. Moreover, the classification error rate for 
the reduced dimensions is obviously lower than it is for the other methods. At the 
same time, Fig. 8 also indicates that the classification results of PPCA according 
to different lengths L are the best.

Fig. 5   Comparison of retained information between PPCA and PCA based on different reduced dimen-
sions L 

Fig. 6   The average results of the classification on the EEG dataset



9873

1 3

Dimensionality reduction for multivariate time‑series data…

In addition to the experiments on these two datasets in which the lengths of 
MTS are equal, we also conduct an experiment on the dataset EEGEye with une-
qual lengths of MTS. Because CPCA and RTS are often not suitable for MTS 
with unequal lengths, here we only compare the classification results of PPCA to 
PCA, as shown in Fig. 9. The simple way to segment MTS according to the length 
(L) is w = n∕L . This means that the length of the last sequence is n − (w − 1) ∗ L , 
and the lengths of the other sequences are L . PPCA_Max, PPCA_Mean, and 
PPCA_Min are the maximum, the mean, and the minimum of the classification 
results according to different reduced dimensions (1, 2,… , 10) for a particular 
length. Figure 9 demonstrates that PPCA, like PCA, is also suitable for MTS with 
unequal lengths.

On the whole, PPCA, like PCA, can handle MTS with random lengths. Moreo-
ver, the experimental results of classification show that PPCA outperforms the other 
methods, and the local information is very important for distinguishing MTS in this 
case. Moreover, combined with the retained information comparison, it is easy to see 
that the classification results are not proportional to the quantity of data information.

Fig. 7   The average results of the classification on BCI_Train dataset

Fig. 8   The results of the classification based on different lengths L for PPCA
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4.3 � Time consumption

Time consumption is also an important factor in determining the performance of cer-
tain methods. Because CPCA and RTS often do not fit MTS with unequal lengths, 
in this experiment, we perform the four methods (PPCA, PCA, RTS, CPCA) on the 
BCI dataset with the same length of MTS using the above-mentioned classification. 
The CPU time consumption can be recorded based on different reduced dimensions. 
For PPCA, we take different segmented lengths (20,40,60,80,100) into considera-
tion. A comparison of the four methods of CPU time consumption are shown in 
Figs. 10 and 11.

Figure 10 shows that the CPU time cost is lower with PPCA than with CPCA 
and RTS but is slightly higher than PCA. The previous analysis of PPCA indi-
cates that PPCA and PCA have the same complexity, that is O

(
nm2

)
+ O

(
m3

)
 . 

However, the time gap is caused by some auxiliary statements in the PPCA 

Fig. 9   The results of a classification of PPCA and PCA handling the MTS with different lengths on the 
EEGEye dataset

Fig. 10   A comparison of the four methods of CPU time consumption
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procedure, such as determination of the segments and the calculation of average 
covariance matrix. In addition, as shown in Fig. 11, the CPU time cost of PPCA 
is decreased with increased length L and will be close to the cost with PCA.

5 � Conclusions

This work focuses mainly on local information in MTS, which in some cases is 
very important for distinguishing multivariate time series. The proposed method 
(piecewise representation based PCA, or PPCA) segmented MTS into several 
sequences of equal length and calculated their covariance matrices so that more 
detailed relationships among the variables for MTS could be reflected. In addi-
tion, the average of all the covariance matrices was used to obtain the principal 
components, and the eigenvectors of the average covariance matrix were com-
posed of the coordinates of reduced spaces. At the same time, we used the Eros 
distance function to measure the similarity between two coordinated systems 
in the experiments. The results demonstrate that PPCA can improve the quality 
of data mining technologies. Thus, we can conclude that PPCA takes the local 
information, rather than all the information into consideration, which can distin-
guish between two variables. Meanwhile, the average covariance matrix, to some 
extent, reflects the overall information in MTS, and some important characteris-
tics are retained using PPCA. This work also reveals that the qualities of TSDM 
are not proportionate to the quantity of retained information by reducing the 
dimensionality of MTS based on PCA.

In this paper, the method used to segment MTS is equivalent division. However, 
this rigid segmentation sometimes makes the relationships between two variables 
inappropriate. Moreover, the parameter L, representing the segmented length, cre-
ates some problems in MTS data mining. Therefore, in future we should develop an 
adaptive and suitable method for segmenting MTS and making the feature represen-
tations more effective and robust.

Fig. 11   The CPU time consumption of PPCA according to different segmented lengths L 
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