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Abstract
The timely and accurate identification of traffic signs plays a significant role in real-
izing the autonomous driving of vehicles. However, the size of traffic signs accounts 
for a low proportion of the input picture, which increases the difficulty of detec-
tion. This paper proposes an improved faster R-CNN traffic sign detection method. 
ResNet50-D feature extractor, attention-guided context feature pyramid network 
(ACFPN), and AutoAugment technology are designed for the faster R-CNN model. 
ResNet50-D is selected as the backbone network to obtain more characteristic 
information. ACFPN is performed to decrease the loss of contextual information. 
And data augmentation and transfer learning are adopted to make model training 
more convenient and time-saving. To prove the availability of the proposed method, 
we compare it with mainstream approaches (SSD, YOLOv3, RetinaNet, cascade 
R-CNN, FCOS, and CornerNet-Squeeze) and state-of-the-art methods. Experimen-
tal results on the CCTSDB dataset show that the improved faster R-CNN achieves 
the frames per second of 29.8 and the mean average precision of 99.5%, which is 
superior to the state-of-the-art methods and more suitable for traffic sign detec-
tion. Moreover, the proposed model is extended to the Tsinghua-Tencent 100  K 
(TT100K) dataset and also achieves a competitive detection result.
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1 Introduction

In the past decade, the rise of deep learning has made human life more and more 
intelligent. One of the applications of deep learning is the detection and identifi-
cation of traffic signs in autonomous driving environment perception. The level 
of environmental perception is a key reason to ensure that the vehicle can safely 
reach its destination. Traffic sign detection is crucial to the application of self-
driving vehicles on the ground. Although many well-designed traffic signs are 
installed around the roads, thousands of people are killed or seriously injured in 
traffic accidents in the country every year. Therefore, traffic sign detection is a 
challenging practical problem.

The identification accuracy and speed of traffic signs are some of the important 
factors affecting the safety of autonomous driving, which has been researched by 
many scholars. Traditional traffic sign detection mainly extracts a large number 
of candidate areas through simple and effective features such as symbols, texts, 
colors, and shapes. Luo et al. [1] proposed an approach to recognize both symbol-
based traffic signs and text-based traffic signs. Yang et al. [2] defined a detection 
module of traffic sign extraction and classification based on the color probability 
model and color features, which can obtain classification results from the con-
volutional neural network with high speed. Gudigar et  al. [3] utilized multiple 
thresholding to extract region of interest (RoI) to detect traffic signs. Xu et  al. 
[4] made use of the shape symmetry hypothesis algorithm to extract the RoI of 
the traffic sign. Among the approaches mentioned above, the color feature is one 
of the most conspicuous features of traffic signs and is used in many kinds of 
literature. However, these kinds of ways are weak in adaptability under complex 
environmental conditions.

In recent years, object detection algorithms on the basis of deep learning have 
been broadly utilized. Single shot detector (SSD) [5], faster region-based convo-
lutional neural network (faster R-CNN) [6], you only look once (YOLO) series 
[7, 8], RetinaNet [9], cascade R-CNN [10], fully convolutional one-stage object 
detector (FCOS) [11], and CornerNet-Squeeze [12] are the current mainstream 
framework. For example, Yao et  al. [13] focused on using YOLOv3 combined 
with DenseNet to detect foreign bodies, and He et al. [14] utilized popular object 
detection networks (SSD, faster R-CNN) together with different feature extractors 
(visual geometry group network (VGG), ResNet) to build foreign body detection 
models. Analogously, deep learning algorithms have been applied in industrial 
quality inspection [15], obstacle detection [16], remote sensing image detection 
[17], unmanned patrol inspection [18], and other aspects [19].

The research of deep learning is popular in the transportation field [20–26], 
especially in traffic sign detection. Traffic sign detection has been continuously 
improved in detection accuracy and speed and has made satisfactory progress. 
Lee et al. [27] utilized CNN to detect traffic signs by predicting the exact bound-
ary and location of traffic signs simultaneously, which was more effective than 
other boundary estimation methods. Yang et  al. [28] put an attention network 
(AN) in faster R-CNN to find the RoI and adopted fine RPN to generate the 
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terminal region proposal. Arcos-García et al. [29] analyzed the detection perfor-
mance of several frameworks (faster R-CNN, R-FCN, SSD, and YOLOv2) com-
bined with different backbone networks (ResNet50, Inception V2, Darknet19, 
and so on), discussed the characteristics of these models in the field of traffic 
sign detection through the method of transfer learning, and summarized the most 
appropriate model for different demands.

Song et al. [30] defined an efficient CNN with few parameters and fast network 
operation speed. Under the consistent model size, the detection accuracy was better 
than faster R-CNN. Li et al. [31] designed and implemented a traffic sign detector 
modeled on the framework of faster R-CNN and MobileNet. The performance of the 
detector was optimized by the location refinement approach according to color and 
shape information. A traffic sign detection method based on repeated attention was 
proposed by Tian et al. [32]. Their method effectively improved the use of context in 
images.

Zhang et al. [33] put forward two new lightweight networks, teacher network and 
student network, which obtained higher traffic sign detection accuracy while ensur-
ing fewer trainable parameters. Wan et al. [34] presented a novel small traffic sign 
detection approach based on YOLOv3 architecture. Tabernik et  al. [35] employed 
an improved mask R-CNN to realize the detection and recognition of traffic signs 
through end-to-end automatic learning. Gamez Serna et  al. [36] designed a mask 
R-CNN method to test and refine the German Traffic Sign Detection Benchmark 
(GTSDB) and adopted the CNN architecture to achieve classification.

In 2021, scholars continued to study traffic sign detection to get more satisfac-
tory results. The thin and deep convolutional neural network structure proposed by 
Haque et al. [37] detected traffic signs rapidly and accurately. In [38], a cascade sac-
cade network structure with class hierarchy was proposed for traffic sign detection. 
Their method has good performance and can meet the real-time requirements of 
autonomous driving. Tang et  al. [39] presented a neck network IFA-FPN to solve 
the problem of difficult detection caused by the imbalance of the size and category 
distribution of traffic signs. Experimental results performed on three mainstream 
datasets showed the superiority of the algorithm. Shen et al. [40] proposed a new 
group multi-scale attention pyramid network to detect small traffic signs, which 
achieved high accuracy. Liu et al. [41] presented a new network TSingNet, which 
used AbFPN to learn scale-aware features and ARFF blocks to derive more context 
information. Many experimental results showed that TSingNet was superior to the 
state-of-the-art approaches.

The traffic sign detection based on deep learning has good performance, but there 
are still some problems that need further improvement. Traffic signs are small and 
multi-scale, which increases the difficulty of feature extraction. During the training 
process, the network undergoes multiple convolutions and sums. After the pooling 
operation, many feature map details will be lost, and the pixel-level deviation of the 
feature map will often cause errors in detection, greatly reducing the accuracy of 
network detection, so it is more difficult to identify small-size traffic signs. In the 
real driving environment, traffic signs are very easy to be confused with billboards 
or other similar signs. For convolutional neural networks, illumination changes, 
partial occlusion, complex background, etc., also make traffic sign detection more 
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challenging. Therefore, in terms of detection accuracy and speed, the general object 
detection approaches cannot better meet the requirements.

Aiming at the above traffic sign detection problems, we choose the faster R-CNN 
model, because it is more sensitive to small target traffic signs and is an end-to-end 
detection network. In addition, it shares parameters in the training process, which 
reduces the training time and improves model quality. Faster R-CNN is used as the 
baseline plan and improved on this basis to achieve better model performance.

The main contributions of this study are as follows:

1. An improved faster R-CNN model is proposed, which can effectively improve the 
accuracy of traffic sign detection. Experiments on the CCTSDB dataset show that 
the proposed method is competitive for traffic sign detection, and the mAP is up 
to 99.5%.

2. ResNet50-D with fewer parameters is adopted as the backbone network to realize 
feature extraction. Compared with ResNet50, the accuracy is improved by 0.5%.

3. ACFPN is introduced into the traffic sign detection, which focuses on context 
information and only slightly increases the model complexity and calculation, 
but the detection accuracy is further improved by 0.7%.

4. The data augmentation methods such as random flip, resize, and AutoAugment 
are adopted to enhance the generalization ability of the model. Transfer learning 
can significantly reduce training time and speed up network convergence.

5. Our method can be extended to detect other traffic sign datasets. The adaptability 
experiment on the TT100K dataset further proves its usability.

The rest of the paper is arranged as follows: Sect.  2 presents the proposed 
method. In Sect.  3, the experimental process is described, containing the training 
ways, data processing methods, transfer learning approach, and so on. Section  4 
gives the experimental results and the discussion. Conclusions and future work are 
presented in Sect. 5.

2  Proposed method

2.1  Improved faster R‑CNN

In this study, the traffic sign detection system uses the original faster R-CNN detec-
tor, which is a general method developed for the detection and recognition of general 
objects. To adapt it to the specific field of traffic sign detection, some improvements 
are proposed. Firstly, the traffic sign images are processed by using the data aug-
mentation approaches, then the characteristics are obtained by inputting ResNet50-
D, and the multi-level characteristics are output. Secondly, the multi-level features 
are input into the ACFPN for feature fusion to generate a multi-scale characteristic 
pyramid with rich context information. Thirdly, the feature pyramid is input to the 
RPN to produce region proposals. Fourthly, the feature pyramid and region propos-
als are transported to the RoI align layer to produce proposal feature maps. Finally, 
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the proposal feature maps are sent to the Bbox head to achieve object classification 
and obtain the precise position of the object bounding box. The overall structure is 
shown in Fig. 1.

Compared with faster R-CNN, the proposed method has the following advan-
tages: (1) A series of data augmentation methods, such as AutoAugment, random 
flip, and resize, are adopted to enhance the generalization capacity and detection 
performance; (2) ResNet50-D is conducted as the backbone network for character-
istic extraction, which improves the capability of characteristic extraction; (3) the 
introduction of ACFPN can reduce the loss of context information, so ACFPN is 
used to perform feature fusion on the multi-level feature output of ResNet50-D, and 
a feature map with rich semantic and location information is obtained.

2.2  Faster R‑CNN

Region-based networks mostly contain R-CNN, fast R-CNN, and faster R-CNN. 
Both R-CNN and fast R-CNN adopt selective search (SS) to extract 2000 candi-
date area frames, which spend too much time and are difficult to meet the real-time 
requirements. Therefore, based on R-CNN and fast R-CNN, the typical two-stage 
model faster R-CNN came into being. Its core idea is to use RPN (region proposal 
network) to replace SS to extract candidate regions.

Here, we briefly describe faster R-CNN and see [6] for a more explicit illustra-
tion. The faster R-CNN uses anchor to replace SS to extract candidate areas. The 
anchor containing the target object is screened and employed in RoI pooling to 
extract the feature map of fixed size. Then, the candidate regions are classified using 
proposal feature maps and the target object position is predicted using bounding box 
regression. The faster R-CNN architecture is shown in Fig. 2.

In faster R-CNN, RPN is a fully connected network for the generation of candi-
date regions.

RoI align

ACFPN

Region proposal network

RoI

feature maps

Characteristic pyramid

Input ResNet50-D

Bbox head

Output

AutoAugment image
Random flip image
Normalize image

Resize image

Data processingOriginal image

Fig. 1  The overall structure
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RPN loss is defined as follows:

where the classification loss function is

The regression loss function is

R is the robustness loss function:

where i is the exponent of the anchor in a minimum sample; Pi is the chance of the 
anchor to predict the object; P∗

i
 represents classified supervision information, and 

its value is 0 (anchor is a negative sample) or 1 (anchor is a positive sample); � is a 
constant for balancing the classification loss and regression loss; ti expresses the four 
parameterized coordinates of the predicted candidate box; t∗

i
 represents the coordi-

nate vector of the corresponding candidate box when the anchor generation box is 
positive; Ncls and Nreg represent the classification loss and regression loss after nor-
malization treatment, respectively.
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Fig. 2  Architecture of faster R-CNN
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2.3  ResNet50‑D

In general, the more the network layers are, the richer features are extracted and 
the more semantic information is obtained. But simply increasing the depth of 
the network will lead to gradient explosion. ResNet network using residual con-
nection can be a good way to raise neural network depth when the gradient dis-
appears. ResNet according to the number of different network layers mainly has 
ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, and so on. ResNet50 is 
the most commonly used. However, in the process of ResNet50 downsampling, 
the convolution of 1 × 1 and the stride of 2 will cause that three-quarters of the 
input feature map will not be utilized. Therefore, the backbone network selected 
for our method is ResNet50-D. As shown in Fig. 3, ResNet50-D moves the down-
sampling of path A to the following 3 × 3 convolution for execution, so all infor-
mation is used. In the downsampling of path B, 2 × 2 average pooling layer with 
a stride of 2 is added before the convolution, so the loss of a large number of 
feature information is avoided. Compared with ResNet50, ResNet50-D uses an 
average pooling method to reduce the dimension during the skip connection. The 
advantages of average pooling are that it can retain image background informa-
tion well, extract features better, reduce the number of parameters, and save hard-
ware resources.

Conv
1×1

Conv
3×3,s=2

Conv
1×1

+

AvgPool
2×2,s=2

Conv
1×1

Input

Output

Input stem

Stage 1

Stage 2

Stage 3

Stage 4

Output

Input

Output

Conv
7×7,64,s=2

MaxPool
3×3,s=2

Input

Output

Down
sampling

Residual

Residual

Input

Output

Path A Path B

Fig. 3  The architecture of ResNet50-D
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2.4  RoI align

The core of RoI pooling is that candidate boxes share features of the feature map 
and keep the output size consistent. Nevertheless, when RoI pooling is approxi-
mated by two rounds, it causes a mismatch between the detection information and 
the extracted features. To enhance the identification correctness of traffic signs, RoI 
pooling is converted into RoI align in faster R-CNN.

RoI align can eliminate errors generated in RoI pooling. Firstly, RoI align takes 
N points uniformly in the region and finds the four points closest to each point in the 
feature map. Then, the export value of the points is obtained by bilinear interpola-
tion, as shown in Fig. 4. Finally, the output value of the region is obtained by averag-
ing the N points. Consequently, the whole characteristic aggregation procedure is 
turned into a consecutive manipulation to acquire better performance and retain the 
features of the original region as much as possible.

The results from the RPN are carried to the RoI align layer along with the feature 
pyramid, and the final result is obtained after the two fully connected layers. In prac-
tical terms, the chance of the traffic sign in the bounding box can be obtained by the 
classification layer, and the position of the traffic sign can be obtained through the 
regression layer.

2.5  Attention‑guided context feature pyramid network (ACFPN)

To take advantage of the intrinsic multi-scale characteristic representation of deep 
convolutional networks, feature pyramid network (FPN) is proposed. Unfortunately, 
there are two problems in FPN: (1) insufficient communication between multi-scale 
receptive fields; (2) the contradiction between the resolution of the feature map and 
the receptive field for high-resolution input pictures. To address the defects men-
tioned above, a new ACFPN is proposed. The structure is shown in Fig. 5.

(x1, y2) (x2, y2)

(x1, y1) (x2, y1)

(x, y)

Fig. 4  Bilinear interpolation diagram
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Compared with the original FPN, ACFPN uses dilated convolution on  F5 and sub-
sample  P5 and maintains the same step size as FPN through max pooling. ACFPN 
[42] is composed of two modules, namely context extraction module (CEM) and 
attention-guided module (AM), which solve the contradiction between feature map 
resolution and receptive field on high-resolution input. CEM searches extensive con-
textual information from multiple receiving domains. The AM is composed of two 
sub-modules: contextual attention module (CxAM) and content attention module 
(CnAM), which are dedicated to seizing and distinguishing semantics and accurate 
positioning.

3  Experiment

3.1  Training

In this study, the benchmark datasets are the CCTSDB traffic sign dataset released 
by Changsha University of Science and Technology [43] and the TT100K dataset 
[44]. The CCTSDB dataset contains three categories, namely warning, prohibitory, 
and mandatory. There are 11,062 pictures for training and 2767 pictures for testing, 
both of which contain all the categories of traffic signs without intersections. The 
TT100K dataset contains 232 categories, 6105 pictures for training and 3071 pic-
tures for testing.

All methods are trained and tested using the PaddlePaddle framework, the operat-
ing environment is Python, and the cloud hardware is configured with a 4-core CPU, 
32 GB memory, and a NVIDIA Tesla V100, 16G video memory.

Stochastic gradient descent (SGD) is employed to train the whole network, and 
the initial learning rate is 0.01. When iterating 80,000 and 100,000, the learning rate 
is divided by 10, respectively. The weight decay is set to 0.0001. The momentum 

Rate=3 Rate=6 Rate=12 Rate=18 Rate=24

Upsampling

Concat

CEM

Conv

Attention map

CxAM

Attention map CnAM

Conv
F5

P5

F4

F3

F2

P4

P3

P2

Fig. 5  The structure of ACFPN network
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is set to 0.9. The Batch_size is set to 2. The training network is initialized by using 
the pre-trained model of ImageNet classification of object detection, and the initial 
parameters and weight of the traffic sign detection training model are obtained. The 
iterative training is 120,000 times. During the training, the model is evaluated every 
10,000 times, and the evaluation results are saved until the end of the training.

3.2  Data processing

The CCTSDB dataset has different sizes, such as 1280*720, 1024*768, and 
1000*350. The image resolution of the TT100K dataset is 2048*2048. The target 
size of the faster R-CNN network is modified to 800. All models adopt data augmen-
tation methods such as random flip, normalization, and resize, mainly to increase the 
number of pictures in the training set and diversify them to enhance the generaliza-
tion ability of the model. Moreover, the model trained by data augmentation has bet-
ter detection performance.

In addition to the data augmentation mentioned above, the proposed method also 
uses AutoAugment technology. Here, we briefly describe AutoAugment strategies 
and refer to [45] for a more detailed description. The idea is to establish a search 
space for data augmentation strategies. A strategy in the search space includes many 
sub-strategies. Each sub-strategy consists of two image-processing functions and 
function parameters (probability and amplitude). The sub-strategy will be randomly 
assigned to each picture in each mini-batch. The search algorithm is adopted to 
search for the best strategy to ensure higher accuracy.

3.3  Increase the number of anchor frames

To adapt to traffic sign detection and detect small targets more successfully, besides 
the default anchor size, 32*32 and 64*64 parameters are also added, so that each 
anchor point corresponds to 15 candidate windows, namely anchor_sizes {32*32, 
64*64, 128*128, 256*256, 512*512} and aspect_ratios {1:2, 1:1, 2:1}.

3.4  Transfer learning

At present, object detection algorithms based on big datasets and deep CNN mod-
els show prominent capability. However, in practical application, when the amount 
of training data is small, the model has fallen into overfitting. Therefore, transfer 
learning can solve this problem well. In this study, the ImageNet classification pre-
training model is employed to initialize the detection model. We use our dataset in 
transfer learning and convert it into scripts for COCO format. In transfer learning, 
the variables of the pre-training model are different from those of the actual model, 
so there is a mismatch problem. Therefore, it is necessary to selectively load the 
pre-training model and directly load the pre-training weight, so that the parameters 
with different shapes of corresponding parameters in the model and the pre-train-
ing model will be automatically ignored. Using transfer learning can significantly 
reduce training time.
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3.5  Performance evaluation index

To compare the performance of the method presented in this study with other methods, 
the following evaluation indexes are utilized.

(1) mAP
  AP indicates the performance of each class in the detection model, and mAP 

is the average of AP values under all categories. mAP with intersection over 
union (IoU) = 0.5 and area = all is used as the evaluation index in the validation 
set, and COCO metrics are adopted. The mAP calculates the mean value of AP 
of each category when IoU_threshold = 0.5. The mAP represents the detection 
performance of the detection model.

(2) FPS
  FPS expresses the number of frames to fill the image per second. By listing 

the FPS of different methods, the real-time capability of different methods is 
revealed.

(3) Precision, Recall_rate, Missing_rate and F1-measure

Precision represents the proportion of accurate prediction samples in all prediction 
samples. Recall_rate shows the probability that the predicted accurate sample accounts 
for all positive samples. Missing_rate is the opposite of Recall_rate. F1-measure is the 
index for comprehensive evaluation of precision and Recall_rate. True positive (TP), 
true negative (TN), false positive (FP), and false negative (FN) denote four cases of 
detection results, respectively. These indicators are defined as follows:

4  Results and discussion

4.1  Experimental results and discussion

Figure 6 shows some detection results on the CCTSDB dataset. These traffic signs 
are photographed on different roads. The shape, color, and size of traffic signs are 
also different.

(6)Precision =
TP

TP + FP

(7)Recall−rate =
TP

TP + FN

(8)Missing−rate = 1 −
TP

TP + FN

(9)F1 − measure = 2 ×
Precision × Recall−rate

Precision + Recall−rate
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Although there are many proposed methods in the field of traffic sign detection, 
it is difficult to make a reliable comparison with these methods because of different 
datasets and inconsistent hyperparameters. Therefore, to testify the capability of the 
proposed method in traffic sign detection, we compare it with some object detec-
tion approaches, namely SSD [5], YOLOv3 [8], RetinaNet [9], cascade R-CNN [10], 

Fig. 6  Part of the detection results on the CCTSDB dataset
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FCOS [11], and CornerNet-Squeeze [12]. These models use the same CCTSDB 
dataset, set some of the same hyperparameters (momentum, number of training iter-
ations, and so on), measure the performance on the same hardware with a NVIDIA 
Tesla V100X GPU and a 4-core CPU, 32 GB memory, and compare them on both 
the mAP and FPS metrics. The experimental results are shown in Table 1. In addi-
tion, Fig. 7 shows the more intuitive results. 

Obviously, the detection accuracy and speed of the original faster R-CNN model 
are not good. When ResNet50-D, a better backbone network, is applied to faster 
R-CNN and ACFPN module and AutoAugment technology, the best detection effect 
is achieved. In this study, the mAP of the improved faster R-CNN is 99.5%, which is 
the highest among the eight detection models. FPS is 29.8, although lower than the 
one-stage detection models SSD and YOLOv3, but close to 30, which can achieve 
real-time detection of traffic signs. In contrast, the mAP is significantly higher than 
them. In the case of a significant increase in mAP, the sacrifice of time is worth 
it, because more attention should be paid to accuracy while meeting the real-time 
requirements. Compared with the original faster R-CNN model, the mAP and FPS 
of the improved faster R-CNN model are increased by 1.8% and 24.5%, respectively. 
And the FPS is significantly improved by at least five times. The improvement in 
the method in this study is better reflected in the FPS indicator. This indicates that 
the improved faster R-CNN model has better comprehensive performance than other 
models.

In the one-stage model, compared with SSD, YOLOv3, and RetinaNet, the 
improved faster R-CNN enhances 13.7%, 4.9%, and 1.1% in the mAP index, respec-
tively, which is significantly better than the SSD and YOLOv3 models, because the 
faster R-CNN is a two-stage model consisting of regional recommendation and goal 
classification. First, RoI align is performed for each proposal extracted. In the sec-
ond stage, there are two full connection layers to classify the candidate regions and 
predict the position of the target object, so higher detection accuracy is obtained. 
However, its inference speed is significantly lower than that of SSD and YOLOv3 
models, mainly because faster R-CNN uses RPN to acquire a group of candidate 
regions and then predicts it. Consequently, the detection speed of faster R-CNN is 

Table 1  Experimental results of different object detection methods on the CCTSDB dataset

All results are obtained on the same hardware

Method Backbone mAP (%) FPS

SSD [5] VGG16 85.8 57.7
YOLOv3 [8] DarkNet53 94.6 47.4
RetinaNet [9] + FPN ResNet50 98.4 27.3
Cascade R-CNN [10] ResNet50-D 97.9 23.0
FCOS [11] + FPN ResNet50-DCN 98.9 17.4
CornerNet-Squeeze [12] + FPN ResNet50-D-DCN 90.9 28.5
Faster R-CNN [6] ResNet50 97.7 5.3
Faster R-CNN + ACFPN + AutoAugment 

(Ours)
ResNet50-D 99.5 29.8
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impeded, while SSD and YOLOv3 are fast, because they are one-stage detection 
models with fewer layers than other models, whereas this does not impact the over-
all detection behavior of the proposed method.

In the two-stage model, compared with faster R-CNN and cascade R-CNN, the 
improved faster R-CNN not only increases 1.6% and 1.8% in the mAP index but 
also improves 6.8 and 24.5 in the FPS index, respectively. The improvement is 
noticeable.

In the anchor-free model, compared with FCOS and CornerNet-Squeeze, the 
improved faster R-CNN not only raises 0.6% and 8.6% in the mAP index but also 
increases 12.4 and 1.3 in the FPS index, respectively.

An illustration of precision–recall curves for these methods is provided in Fig. 8, 
which further demonstrates the validity of the proposed model. From Fig. 8, among 
three types of traffic signs including warning, prohibitory, and mandatory, it can be 
observed that the best way is faster R-CNN + ResNet50-D + ACFPN + AutoAug-
ment which achieved the highest average precision.

Additionally, the proposed model is compared with the state-of-the-art approaches 
on the CCTSDB dataset. It can be easily seen from Table 2 that our method is supe-
rior to Shen et al. [40] on the Recall_rate, Missing_rate, and F1-measure indicators. 
Compared with Liu et al. [38], the proposed model acquires over 9.0% improvement 
on mAP. Therefore, these results further confirm the availability of the proposed 
method.

To further prove the effectiveness of our method, the faster R-CNN + ResNet50 
model is used as the baseline model for a comparative experiment. Table 3 displays 
the average recall (AR) rate on the CCTSDB dataset. Compared with the benchmark 

Fig. 7  Performance comparison of each model on the CCTSDB dataset



7996 X. Li et al.

1 3

Fig. 8  Precision–recall curves 
of traffic sign detection perfor-
mance on the CCTSDB dataset 
for warning, prohibitory, and 
mandatory
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model, the proposed method increases 6.8% in  ARS, and the effect is significantly 
improved, which verifies that the proposed method significantly enhances the test 
capacity of little targets. The performance of the proposed method on  ARL is poor, 
because ACFPN will pay more attention to small targets after fusing more infor-
mation, which improves the detection performance of small targets and reduces the 
attention to large targets.

In summary, the improved faster R-CNN model has higher accuracy compared 
with the other models and achieves a satisfactory balance between detection accu-
racy and speed. It shows that the improved faster R-CNN model has superior perfor-
mance and is effective in the field of traffic sign detection.

4.2  Ablation study

To discuss the influence of ResNet50-D, ACFPN, and AutoAugment technology 
on the detection capacity of faster R-CNN, we conduct an ablation study on the 
CCTSDB dataset. First, the backbone network is changed to ResNet50-D to study 
its impact on the faster R-CNN. Next, we demonstrate the role of the ACFPN in the 
faster R-CNN detection model. Finally, the AutoAugment technique is added to fur-
ther evaluate the performance. Table 4 reveals the experimental results of the abla-
tion study.

It can be seen from Table 4 that, by changing the backbone network ResNet50-
D, the mAP of faster R-CNN is increased by 0.5%. Faster R-CNN with FPN is 
superior to the faster R-CNN without FPN, with a difference of 0.6%. The effec-
tiveness of ACFPN is also proved in our proposed model. After replacing FPN 
with ACFPN, the detection capability is enhanced, and the network effect is fur-
ther improved. The mAP is improved by 0.1%. Finally, after adding AutoAug-
ment technology, the mAP value increased by 0.6%. These improvements are 

Table 2  Comparison of our method with the state-of-the-art methods on the CCTSDB dataset

The results of all methods are derived from the original paper

Method Year mAP Precision Recall_rate Missing_rate F1-measure

Li et al. [46] 2018 – 86.7% 75.6% 24.4% 80.8%
Zhang et al. [47] 2020 – 99.7% 83.62% 16.38% 90.82%
Shen et al. [40] 2021 – 99.4% 91.8% 8.2% 95.4%
Liu et al. [38] 2021 89.7% – – – –
Ours 2021 99.5% 98.8% 98.3% 1.7% 98.5%

Table 3  Average recall rate performance comparison on the CCTSDB dataset

All results are obtained on the same hardware

Model AR10 (%) AR100 (%) ARS (%) ARM (%) ARL (%)

Faster R-CNN + ResNet50 77.1 77.1 73.6 81.3 91.7
Faster R-CNN + ResNet50-

D + ACFPN + AutoAugment
82.6 82.6 80.4 85.2 91.7
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mainly because of the capability of the ResNet50-D network to retain image 
background information and better extract features. By fusing the features of dif-
ferent receptive fields, ACFPN not only increases the receptive fields of objects, 
but also gives better classification results by using the context information of 
objects. AutoAugment technology improves accuracy by automatically searching 
data augmentation strategies suitable for specific datasets.

4.3  Adaptability experiment

To prove the adaptability of the proposed method, it is applied to the TT100K 
dataset. The experimental results are shown in Table  5. The improved faster 
R-CNN acquires a competitive result with 95.8% in mAP, which surpasses some 
mainstream approaches, such as SSD, YOLOv3, and faster R-CNN. Simul-
taneously, the improved faster R-CNN is compared with the state-of-the-art 
approaches, and the results are shown in Table  6. The improved faster R-CNN 
obtains 2.2%, 0.38%, and 1.08% improvement on mAP, precision, and Recall_
rate, respectively. Table  6 further illustrates the superiority of the proposed 
method. This shows that our method has strong adaptability. This means that 
when the proposed method is applied to a new dataset, it can work well only by 
fine-tuning. 

To sum up, ResNet50-D, ACFPN, and AutoAugment technology can availably 
ameliorate the traffic sign detection performance of the faster R-CNN model.

Table 4  Experimental results of 
ablation study on the CCTSDB 
dataset

All results are obtained on the same hardware

Model mAP (%) FPS

Faster R-CNN + ResNet50 97.7 5.3
Faster R-CNN + ResNet50-D 98.2 5.7
Faster R-CNN + ResNet50-D + FPN 98.8 31.6
Faster R-CNN + ResNet50-D + ACFPN 98.9 29.4
Faster R-CNN + ResNet50-

D + ACFPN + AutoAugment
99.5 29.8

Table 5  Experimental results 
of different object detection 
methods on the TT100K dataset

All results are obtained on the same hardware

Method Backbone mAP (%) FPS

SSD [5] VGG16 87.0 7.4
YOLOv3 [8] DarkNet53 89.2 11.1
Faster R-CNN [6] ResNet50 80.8 3.5
Faster 

R-CNN + ACFPN + Auto-
Augment (Ours)

ResNet50-D 95.8 3.4
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5  Conclusions

Traffic sign detection is one of the important premises for the realization of auton-
omous driving environment perception. In the real driving road scene, the target 
size of traffic signs is small, and the environment changes in real time, which 
increases the difficulty of traffic sign detection. This paper proposes an improved 
faster R-CNN traffic sign detection model, which is more suitable for traffic sign 
detection by selecting a better backbone network (ResNet50-D), RPN optimiza-
tion (anchor size), hyperparameter, ACFPN, and AutoAugment technology. Com-
pared with the state-of-the-art approaches on the CCTSDB dataset, our method 
obtains the mAP of 99.5% and the FPS of 29.8. In addition, the adaptability 
experiment on the TT100K dataset further proves its superiority. Therefore, the 
proposed method has more advantages and stronger generalization ability, which 
can provide the idea for the environment perception of autonomous driving and 
can be extended to the area of small object detection like traffic signs.

The model results show that the ideal performance is still not achieved. This is 
mainly because there is an apparent disparity between the proposed approach and 
the one-stage object detection method in real-time detection speed. Future work 
will focus on this aspect and optimize the detection model to further improve the 
detection speed. In addition, we also want to test the performance of the proposed 
traffic sign model in more traffic scenarios.
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