
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:10025–10062
https://doi.org/10.1007/s11227-021-04223-3

1 3

A resource‑constrained distributed task allocation method
based on a two‑stage coalition formation methodology
for multi‑UAVs

Mi Yang1 · An Zhang1 · Wenhao Bi1 · Yunong Wang1

Accepted: 17 November 2021 / Published online: 20 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
The task allocation problem is an important research field in unmanned aerial vehi-
cles (UAVs). However, most existing task allocation algorithms can form coalitions
to address the resources constraints, but cannot support starting tasks at the same
time, nor can cope with the new emerging tasks flexibly. To this end, we propose a
novel resource-constrained task allocation method based on the performance impact
algorithm (RCPIA) to support simultaneously starting tasks and provide more flex-
ibility to reallocate the new tasks. More specifically, based on the proposed task
allocation model, we firstly modify the task inclusion phase and conflict resolution
phase of the baseline PI algorithm to preferentially allocate the tasks to the UAVs
that can complete tasks individually. After that, to make full use of resources and
further allocate remaining unassigned tasks, a two-stage coalition formation method
is creatively proposed to form a coalition for the tasks that cannot be performed by
a single UAV to provide enough resources. Especially, an idle time slot mechanism
(ITSM) is investigated to shift the start times of tasks that can be performed by a
single UAV to create a longer feasible time slot to insert the task. Thirdly, the reas-
signment application of the two-stage coalition method is introduced to cope with
new emerging tasks. Finally, numerical simulations are constructed to illustrate the
procedure of RCPIA and verify the superiority of RCPIA compared with other task
allocation algorithms in efficiency and success allocation rate.

Keywords  Multi-UAV System · Distributed task allocation · Resource constraint ·
Coalition formation · Dynamic environment

This work was supported by the National Natural Science Foundation of China (No. 61903305, No.
62073267), the Aeronautical Science Foundation of China (No. 201905053001), and the Research
Funds for Interdisciplinary Subject, NWPU.

 *	 An Zhang
	 zhangan@nwpu.edu.cn

1	 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04223-3&domain=pdf

10026	 M. Yang et al.

1 3

1  Introduction

A multiple unmanned aerial vehicles (multi-UAV) system is a set of UAVs that are
designed to cooperate with each other to complete some complex missions [22, 30,
32]. The advantages of multi-UAV system lie in increased flexibility, enhanced reli-
ability and resilience, simultaneous broad area coverage or capability to operate out-
side the communication range of base stations [5, 24, 40]. Hence, multi-UAV sys-
tems have been applied to many real-world scenarios [21, 43].

Task allocation means assigning a set of tasks to UAVs without conflicts and
constraints violation while optimizing some objective function [36, 45]. Hence,
the solution that does not violate constraints is vital to improve the performance of
completing complex missions [11]. Much research has studied dealing with complex
constraints in problems, such as the constraints of limited resource, resource type,
time windows and reassignment version in dynamic environment [20, 38].

However, there are many challenges that exist in addressing the complex con-
straints of multi-UAV systems task allocation [36, 45]. In real-world, the resources
carried by heterogeneous UAVs are diverse and limited, while the tasks also may
require different types of resources. In addition to the resource type constraints, we
hope to make full use of the limited heterogeneous resources of UAVs to further
allocate more tasks. Hence, it is allowed to select a group of UAVs to coopera-
tively provide enough resources for executing one task. Besides, due to the military
requirement, some tasks must be started at the same time to guarantee the task com-
pletion performance. Since starting tasks at the same time will affect the start time
of other tasks in the task list, which may cause the objection function of the solution
to decrease. Therefore, it is necessary to develop approaches that form a group of
UAVs to provide enough resources for tasks and cooperatively start a task at the
same time without much objective function loss. Moreover, the new emerging tasks
may have a greater impact on the coalition UAVs than single UAV. Once the task
list of a coalition UAV is interrupted by the new task, other coalition member UAVs
must wait for its arrival. This will cause the allocated tasks cannot be performed on
time or not be executed. Hence, how to provide a feasible and flexible solution in a
dynamic environment within a short time is much worth studying.

To this end, we focus on the distributed task allocation problem where hetero-
geneous UAVs are allocated to several tasks with resource-type constraints and the
simultaneous starting tasks should also be supported. In this paper, it is preferred to
avoid unnecessary cooperation of UAVs and alleviate the impact of new emerging
tasks on preallocation solutions. Also, to provide greater flexibility, more redundant
time should be fully utilized to create feasible time slots by shifting the start times of
a single UAV executing tasks. Therefore, we propose a novel resource-constrained
task allocation algorithm based on the performance impact algorithm (RCPIA). In
detail, this paper makes the following contributions to the state of the art:

•	 The task assignment problem with resources type constraints and limited quan-
tity constraints is modeled in the mathematical formulation. Besides, the require-
ment of starting coalition tasks concurrently is also taken into consideration.

10027

1 3

A resource‑constrained distributed task allocation method…

•	 To avoid unnecessary cooperation, it is first preferred to allocate a single UAV
with sufficient resources to the tasks, rather than form a coalition to complete
tasks to obtain a higher reward. To this end, this paper first modifies the crite-
ria of adding tasks and removing tasks to allocate the tasks to the UAVs with
enough resources which can complete them individually as much as possible.
Then, the conflict resolution rules are also modified to meet the resource con-
straints.

•	 To further make full use of UAV resources, a two-stage coalition formation
method is introduced to further allocate the tasks that cannot be performed by
a single UAV. First, in the first stage, the UAVs that can provide the required
resources for the task and meet the deadline constraints are selected as pre-
liminary coalition members. It’s worth noting that we propose an idle time slot
mechanism (ITSM) to compute the feasible time slot for the UAV to insert the
task. This mechanism can calculate the start time redundancy for the current
coalition task without affecting the start times of other coalition tasks in the task
list. After selecting preliminary coalition members, the second stage is used to
further reduce the coalition size based on three different criteria and the final
coalition members are obtained.

•	 In order to cope with the new emerging tasks in a dynamic environment, the
reassignment application of the two-stage coalition formation method is investi-
gated.

The rest of the paper is organized as follows. In Sect. 2, we overview the previous
works related to the task allocation problem of multi-UAV systems. Section 3 intro-
duces the resource-based multi-UAV task allocation problem and gives its mathe-
matical formulation. The main structure of RCAPI is illustrated in Sect. 4. Several
simulations and comparisons are conducted in Sect. 5 to demonstrate the perfor-
mance of the RCAPI. Section 6 concludes this paper.

2 � Related work

There have been numerous studies on the task allocation problem of multi-UAV sys-
tems and many methods are proposed for the past few years. Generally, they are cat-
egorized into two main categories: optimized-based and market-based [3].

Many optimized-based methods are proposed to find the optimal solution. For
example, ant colony algorithm (ACO) [34, 46] and practical swarm optimization
(PSO) [25, 28] were developed due to their fast convergence speed in solving large-
scale task allocation problems. Besides, as a typical optimization-based approach,
genetic algorithm (GA) is also one of the most useful methods to solve task assign-
ment problem when the search space is not extremely rugged in the presence of
many types of constraints [45]. Many algorithms are incorporated into GA to
improve the efficiency or avoid the local optimum. In [35], the improved simulated
annealing algorithm (SA) was used in the second selection operation to improve the
population diversity of GA. [37] proposed a multi-objective shuffled frog-Leaping
algorithm (MOSFLA) and GA-based task assignment and sequencing method which

10028	 M. Yang et al.

1 3

showed that the total operation time shrinks. However, since optimized-based algo-
rithms are difficult to design appropriate local decision rules, they are usually used
in centralized systems. This places a heavy communication burden on the server and
also reduces the mission range. In addition, they are vulnerable to the single point of
failure and are easy to fall into local optimum.

Hence, as a typical distributed approach, the market-based algorithm [29, 31,
41, 44] has been applied to achieve a suboptimal solution due to its low compu-
tation complexity, efficiency, robustness, and scalability. Recently, the consensus-
based bundle algorithm (CBBA) has attracted considerable research interest since
it combines the positive properties of the auction and conflict resolution to produce
a conflict-free assignment [8]. It has been proven that this method can offer similar
solutions to some centralized sequential greedy algorithms and 50% optimality is
guaranteed. Several researches made modifications and extensions based on CBBA
[27, 38], and several algorithms were also inspired from it [13, 33, 46] which also
performed well in solving task allocation problems. Besides, many other algorithms
were also applied to solve such problems, see [1, 2, 12, 18, 19, 26].

For dealing with resource constraints, [17] adopted cross-entropy (CE) to address
the resource required by tasks and demonstrated its effectiveness. A greedy heuristic
was introduced in [42], which considered inter-task resource constraints to approxi-
mate the influence between different assignments in task allocation. [23] proposed a
distributed task allocation method based on resource welfare by balancing resource
depletions. [10] designed a modified genetic algorithm with multi-type genes for
the task assignment with limited resources and kinematic constraints. However, the
aforementioned algorithms just considered assigning one task to one UAV, which
can not make full use of the resources of heterogeneous UAVs.

At the same time, most existing works studied forming coalition UAVs to coopera-
tively complete tasks, which aims to obtain a better solution compared to assigning
one UAV to one task [9, 14, 39], and only a few studies considered both resource
constraint and coalition formation. For example, [7] introduced a holistic coalition
methods for global optimization and a sequential coalition method to select suitable
robots to form coalitions for the dynamic events. Similarly, a leader-follower coalition
methodology (LFCM) for solving resource constraints was discussed in [6]. Never-
theless, these two methods were both applied in a centralized way and did not con-
sider the constraints of simultaneously starting tasks. In addition, they cannot allo-
cate the new tasks in real-time. [4] proposed a coalition formation method based on
game theory (CFGT) to provide enough resources for tasks. Similarly, this method
also cannot start tasks at the same time. [13] proposed a resource dynamic assign-
ment algorithm inspired by CBBA based on task sequence mechanism (RDAATSM)
and the simulation verified that the algorithm can assign new tasks with limited
resources online. The task sequence mechanism can insert the new tasks into its task
list without affecting the allocated tasks. To perform tasks in the shortest time and
occupy fewer UAVs resources, RDAATSM forms coalitions for each task and there
is synchronous waiting time generated to ensure the task can be started at the same
time. However, this may lead to three troubles. The first is that only inserting the
new tasks into the idle period (synchronous waiting time) will reduce the flexibil-
ity and success rate to allocate new tasks since the preallocated start times are not

10029

1 3

A resource‑constrained distributed task allocation method…

allowed to change. The second is that if the assigned task encounters dynamic events
(such as the task execution time extends, the last task is delayed, the task disappears,
etc.), these dynamic events have a greater impact on the task execution of subsequent
tasks for all coalition UAVs than on the UAV executing the task independently. As
for the third weakness, it is known that the CBBA algorithm must meet the marginal
diminishing characteristics of the task reward during the bundle construction phase.
Therefore, RDAATSM is designed to assign the most resources to the tasks with the
greatest reward, which means that this algorithm first selects tasks to insert accord-
ing to the greatest reward then according to the provided resources. This will lead
to more tasks being performed by a coalition rather than a single UAV. In brief, we
provide a comparative analysis of five typical task allocation algorithms, which are PI
([43]), cross-entropy (CE) [17], Leader-Follower Coalition Methodology (LFCM) (
[7]), coalition formation method based on game theory (CFGT)([4]) and Resource
Dynamic Assignment Algorithm Based on Task Sequence Mechanism (RDAATSM)
([13]). Comparison are analyzed from: (i) resource constraints; (ii) dynamic assign-
ment; (iii) implementation way; (iv) simultaneous start; and (v) objective. The com-
parative analysis is summarized in Table 1.

Hence, this paper investigates a distributed algorithm to solve the task allocation
problem with constraints of resource and simultaneous start. In addition, this algo-
rithm should be flexible to address the new emerging tasks in a dynamic environ-
ment by slightly changing the original task allocation scheme.

3 � Problem description

Consider a scenario where Nu heterogeneous UAVs � = [v1,… , vNu
]T are allo-

cated to execute Nt heterogeneous tasks � = [t1,… , tNt
]T , with Nt > Nu . Heteroge-

neous tasks are distinguished by the number of different resources required by the
task. A task allocation solution � = [�1,… , �Nu

]T consists of the assignments for
all UAVs, where �i = [ti1,… , ti|�i|], i = 1,… ,Nu is the task list assigned to UAV vi
and is ordered by the actual start time of assigned tasks. The size of a task list �i is
decided by the number of tasks assigned to vi . In addition, each task has a latest start
time (deadline) � = [s1,… , sNt

]T . �(t) denotes a symmetric communication matrix,
where gi,j(t) = 1 indicates that UAV vi can directly communicate with UAV vj at time

Table 1   Comparative characteristics of previous works

1 PI [43] CE [17] LFCM [7] CFGT [4] RDAATSM [13]

Resource constraints –
√ √ √ √

Dynamic assignment – – –
√ √

Implementation way Distributed Centralized Centralized Hybrid Distributed
Simultaneous start – – – –

√

Objective Minimizing
waiting
time

Maximiz-
ing global
reward

Maximiz-
ing global
reward

Maximiz-
ing global
reward

Maximizing global
reward

10030	 M. Yang et al.

1 3

t and we denotes the UAVs as neighbors. A list of key symbols used is provided in
Table 2.

3.1 � Resource modeling

(1)	 The UAV is a physical entity with given resource capabilities that can be used to
process tasks. A resource is a measurable physical or virtual entity used in the
processing of tasks. Denote the resources vector RU

i
 on UAV vi as follows:

Table 2   Symbol Definitions

Symbol Definition

Nu Number of heterogeneous UAVs
Nt Number of tasks
�i Ordered task list of UAV vi
Ci Final coalition for task ti
𝜏⋆
ij

Time for UAV vi to reach task tj
�ij Actual start time for UAV vi performing task tj
�j Actual start time for task tj
sk Deadline (latest start time) for tk
� Symmetric communication matrix
RU
i
= [RU

i1
,… ,RU

iM
] Resources carried by UAV vi

RT
i
= [RT

i1
,… ,RT

iM
] Resources required to complete the task ti

SVk Static value of task tk
�ij The ratio of the number of resources vi can provide to the number of resources

required by tj
dE
k

Execution time of tk
dT
i,k,k+1

Travel time of vi form tk to tK+1
dW
i,k

Waiting time for vi to start tk
� The moment when a dynamic event occurs
�i ⊖ tk �i with tk removed
�i ⊕l tk The inclusion of tk at position l in �i
�
⊖k

i
Temporary task list with tk removed

w⊕

i,k
The inclusion performance impact (IPI) of tk in �i

w⊖

i,k
The removal performance impact (RPI) of tk in �i

w⊖⋄

i,u
The global winning RPI value to record the highest RPI value to remove tu in

coalition Cu

�⋄
i,u

The updated winning UAV ID to record the winning UAV of task tu
�⊖
i
= [w⊖

i,1
,… ,w⊖

i,Nt
] A global winning RPI list for all tasks recorded by UAV vi

�⊖⋄

i
= [w⊖⋄

i,1
,… ,w⊖⋄

i,Nt
] An updated global winning RPI list for all tasks

� i = [�i,1,… , �i,Nt
] A winning UAV ID list corresponding to the RPI list that records which task is

assigned to which UAV in vi ’s local view
�⋄

i
= [�⋄

i,1
,… , �⋄

i,Nt
] An updated global winning UAV ID list records which task is assigned to which

UAV

10031

1 3

A resource‑constrained distributed task allocation method…

 where RU
ip
, p = 1,… ,M denotes the amount of the pth type resource carried by

UAV vi and M is the number of supplied resource types. For example,
RU
i
= [2, 0, 1] means that UAV vi carries two Resource 1 and one Resource 3,

and does not carry Resource 2 or Resource 2 has been used up. It is noted that
the resources carried by UAVs will constantly be consumed as the tasks are
processed.

(2)	 The tasks are derived by decomposing a high-level task and are activities that
require relevant resources that will be provided via UAVs. Denotes RT

i
 as the

required resources for completing task ti as follows:

where RT
iq
, q = 1,… ,N denotes the number of the qth type of resources required by

task ti , and N represents the number of types required by the task. For simplicity,
M = N is adopted in this paper.

In order to complete the task ti , it is required that the assigned coalition (maybe
a single UAV) must provide all types and enough amounts of resources required by
the task. The relationship between the resources, tasks and UAVs is shown in Fig. 1.

3.2 � Utility function

In order to achieve a feasible solution, the overall optimization objective is defined
as follows:

(1)RU
i
= [RU

i1
,… ,RU

iM
]

(2)RT
i
= [RT

i1
,… ,RT

iN
]

Fig. 1   The relationship between the resources, tasks and UAVs

10032	 M. Yang et al.

1 3

subject to:

whereXi,j denotes whether UAV vi is assigned to task tj . The static reward SVj is
defined as the contribution of completely completing the task to the overall goal,
and we can also regard the static reward as the inherent importance of the task tj . A
linear time-discount strategies is used here to indicate the effect of start time on task
reward. �ij is defined as the contribution proportion, i.e., the ration of the number of
resources that UAV vi can provide to the number of resources required by the task tj .
The constraints described in Eq. (4) means as follows: the resources that UAVs pro-
vide must cover the task required resources, the actual start time of a task must not
be later than its deadline, the coalition for a task must start the task at a same time.

The actual start time �ij is computed as Eq. (5) based on the order of task execu-
tion in task list �i ,

 where dT
i,o,j

 denotes the travel time from the initial location to the first task in �i for vi
and dW

i,j
 denotes the waiting time of UAV vi to task tj . dEj represents the execution

time for performing tj . �j represents the actual start time for task tj and �∗
i,j

 denotes the
actual arrival time for vi to tj.

If task tj is assigned to a coalition Cj , in order to guarantee the performance of
task completion, the UAV needs to wait for all other members of the coalition to
arrive before they can start to execute the task. Hence, Eq. (5a) shows that the time
cost of vi starting tj is equal to the maximum arrival times for all UAVs in coalition
Cj and this maximum arrival time is also regarded as the real start time for the task
tj . Eq. (5b) means that the arrival time for UAV vi to reach task tj is computed as the
sum of the travel times and execution times of all previous tasks. It is noted that time
costs are cumulative so that the cost of servicing task tj includes the time cost of

(3)max{J =

Nu∑

i=1

NT∑

j=1

Xi,j

sj − �ij

sj
SVj�ij}

(4)

Nu∑

i=1

Xi,jR
U
ik
≥ RT

jk
,∀j ∈ T ,∀k ∈ N

Xi,j�ij ≤ sj,∀j ∈ T

�j = Xi,j�ij,∀j ∈ T

Xi,j ∈ {0, 1},∀(i, j) ∈ V × T

(5a)�ij = �j =
|Cj|
max
i=1

�∗
ij
, vi ∈ Cj

(5b)𝜏∗
ij
=

{
dT
i,o,j

, j = 1

𝜏i(j−1) + dE
j−1

+ dT
i,j−1,j

, 1 < j ≤ |�i|

(5c)�ij = �∗
ij
+ dW

i,j

10033

1 3

A resource‑constrained distributed task allocation method…

servicing all the tasks previous to it in the task list. Eq. (5c) demonstrates the rela-
tionship between the actual start time and arrival time for vi to tj . It is noted that, if
task tj is assigned to a single UAV vi , the UAV starts tj as soon as it arrives at tj , i.e.,
�j = �ij = �∗

ij
 . The schematic representation of time cost is expressed in Fig. 2, where

vk is the last UAV to reach tj.
The contribution proportion �ij is defined as the ration of the number of resources

that UAV vi can provide to the number of resources required by the task tj as follows:

For example, when task tj requires the resources RT
j
= [0, 3, 1] and UAV vi carries

the resources RU
i
= [1, 3, 2] , tj can be completed by vi individually, i.e., �ij = 1 . If

RU
i
= [0, 2, 0] , then vi can only contribute two resources of four resources required

by tj and �ij=0.5.

4 � Proposed method

In order to address the resource constraints on heterogeneous UAVs in a distributed
way, we propose a resource-constrained task allocation method based on the perfor-
mance impact algorithm (RCPIA) by modifying the criteria to include and remove
tasks in [43] and introducing a two-stage coalition formation method. The main pro-
gram of RCPIA is described as Algorithm 1.

(6)�ij =

∑M

k=1
min(RU

ik
,RT

ik
)

∑M

k=1
RT
ik

Fig. 2   The relationship between the execution time, travel time and waiting time

10034	 M. Yang et al.

1 3

In more detail, after initializing the mission environment, all UAVs first com-
municate with neighbors to achieve consensus regarding the winning UAVs and
winning RPIs for all tasks (line 4). Then, for each UAV, the conflict resolution
phase is first carried to remove the conflict tasks (line 6) and the task inclusion
phase is followed to further include more tasks into the task list until no more
tasks can be included (line 7). After all, UAVs have completed a cycle of these
two phases, if no more tasks can be swapped among all UAVs to maximize the
total score, the algorithm ends. Otherwise, a new communication is triggered
again. So far, a conflict-free and feasible solution has been obtained. Some tasks
are assigned to the UAVs that can complete them individually. In addition, the
leaders which can provide the most resources for the tasks that cannot be per-
formed by a single UAV are also obtained. Then, the two-stage coalition forma-
tion method is followed to form a coalition for the tasks that cannot be completed
by a single UAV (line 12).

Algorithm 1 RCPIA Main Program
1: Define World, UAVs, Tasks
2: Initialize Timer T ← 1
3: while converged is false do
4: Communication
5: for each UAV do
6: Conflict resolution phase
7: Task inclusion phase
8: end for
9: converged ← Check convergence
10: T ← T + 1
11: end while
12: Two-stage coalition formation method

4.1 � Main structure

4.1.1 � Task inclusion phase

During the task inclusion phase, every UAV tries to include tasks into its task list
until no more tasks can be included or no more resources are left based on the
knowledge of the resource requirements for all tasks. At the beginning of RCPIA,
the task list �i , local RPI list W⊖

i
 , global winning UAV list ��� i and global winning

contribution proportion list ℧⋄

i
 for all UAVs are initialized as empty and set as the

initial inputs of RCPIA. Once the conflict resolution has been carried, the inputs
change to the conflict-free outputs of the resolution phase. It is noted that, since
this phase is locally carried by each UAV, the output solution is maybe conflict-
ing. The pseudo-code of this phase is shown in Algorithm 2.

10035

1 3

A resource‑constrained distributed task allocation method…

Algorithm 2 Task Inclusion Phase for UAV vi

Input: Tasks T, UAVs U, tasks lists ai, local RPI list W�
i , winning UAV list βββi, local

contribution proportion list �i, global winning contribution proportion list ��
i and

current resources RU
i for all UAVs

Output: Task lists ai, global winning RPI list W��
i , winning UAV list βββi, global winning

contribution proportion list ��
i and remaining resources RU

i for all UAVs
1: while |ai| ≤ Nt do
2: for tk ∈ T do
3: if tk /∈ ai then
4: Compute ηik as Eq. (6) // Compute the contribution degree of vi to tk
5: Compute w⊕

i,k from Eq. (7) and (8) // Compute the IPI of vi including tk
6: end if
7: end for
8: �i = [ηi1, ..., ηiNt] // Form the global contribution proportion list
9: TA

i = {tg | argmaxNt
k=1 �i, ηig > 0, and w⊕

i,k > 0} // Form the candidate tasks set for
vi to add

10: if |TA
i | = 1 then

11: ai ← ai ⊕l tg // Insert the unique task tg with maximum contribution degree into
its task list

12: else if |TA
i | > 1 then

13: Compute the local RPI list W�
i for all tasks by Eq. (10)

14: tg ← argmaxT
A
i

k=1

{
w⊕

i,k − w�
i,k

}
by Eq. (11) // Select the task tg with maximum

difference between IPI and RPI from the candidate tasks se TA
i

15: ai ← ai ⊕l tg //Insert tg into its task list
16: end if
17: w�

i,g ← w⊕
i,g // Set the RPI of tg as the IPI of vi including tg

18: Update W�
i , W��

i , βββi, ��
i and RU

i
19: end while

•	 Step 1(lines 2–7) At the beginning, the contribution proportion �ij for each task is
also computed by Eq. (6).

	 Then, the inclusion performance impact (IPI) is defined to measure the newly
added task’s local performance impact generated by the UAV. It is defined as the
greatest difference in the score (with and without the added task) of the added
task and subsequent tasks for all possible insert positions. Every UAV computes
the IPIs for all tasks as shown in Eqs. (7) and (8) (line 5):

where �i ⊕l tk denotes adding the task tk into the task list �i of UAV vi at l position.
When the task has been included in �i or the UAV cannot provide enough resources
required by the task, the IPI is set to 0. A local IPI list W⊕

i
= [w

⊕

i,1
,… ,w

⊕

i,N
t

],

i = 1,… ,N
u
 is designed to store the IPIs of UAV vi including all tasks.

	 It is known that completing a new task which inserted in the UAV’s task list can
increase the local score of the UAV. However, the time costs of subsequent tasks

(7)w
△

i,k,l
= ui,k

(
�i⊕ltk

)
+

|�i|∑

r=l

(
ui,r+1

(
�i⊕ltk

)
− ui,r

(
�i

))

(8)w⊕

i,k
=
|�i|+1
max
l=1

{
w△

i,k,l

}

10036	 M. Yang et al.

1 3

in the task list may be delayed since subsequent tasks need to be shifted to create
enough time to execute the new task. From Eq. (2), the delay time costs of sub-
sequent tasks may lead to the decrease of the local scores of the UAV perform-
ing subsequent tasks. Hence, as shown in Eq. (7), the local performance impact
wΔ
i,k,l

 of inserting tk into position l of �i is defined as the local score of vi execut-
ing tk plus the sum of decrease in local scores of other tasks in �i that have been
assigned previously. Eq. (8) selects the maximum local performance impact for
all possible positions as the IPI w⊕

i,k
 of task tk in �i.

•	 Step 2 (lines 8–9) The contribution proportions for all tasks are stored in a local
contribution proportion list ℧i = [�i1,… , �iNt

] . In order to avoid unnecessary coor-
dination and communication, it is preferred to allocate the task to a single UAV
rather than a coalition. Hence, the tasks with the highest contribution proportion
and positive IPI are selected as the candidate tasks set to add, i.e., TA

i
 , as Eq. (9):

•	 Step 3 (lines 10–16) If |TA
i
| = 1 , the task tg with the highest contribution degree

is selected to be inserted into the task list �i (line 11) and goes to Step 4.

  However, if there are more than one tasks in TA
i
 , i.e., |TA

i
| > 1 , the task with

the highest improvement for the global objective is selected to add to the task list.
However, if the task has been previously assigned to a UAV, the performance impact
of adding it should not only consider the IPI but also consider the local impact of
removing the task from the previously assigned task list.

  The RPI is introduced to measure the performance impact of removing a task
and is defined as the greatest difference in the score (with and without the added
task) of the deleted task and subsequent tasks as Eq. (10):

where �i ⊖ tk denotes the removal of task tk from the task list �i of UAV vi , and b
symbolizes the position of task tk in the task list, i.e., ai,b = tk.

Although removing a task from the task list will cause the loss of the local score
of UAV performing the removed task, the start times of subsequent tasks will be
advanced due to removing the task. The local scores of subsequent tasks will be
increased from Eq. (3). Hence, as shown in Eq. (10), the RPI of removing task tk
from �i is computed as the loss of executing the removed task tk plus the increased
local scores of subsequent tasks in task list �i . It represents the contribution of a task
to the local score generated by a UAV.

The RPIs of all unassigned tasks are initialized as 0. Hence, the RPI must be greater
than 0 once be assigned. The RPIs of all tasks for UAV vi are stored in a local RPI list
W⊖

i
= [w⊖

i,1
,… ,w⊖

i,Nt
], i = 1,… ,Nu . To facilitate consensus, defines a local winning

UAV list ��� i = [�i,1,… , �i,Nu
]T to represent which UAV is assigned to which task for

UAV vi ’s the local view, and �i,k is set as the ID of the UAV assigned to task tk.

(9)TA
i
= {tk| arg

Nt

max
k=1

�ik}

(10)w⊖

i,k
= ui,b

(
�i

)
+

|�i|∑

r=b+1

(
ui,r

(
�i

)
− ui,r

(
�i ⊖ tk

))

10037

1 3

A resource‑constrained distributed task allocation method…

Based on the definitions of RPI and IPI, it can be inferred that the global score
can be improved by reallocating tk to UAV vi if the IPI of task tk in �i is higher than
tq ’s RPI in another UAV’s task list �j . Therefore, decide which task can be inserted
into the current the current task list �i of vi according to Eq. (11).

If g > 0 , the task tg = argmax
TA
i

k=1

{
w⊕

i,k
− w⊖

i,k

}
 with the greatest difference of IPI

and RPI in current candidate tasks set, i.e., the task can provide the greatest objec-
tive improvement, should be selected to insert into �i at the position li

tg
=argw⊕

i,k
 . If

g ≤ 0 , IPIs of all tasks are equal or lower to the current RPIs, which means that the
current assignment cannot be improved or the constraints cannot be met. In this case
the task inclusion phase ends.

Step 4 (lines 17–18) The final RPI is set equal to the IPI. In addition, the local RPI
list W⊕

i
 , the global winning RPI list W⊕

i
⋄ , winning UAV list � i , remaining resources

of UAV RU
i

 and global winning contribution proportion list ℧⋄

i
 are updated. Repeat

this inclusion process until no more tasks can be included.

4.1.2 � Communication

Because every UAV locally builds its own task list, two or more UAVs may have a
conflict with the winning UAV for each task. To this end, all UAVs must communi-
cate with other UAVs to achieve the consensus on the global winning UAVs, global
winning RPIs, and global winning contribution proportions for all tasks.

First, all UAVs communicate with each other where a communication link exists
between them based on a network topology to transmit some fundamental informa-
tion, i.e., the local RPI list W⊖

i
 , winning UAV list ��� i , the local contribution propor-

tion list ℧i and time stamps TSi that stores the iteration numbers of the last informa-
tion update from each of the other UAVs.

Then, after receiving the information from other UAVs, the receiver UAV uses
the consensus procedure to achieve global consensus in terms of the aforementioned
four lists. In detail, the receiver can determine three types of operation shown in
Eq. (12) (update, leave and reset) by evaluating four lists with a decision rule table
referred to the Appendix Table 11. For example, when vi receives information about
task tk from sender vj , three possible actions are displayed as follows:

Since the tasks are preferred to allocate to the UAV with a higher contribution pro-
portion, the contribution proportion is firstly compared and the UAV with the higher
contribution proportion is selected as the winner UAV. When multiple UAVs can
provide the same contribution proportion, the RPI value is utilized to further select

(11)g = max
TA
i

k=1

{
w⊕

i,k
− w⊖

i,k

}

(12)

Update ∶ 𝛽i,u = 𝛽j,u,w
⊖⋄

i,u
= w⊖⋄

j,u
, 𝜂⋄

i,u
= 𝜂⋄

j,u

Reset ∶ 𝛽i,u = 0,w⊖⋄

i,u
= 𝜙, 𝜂⋄

i,u
= 0

Leave ∶ 𝛽i,u = 𝛽i,u,w
⊖⋄

i,u
= w⊖⋄

i,u
, 𝜂⋄

i,u
= 𝜂⋄

i,u

10038	 M. Yang et al.

1 3

the winning UAV, which means that the UAV with a higher RPI becomes the winner
UAV.

After updating the winner UAV, the global winning contribution proportion and
RPI for the task are also updated. It is noted that the consensus of the global winning
RPI list and global winning contribution proportion list are additionally stored in
W⊖⋄

i
 and ℧⋄

i
 respectively, while ��� i held by vi is directly updated. The local winning

RPI list W⊖

i
 and local winning contribution proportion list ℧i remain unchanged in

each communication process.

4.1.3 � Conflict resolution phase

Algorithm 3 Conflict Resolution Phase for UAV vi

Input: Task lists ai, local RPI list W�
i , global winning RPI list W��

i , global winning UAV
list βββi, local contribution proportion list �i, global winning contribution proportion list
��

i and remaining resources RU
i for all UAVs

Output: Task lists ai, local RPI list W�
i , global winning RPI list W��

i , global winning
UAV list βββi, global winning contribution proportion list ��

i and remaining resources RU
i

for all UAVs, actual arrival times for all tasks τττ�

1: TR
i = {ai|βββi (ai) �= vi} // Find candidate removal tasks set

2: while TR
i �= φ do

3: Compute h for tasks in TR
i from Eq. (14) //Calculate the maximum difference of the

local contribution degree and global contribution degree
4: if h < 0 then
5: Break
6: end if
7: TR′

i = [tk| arg h, tk ∈ TR
i] // The tasks with same maximum difference of the local

contribution degree and global winning contribution degree form the candidate set TR
i

8: if |TR′
i | = 1 then

9: ai ← ai\tk, TR
i ← TR

i \tk //The unique task in TR′
i is selected to remove from

task list and candidate removal tasks set TR
i

10: else if |TR′
i | > 1 then

11: tk = argmax|T
R′
i |

k=1 {w��
i,k − w�

i,k}, tk ∈ TR′
i //The tk with maximum difference

between the global winning RPI and local RPI is selected
12: ai ← ai\tk, TR

i ← TR
i \tk //tk is selected to remove from task list and candidate

removal tasks set TR
i

13: end if
14: Update RU

i , W�
i , W��

i , ��
i , βββi and τij for all tasks in ai

15: end while
16: ai ← ai ∪ TR

i // The remaining tasks are put back into ai again

Since every UAV locally builds its own task list, two or more UAVs may include
the same task. Hence, a conflict resolution phase is demonstrated in Algorithm 3
to resolve the conflict. Take the outputs of task inclusion phase as the inputs and a
conflict-free solution is obtained as output in this phase.

10039

1 3

A resource‑constrained distributed task allocation method…

•	 Step 1 (line 1) After communication procedure, the consensus of the global win-
ning UAV list ��� i , global winning RPI list W⊖⋄

i
 and global winning contribution

proportion list ℧⋄

i
 have been achieved and are now ready to determine if any

tasks in the task list should be removed. The candidate tasks set TR
i
 to remove

from the task list �i is determined by Eq. (13):

 In detail, each UAV vi checks the winning UAVs of all assigned tasks, and the
tasks whose winning UAV is not vi itself, i.e., ��� i(�i) ≠ vi , are regarded as the
conflict tasks.

•	 Step 2 (lines 3–7) Since a higher contribution proportion implies a better assign-
ment, the UAV with a lower contribution proportion for the conflict task should
remove the task from its task list. The globally identical winning contribution
proportion list ℧⋄

i
= [�⋄

i1
,… , �⋄

iNt
] are iteratively compared with the local contri-

bution proportion list ℧i = [�i1,… , �iNt
] . For all tasks in TR

i
 , the criterion Eq.

(14) is computed:

 here h > 0 means that reallocating tk from vi to the corresponding UAV winner
�i,k can improve the contribution proportion of task tk , i.e., the winner �i,k can
provider more required resources by tk than UAV vi . Hence, if h < 0 there are no
tasks can be released to provide more resources to the tasks in TR

i
 and the conflict

resolution phase ends.
•	 Step 3 (lines 8–13) If there is only one task with h, then the task is selected to

be removed from the task list �i and TR
i
 (line 9), and goes to Step 4. Otherwise,

when there are two or more tasks with same h, a temporary conflict tasks set TR′

i

is defined to stores the tasks with same h, and goes to Step 3 to further select task
to delete.

 In order to select a specific task with the greatest objective improvement when
the contribution proportions are same for multiple tasks, the global winning RPI
list W⊖⋄

i
= [w⊖⋄

i,1
,… ,w⊖⋄

i,Nt
] are iteratively compared with the local RPI list

W⊖

i
= [w⊖

i,1
,… ,w⊖

i,Nt
] . Since a higher RPI means executing the task can achieve

higher scores for overall multi-UAV systems, the UAV with the lower RPI for the
conflict task should remove it. Similarly, Eq. (16) is computed for all tasks in TR′

i
 .

(13)TR
i
= {�i|��� i(�i) ≠ vi}

(14)h =
|TR

i
|

max
k=1

{�⋄
ik
− �ik}

(15)TR�

i
= [tk| arg h, tk ∈ TR

i
]

(16)z =
|TR�

i
|

max
k=1

{w⊖⋄

i,k
− w⊖

i,k
}

10040	 M. Yang et al.

1 3

 The task with z is selected to remove from the task list �i and TR
i
.

•	 Step 4 (lines 14–16) After removing the selected task, the resources of UAV and
time costs for all followed tasks in the task list are updated, and local RPI list
W⊖

i
 , global winning RPI list W⊖⋄

i
 local contribution proportion list ℧i , global

winning contribution proportion list ℧⋄

i
 and global winning UAV list � i are also

updated. Repeating the Step 2 - Step 3 until Eq. (16) is not satisfied or TR
i
 is

empty. The remaining tasks in TR
i
 (if they do exist) are put back into the task list

�i again. In brief, after repeating the task inclusion phase and conflict resolu-
tion phase, the winning UAVs for all tasks have been found. For the task whose
winning contribution proportion is equal to 1, its winner UAV can accomplish it
individually. It is noted that, the winner for the tasks that cannot be completed by
a single UAV denotes the UAV that can provide the most resources for the task
or the UAV with maximum global score improvement (z) as Eq. (16) based on
maximum contribution proportion.

4.2 � Two‑stage coalition formation method

For the tasks that cannot be accomplished by a single UAV, i.e.,
TC = {tk|0 < ℧⋄

i,k
< 1} , the UAV which can provide the most resources has been

found as the winning UAV by repeating the task inclusion phase and conflict resolu-
tion phase. However, it is still necessary to try to form a coalition to provide enough
resources for executing the tasks in TC.

To this end, a two-stage coalition formation method is designed to form a fea-
sible coalition for the tasks that cannot be completed by a single UAV. In the first
stage, the UAVs that can provide the required resources and do not violate the dead-
line constraints become preliminary coalition members. The coalition size is further
reduced in the second stage to obtain the final coalition. The conflict-free solution
of iterating the previous two phases is set as the inputs of this two-stage coalition
formation method, while the final assignment for all UAVs, coalition and actual start
times for all tasks are obtained as the outputs. The details are described as Algo-
rithm 4 and Fig. 3.

4.2.1 � Stage 1: select preliminary coalition members

The final winning UAV for the task that cannot be completed by a single UAV is
regarded as the leader of the coalition for the task, and the leader further selects
members for this coalition.

(1)	 Idle time slot mechanism (ITSM)

For the tasks which need to be completed by a coalition, the changed time costs for
these tasks may have a great impact on the time costs of the following tasks. Hence,
it is only allowed to affect the tasks which can be accomplished by a single UAV but
do not disturb the tasks which must be completed by a coalition in this paper. To this

10041

1 3

A resource‑constrained distributed task allocation method…

Algorithm 4 Two-stage Coalition Formation Method

Input: Tasks lists ai, local RPI list W�
i , global winning UAV list βββi, global winning con-

tribution proportion list ��
i and remaining resources RU

i for all UAVs
Output: Tasks lists ai, remaining resources RU

i for all UAVs, actual start times τττ and final
coalition Ck for all tasks

1: for tk with 0 < ��
i,k < 1 do

2: // Stage 1 : lines 3 - 13
3: Compute ∆L,k by Eq. (17) for leader UAV vL = βik // Compute feasible time slot

for leader by ITSM
4: vL transmits ∆L,k, Pk and RT�

k to neighbors vj , where gi,j(t) = 1 // Transmit
information to neighbors

5: for each vj , where gi,j(t) = 1 do
6: if ζjk > 0 and a⊕ltk

j is feasible // vi can provide resources for tk and there is a
position in vi’s task list to insert tk then

7: Compute ∆j,k by Eq. (17) // Compute feasible time slot for vi to insert tk
8: if ∆j,k ∩∆L,k �= ∅ // If vj ’s feasible time slot overlaps with the leader’s then
9: CP

k = CP
k ∪ vj // Include vj into the preliminary coalition CP

k

10: vj sends ∆j,k and RU
j to vL // vj transmits the feasible time slot to leader

11: end if
12: end if
13: end for
14: // Stage 2 : lines15 - 37
15: vL sorts Cp

k // Sorts the UAVs in the preliminary coalition
16: Ck ← vL // Include the leader vL into the final coalition Ck

17: ∆k = ∆L,k // Set the current feasible time slot for final coalition as the leader’s
feasible time slot

18: for vp ∈ Cp
k , p : 1 → |Cp

k | // For each UAV in the preliminary coalition do
19: if ∆p,k ∩∆k �= ∅ // If vp’s feasible time slot overlaps with the current coalition’s

then
20: ∆k = ∆p,k ∩ ∆k // Update the intersection as the feasible time slot of final

coalition
21: Ck = Ck ∪ vp // Include vp into the final coalition
22: if ζpk = 1 // If vp can provide all remaining resources that tk required then
23: break // End the Stage 2 and the final coalition is obtained
24: else
25: Update RT�

k // Update the remaining resources that tk still required
26: p = p+1 // Continue to include the next preliminary coalition member into

the final coalition until the resources that tk required can be met
27: end if
28: end if
29: end for
30: if

∑|Ck|
i=1 RU

i < RT
k // If all final coalition members cannot provided enough resources

for tk then
31: Set free all UAVs in Ck // Release all UAVs in current coalition
32: else
33: for vp ∈ Ck, p : 1 → |Ck| // For each UAV in the final coalition do
34: ap = ap ∪ tk, τk = ∆k(1) = ESk // Add tk and set start times as the earliest

start time of the current feasible time slot
35: Update ap and τ // Update the task list and start times for other tasks
36: end for
37: end if
38: end for

10042	 M. Yang et al.

1 3

end, we propose an idle time slot mechanism (ITSM) to compute the feasible time
slot Δi,n = [ESin, LSin] for vi to start task tn as Eq. (17),where tn needs to be accom-
plished by a coalition and inserted into the k + 1 position of �i (line 3). ESin and LSin
denote the earliest start time and latest start time for vi to start tn , respectively.

The earliest start time ESin is computed as the arrival time for the UAV to arrive
task, which means that the UAV starts the task as soon as the UAV arrives. For the
latest start time LSin , we consider two cases according to the insertion position of
task tn and whether there is a subsequent coalition task. When all subsequent tasks
can be completed by a single UAV, LSin calculates as the ESin plus the redundancy
time which is the difference between the deadline for starting the last task and the
actual start time of the last task. If there is a subsequent task that needs to be com-
pleted by a coalition, the computation of feasible time slot is shown as Fig. 4. The
start times of tasks which can be performed by a single UAV and between tk and tc
are delayed. tc is the first coalition task after insertion position k + 1 . In addition, the
waiting time dW

i,c
 of tc are also be utilized to create a long feasible time slot. There-

fore, tn can be inserted into k + 1 position of �i without affecting the start times of
coalition tasks. It is noted that, the tasks between tk and tc all can be performed by a
single UAV. LSin should not be later than tn ’s deadline sn.

Fig. 3   Flow chart of the proposed two-stage coalition formation method

10043

1 3

A resource‑constrained distributed task allocation method…

In conclusion, the feasible time slot Δi,n = [ESin, LSin] for vi start tn is computed
as Eq. (17):

where s|�i| and �i|�i| represent the deadline and actual start time for the last task in
task list �i respectively. If the new task is inserted into the last position of the task
list, the latest start time is equal to the earliest start time, i.e., ESin = LSin = �in.

(2)	 Procedure of stage 1

The leader UAV vL first computes the feasible start time slot for task tn by Eq. (17),
where vL cannot perform tn individually. It is noted that the execution order of tn in
the task list �L has been obtained by repeating the task inclusion phase and conflict
resolution phase. Then, the leader vL communicates the information, including the
location Pn , the remaining resources required RT△

n
= RT

n
− RU

L
 and the feasible start

time slots ΔL,n for task tn , with neighboring UAVs where a communication link exists
(line 4). The receiver vj evaluates whether it can provide a part or all resources required
based on the current task list. Here, we define a resource contribution degree �jn as Eqs.
(18) and (19) to represent the proportion of the resources that UAV vj can provide the
resources currently required to process tn .

(17)

ESin = 𝜏k + dE
i,k
+ dT

i,k,n
= 𝜏in

LSin =

{
minESin + dW

i,c
+ dT

i,k,k+1
− dT

i,k,n
− dE

i,n
− dT

i,n,k+1
, sn}, 0 < ℧⋄

i,c
< 1

minESin + (s|�i| − 𝜏L|�i|), sn}, tc = �

(18)�jn =

∑M

m=1
Dm

j

∑M

m=1
RT△
nm

Fig. 4   Illustration of computing the feasible time slot by ITSM

10044	 M. Yang et al.

1 3

where RT△
nm

 denotes the number of type m resources that tn still required based on
existing coalition members rather than the original required resources RT

nm
 of tn

before the allocation process. It is noted that, RT
j
 always updates as Eq. (20) in the

process of task allocation rather than remaining same, to reflect the current resources
status of tj.

 If 𝜁jn > 0 , then try to temporarily insert tn into all positions of �j by task inclusion
phase. If there is a position available to insert tn , then compute the feasible start time
slot Δj,n = [ESjn, LSjn] by Eq. (17) (line 7). If the Δj,n and ΔL,n overlap, i.e., �′

j,L,n

= Δj,n

⋂
ΔL,n ≠ 0 , then receiver vj becomes one of the members of the preliminary

coalition CP
n
 , and sends the information of feasible start time slot Δj,n and the

resources it still carried RU
j

 to the leader vL (lines 9-10). It means that when the
receiver has a position that can insert tn and the feasible start time slot of this posi-
tion overlaps the feasible start time slot of the leader, it becomes a preliminary coali-
tion member. Otherwise, when all positions cannot provide an overlapped feasible
start time with the leader, the UAV is not selected. It is noted that the leader has the
ability to calculate the overlapped feasible start time slot Δ�

j,L,n
 and contribution

degree �jn based on the received information.

4.2.2 � Stage 2: reduce coalition size

The leader vL receives the information from preliminary coalition members in Cp

k
 and

needs to further reduce the coalition size to obtain the final coalition members. We
detail the next three different criteria for the leader to rank UAVs in a preliminary coali-
tion (line 15). Each approach prioritizes the UAVs by a different characteristic and aims
towards optimizing according to a different metric.

•	 Max �jk : Order preliminary coalition members according to the contribution degree
�jk . The UAVs that can provide more resources come first. This strategy can reduce
the coalition size and fewer UAVs would add to the coalition. In addition, fewer
coalition members will result in fewer UAVs may be affected by the task’s delay.

(19)Dm
j
=

{
RU
jm
, RU

jm
≤ RT△

nm

RT△
nm

, others

(20)RT△
nm

= RT
nm

−

|Cn|∑

i=1

Dm
j

10045

1 3

A resource‑constrained distributed task allocation method…

•	 Max �′

j,L,k
 : UAVs are ordered by overlapped feasible start time slot Δ�

j,L,k
 . Since the

feasible start time slot of the UAV must overlap with the leader’s, a longer over-
lapped feasible start time slot means the coalition can start the task within a more
flexible time slot.

•	 Min ESjk : Prioritizes UAVs according to their earliest start time ( ESjk ). Since the
delay in the start time of the task that requires a coalition to complete will result in
the subsequent tasks of all coalition members being delayed. Hence, the later the
task start, the lower reward received for the overall multi-UAV system which can be
inferred from Eq. (3). To this end, the UAV with the earliest start time has the high-
est priority, which can receive a higher total reward.

First, after the leader vL joins Ck , the final feasible start time slot for tk is equal to the
feasible start time slot of leader UAV, i.e., Δk = ΔL,k (lines 16-17). Then, iteratively
add the UAVs in rearranged preliminary coalition Cp

k
 in order (lines 18-19). If vp still

has common feasible start time slot with the exist coalition feasible start time slot, i.e.,
Δk

⋂
Δp,k ≠ � , the feasible start time for final coalition is updated as the intersection

of the two, i.e., Δk = Δk

⋂
Δp,k , and vp is included into the final coalition Ck . When vp

cannot provide the resources that tk still required or Δk

⋂
Δp,k = � , the adding process

skips vp and continues to include other UAVs to final coalition. The stage 2 ends when
there is a UAV vp which can provide all remaining required resources of tk , i.e., �pk = 1
or the all UAVs in preliminary coalition cannot provide adequate resources for tk . The
final coalition for completing task tk is denoted as Ck and the feasible start time for task
tk is defined as the intersection of feasible start time slots for all coalition members as
Eq. (21):

The task is regarded as failed when there are not enough resources provided by all
UAVs in the preliminary coalition, and all UAVs in Ck is set free (lines 30–31).
When the final coalition can provide all required resources, all final coalition mem-
bers include the task tk and set the start time of tk as the earliest start time in the final
feasible time slot. After that, all final coalition members update the start times of all
subsequent tasks (lines 33–36).

(21)Δk =

|Ck|⋂

i=1

Δi,k ≠ �,∀vi ∈ Ck

10046	 M. Yang et al.

1 3

4.3 � Reassignment application in dynamic environment

Algorithm 5 Reassignment Application of the Two-stage Coalition Forma-
tion Method
1: vd detects the new task tn within its detection radius
2: vd computes the resource contribution degree ζdn as Eq. (18)
3: vd computes ∆d,n by Eq. (17) for all positions in ad

4: ∆d,n = max|ad|+1
l=1 |∆d,n|

5: if ∆d,n �= ∅ and ζdn = 1 then
6: Allocate tn to vd
7: else
8: vd transmits the information of tn to neighbors UN

9: for each vj ∈ UN do
10: Compute the resource contribution degree ζjn as Eq. (18)
11: if ζjn > 0 then
12: Compute ∆j,n by Eq. (17) for all positions in aj

13: ∆j,n = max
|aj |
l=1 |∆j,n|

14: if ∆j,n = ∅ then
15: ζjn = 0
16: end if
17: end if
18: end for
19: vL ← argmax|UN |

j=1 ζjn//Carry communication to elect the UAV with maximum re-
source contribution degree as the leader

20: if ζLn = 1 then
21: Allocate tn to vL
22: Break
23: else
24: Carry the two-stage coalition formation method
25: end if
26: end if

 When all UAVs execute tasks as the preallocation results which are computed
based on known information of UAVs and tasks, there may be unexpected new tasks
introduced to the problem, which may lead to low efficiency or failure of the original
plan. With the purpose of reallocating the new tasks within a short time and avoid-
ing unnecessary computation resources, it is preferred to allocate the new task to the
UAV which can perform it individually rather than a coalition. To this end, this sec-
tion describes the ability of the two-stage coalition formation method to address the
dynamic task reallocation problem.

When a UAV vd detects a new task tn in the process of executing the tasks in its
task list, it first determines whether it can provide all required resources for perform-
ing tn . Furthermore, determine whether exists a position to insert tk without affecting
the time costs of the assigned tasks which need to be completed by a coalition (line
5). If vd can, then it includes tk into its task list and the reassignment ends (line 6).
However, if vd cannot perform tk individually, it transmits the information of tn to all
its neighbors UN , and each neighboring UAV vj computes the resource contribution
degree �jn by Eq. (18) (line 10). If vj can provide resources tn required, i.e., 𝜁jn > 0 ,
the feasible start time slots for all positions are computed by Eq. (17) and the wid-
est one is selected as the final feasible start time slot Δj,n (lines 12–13). If there is no

10047

1 3

A resource‑constrained distributed task allocation method…

position to insert tn , we set the resource contribution degree as 0 (lines 14–15). After
all, neighbors have computed the resource contribution degrees and feasible start
time slots, a simple communication is triggered to elect the UAV which can provide
the most resources for rn as the leader (line 19). When the leader can provide all
resources tn required individually, tn is allocated to it (lines 20–22). Otherwise, carry
the two-stage coalition formation method to further form a coalition for the new task
tn (line 24).

Remark 1  If the UAV can provide required resources for multiple tasks as the leader
or receiver, there may exist resource conflicts or deadlock. In this paper, we consider
two types of resource deadlock, a UAV can provide resources for multiple tasks and
a leader can provide resources for multiple tasks, and both of these deadlocks can
be solved by comparing the static value SVj of the task. In detail, since a higher
static value means that the task is more important and with higher priority, the UAV
evaluates the available resources in the order in which the static value decreases. It
means that only when the coalition formation process of the task with the higher
static value is completed, the coalition formation stage of the task with the lower
static value can be carried out.

4.4 � Computational complexity

To asses the computational complexity of running RCPIA on one UAV, the method
used in [43] is followed. According to the structure of RCPIA, the analysis of com-
putational complexity is divided into three parts: (1) task inclusion phase and con-
flict resolution phase part, (2) two-stage coalition formation part, and (3) reassign-
ment part.

(1)	 For the first part, the major computational complexity arises from the calcula-
tion of RPI and IPI values and the updated scores for the remaining tasks in
the task list. In task inclusion phase, a maximum computational complexity of
(|�i| + 1)(|�i| + 2)M1�∕2 + |�i|� is requested to compute the IPI and update
the scores for remaining tasks when inserting a new task into �i . |�i| denotes the
cardinality of the task list �i . M1 denotes the number of tasks that are not yet in
�i and meet the constraints in Eq. (4). � implies the complexity of computing
the local score of a task. For the conflict resolution phase, as most operations
are simple rule-based logical judgments, few computations are required for con-
sensus. It is assumed that a total of M2 tasks are intended to be removed from �i .
This will requires |�i|M2� −M2(M2 + 1)�∕2 + (|�i| − 1)� computational com-
plexity maximumly. It can be inferred that the major computational complexity
is dominated by the task inclusion phase and defined as O((mi − |�i|)|�i|2M1�Nu)
at each iteration to compute IPI and RPI. mi − |�i| is the maximum number
of tasks that can be added into a UAV’s task list during each iteration of the
algorithm. It is noted that, the difference between baseline PI and RCPIA lies
on the computation and comparison of contribution proportion. In addition,
the changes in the contribution ratio of one task will not affect the contribution

10048	 M. Yang et al.

1 3

ratio of other tasks in the task list as shown in Eq. (6). Define � as the com-
putation time of contribution degree for a position in the task list. Hence, the
maximum computational complexity of contribution degree in this two phases
is O(M1Nu(mi − |�i|)�) . To sum up, the computational complexity of these two
phases are O((m1 − |�i|)(� + |�i|2�)NuM1).

(2)	 For the second part, it is assumed that up to Nu UAVs participate in the coali-
tion construction for performing the task tj which needs N-type of resources.
Define � as the computation time of idle time slot of a position in the task list.
In the first stage, by calculating the idle time slot for all UAVs by ITSM, the
preliminary coalition members are selected and the computational complexity
is O((|�i + 1|)NuN�) . In the second stage, the preliminary members are first
sorted by one of the three criteria (discussed in Section 4.2.2) which result in
O(NulgNu) computational complexity maximally. After that, every UAV must
be iteratively checked until the resource constraints of tasks are met. Hence, the
maximum computational complexity of the second stage is O(NuN + NulgNu) . In
conclusion, the computational complexity of the two-stage coalition formation
method is O(Nu(lgNu + N + (|�i| + 1)�N)).

(3)	 For the third part, the detection UAV first computes the contribution degree
and idle time slots for all positions in �i which requires O(� + (|�i| + 1)�) .
Then, every UAV needs to compute the feasible time slot for all positions in
its task list and contribution degree, which needs O(Nu(� + (|�i| + 1)�)) com-
putational complexity maximally. In summary, the reassignment part requires
O((Nu + 1)((|�i| + 1)� + �).

It can be concluded that the main computational complexity is still dominated
by the calculation of IPI and RPI. The computational complexity of the two-
stage coalition formation method and its reassignment application are all related
to the number of available positions |�i| + 1 and the number of UAVs Nu , which
means that these two parts are all polynomial-time algorithms that scale well
with the number of the UAVs and tasks in its task list. Hence, there is not too
much computing time consumed in these two parts.

5 � Numerical results

This section presents the simulation results of RCPIA to demonstrate its effec-
tiveness and performance. The test scenario is first introduced and used to illus-
trate the solving process of RCPIA, including the reassignment application for
dealing with the new emerging task. In addition, RDAATSM is conducted to
compare with RCPIA to demonstrate its efficiency.

5.1 � Test scenario

To test the performance of RCPIA, the combat scenarios mentioned in [15] and [16]
are taken as references to design a combat scenario shown in Fig. 5. There are six

10049

1 3

A resource‑constrained distributed task allocation method…

heterogeneous UAVs, 16 tasks and six types of resources in this considered sce-
nario. The resources capabilities of UAVs and the resource requirements for attack
tasks are displayed in Tables 3 and 4 respectively, where the unit of time is an hour
and the positions of all UAVs are initialized as (20,30,4). The commander can set
the deadlines for attack tasks according to the battlefield situation to avoid further
deterioration of the situation. Also, the deadlines can be used for the commander to
control the different stages of the combat. In addition to EMI, other resources will
be continuously consumed when performing tasks.

It is assumed that all UAVs perform tasks at an altitude of 4 km. Note that the
scenario settings described in this paper are not necessary for the algorithm to
work. All methods are conducted on MATLAB R2016a with AMD Ryzen 7 PRO
CPU @ 1.70 GHz.

UAVs

UAVs
Airport

Search radar

Tracking
radar

Bridge

Bridge

Missile
launcher Warehouse

Tank team

Signal station

Fig. 5   Simulation example of combat situation

Table 3   Resources capabilities of UAVs

UAVs ATAM/R1 AGM/R2 Aerial
Boom/R3

BGL/R4 Aircraft Gun/R5 EMI/R6 Velocity

v1 2 3 3 2 200 0 250
v2 2 6 0 2 550 0 280
v3 1 3 6 2 500 1 230
v4 7 0 3 3 200 1 280
v5 2 0 6 4 450 1 400
v6 0 6 3 3 300 0 320

10050	 M. Yang et al.

1 3

Ta
bl

e 
4  

R
es

ou
rc

e
re

qu
ire

m
en

ts
 fo

r a
tta

ck
 ta

sk
s

Ta
sk

s
A

TA
M

/ R
1

A
G

M
/ R

2
A

er
ia

l
B

oo
m

/ R
3

B
G

L/
R
4

A
irc

ra
ft

G
un

/ R
5

EM
I/ R

6
Pr

oc
es

si
ng

 ti
m

e
Po

si
tio

n
D

ea
dl

in
e

St
at

ic
 V

al
ue

t 1
/T

an
k

Te
am

1
0

2
0

0
0

0
0.

5
(7

0,
50

,0
)

4
60

t 2
/T

an
k

Te
am

2
0

0
3

1
0

1
0.

8
(7

0,
80

,0
)

3.
5

70
t 3

/T
an

k
Te

am
3

0
1

0
0

10
0

1
0.

3
(8

0,
10

0,
0)

3.
8

65
t 4

/B
rid

ge
1

0
2

0
0

30
0

0
1.

2
(6

0,
40

,0
)

5
40

t 5
/B

rid
ge

2
0

3
0

2
0

0
1

(6
5,

25
,0

)
4.

2
80

t 6
/B

rid
ge

3
0

1
3

1
0

0
1.

5
(9

0,
70

,0
)

5
75

t 7
/R

ad
ar

1
0

0
3

1
0

1
0.

3
(7

5,
30

,0
)

5.
5

55
t 8

/R
ad

ar
2

0
0

0
1

0
1

0.
4

(8
0,

75
,0

)
4.

4
65

t 9
/R

ad
ar

3
0

0
0

1
0

1
0.

4
(6

5,
15

,0
)

4.
5

65
t 1
0
/W

ar
eh

ou
se

0
0

3
0

0
1

1
(9

5,
15

,0
)

5
70

t 1
1/A

irp
or

t
0

2
0

2
10

0
1

2
(9

0,
90

,0
)

4
85

t 1
2
/In

fo
rm

at
io

n
St

at
io

n
0

1
0

1
0

1
0.

5
(7

0,
40

,0
)

3.
4

80
t 1
3
/U

AV
1

1
0

0
0

20
0

1
1

(7
0,

50
,4

)
4.

8
60

t 1
4
/U

AV
2

1
0

0
0

10
0

1
0.

8
(7

0,
50

,4
)

4.
8

60
t 1
5
/U

AV
3

0
0

0
0

20
0

1
0.

3
(7

0,
50

,4
)

4.
8

65
t 1
6
/M

is
si

le
 la

un
ch

er
0

2
3

1
0

0
0.

2
(6

5,
50

,0
)

4.
5

90

10051

1 3

A resource‑constrained distributed task allocation method…

5.2 � The feasibility of RCPIA

5.2.1 � Task assignment for known tasks

The allocation results of known tasks derived from RCPIA are shown in Table 5.
The task sequence for each UAV and the actual start times are displayed where
the coalition tasks are in bold. Remaining resources for all UAVs are also dis-
played. It can be seen that all tasks are allocated by RCPIA. Furthermore, it is
noted that 2 tasks ( t7 and t11 ) need to be cooperatively performed by a coalition
at the same time displayed in Table 6. The leader for each coalition tasks are in
bold. To clarity, the schedules for all UAVs are also demonstrated in Fig. 6 and
the coalition task is all in red where tasks that can be performed by a single UAV
are in gray.

Since RCPIA prefers to allocate the tasks to the UAV which can individually
complete them, only two tasks ( t7 and t11 ) whose leaders ( v3 and v2 ) cannot provide
enough resources after iterating task inclusion phase and conflict resolution phase.
Hence, the leaders form coalition for tasks by the two-stage coalition formation
method. It can be seen from Table 6 that v3 as the leader of t7 first selects v1 and v5 as
the preliminary members and the two UAVs provide same number of resources for
t7 . Since the longer feasible time slot of v5 is overlapped with v3’s, the v5 is selected
as the final coalition members to cooperatively perform t7 and it needs to wait
0.2066h until v3 arrives. The two UAVs start t7 at 0.7703h. Similarly, as the leader
of t11 , v2 first chooses v4 and v5 as the preliminary coalition members by the phase
1. The two preliminary members both provide 0.0095 contribution degree for t11 .
Finally, the leader v2 chooses v4 as the final coalition members to start t11 at 1.4613h.

Therefore, this section demonstrates the fact that most of the tasks are allo-
cated to a single UAV by RCPIA rather than a coalition. In addition, RCPIA can
further make full use of resources to cooperatively form coalitions for the tasks
that cannot be completed by a single UAV.

Table 5   Assignment results for known tasks

UAVs �0(�0) Remaining Resources

�i,1(�i1) �i,2(�i2) �i,3(�i3) �i,4(�i4) �i,5(�i5)

v1 14(0.2154) 6(1.1285) [1,2,0,1,100,0]
v2 3(0.3293) 1(0.8087) 11(1.4613) [2,1,0,0,350,0]
v3 12(0.2217) 7(0.7703) 2(1.2888) 13(2.2192) 4(3.2807) [0,0,0,0,0,1]
v4 15(0.1923) 11(1.4613) [5,0,3,0,0,1]
v5 9(0.1186) 7(0.7703) 8(1.1835) 10(1.7381) [2,0,0,0,250,1]
v6 16(0.1539) 5(0.5320) [0,1,0,0,300,0]

10052	 M. Yang et al.

1 3

5.2.2 � Reassignment for the new emerging task

In a dynamic environment, some new tasks may be introduced into the problem,
which leads to low efficiency or failure of the original solution. Hence, to illustrate
the feasibility of RCPIA to cope with the new emerging task, set the new emerging
task as the new task t17 appears at [50,50,0] at 0.3h. The information of new task is
displayed in Table 7 and the reassignment of t17 is shown in Table 8. The coalition
tasks are still in bold while the tasks whose start times are affected are in italics.

Fig. 6   Schedule of all UAVs for allocating known tasks

Table 6   Coalition formation process of some known tasks

Coalition tasks Stage UAV Feasible start
time slot

Provide
resources

Contri-
bution
degree

Waiting time

t7 Stage 1 : Pre-
liminary

v1 [0.2200,4.09] [0,0,0,1,0,0] 0.2 /
v
3

[0.7703,2.4896] [0,0,3,0,0,1] 0.8 /
v5 [0.5637,4.3358] [0,0,0,1,0,0] 0.2 /

Stage 2 : Final v
3

[0.7703.2.4896] [0,0,3,0,0,1] 0.8 0.2066
v5 [0.7703.2.4896] [0,0,0,1,0,0] 0.2 0

t11 Stage 1 : Pre-
liminary

v
2

[1.4613,4.1731] [0,2,0,2,100,0] 0.9905 /
v4 [0.9520,4.1023] [0,0,0,0,0,1] 0.0095 /
v5 [2.9260,4.2013] [0,0,0,0,0,1] 0.0095 /

Stage 2 : Final v
2

[1.4613,4.1023] [0,2,0,2,100,0] 0.9905 0.5093
v4 [1.4613,4.1023] [0,0,0,0,0,1] 0.0095 0

10053

1 3

A resource‑constrained distributed task allocation method…

Ta
bl

e 
7  

T
he

 re
so

ur
ce

 re
qu

ire
m

en
ts

 fo
r a

tta
ck

in
g

th
e

ne
w

 e
m

er
gi

ng
 ta

sk
 t 1

7

Ta
sk

s
A

TA
M

/ R
1

A
G

M
/ R

2
A

er
ia

l B
oo

m
/ R

3
B

G
L/
R
4

A
irc

ra
ft

G
un

/ R
5

EM
I/ R

6
Pr

oc
es

si
ng

 ti
m

e
Po

si
tio

n
D

ea
dl

in
e

St
at

ic
 V

al
ue

t 1
7
/U

AV
 4

2
0

0
0

20
0

1
0.

2
(5

0,
50

,0
)

3.
2

10
0

10054	 M. Yang et al.

1 3

It can be seen that the start times of t15 and t5 are delayed compared to the original
schedules of v4 and v6 . To clarity, the schedules for all UAVs after reallocation are
shown in Fig. 7, and the allocation of the new task t17 is in green and the coalition
process for t17 is also presented in Table 9.

The reallocation process of t17 (Table 9) is described as follows in detail. Since
the detection UAV v2 cannot provide enough resources for the new task t17 , it trans-
mits the information of t17 to its neighbors through the communication network.
After each neighbor computes the contribution degree and feasible time slot, v6 is
selected as the new leader of t17 . However, v6 only can contributes [0,0,0,0,200,0]
resources for t17 and there are still [2,0,0,0,0,1] resources required. Hence, it selects
preliminary coalition members by the first stage of the two-stage coalition forma-
tion method. v1 and v4 can contribute 0.0049 and 0.0147 contribution degree for t17 .

Table 8   Reassignment results of all UAVs after a new task appearing

UAVs �0(�0) Remaining Resources

�i,1(�i1) �i,2(�i2) �i,3(�i3) �i,4(�i4) �i,5(�i5)

v1 14(0.2154) 6(1.1285) [1,2,0,1,100,0]
v2 3(0.3293) 1(0.8087) 11(1.4613) [2,1,0,0,350,0]
v3 12(0.2217) 7(0.7703) 2(1.2888) 13(2.2192) 4(3.2807) [0,0,0,0,0,1]
v4 17(0.5008) 15(0.7722) 11(1.4613) [3,0,3,0,0,1]
v5 9(0.1186) 7(0.7703) 8(1.1835) 10(1.7381) [2,0,0,0,250,1]
v6 16(0.1539) 17(0.5008) 5(0.7919) [0,1,0,0,100,0]

Fig. 7   Scheduler of all UAVs after reallocating the new task

10055

1 3

A resource‑constrained distributed task allocation method…

Finally, the leader v6 chooses v4 as the other final coalition member to cooperatively
start t17 at 0.5008h. It is worth mentioning that, to insert the new task into v4 ’s task
list, RCPIA creates a longer feasible idle time slot and not affects the coalition task
t11 by delaying the start time of t15 . Since t15 is only performed by v4 , this delay
will not affect the schedules of other UAVs’. In addition, since v6 can individually
complete tasks t16 and t5 , the start times of these two tasks can all be delayed to
create a much long idle time slot. Hence, the feasible time slot for v6 to start t17 is
[0.5008,3.2], where 3.2h is the deadline for starting t17.

This section shows that RCPIA is able to create a longer feasible idle time slot for
the new task by shifting the start times of the tasks that can be performed by a sin-
gle UAV. At the same time, the start times of all coalition tasks will not be affected.
This will not only ensure the preallocation will not be greatly affected, but also pro-
vides greater flexibility to insert the new task.

5.3 � The influence of UAVs number and tasks number

To further analyze the influence of the number of UAVs and tasks on RCPIA more
comprehensively and generally, we consider two series of simulations. It is noted
that, each setup with the same number of tasks and UAVs but different resources
distribution runs 50 times to avoid contingency. Since RDAATSM [13] can also
support the simultaneously starting tasks and resource constraint, it is used to be
compared with RCPIA in terms of the average percentage of allocating known tasks,
the average percentage of tasks to be completed by a UAV coalition to all allocated
tasks, the average runtime and the average total score of allocating known tasks.

First, we consider 40 known tasks need to be allocated to UAVs whose number
increases from 4 to 16. The comparison results are shown in Fig. 8. As the num-
ber of UAVs increases, more tasks can be allocated due to more resources can
be provided as shown in Fig. 8a. In addition, RCPIA always allocates more tasks
than RDAATSM. Since RDAATSM is developed based on CBBA, it must meet
the marginal diminishing characteristics which lead to the tasks with the great-
est score being first selected rather than the one with the greatest contribution
degree. This may lead to forming more coalitions to provide enough resources for
the task. However, more coalitions may indicate higher failure rates since the task
is only allowed to insert into the appropriate task idle period without affecting

Table 9   Coalition formation process of the new emerging task

Coalition tasks Stage UAV Feasible start
time slot

Provide
resources

Contri-
bution
degree

Waiting time

t17 Stage 1 : Pre-
liminary

v1 [0.3442,3.2000] [1,0,0,0,0,0] 0.0049 /
v4 [0.3288,0.6302] [2,0,0,0,0,1] 0.0147 /
v
6

[0.5008,3.2000] [0,0,0,0,200,0] 0.9853 /
Stage 2 : Final v4 [0.5008,0.6302] [2,0,0,0,0,1] 0.0147 0.1720

v
6

[0.5008,0.6302] [0,0,0,0,200,0] 0.9853 0

10056	 M. Yang et al.

1 3

the established plan. Hence, the more coalitions are required to allocate the tasks,
the low allocation percentage in RDAATSM caused. For the coalition percent-
age of allocated tasks shown in Fig. 8b, fewer tasks are allocated to coalitions for
RCPIA compared to RDAATSM, which results from RCPIA prefers to allocate
the tasks to the UAV that can complete it individually. For the runtime, as the
number of UAVs increases, more conflicts will be resolved in the conflict resolu-
tion phase as all UAVs build their task lists locally and more time is consumed in
the task inclusion phase to re-add tasks after the conflict resolution phase. Hence,
as seen in Fig. 8c, the average runtime of both two algorithms increases as more
UAVs are introduced into the problem. Besides, RCPIA consumes a little less
runtime to obtain the results compared to RDAATSM. The reason is that even
though the two-stage coalition formation method consumes more time to form
coalitions for the tasks that cannot be performed by a single UAV, the marginal
diminishing characteristics of RDAATSM causes releasing all subsequent tasks
of added/deleted tasks. This operation may consume more runtime. As more

4 8 12 16

UAVs Number

0

20

40

60

80

100

120
A

ve
ra

ge
 A

llo
ca

tio
n

P
er

ce
nt

ag
e

[%
]

RCPIA
RDAATSM[13]

(a)

4 8 12 16

UAVs Number

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 C
oa

lit
io

n
P

er
ce

nt
ag

e
[%

]

RCPIA
RDAATSM[13]

(b)

4 8 12 16

UAVs Number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 R
un

tim
e

[s
]

RCPIA
RDAATSM[13]

(c)

4 8 12 16

UAVs Number

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

 T
ot

al
 S

co
re

RCPIA
RDAATSM[13]

(d)

Fig. 8   The simulations are tested for allocating 40 known tasks to an increasing number of UAVs which
are 4, 8, 12, 16. Run RCPIA and RDAATSM 50 times and comparison of a Average allocation percent-
age of known tasks, b Average percentage of allocated tasks that need to be completed by a coalition, c
Average runtime, and d Average total score are shown

10057

1 3

A resource‑constrained distributed task allocation method…

tasks are allocated by RCPIA, its total scores are higher than that of RDAATSM
as shown in Fig. 8d.

Then, we consider the scenario that 20, 40, 60, and 80 known tasks need to be
allocated to 8 UAVs. The comparison results are shown in Fig. 9. As the num-
ber of tasks increases, fewer tasks are allocated successfully as shown in Fig. 9a
since the resources of 8 UAVs are certain and fewer tasks can be provided enough
resources. In addition, fewer tasks are assigned to the coalition by RCPIA compared
to RDAATSM in Fig. 9b. The reason is that when more tasks need to be assigned,
RCPIA prefers to select tasks whose required resources better match those UAVs
carry. Furthermore, RDAATSM selects the tasks that can achieve a higher score,
which means that more coalitions are needed. As seen in Fig. 9c, as the increasing
number of tasks need to be assigned, there is increasing runtime consumed due to
calculating the IPI/RPI and bids in RCPIA and RDAATSM respectively. Similarly,
fewer coalition tasks result in less time taken in forming a coalition by the proposed
two-stage coalition formation method in RCPIA, while more runtime is required in

20 40 60 80

Tasks Number

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 A
llo

ca
tio

n
P

er
ce

nt
ag

e
[%

]

RCPIA
RDAATSM[13]

(a)

20 40 60 80

Tasks Number

0

10

20

30

40

50

60

A
ve

ra
ge

 C
oa

lit
io

n
P

er
ce

nt
ag

e
[%

]

RCPIA
RDAATSM[13]

(b)

20 40 60 80

Tasks Number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 R
un

tim
e

[s
]

RCPIA
RDAATSM[13]

(c)

20 40 60 80

Tasks Number

0

500

1000

1500

2000

2500

A
ve

ra
ge

 T
ot

al
 S

co
re

RCPIA
RDAATSM[13]

(d)

Fig. 9   The simulations are tested for an increasing number of known tasks which are 20, 40, 60, and 80
need to be allocated to 8 UAVs. Run RCPIA and RDAATSM 50 times and comparison of a Average
allocation percentage of known tasks, b Average percentage of allocated tasks that need to be completed
by a coalition, c Average runtime, and d Average total score are shown

10058	 M. Yang et al.

1 3

RDAATSM to form a UAV squad to provide enough resources for more coalition
tasks. Fewer allocated tasks of RDAATSM imply lower total scores as shown in
Fig. 9d.

In conclusion, the characteristic of preferring to allocate the tasks to the UAV
which can complete them individually in RCPIA avoids some unnecessary coop-
eration to form a coalition. This not only leads to more tasks are allocated and
fewer tasks are allocated to a coalition, but also higher total scores are obtained. In
addition, although the two-stage coalition formation method consumes much time
to form a coalition, fewer tasks need to form coalitions, so less average runtime is
spent.

5.4 � The performance of RCPIA in reallocating the new task

To further demonstrate the performance of RCPIA in dealing with the new emerg-
ing task, this section considers three different appearance times of the new task,
i.e., early, middle and late time which defined as the 10 percent, 40 percent and 80
percentage of the latest task completion time of the preallocation schedules. For a
given 6 UAVs and 20 known tasks, each setup runs 50 times and the average results
in terms of the success rate of reallocation, the percentage of a coalition, the con-
sumed runtime and reallocation score of reallocating the new task successfully are
displayed in Table 10.

It can be seen that, with the delay of the emergence of the new task, fewer simula-
tions can reallocate the new task successfully as shown in Table 10, which results
from that fewer positions left to insert the new task. In addition, RCPIA always
can allocate the new task in more simulations compared with RDAATSM. This is
because that most of the preallocated tasks can be completed by a single UAV in
RCPIA and the start times of these tasks can be flexibly shifted to create a long
feasible time slot to insert the new task. Meanwhile, since RDAATSM only allows
to insert the new task into the synchronization wait time and the start times of preal-
located tasks cannot be affected, fewer simulations can allocate the new task suc-
cessfully, i.e., the average success rate of reallocation for RCPIA is higher than
RDAATSM. In addition, the average coalition percentage of RCPIA is lower than
RDAATSM since RCPIA prefers to allocate the tasks to the UAV that can complete

Table 10   Performance comparison when assigning the new task with different appearance time

Appear-
ance
Time

Success rate of real-
location

Percentage of coali-
tion

Runtime Reallocation score

RCPIA RDAATSM RCPIA RDAATSM RCPIA RDAATSM RCPIA RDAATSM

Early
Time

78.23% 52.85% 62.07% 73.21% 0.1564s 0.2703s 1140.5 1238.4

Middle
Time

64.38% 43.67% 65.29% 75.43% 0.1203s 0.2210s 1138.1 1293.7

Late
Time

56.17% 37.89% 66.68% 77.28% 0.0927s 0.1517s 1129.3 1189.6

10059

1 3

A resource‑constrained distributed task allocation method…

tasks individually. It must be noted that, since the appearance time and the start
times of coalition tasks are random and not influenced by the appearance time but
related to the preallocated schedules, the coalition percentage of the two algorithms
does not show a obvious change trend. As for the runtime, since RCPIA prefers to
allocate the tasks to the UAV that can perform the tasks individually, less compu-
tation time is spent in forming a coalition for the new task, i.e., the runtime of
RCPIA reallocating the new task is less than RDAATSM. Besides, since the num-
ber of feasible insertion positions decreases as the appearance time increases, less
computation time is required to calculate the IPI/RPI or bids for the two algorithms
respectively, i.e., the average runtime for allocating the new task decreases. For the
average reallocation score of the simulations which reallocate the new task success-
fully, RDAATSM performs better than RCPIA since it allocates the new task to the
UAV with the highest bid.

In conclusion, most allocated known tasks are performed by a single UAV in
RCPIA, which results that the preallocation is more flexible to cope with the new
task. Hence, RCPIA can allocate the new emerging task in more simulations and
less runtime is consumed compared to RDAATSM, which demonstrates the perfor-
mance of RCPIA in reallocating the new task in dynamic environment.

6 � Conclusion and future works

The task assignment problem of a multi-UAV system with limited resources is one
of the most extensive research domains and many efforts have been made. Although
the existing algorithm considers forming a coalition to accomplish tasks, which
require a different number of resources, they cannot guarantee that the coalition
UAVs reach the task position at the same time. In addition, the algorithm should
be more flexible and robust when encountering new emerging tasks. To this end,
this paper proposes a distributed heuristic algorithm called RCPIA to address the
task allocation problem for heterogeneous UAVs with limited resources. First, the
task allocation problem with the constraints of resources and simultaneously start-
ing tasks is modeled in the mathematical formulation. Second, we develop the task
inclusion phase and conflict resolution phase to adapt to the resource constraint. The
criteria of adding and removing tasks are modified, and the consensus rules are also
revised. Third, a two-stage coalition formation method is proposed to form coalition
for the tasks that cannot be performed by a single UAV, which makes full use of the
remaining resources of UAVs. The coalition formation method first selects the UAVs
which can provide the required resources and do not violate the deadline constraints
as preliminary coalition members in the first stage. Then, the coalition size is further
reduced by three criteria and the final coalition is obtained. Finally, a reassignment
application of two-stage coalition formation method is also introduced to cope with
the new task appearing in the dynamic environment. Simulation results illustrate the
allocation process of RCPIA in detail when assigning known tasks and new tasks in
the design scenario. In addition, to demonstrate the efficiency, RDAATSM is con-
ducted to compare with RCPIA. The results indicate that RCPIA performs well in

10060	 M. Yang et al.

1 3

resource-constrained task allocation problem and increases the robustness of assign-
ment results.

The limitation of RCPIA is that it cannot balance the solution quality and compu-
tation time. In our future work, we plan to: 1) further improve the time efficiency of
RCPIA; 2) study the coalition formation method with the precedence constraints; 3)
study the impact of network topology on task assignment results.

Appendix

See Table 11.

Table 11   Action Rule For UAV i Based On Communication With UAV k Regarding Task k 

UAV k
(sender)
thinks �kj is

UAV i
(receiver)
thinks �kj is

Receiver’s Action (default:leave)

k i if 𝜂kj > 𝜂ij → update if �kj = �ij and 𝜔⊖

kj
> 𝜔

⊖

ij
 → update

k update
m ∉ {i, k} if TSkm > TSim or 𝜂kj > 𝜂ij → update if �kj = �ij and 𝜔⊖

kj
> 𝜔

⊖

ij
 → update

none update
i i leave

k reset
m ∉ {i, k} if TSkm > TSim → reset
none leave

m ∉ {i, k} i if TSkm > TSim if 𝜂kj > 𝜂ij → update elseif �kj = �ij and 𝜔⊖

kj
> 𝜔

⊖

ij
 →

update
k if TSkm > TSim → update else → reset
m if TSkm > TSim → update
n ∉ {i, k,m} if TSkm > TSim and TSkn > TSin → update if TSkm > TSim if 𝜂kj > 𝜂ij →

update elseif �kj = �ij and 𝜔⊖

kj
> 𝜔

⊖

ij
→ update if TSkn > TSin and

TSkm > TSim → reset
none if TSkm > TSim → update

none i leave
k update
m ∉ {i, k} if TSkm > TSim → update
none leave

10061

1 3

A resource‑constrained distributed task allocation method…

References

	 1.	 Alshawi MA, Shalan MB (2017) Minimal time dynamic task allocation for a swarm of robots. Inter-
national Journal of Mechanical Engineering and Robotics Research 6(6)

	 2.	 Arif MU, Haider S (2018) A flexible evolutionary algorithm for task allocation in multi-robot team.
In: International Conference on Computational Collective Intelligence, Springer, pp 89–99

	 3.	 Badreldin M, Hussein A, Khamis A (2013) A comparative study between optimization and market-
based approaches to multi-robot task allocation. Advances in Artificial Intelligence (16877470)

	 4.	 Bayram H, Bozma HI (2016) Coalition formation games for dynamic multirobot tasks. The Interna-
tional Journal of Robotics Research 35(5), 514–527

	 5.	 Cao Y, Yu W, Ren W, Chen G (2012) An overview of recent progress in the study of distributed
multi-agent coordination. IEEE Transactions on Industrial Informatics 9(1), 427–438

	 6.	 Chen J, Sun D (2011) Resource constrained multirobot task allocation based on leader-follower coa-
lition methodology. The International Journal of Robotics Research 30(12), 1423–1434

	 7.	 Chen J, Sun D (2012) Coalition-based approach to task allocation of multiple robots with resource
constraints. IEEE Transactions on Automation Science and Engineering 9(3), 516–528

	 8.	 Choi HL, Brunet L, How JP (2009) Consensus-based decentralized auctions for robust task alloca-
tion. IEEE Transactions on Robotics 25(4), 912–926

	 9.	 Czarnecki E, Dutta A (2021) Scalable hedonic coalition formation for task allocation with heteroge-
neous robots. Intelligent Service Robotics 14(3), 501–517

	10.	 Deng Q, Yu J, Wang N (2013) Cooperative task assignment of multiple heterogeneous unmanned
aerial vehicles using a modified genetic algorithm with multi-type genes. Chinese Journal of Aero-
nautics 26(5), 1238–1250

	11.	 Farinelli A, Iocchi L, Nardi D (2017) Distributed on-line dynamic task assignment for multi-robot
patrolling. Autonomous Robots 41(6), 1321–1345

	12.	 Fu X, Wang H, Li B, Gao X (2018) An efficient sampling-based algorithms using active learning
and manifold learning for multiple unmanned aerial vehicle task allocation under uncertainty. Sen-
sors 18(8):2645

	13.	 Fu X, Feng P, Gao X (2019a) Swarm uavs task and resource dynamic assignment algorithm based
on task sequence mechanism. IEEE Access 7:41090–41100

	14.	 Fu X, Zhang J, Zhang L, Chang S (2019b) Coalition formation among unmanned aerial vehicles for
uncertain task allocation. Wireless Networks 25(1), 367–377

	15.	 Han X, Bui H, Mandal S, Pattipati KR, Kleinman DL (2012) Optimization-based decision support
software for a team-in-the-loop experiment: Asset package selection and planning. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems 43(2), 237–251

	16.	 Han X, Mandal S, Pattipati KR, Kleinman DL, Mishra M (2013) An optimization-based distributed
planning algorithm: a blackboard-based collaborative framework. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 44(6), 673–686

	17.	 Huang L, Qu H, Zuo L (2018) Multi-type uavs cooperative task allocation under resource con-
straints. IEEE Access 6:17841–17850

	18.	 Ji X, Niu Y, Shen L (2016) Robust satisficing decision making for unmanned aerial vehicle complex
missions under severe uncertainty. PloS one 11(11)

	19.	 Jia Z, Yu J, Ai X, Xu X, Yang D (2018) Cooperative multiple task assignment problem with sto-
chastic velocities and time windows for heterogeneous unmanned aerial vehicles using a genetic
algorithm. Aerospace Science and Technology 76:112–125

	20.	 Kan X, Thayer TC, Carpin S, Karydis K (2021) Task planning on stochastic aisle graphs for preci-
sion agriculture. IEEE Robotics and Automation Letters 6(2), 3287–3294

	21.	 Kapoutsis AC, Chatzichristofis SA, Doitsidis L, de Sousa JB, Pinto J, Braga J, Kosmatopoulos EB
(2016) Real-time adaptive multi-robot exploration with application to underwater map construction.
Autonomous Robots 40(6), 987–1015

	22.	 Khamis A, Hussein A, Elmogy A (2015) Multi-robot task allocation: A review of the state-of-the-
art. In: Cooperative Robots and Sensor Networks 2015, Springer, pp 31–51

	23.	 Kim MH, Baik H, Lee S (2015) Resource welfare based task allocation for uav team with resource
constraints. Journal of Intelligent & Robotic Systems 77(3–4), 611–627

	24.	 Korsah GA, Stentz A, Dias MB (2013) A comprehensive taxonomy for multi-robot task allocation.
The International Journal of Robotics Research 32(12), 1495–1512

10062	 M. Yang et al.

1 3

	25.	 Lim WH, Isa NAM (2015) Particle swarm optimization with dual-level task allocation. Engineering
Applications of Artificial Intelligence 38:88–110

	26.	 Muhuri PK, Rauniyar A (2017) Immigrants based adaptive genetic algorithms for task alloca-
tion in multi-robot systems. International Journal of Computational Intelligence and Applications
16(04):1750025

	27.	 Nayak S, Yeotikar S, Carrillo E, Rudnick-Cohen E, Jaffar MKM, Patel R, Azarm S, Herrmann JW,
Xu H, Otte M (2020) Experimental comparison of decentralized task allocation algorithms under
imperfect communication. IEEE Robotics and Automation Letters 5(2), 572–579

	28.	 Nedjah N, de Mendonça RM, de Macedo Mourelle L (2015) Pso-based distributed algorithm for
dynamic task allocation in a robotic swarm. In: ICCS, pp 326–335

	29.	 Nelke SA, Okamoto S, Zivan R (2020) Market clearing-based dynamic multi-agent task allocation.
ACM Transactions on Intelligent Systems and Technology (TIST) 11(1):1–25

	30.	 Nunes E, Manner M, Mitiche H, Gini M (2017) A taxonomy for task allocation problems with tem-
poral and ordering constraints. Robotics and Autonomous Systems 90:55–70

	31.	 Oh G, Kim Y, Ahn J, Choi HL (2017) Market-based distributed task assignment of multiple
unmanned aerial vehicles for cooperative timing mission. Journal of Aircraft 54(6), 2298–2310

	32.	 Torreño A, Onaindia E, Komenda A, Štolba M (2018) Cooperative multi-agent planning: A survey.
ACM Computing Surveys (CSUR) 50(6):84

	33.	 Turner J, Meng Q, Schaefer G, Whitbrook A, Soltoggio A (2017) Distributed task rescheduling with
time constraints for the optimization of total task allocations in a multirobot system. IEEE Transac-
tions on Cybernetics 48(9), 2583–2597

	34.	 Wu H, Li H, Xiao R, Liu J (2018) Modeling and simulation of dynamic ant colony’s labor division
for task allocation of uav swarm. Physica A: Statistical Mechanics and its Applications 491:127–141

	35.	 Wu X, Yin Y, Xu L, Wu X, Meng F, Zhen R (2021) Multi-uav task allocation based on improved
genetic algorithm. IEEE Access 9:100369–100379

	36.	 Xie S, Zhang A, Bi W, Tang Y (2019) Multi-uav mission allocation under constraint. Applied Sci-
ences 9(11):2184

	37.	 Xu Y, Sun Z, Xue X, Gu W, Peng B (2020) A hybrid algorithm based on mosfla and ga for multi-
uavs plant protection task assignment and sequencing optimization. Applied Soft Computing
96:106623

	38.	 Ye F, Chen J, Sun Q, Tian Y, Jiang T (2021) Decentralized task allocation for heterogeneous multi-
uav system with task coupling constraints. The Journal of supercomputing 77(1):111–132

	39.	 Zhai XB, Li L, Zhao X, Zhao Y, Liu K (2021) Real-time task allocation of heterogeneous unmanned
aerial vehicles for search and prosecute mission. Wireless Communications and Mobile Computing
2021

	40.	 Zhang A, Zhou D, Yang M, Yang P (2018) Finite-time formation control for unmanned aerial vehi-
cle swarm system with time-delay and input saturation. IEEE Access 7:5853–5864

	41.	 Zhang K, Collins Jr EG, Shi D (2012) Centralized and distributed task allocation in multi-robot
teams via a stochastic clustering auction. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 7(2):1–22

	42.	 Zhang Y, Parker LE (2013) Considering inter-task resource constraints in task allocation. Autono-
mous Agents and Multi-Agent Systems 26(3), 389–419

	43.	 Zhao W, Meng Q, Chung PW (2015) A heuristic distributed task allocation method for multivehicle
multitask problems and its application to search and rescue scenario. IEEE Transactions on Cyber-
netics 46(4), 902–915

	44.	 Zhen Z, Wen L, Wang B, Hu Z, Zhang D (2021) Improved contract network protocol algorithm
based cooperative target allocation of heterogeneous uav swarm. Aerospace Science and Technol-
ogy 119:107054

	45.	 Zhou X, Wang H, Ding B, Hu T, Shang S (2019) Balanced connected task allocations for multi-
robot systems: An exact flow-based integer program and an approximate tree-based genetic algo-
rithm. Expert Systems with Applications 116:10–20

	46.	 Zitouni F, Harous S, Maamri R (2020) A distributed approach to the multi-robot task alloca-
tion problem using the consensus-based bundle algorithm and ant colony system. IEEE Access
8:27479–27494

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A resource-constrained distributed task allocation method based on a two-stage coalition formation methodology for multi-UAVs
	Abstract
	1 Introduction
	2 Related work
	3 Problem description
	3.1 Resource modeling
	3.2 Utility function

	4 Proposed method
	4.1 Main structure
	4.1.1 Task inclusion phase
	4.1.2 Communication
	4.1.3 Conflict resolution phase

	4.2 Two-stage coalition formation method
	4.2.1 Stage 1: select preliminary coalition members
	4.2.2 Stage 2: reduce coalition size

	4.3 Reassignment application in dynamic environment
	4.4 Computational complexity

	5 Numerical results
	5.1 Test scenario
	5.2 The feasibility of RCPIA
	5.2.1 Task assignment for known tasks
	5.2.2 Reassignment for the new emerging task

	5.3 The influence of UAVs number and tasks number
	5.4 The performance of RCPIA in reallocating the new task

	6 Conclusion and future works
	References

