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Abstract
Various methods have been proposed to evaluate the reliability of a graph, one of the 
most well known of which is the reliability polynomial, R(G, p). It is assumed that 
G(V, E) is a simple and unweighted connected graph whose nodes are perfect and 
edges are operational with an independent probability p. Thus, the edge reliability 
polynomial is a function of p of the number of network edges. There are various 
methods for calculating the coefficients of reliability polynomial, all of which are 
related to their recursive nature, which has led to an increase in their computational 
complexity. Therefore, if the difference between the number of links and nodes in 
the network exceeds a certain amount, the exact calculation of the coefficients R(G, 
p) is practically in the NP-hard complexity class. In this paper, while examining the 
problems in the previous methods, four new approaches for estimating the coeffi-
cients of reliability polynomial are presented. In the first approach, using an iterative 
method, the coefficients are estimated. This method, on average, has the same accu-
racy as common methods in the related studies. In addition, the second method as an 
intelligent scheme for integrating the values of coefficients has been proposed. The 
values of coefficients for smaller, larger, and finally intermediate indices have been 
determined with the help of this intelligent approach. Further, as a third proposed 
method, Benford’s law is utilized to combine the coefficients. Finally, in the fourth 
approach, using the Legendre interpolation method, the coefficients are effectively 
estimated with an appropriate accuracy. To compare these approaches fairly and 
accurately with each other, they have been carried out on synthetic and real-world 
underlying graphs. Then, their efficiency and accuracy have been evaluated, com-
pared, and analyzed according to the experimental results.
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1  Introduction

In recent years, communication systems and infrastructures are mostly grappling 
with so many problems, while the speed and volume of communication and informa-
tion have grown incredibly fast; the classical methods are incapable of solving them. 
These reasons have led to a great deal of attention and movement toward interdisci-
plinary trends such as complex networks based on graph structures. Such networks 
consist of a set of agents and a complex set of relationships between these agents. 
These structures can be considered as large graphs of nodes connected by one or 
more specific types of interdependencies. Most of these structures are very complex, 
and these networks are inherently so dependent on various fields of science that they 
cannot be analyzed with a view to a scientific discipline [1–4]. To develop any suc-
cessful communication network, different aspects must be considered. Accordingly, 
important factors such as cost, security, integrity, scalability and fault tolerance can 
be mentioned. The latter factor is vital, especially for any communication network; 
hence, the issue of network robustness and resilience has gained considerable impor-
tance in the field of complex network research. 

A system is robust when it has the ability to maintain its core functions even in 
the presence of external or internal errors. In the literature, robustness refers to the 
ability of the system to perform the main task, which, even after removing fraction 
of the nodes or edges from it, remains connected as far as possible from a global 
perspective. Further, resilience is defined as the ability of any entity in a network to 
stand against drastic changes in that network and its applications.

1.1 � Motivations

Robustness in complex networks and modern infrastructures is one of the vital and 
fundamental features and has become one of the favorite and growing research fields 
in recent years. This field seeks to find the solutions and mechanisms to improve 
the connectivity of networks against random failures and systematic attacks. There-
fore, various criteria to measure and evaluate the degree of resilience have been 
proposed in graphs and complex networks. The performance of a network can be 
greatly affected by its structural features. One of the main structural features is the 
robustness, which is expressed by terms such as resilience, fault tolerance, and sur-
vivability. In ecology, robustness is an important attribute of an ecosystem and can 
be used to provide insights into the response to disturbances such as the extinction 
of species and generations. In biology, the utility of network robustness is to study 
diseases and mutations in genes. In economics, resistance economics can increase 
our understanding of inflation, the risks of banking and marketing systems, and the 
like. Failures in the operation of transportation systems may have serious conse-
quences and disruption to transportation. In the engineering science, robustness can 
also be useful for assessing the resilience of infrastructure networks such as Internet 
and power grid. Hence, the main motivation of many studies devoted to the design 
of robust networks arises from their vital applications in communication networks, 
power grids, transportation systems, sensor networks, logistics networks, etc. [5]. 
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The robustness of any network is usually based on fault tolerance and vulnerabil-
ity to random failures and targeted attacks. A large number of researches have been 
devoted to design of networks with optimal robustness.

Due to the lack of a comprehensive approach to the issue of resilience from a 
practical view, we have seen inappropriate and sometimes difficult and impractical 
solutions. In summary, the reasons for this attention as well as the large number of 
studies in the related work on the importance of network robustness can be summa-
rized in the following two main objectives.

•	 Designing new networks of suitable and integrated systems, considering that in 
such networks failures may occur as well as there is a possibility of attacks by 
malicious individuals

•	 Protecting existing networks with the aim of identifying important and sensitive 
nodes and reducing their sensitivity by improving their resilience against random 
failures and targeted attacks

1.2 � The problem statement

One of the obvious weaknesses in the research for robustness is the lack of a system-
atic approach. Any non-systematic approach to understanding the purpose of robust-
ness and its challenges will lead to an ineffective view of robustness and, conse-
quently, an inefficient solution.

Defining the purpose of resilience usually requires appropriate criteria. Although 
the topology of networks is an important criterion for understanding and character-
izing complex networks, it alone is not sufficient to explain and capture the inter-
actions and properties of networks, which are very wide and diverse. For this rea-
son, a number of statistical criteria have been developed, each of which is relevant, 
applicable, and useful in different and specific fields. Thus, this field primarily seeks 
to find solutions and mechanisms to improve the resilience of complex networks 
against random failures and systematic attacks. 

So far, various criteria have been presented to evaluate the robustness and resil-
ience of graphs and complex networks. An important part of such criteria has been 
dedicated to the graph theory. In this manuscript, the reliability polynomial crite-
rion has been utilized to scrutinize the robustness of graphs and complex networks. 
Additionally, a set of conceptual and practical tools to facilitate the analysis and 
evaluation of the robustness of graphs has been utilized by means of adapting them 
to the research contexts. Moore and Shannon first proposed the concept of reliability 
polynomial [6]. They introduced a probability model in which the network nodes are 
assumed perfectly reliable and links (edges) can be defective with a certain prob-
ability such as p. The main issue is to determine the probability that the network 
will remain connected under these conditions. If all links are operational with equal 
probability p, the reliability of the whole network is described in terms of a function 
of p, which in turn will lead to the polynomials of network reliability. 

Unlike other robustness criteria that attribute a numerical value (usually nor-
malized) to the robustness of a graph, the reliability polynomial advantage is that 
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a function in terms of p assigns to each graph. It is possible to use the robustness 
diagram of a graph and compare it with the other networks with the help of the plot 
of this function and determining the area under its curve. Hence, the result of the 
reliability polynomials of different graphs can be directly compared with each other. 
However, an important and fundamental challenge that has made the use of reliabil-
ity polynomials directly difficult and even impossible is the calculation of their coef-
ficients. It should be noted that the exact calculation of the coefficients is only pos-
sible for low-order graphs, and its exact solution falls into the category of NP-hard 
problems. In this paper, our main contribution is the application of various numeri-
cal and approximate techniques to estimate the reliability polynomial coefficients. 

This article is organized into five sections. In Sect.  2, we briefly review the 
related work and model assumptions. Also in this section, the reliability polyno-
mials are defined and we briefly study the methods of calculation the coefficients. 
In Sect. 3, we present the proposed methods with details. The numerical results of 
the proposed methods on several synthetic and real-world graphs are described in 
Sect. 4. In Sect. 5, the validation of various measures is examined. Moreover, the 
performance of the proposed approaches is simulated and evaluated in this section. 
In Sect. 6, robustness analysis is presented to assess the resilience of graphs and net-
works, along with insights into classifying the classes of robustness metrics. Some 
of the most important measures belonging to each category are defined and then for 
the graphs studied in this research; numerical results are presented along with the 
analytical report. Finally, the conclusions are summarized in Sect. 7, and we suggest 
future work to continue the current study.

2 � The literature

Moore and Shannon [6] first proposed the reliability polynomials. The aim of these 
researchers was to study to improve the reliability of replacing an electromechani-
cal relay with two continents (switching device) through a network consisting of n 
similar relays by creating a connection between input and output. If the coil was 
not energized, there would be a path with a probability greater than the assumed 
value of c, and conversely, if the coil was energized, with a probability less than the 
assumed value of a (a < c), there would be a path between input and output. They 
introduced a probability model in which network nodes were assumed perfectly reli-
able, but the links (edges) could fail with a hypothetical probability such as p.

Using this concept, Cowell et  al. [7] have carefully examined the reliability of 
small hammock networks. They showed that array-based designs such as vertical 
FET (VFET), vertical slit FET (VeSFET), FinFETs, and nano-electromechanical 
systems (NEMS), as well as arrays of CMOS devices, could fit well into small ham-
mock networks. Rohatinovici, Proştean, and Balas [8] showed that communications 
in an axon can be modeled using an array of logical gates so that each logical gate 
emulates a voltage-gated ion channel. They estimated the probability of correct 
communication in such a model by analyzing the reliability for logical gate circuits 
as probabilistic gate matrix (PGM). Thus, another reliability polynomial application 
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can be used to estimate the reliability of molecular networks for processing informa-
tion inspired by biological systems. 

Robledo et al. [9] have developed an interpolation-based technique for estimating 
reliability polynomial coefficients. Their idea is to use the interpolation with New-
ton’s method and then to correct its coefficients using the Hilbert L2[0, 1] space. To 
ensure the correctness of the proposed method, they used the equality of the num-
ber of spanning trees with the polynomial coefficients corresponding to the smallest 
polynomial power. Then, they present that, at best, the complexity of the calculation 
can be done in polynomial time and that the reliability polynomial has zero root 
from the order of repetition n-1 (n is the order of the graph). In addition, Burgos and 
Amoza [10] have proved a new general theory of reliability polynomials.

Using reliability polynomial, Khorramzadeh et al. [11] have analyzed the effect 
of network structural motifs on diffusive dynamics such as the spread of infectious 
disease. In addition, Eubank et al. [12] have used the reliability polynomial to char-
acterize and design networks and have defined a new criterion based on node and 
edge centrality called criticality and shown its relationship to the binary networks. 
They point out that the application of network reliability polynomial can be used to 
target interventions to control outbreak.

Brown and two co-authors [13] have introduced a measure called the average 
graph reliability, which is the ATR (All-Terminal-Reliability) integral over the 
range [0, 1]. Their proposed benchmark is an alternative to uniformly reliable net-
work. In fact, due to the accurate calculation of the reliability polynomial coeffi-
cients, that is a NP-hard problem, the authors have proposed strategies for limiting 
the average reliability that do not necessarily require the calculation of the reliability 
polynomial.

Brown and Dilcher [14], as well as Brown and Colbourn [15], describe about the 
location of the reliability polynomial roots. Brown and Colbourn [15] showed that 
all true roots of a reliability polynomial are located on a complex plane and a single 
disk centered on 1 (| z-1 |= 1 or exactly in the range 0 ∪ (1, 2]). They also conjectured 
that all the complex roots were in z: | z-1 |≤ 1, which Royle and Sokal [16] rejected.

Brown, in collaboration with Koç and kooij [17], has determined the inflection 
points to measure the reliability of networks with the help of the reliability poly-
nomial. They show that there is at most one inflection point in the range (0, 1) and 
there are families of simple graphs that may have more than one inflection point. 
The same authors [18] examine families of graphs whose the reliability function 
may cross more than twice with the x-axis. Page and Perry [19] have provided a way 
with the network reliability polynomials to rank the important and critical edges in 
networks. Chen et al. [20] also wrote a short note on this article and pointed out the 
problem of redundancy in defining edge rankings based on the number of spanning 
trees.

Beichl and Cloteaux [21] have proposed a randomize approximation algorithm 
for calculating the reliability polynomial coefficients. They have shown that their 
proposed method can have an empirically faster convergence rate compared to the 
Colbourn’s approximation method [22]. Beichl, in collaboration with Harris and 
Sullivan [23], proposed a SIS-based (Sequential-Importance-Sampling) bottom-
up algorithm for approximate estimation of the reliability coefficients by selecting 
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a spanning tree and adding an edge. The algorithmic complexity of their research 
is around O(|E|2), and the SIS technique is utilized to reduce the variance. In 
another research, Harris, Sullivan, and Beichl [24] provide a method for acceler-
ating and improving a proposed SIS-based method, which is a general technique 
for estimating a particular distribution that provides examples of a distribution 
function rather than a given distribution. For graphs with m edges and n nodes, 
the complexity of their research is reported of the order O(m log n �(m,n)).

From what we have summarized above, it is obvious that after half a century 
of the seminal research of Moore and Shannon [6], extensive research in this field 
has been reported and accumulated. In addition, many variants of this original 
problem have been examined, generalized, and analyzed. We properly review the 
concepts, research, and important results related to the present article, as well 
as some of the most important developments in this field. For this reason, we 
have mentioned only some of the most important research directions. It should 
be noted, however, that several methods have been proposed in the literature for 
calculating the reliability polynomial coefficients, and it could not be overlooked 
that these calculations will become intractable as the size and order of the graph 
increase.

2.1 � The model assumptions

The structure function of the coherent network system is defined as a function of 
its components, and it is assumed that the network has m ≥ 1 edges, which each 
edge can be operational with an independent probability p. To describe this situa-
tion, we define a binary variable xi.

Definition 1  [25]: The binary function 𝜑(x⃗) ∶ {0, 1}m → {0, 1} is defined as the net-
work structure function and x⃗ = (x1,… , xm) is called the binary vector of its links’ 
state, whenever.

In fact, the structure function of the network represents the relation among net-
work and its components. Once the connection between the edges has been identi-
fied in the network, the form of the function 𝜑(x⃗) will be determinable. A network 
with m edge-component has 2n possible states for the edge vector. Depending on 
the network type, the status vector indicates that the value of the system structural 
function is 0 or 1. Although the network structure function can have no behavio-
ral limitations mathematically, it is limited to the monotone functions, caused by 
expressing the behavior of the network.

(1)xi =

{
1 edge ith operates

0 otherwise

(2)𝜑(x⃗) =

{
1 network operates

0 otherwise



9747

1 3

Efficient methods for computing the reliability polynomials…

Definition 2  [25]: A network with the structure function  is monotone where for two 
state vectors of x and y (for all edges xi ≤yi), φ(x) ≤ φ(y).

The above definition means that in a monotone network, the reliability of the 
network will not be worse when one of edges becomes operational. Of course, we 
will not consider such an assumption in this paper because considered networks 
are not repairable.

Definition 3  [25]: Edge i in the network is an irrelevant edge when its presence/
absence has no effect on φ. In other words.

Definition 4  [25]: A network is coherent if and only if its structure function is mono-
tone and there is not an irrelevant component in it.

It is assumed that the state of the edge i in the graph is a binary random vari-
able with the following probability mass function.

where pi is the probability that edge i is operational (reliable), and we get

There are three issues with network reliability, two-terminal reliability or 2TR, 
all-terminal reliability or ATR and k-terminal reliability or KTR [6]. In 2TR, it 
is assumed that there exist two distinct nodes s (source) and t (terminal or tar-
get), and then, given the probability of p (operating one edge), we calculate the 
probability of existing an operational path across s and t. In case of ATR, the 
problem is to find an operational path between the two desired nodes u and v of 
the network. Finally, KTR points out that if we have a set of K with distinct nodes 
|K| = k , what is the probability of an operational path between the two nodes 
u, v ∈ K?

All three of the above are pertain to domain analysis, and they are NP-com-
plete. It should be noted that the NP class contains problems, which can be solved 
by a Turing machine with non-deterministic counting in polynomials. If it is NP-
complete, therefore it is NP-hard. In this paper, the goal of the proposed methods 
is to calculate the reliability of the entire network terminal, which is called ATR, 
as defined below.

In fact, the probability of being connectedness for a graph is assumed to be per-
fect nodes and the probability of links’ failure. Since φ is a function of the state 
vector of network G, the reliability of G is a function of the vector P = (p1,… , pn) 
represented by R(G, P). In this paper, it is assumed that the probability of being 

�(x1, ..., xi−1, 0, xi+1, ..., xm) = �(x1, ..., xi−1, 1, xi+1, ..., xm)

(3)P{Xi = xi} =

{
pi if xi = 1

1 − pi if xi = 0

pi = P{Xi = 1} = E[Xi]

P{�(x) = 1} = E[�(x)]
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operational for all edges is the same, independent and equal to p, therefore the 
same symbol R(G, p) can be used to denote the polynomials reliability of the 
graph G.

It is assumed that we are facing a stochastic graph with the probability of links 
failure. At a given time, each edge can be in one of two possible states: Up (opera-
tional) or Down (failed), which is called binary networks [25]. The probability of 
being in the first state is p and the probability of being in the second state is 1–p.

Moreover, it is assumed that p remains constant over all time for all edges e ∈ E 
and also, for all f , e ∈ E, f ≠ e , the failure probability of each edge such as f is inde-
pendent of other edge such as e.

In addition, after each failure at an edge, there is not any reconnection among its 
related nodes. To design a simpler model, we assume that the probability of failure 
is the same for all edges of the network. Also, we assume that the capacity of all 
links is infinite or alternatively. It means that the information traveling through those 
links on the network is negligible compared to their capacity. The rationale behind 
this assumption is to preclude the possibility of occurrence cascading failures may 
make our reliability analysis intractable.

2.2 � Reliability polynomials

Definition 5  [6]: Assuming a criterion for network functionality, each pathset is a 
subset O ⊆ E of edges that makes the graph connected; in other words, G (V, O) is 
operational. Therefore, if our problem is ATR, as mentioned above, the pathset will 
be any connected spanning subgraph of G. A minimal pathset (based on the inclu-
sion principle) is called minpath. In 2TR, the minpath is only one path between the 
source and destination nodes, but for ATR, the minpath is a spanning tree, and in 
KTR, the minpath is a Steiner tree.

Definition 6  [25]: The set of all indices of the state vector x where xi = 0 is called 
cutset, C = {i: xi = 0}.

Thus, the cutset is a subset C ⊆ E of edges that the subgraph G′(V, E\C) is not 
connected. If the two vectors x and y are the network state vectors with x < y and 
φ(y) = 1, then x is called the mincut vector. Further, the mincut vector is the vector 
for which the network is disconnected and, if at least one of its edges is operational, 
the network may be re-operational.

Definition 7  [25]: If φ(x) is the structure function of a coherent network, the state 
vector x is the path vector and the set of indices where xi = 1 is the pathset whenever 
φ(x) = 1. In other words, if P = P(x) is the set of paths, then P = {i: xi = 1}.

Definition 8  [25]: Let x, y be two vectors for which y < x, φ(y) = 0; then, vector x is 
called the minimal path vector and the corresponding pathset is called the minimal 
pathset.
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Hence, the minimal path state vector is the vector for which the network is con-
nected and inactivation of at least one of its operational links will cause the whole 
network to be disconnected.

Definition 9  [6]: Let m be the number of edges (size) of G (V, E). Suppose G�(V ,E�) 
for E′ ⊆ E. The reliability polynomials are defined as follows.

Consequently, R(G, p) denotes the probability of the graph G which is a function 
of p, and it is truly written based on a polynomial of p. Note that the definition of 
reliability polynomials is the same for 2TR, KTR and ATR, and the only difference 
is in the definition of pathsets and cutsets.

There are various forms to define the reliability polynomials.

Definition 10  (N-form) [6]: Let Ni be the number of pathsets containing i edges. The 
probability of making a set of i edges that causes connectivity is.

Definition 11  (C-form) [6]: If the number of cutsets with i edges is assumed to be Ci, 
we have.

Definition 12  (F-form) [6]: An F-set is a set of links that a pathset is its comple-
ments. F-sets can recommend another approach to define the reliability polynomials.

where Fi denotes the number of subdomains or subgraphs that have exactly i edges 
these are remained m − i edges after deletion and their deletion causes G to be dis-
connected. The vector 

⟨
F0,F1, ...,Fm−n+1

⟩
 is the F-vector of graphic matroid of G, 

i.e., a simplicial complex of subsets E′ ⊆ E that their deletion causes G disconnected 
[26]. It should be noted that we apply F-Form in this paper.

The reliability polynomials can be used to compare the reliability of different 
graphs. However, the important point to note is that the reliability polynomials do 
not represent a total order in the set of graphs and define a partial order.

Although the ATR criterion seems simple at first glance, there consist many 
problems. Unlike other robustness measures that assign a numerical value (usu-
ally normalized) to the graph’s robustness value, the reliability polynomials assign 
a function in p to each graph. Accordingly, one of the major problems in the ATR is 
the allocation of the appropriate value to p, and the evaluation of the graph’s robust-
ness depends on the p value, so it may be difficult or even impossible to compare 

(4)
R(G, p) =

∑
E�⊆E

G� is a pathset

p|E�|(1 − p)m−|E�|

(5)R(G, p) =
∑m

i=0
Nip

i(1 − p)m−i

(6)R(G, p) = 1 −
∑m

i=0
Cip

m−i(1 − p)i,Ni + Ci =
(
m
i

)

(7)R(G, p) =
∑m−n+1

i=0
Fip

m−i(1 − p)i,Fi = Nm−i
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the reliability measure of the two different graphs directly. For example, it may be 
difficult to compare the reliability polynomials of which the robustness value of two 
graphs G and H is very close in vertices and edges.

In such cases, the plot of the difference between their reliability polynomials can 
compare better. For example for p → 0, R (G, p) > R (H, p) (or vice versa) while for 
p → 1, R (H, p) > R (G, p) (or vice versa) [13].

In ATR applications, with assuming a fixed number of nodes and edges in order 
to compare different networks and select which is most robust, the first case, p→0, 
the probability of the links failure is high, and accordingly, ATR acts as a crite-
rion for the number of spanning trees. A graph can be chosen with maximum span-
ning trees (such a graph near p = 0 is optimal); however, this assumption is not true 
because this probability is not too high in most networks.

According to [6], Shannon and Moore point out that the reliability polynomials 
for p→1 always provide a similar assessment to the edge connectivity, although it 
may omit the effect of adding edges to the network. In other words, a graph with 
the largest edge connectivity and the least number of cutsets with the minimum size 
(such a graph would be optimal near p = 1) will be chosen. However, the ATR cri-
terion gives a more realistic interpretation of the robustness when p→1. Hence, it 
is recommended to use the reliability polynomials at different intervals, especially 
p → 1 for evaluating the network robustness; because in real-world networks, there is 
rarely links’ failure [27].

On the other hand, when there is no knowledge of the value of p, how can one 
make a decision? In [13], Brown and his colleagues have introduced and evaluated 
the average reliability measure of the graph, which is ATR integral in the range [0, 
1]. Their proposed criterion is, in fact, an alternative for uniformly reliable networks. 
Although the average reliability computation is NP-hard and its calculation is as dif-
ficult as the reliability polynomials computations, these authors have provided some 
strategies to moderate the average reliability that do not necessarily require the reli-
ability polynomials computation.

2.2.1 � Calculating the coefficients of reliability polynomial

In this section, we briefly review some of the computation methods of reliability 
polynomials’ coefficients. Then, we describe in more detail the proposed methods, 
which attempt to accurately compute each polynomial coefficient.

If l is the minimum cardinality pathset, then for i < l, Ni = Fm−i = 0 . In 2TR, a 
pathset with minimum cardinality is a short path between s and t that is computed 
in linear time. In ATR, this is equivalent to a spanning tree, so l = n − 1. Finally, in 
KTR, the minimal Steiner tree will be specific for k vertices, which is NP-complete. 
Thus, in 2TR, Nl is the number of short paths and it is equal to the number of span-
ning trees (tree number or graph complexity) in ATR; it is a solution to calculate the 
number of these trees using Kirchhoff’s matrix theorem [28].

(8)Nl = (−1)i+j det(Li,j)
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In fact, Nl = κ(G) (the edge connectivity of the graph G) in which κ(G) is the 
minor of Laplacian matrix, defined as L = D − A, where D is the degree diagonal 
matrix and A is the adjacent matrix of graph G. This computation can be done in the 
polynomial time.

Clearly, the reliability polynomials are a polynomial with integer coefficients. 
Satyanarayana and Chang [29], using the dominating set theory, proved that the coef-
ficients’ signs of these polynomials in the intermediate variable p will change. If c 
is a minimum cardinality cutset, then for i < c, Ci = 0. Similarly, Nm−i =

(
m
m−i

)
, i < c . 

Using the network flow algorithm that is repeated for each pair of vertices, the 
parameter c can be computed in the polynomial time. Thus, we get

Other coefficients may be computationally efficient, but the complexity of the 
2TR, ATR, and KTR is different. As we know, the F-set is a set of links that comple-
ment a pathset and Fi is the number of these F-sets with the size of i edge. Because 
every set of links is either a cutset or an F-set, so Fi + Ci =

(
m
i

)
 and if we consider 

d = m − l, there is

It should be noted that in the ATR, which we consider in this paper, the values 
of l, c, Ni and Nl are computable at the polynomial time. In addition, the parameters 
Nm−c−k, Nm−c and Nm−i can be computed at the polynomial times. However, the cal-
culation 

∑m

i=0
Ni of the order of complexity is NP-complete [5].

If we can identify minpaths, then we can compute the reliable polynomials using 
the principle of inclusion–exclusion. Assuming that P1, P2, …, Ph are pathsets, the 
probability that all edges of the minpath Pi are operational is presented with Ei; then, 
probabilities of occurrence of one or more than one Ei are:

3 � The proposed methods

Up to now, various methods have been proposed to calculate the coefficients of reli-
ability polynomials discussed in Sect. 2. The problem with all of these algorithms 
lies on their recursively, which increases their computational complexity. If the 

(9)N0, ...,Nl−1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Ni=0

,

unknown

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Nl,Nl+1, ...,Nm−c−1,Nm−c,Nm−c+1, ...,Nm

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Ni=(mm−i)

(10)F0, ...,Fc−1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Fi=(mi )

,Fc,

unknown

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Fc+1, ...,Fd−1,Fd+1, ...,Fm

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Fi=0

(11)R(G, p) =

h∑
j=1

(−1)j+1
∑

I⊆{1,2,...,h}
|I|=j

P{EI}
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number of links (or more precisely the difference between the number of links and 
nodes) exceeds a certain level, the accurate calculation of the reliability polynomials 
becomes practically an integral problem. Thus, it can be concluded that almost none 
of the algorithms for calculating the reliability polynomials coefficients can be use-
ful for a complex network, especially with large dimensions.

In general, we have methods based on stochastic algorithms (approximation) as 
well as the use of interpolation for inaccurate calculation of the reliability polynomi-
als. In the following, we present new ideas for both approximate and interpolation-
based methods, and then, we evaluate these ideas through next sections.

3.1 � The approximation approaches

As mentioned before, the reliability polynomials can be overwritten in the various 
forms, which we have shown in Sect. 2 (Definitions 10–12). We also note that these 
forms can be converted to each other, and because of the continuity of the F-form 
method (Eq.  (7)), we use it as an equation for computing the exact coefficients of 
reliability polynomials. In Eq. (7), m is the number of edges and Fi is the number of 
connected subgraphs obtained by removing i edge from the graph.

For a given graph, which has m edges and n nodes, it can be seen that if we 
remove more than m − n + 1 edges from the graph, then the number of edges is 
smaller than n − 1 and the graph is completely disconnected. This means that in all 
graphs, Fi will be zero for i greater than m − n + 1. In general, we need to calculate 
the Fi recursively. To calculate Fn in a loop, remove an edge at each time, calculate 
Fn−1 for the resulting graph and then add all together.

The estimated algorithms can be divided into two general categories: top-down 
and bottom-up [21, 23]. All of these algorithms estimate Fi and then substitute Fi in 
F-form equation (Eq. (7)) to obtain the final polynomial.

The top-down algorithms start from the graph itself and remove one edge from 
the graph each time to reach a tree. However, in bottom-up algorithms, it starts from 
a spanning tree and every time an edge is added to the tree. This is precisely why 
top-down algorithms calculate the low coefficients of the reliability polynomials (or 
Fi) with small i. Similarly, the higher coefficients (Fi with large i) in the bottom-up 
algorithms have more accurate computation.

In the top-down algorithms [23], m–n + 1 edges are eliminated by a uniform 
probability distribution and randomly from the graph, at first. Then, at each step, 
the number of edges that can be deleted and the graph remains connected is stored. 
Finally, by multiplying these values together and dividing the product by the permu-
tations, we will be able to estimate Fi. Simply, instead of the computing to remove 
each edge, one edge can be represented as the rest of the edges, and instead of the 
tree being fully produced, only one path from root to leaf produced. Since this is 
ultimately done many times, their average will be calculated. It is expected that the 
estimated Fi is closer to actual Fi. However, as the index i becomes larger, the differ-
ence between the estimated value and the actual value increases.

The general approach of the bottom-up algorithm is similar to the approach of the 
top-down algorithm. However, the difference is that a spanning tree is selected from 



9753

1 3

Efficient methods for computing the reliability polynomials…

the graph at first, and then, one edge is added each time in the bottom-up algorithms. 
Augmenting an edge is based on a probability, and unlike the top-down algorithm, it 
does not happen randomly. According to starting of a spanning tree and the estimation 
operation, the larger the index i, the smaller the difference between the estimated value 
and the actual value [21, 23].

In summary, in both top-down and bottom-up approaches, if the difference between 
the number of edges and nodes in a given network is very high, the estimated polyno-
mial difference with the original polynomial is very large, too. Because it will increase 
the primary, (secondary) Fi will be very different from their actual values. In this paper, 
by proposing efficient methods, our main goal is to reduce this fundamental problem in 
estimation methods.

3.2 � Methods based on random algorithms

In the previous section, we analyzed the problems with top-down and bottom-up 
approaches. In this section, we aim to illustrate the approximating and random algorithm-
based methods for solving these problems. At the beginning, we express a new approach 
to compute Fi. Then, we present some efficient approximating methods how we combine 
Fi from different methods (top-down, bottom-up, and the proposed method) to achieve Fi 
that have the least difference with their actual values. These methods are discussed and 
expressed in this section. We analyze them later in the networks with the sufficient size to 
calculate the values of Fi and the reliability polynomials, accurately.

3.2.1 � Estimating the Fi values: a novel iterative method

In the original F-form (see Eq.  (7)), Fi values denote the number of connected sub-
graphs that emerged by removing i edges from the graph. Using this definition, we try 
to estimate Fi accurately. Assuming that m edges exist in a given graph; then, the total 
number of subgraphs with the elimination of i edges (with m − i edges) will be equal to (

m

m − i

)
.

To identify Fi, one of the solutions is the drawing all of these subgraphs and then 
the enumeration of their connectivity number. However, such a scheme would occur 
extremely time-complexity due to the dramatic increasing the connectivity number.

Thus, another way to tackle this problem is to select i edges of the network randomly 
with assuming to have the iteration_no and then remove them. Next, we enumerate 
which subgraphs that equals to iteration_no (may also be iterative) have the connectiv-
ity feature, we display them as connected_no. The quantity of Fi is calculated by replac-
ing the above values in Eq. (7). Since the values of Fi are necessarily integers, then it is 
essential to round them. Therefore, we get

where the meaning of symbol ⌈⋅⌋ is the rounding operator.

(12)Fi = ⌈Connected_no
Iteration_no

×

�
m

m − i

�
⌋



9754	 F. Safaei et al.

1 3

The main challenge in this scheme is the number of iterations (actually the itera-
tion_no) that needs to remove an edge from a given network. If this value is large, 
it may increase the complexity even more than the exact computation. Even if this 
value is negligible, it may lead to an incorrect result that is very different from the 
correct values. The idea behind this approach is derived from the fact that a number 
of samples from a statistical population are randomly selected and claimed to repre-
sent the whole population.

We considered this number as a constant number (for example, 100), at first. 
Then we observed during some experiments for a given graph with 10 edges, to 
remove one edge, the elimination process would be performed 100 times. However, 
if we chose all the modes, we only needed to do 10 times.

For this reason, an intuitive consequence is that the iteration_no depends on (
m

m − i

)
 . It should be noted that a maximum state is selected once. Hence, itera-

tion_no can be calculated as:

The experimental results for the small-sized networks, which have accurate val-
ues of their reliability polynomial coefficients, are presented in the performance 
evaluation section (see Sect. 4). Further, a new method is compared with top-down 
and bottom-up approaches. The proposed scheme is referred as an iterative method 
because of its duplication.

3.2.2 � Combining Fi values obtained from different approaches

In this section, we aim to come up with ideas for combining the Fi’s captured from 
different approaches (top-down, bottom-up, and iterative method which is presented 
in the present study). The goal is to make the final Fi as close to the actual Fi as pos-
sible. To combine the desired values together, two different ideas are presented in 
this section.

3.2.2.1  Smart merging of Fi’s  Usually, when we have a set of values and want to use 
them to reach the final values, the simplest way can be the average. However, there 
is a set of information on Fi derived from each method that can be used more pre-
cisely to obtain the final Fi. The following information about Fi derived from different 
methods is.

•	 According to the argument in the current section, the value of Fi for small i in the 
top-down algorithm is closer to the actual values

•	 In the bottom-up approach, the Fi value for large i is closer to the actual value
•	 In the proposed iterative scheme in the present study, since the estimation is per-

formed independently of the start of a tree or graph as well as the deletion/addi-
tion of edges, it can be argued that the differences obtained from Fi of the real 

(13)iteration_no =

√(
m

m − i

)
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values follow a uniform distribution. Accordingly, it can be claimed that each 
part of Fi is approximately a distance equal to the actual value

Based on the above information, a method for integrating Fi’s can be presented. 
Small Fi from the top-down algorithm, large Fi from the bottom-up algorithm, and 
middle Fi from the proposed iterative approach are extracted. The significant point 
in this scheme is to find the appropriate locations (i.e., the indices i that should be 
used) to perform the integration process.

Obviously, these indices depend on the number of Fi. Next, we designate these 
two values as low and high threshold. As mentioned earlier, in all graphs, the values ​​
of Fi for i > m − n + 1 are zero. On the other hand, for all connected graphs, which 
the reliability polynomials are defined, F0 = 1. For this reason, it is necessary for 
each graph to calculate Fi for 1 ≤ i ≤ m − n + 1 whose number is m − n + 1.

Through simulation experiments, it can be seen that the best results are obtained 
if the following values assigned to the thresholds

where Thresholdlow and Thresholdhigh refer to the upper and lower thresholds, 
respectively; m is the number of edges and the parameter n is the number of nodes in 
the graph. Moreover, the meaning of symbol ⌈⋅⌋ is the rounding operator.

The following equation is employed to integrate the Fi’s and reach their final 
values.

Figure 1 depicts the pseudo-code for the integration approach of the three men-
tioned algorithms. The input is a given graph, and the output is a vector of Fi val-
ues. The parameters m and n represent the number of edges and nodes in the graph, 
respectively. As can be seen, only the required number (and not all values) of the Fi 
values is calculated for each algorithm. This will not cause an unnecessary increase 
in the execution time of the proposed integration process.

In the pseudo-code, Lines 9–18 of the integration process compute the top-down 
method for values of i smaller than Thresholdlow. Then, the graph is returned to its 
original state (Line 19) and from lines 22 to 28, the applied algorithm is as the same 
as the bottom-up approach. From Lines 29 to 40, the calculation method is the pro-
posed iterative scheme. Finally, the achieved vector, which is formed gradually dur-
ing the execution of its code, is the result of the algorithm that be returned by the 
function.

It is common to execute the approximate algorithms to compute Fi up to 100 or 
1000 times and then average the values obtained and, after rounding, the final Fi 

(14)
�

Thresholdlow = ⌈0.3 × (m − n + 1)⌋
Thresholdhigh = ⌈0.7 × (m − n + 1)⌋

(15)Fi =

⎧
⎪⎪⎨⎪⎪⎩

1

Top_Down

i = 0

1 ≤ i ≤ Thresholdlow
Iterative Thresholdlow < i < Thresholdhigh

Bottom_Up

0

Thresholdhigh ≤ i ≤ m − n + 1

i > m − n + 1
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Fig. 1   Pseudo-code for integration approach
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to calculate the polynomial is replaced in the main function [21, 23]. In the above 
idea, we have done the same thing and implemented the integration approach up to 
1000 times. Obviously, the higher number of executions, the higher precision of the 
resulting polynomials. To make the comparison of the results fair, we implemented 
other schemes similar to this method as many times. In the following section, it is 
shown that the integration process will perform better and more accurate in com-
parison with a number of graphs.

3.2.2.2  Integrating the coefficients according to Benford’s law  In recent years, many 
articles about Benford’s law have been published in a variety of fields including 
accounting, computing, statistics, etc. [30]. In the proposed approaches, usually the 
digit on the left of the number as a random variable follows the uniform discrete 
distribution, and the probability of each digit at this location is one-ninth. However, 
in some cases, the starting digit has a right-skewed discrete distribution in which the 
digit 1 has the highest probability; the least probability belongs to digit 9.

Related studies have shown the Benford’s law as an example in electricity sub-
scriber accounts, stock prices, population numbers, death statistics, the number of 
candidates in constituencies, and even polling stations, length or width of the river, 
financial bills and tax returns, Fibonacci series, molecular weight of materials, etc. 
[31]. A number of articles have been presented to detect fraud due to create numbers 
or information verification in different domains of this field.

If the random variable D1 represents the first digit on the left of a given number, 
then according to Benford’s law, D1 has a discrete distribution as

In 1995, according to Hill’s research [32], it was found that this rule was not lim-
ited to the first significant digit and could be extended to higher digits. In order to 
apply the Benford’s law in a set, it is always necessary to prove that this set can com-
ply with the Benford’s law or not. In this study, we consider a very simple case of 
Benford’s law, the probability of the most valuable digit.

In some cases, the lack of enforcement of the Benford’s law is quite intuitive. 
For example, if we consider the age of politicians in a society as a statistic sample, 
then the probability of 1 as valuable digit of their age (that means between 10 and 
19 years or more than 100 years) is almost zero, and it is more likely to reach 4 or 5 
numbers. In these circumstances, it is reasonable to observe that such a sequence of 
numbers does not follow Benford’s law. Where this is not the case, it is usually pos-
sible to reject/prove the compliance by simulating, collecting, and analyzing a large 
amount of data.

For the problem addressed in this paper, which is achieving the final values of Fi 
computed in three methods, if it can be proved that the numerical values of the Fi 
or even the final coefficients, in terms of a set of numbers, follow Benford’s law, an 
algorithm can be presented for their optimal integration.

To achieve this goal, we analyzed a large number of graphs that their relia-
bility polynomial and their corresponding Fi coefficients were determined. It is 

(16)PD1(d1) = log10(1 +
1

d1
) , d1 = 1, 2, ..., 9
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concluded that the Fi values do not comply with Banford’s law because they are 
numerical and countable. However, it is interesting to note that the final reliabil-
ity polynomial coefficients fully comply with this law.

It is difficult for us to prove that reliability polynomial coefficients are consist-
ent with Benford’s law. If the numeric values of Fi followed this law, it would be 
easy to choose a combination of Fi that is closest to Benford’s values (it means 
less difference). However, in the current situation, it is required to identify the 
final polynomials, and finally, we ought to choose the case whose the final coef-
ficients are more in line with Benford’s law.

The number of Fi that equals m − n + 1 can be determined from three different 
approaches (namely top-down, bottom-up, and the proposed iterative scheme). By 
combining these three sets of Fi, 3 m−n+1 reliability polynomials can be obtained, 
which are probably distinct. This distinction is due to the probability of having 
the same value for the estimated Fi by two different methods for a given i. In this 
case, selecting each of them will lead us to the same polynomial.

Note that 3 m−n+1 means three possible choices for each Fi that are multiplied 
together (the principle of multiplication). If m − n + 1 is small, the corresponding 
reliability polynomial can be computed, and finally, the polynomial is selected 
whose coefficients have the greatest features of Benford’s law. However, if 
m − n + 1 is a large number (otherwise, it does not need for approximate computa-
tion), one has to think of another solution.

When m − n + 1 is a large number, the final polynomial in all three methods is 
computed. Then, it is necessary to see which of the final coefficients of these pol-
ynomials most in line with Benford’s law are. To do this, it is essential to count 
the number of coefficients starting with one, two, three, etc., and divide it by the 
total number to capture the percentages of each one. Then, the difference of these 
percentages with the Benford numbers (listed in Table 1) is calculated. Clearly, to 
determine the difference, the absolute value should always be considered.

After finding the best sentence out of the three existing sentences, we set it as 
the basis of the work. For this selection, we have three different choices.

1.	 If the sentence closest to Benford’s values was the polynomials from the top-
down approach, keep the first 10% of the Fi, change the last 10% of them with 
Fi of the bottom-up approach and consider these Fi as the basis. For the mid-
dle 80% of the Fi, we replace each with the other two Fi, calculate the poly-
nomials, and continue with this polynomial if the difference is lower than 
Benford values. The number of check states can be reduced from 3 m−n+1 to 
2 × 0.9 × (m − n + 1) = 1.8 × (m − n + 1) . The initial values of 80% of the middle 

Table 1   Different values of the Benford’s law

Digit 1 2 3 4 5 6 7 8 9

Benford’s law (%) 30.1% 17.6% 12.5% 9.7% 7.9% 6.7% 5.8% 5.1% 4.6%



9759

1 3

Efficient methods for computing the reliability polynomials…

are predicted to be appropriate; we begin this checking cycle separately for the 
80% of the middle from the end of this range.

2.	 If the sentence that was closest to Benford values was due to the polynomial of 
the bottom-up scheme, then it would hold the last 10% of the Fi, and the first 10% 
would replace with Fi of top-down method and consider such Fi as the basis. For 
80% middle of Fi, we do exactly like case 1. Note that this case is not the same as 
the previous one because the Fi considered, as basis in cases, 1 and 2 are different. 
On the other hand, for Case 2, we start checking for 80% of the middle from the 
beginning of same range.

3.	 If the sentence closest to Benford values is derived from the proposed iterative 
scheme, then we replace the first 10% of the Fi with the top-down method values 
and the last 10% of the Fi with the bottom-up values. Now, we consider these Fi as 
the basis and for 80% middle of Fi, the same as before, we replace each Fi separately 
with the other two Fi. The polynomials are computed, and if the difference was lower 
than Benford values, we will continue with this polynomial. In this case, starting at 
the beginning or end of the 80% middle of Fi for checking can be randomly.

As mentioned in the previous hybrid method, usually all approximate algo-
rithms that compute Fi are executed in a certain number, their values are averaged 
together, and after rounding, the final Fi is put in the main function to compute the 
polynomials.

In the hybrid approach, it is assumed that the Fi of each method are given into 
the integration algorithm as inputs after a number of runs (e.g., 1000 times). For 
this reason, in the integration approach, practically the three categories of Fi are the 
input of algorithm and its output is an optimal polynomial.

The significant point is that one of these three categories of Fi may be a category 
that has been derived from the integration of the other proposed methods with this 
approach. In other words, the proposed integration scheme can be applied and pre-
sented in future research. In the next section, we will show for some given graphs 
how the results of implementing the proposed method to integrate the three catego-
ries of Fi will improve the final reliability polynomial.

3.3 � An efficient numerical interpolation technique

In interpolation techniques, many points are extracted from the reliability polyno-
mial graph. Then, with utilizing such points, the best polynomial to fit these points 
is extracted. An approach, which the equation of a graph can be obtained based on a 
series of points on the graph, is called interpolation.

In this section, for interpolation of these points, the Monte Carlo method is uti-
lized to find the number of necessary and sufficient points of reliability polynomials. 
Further, the Legendre polynomial method, which is a powerful scheme for inter-
polation of points, is used. In what follows, we first need to briefly explain each of 
these concepts and then come up with the proposed method.
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The crude Monte Carlo method
To obtain the crude Monte Carlo equation, it is assumed that with a certain prob-

ability, such as p, we have to find the connectivity probability of graph G. The crude 
Monte Carlo method (CMC) simulates an N sample �1,… ,�N of i.i.d random vari-
ables with respect to the network structural functionφ. Based on the arithmetic mean 
of the N samples and according to the rule of large numbers, the estimator � is pre-
sented for R(G, p) = P{� = 1} while the estimator is unbiased and E[�] = R(G, p) . 
According to the central limit theorem (CLT), the confidence interval for R (G, p) 
can be determined.

In general, the Monte Carlo method as a numerical solution is often used for the 
problems whose processes are random, discrete, and time-invariant, and their analyt-
ical solutions are highly complicated. In this scheme, for every probability between 
zero, one, a failure for the edge in the network (with a specified accuracy for exam-
ple one thousandth) and a large number of times (e.g., 1000 times), the network 
edges are removed with a given probability and then check whether the final graph 
is integrated or disintegrated. Finally, the percentage of times the connected graph is 
computed helped us to obtain a value between 0 and 1 for the probability of failure. 
In fact, the number of these regular pairs is some points on the reliability polyno-
mial’s diagram.

In this article, we address the calculation of coefficients of the reliability polyno-
mial by an interpolation technique, which computes such coefficients in a polytime 
with the size of graph accurately. Modified Newton’s interpolation for estimating the 
polynomial on finite sets {pi} ∈ [0, 1] and the least squares error techniques are forti-
fied with together to find a feasible reliability polynomial of interpolation technique.

3.3.1 � Interpolating the coefficients of reliability polynomial

Orthogonal polynomials, as a collocation method, play an important and vital role in 
many spectral methods. One of the special series of orthogonal polynomials is Leg-
endre polynomials, which is the answer to the following differential equation.

The n Legendre polynomials are obtained by the following recursive equation.

Legendre polynomials are orthogonal on [− 1, 1] with weight function w(x) = 1.

(17)(1 − x2)
d2y

dx2
− 2

dy

dx
+ n(n + 1)y = 0

(18)
P0(x) = 1, P1(x) = x,

Pn+1(x) =
(
2n + 1

n + 1

)
xPn(x) −

(
n

n + 1

)
Pn−1(x), n ≥ 1

(19)

1

∫
−1

Pn(x)Pm(x) =
3

2n + 1
�m,n
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in which,�m,n denotes Kronecker delta function. In what follows, we discuss the 
interpolation with Legendre polynomials.

Based on the explanations given for interpolation, it is known that any continu-
ous function in the range [a, b] can be approximated as:

Since the Legendre polynomials in [a, b] are complete, then f(x) can be approx-
imated as:

The reliability polynomial function (i.e., R) is a polynomial of maximum n (the 
number of graph nodes). Hence, we get

where Pi are Legendre polynomials that are recursively derived from Eq. (18). For 
this reason, if one can define bi’s in the above equation, then the reliability polyno-
mials can be obtained. The following equation can be used to extract bi quantities.

in which xi’s are called the interpolation points. The quantities xi’s are the values of 
the interpolated x and R (xi) are the values of the interpolated y. Thus, if we obtain 
n interpolated points (n is not the number of graph nodes) using the Monte Carlo 
method and then put them in the above equation, the values of bi are achieved. If 
such bi’s are replaced with those Pi’s calculated from Eq. (18), then the reliability 
polynomial can be interpolated effectively.

3.3.1.1  Interpolating the  coefficients using legendre polynomials: a  proposed 
approach  First, we generate n points by the CMC method. Then interpolation 
process is carried out with Legendre polynomials, which is a0 + a1x + ... + anx

n a 
form of interpolation. It may be in the form of the extremum of a function that is 
why we derive the resulting polynomials, find the extremum points, and then apply 
the CMC method again for those points.

In the next step, we fit the polynomials amx
m

+⋯ + anx
n to these points as a 

fitting curve. Then we make derivation again and repeat it until the fitting curve 
is strictly increasing (decreasing) and has no root of zero. In the next step, the 
correction process of the coefficients is performed using the modified Newton’s 

(20)f (x) =

∞∑
i=0

aix
i

(21)f (x) =

∞∑
i=0

biPi(x)

(22)R =

∞∑
i=0

biPi(x)

(23)

⎛⎜⎜⎜⎝

b0
b1
⋮

bn

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

P0(x0) P1(x0) ⋯ Pn(x0)

P0(x1) P1(x1) ⋯ Pn(x1)

⋮ ⋱ ⋮

P0(xn) P1(xn) ⋯ Pn(xn)

⎞⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎝

R(x0)

R(x1)

⋮

R(xn)

⎞⎟⎟⎟⎠
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algorithm, which is shown with details in Fig. 2. The output of the algorithm will 
be the desired polynomial coefficients with the desired precision. Figure 2 reveals 
the pseudo-code of the modified Newtonian algorithm.

The algorithm works by taking a sequence of real numbers as input data and then 
using the integer part of these numbers as a starting point. In this algorithm, the 
symbol  ⌈⋅⌋ represents the rounding operator, which means rounding the vector, i.e., 
rounding each of its components. In the second line, f is a vector whose elements are 
provided by values of Eqs. 1 to n − m, and thus, the construction of the desired func-
tion in this section is done. In the third line, the function f is minimized, and in Line 
4 of the algorithm, a’[j] is the coefficients of RI where m ≤ j ≤ n. The goal of this 
algorithm is to obtain a polynomial that minimizes the mean-squared errors (MSEs) 
of the polynomials with the real coefficients (Rf − RI). For this purpose, Newton’s 
method is used to solve the equations (Lines 6–8 of the pseudo-code shown in 
Fig. 2). Thus, the obtained function is determined each time in terms of MSE crite-
rion. It should be noted that the meaning of J−1 in Line 7 is the inverse of the matrix 
J. Further, “ans” in Line 11 of the algorithm is the final solution vector. Moreover, 
in order to stop the algorithm, it is needed a stop condition that is considered by 
introducing “err” parameter, which means the quantity of error. Lines 6–10 form the 
body of an iterative loop, and the main purpose of this loop is to convert the mini-
mum coefficients obtained by the previous steps into the integer coefficients as much 
as possible. In addition, it should be noted that in Line 7 of the algorithm, the equa-
tions formed in the previous steps are solved using the Newton–Raphson method.

According to the definition of the function R, which is a polynomial, the ultimate 
goal here is to minimize A = ∫ 1

0
(Rf − RI)

2dx where Rf and RI are float and integer 
functions, respectively. These functions can be expressed in one of two polynomial 
forms a0 + a1x + ... + anx

n or amx
m

+⋯ + anx
n , n > m. It should be noted that these 

Fig. 2   Pseudo-code of the pro-
posed interpolation algorithm 
using Legendre polynomials
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polynomials expand the Legendre coefficients and then their integrals are calculated. 
The quantity A is a preliminary integral in terms of the polynomial functions and is 
therefore directly computable. If one is interested to minimize A, then it is necessary 
to minimize it for every 0 < ti < 1.

Hence, the main goal can be minimizing Ai = ∫ ti
0
(Rf − RI)

2dx , which also 
implies zero derivatives related to the polynomial coefficients, so we get

where ai are the interpolation function coefficients. Thus, in the proposed algorithm, 
the Jacobian matrix is constructed at first. In fact, there are n nonlinear equations 
here; the well-known algorithm for solving this nonlinear equation system is the 
Newton–Raphson algorithm that converts a nonlinear equation to linear one. How-
ever, it should be noted that the Obtained answers of the Newtonian’s approach are 
real. Therefore, in order to obtain the integer solutions, a modification to the New-
ton’s method has to be applied that these necessary modifications have been speci-
fied in Lines 9–11 of the pseudo-code in Fig. 2.

In addition, we also need an initial value (starting point), which comes from 
rounding the vector of the least squared errors. It is worth noting here that this 
starting point may not necessarily be the optimal answer, so we try to optimize the 
answer in the loop’s body in Lines 6–13. Using the proposed algorithm, it does not 
need to find the number of spanning trees. The number of these trees is predictable 
with a good approximation, and it is the strength of the suggested algorithm. In the 
next section, according to the simulation results, we present how the implementation 
of the proposed methods in this paper leads us to achieve an optimal polynomial is 
close to the exact reliability polynomial of a given graph. In what follows, we esti-
mate the computational complexity to assess the efficiency of the proposed interpo-
lation method.

To calculate the integral, one of the available efficient methods can be used. In 
the present study, the numerical method proposed by Batra [33] has been utilized. 
According to [33], the computational complexity of integral in Line 2 has the execu-
tion order as O(n2h log n log log n) where h is the iteration step parameter. The exe-
cution order of Lines 3 and 4 is the constant as O(1). Indeed, the execution order of 
Lines 1 to 5 does not play a fundamental role in calculating the complexity order. 
To determine the main complexity, it is necessary to proceed from the iteration loop 
(Lines 6 to 13) of the algorithm. The execution order of Lines 7 and 8 is O(n3) and 
O(1), respectively. According to the study reported by Batra [33], the order of Line 9 
is O(n2h log n log log n) . The parameter k in Line 6 indicates the number of iterations 
in the loop body. Hence, the total complexity will be O(k(n2h log n log log n + n3)) , 
which is approximated by O(kn3) . Since the execution order of the integral is less 
than of the inverse matrix (J−1), O(n3) is dominated and its effect will be ignored.

As mentioned, k is the controlling parameter of the body of the iteration loop and 
takes the integer values 1, 2, and so on. Even if k is the form of order n, it will be n4 at 
worst, and if it is the form of n2, it will be n5 at worst. Thus, it is certainly not a kind 
of the exponential complexity order. The time complexity of the interpolation method 

(24)
�Ai

�a1
=

�Ai

�a2
= ⋯

�Ai

�an
= 0
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suggested by Robledo et  al. [9] for the polynomials with the real coefficients has a 
uniform error boundary, and its complexity is reported as O(2m∕

√
N) , where m is the 

order of the graph (the number of edges) and N is the sampling size in CMC method. 
Obviously, by increasing the sampling size, the error and consequently the complexity 
of the interpolation method can be reduced. Due to the increase in the order and size 
of the graphs in real networks, Robledo’s scheme [9] has more complicated calcula-
tions; that is, the estimation of the reliability polynomial coefficients will be the form of 
the exponential order. Consequently, the interpolation method proposed in this study is 
more efficient and has a better degree of the complexity order.

4 � Experimental results

Nowadays, computer systems are becoming much more complex and growing rapidly. 
The result of this growth is the increasing necessity of tools and techniques to identify 
behaviors of systems accurately such as performance and cost over time, system life, 
and so on. Simulation and mathematical modeling are two major ways to achieve these 
goals.

The performance evaluation of a complex network based on the reliability meas-
urement can be a valuable measure. Since the measurement of reliability on the com-
plex networks is usually difficult, mathematical and simulation models as two ways in 
designing and predicting the network behavior have been considered. Hence, the ana-
lytical models are expanding for describing the complex network behavior. Since the 
mathematical models cannot fully describe the behavior of a network, the outputs of 
these models are compared with the actual values measured from the network to vali-
date the model. If the difference is within an acceptable range, it can be claimed that 
the presented analytical model is valid.

In Sect.  3, four approaches are discussed. In the current section, implementation, 
analyzing and evaluating of such methods are presented. The proposed schemes in the 
previous sections are summarized as follows.

1.	 Estimation of Fi using a proposed iterative method
2.	 Smart integration of Fi values extracted from top-down, bottom-up, and iterative 

methods
3.	 Integration of Fi values captured from top-down, bottom-up, and iterative methods 

using Benford’s law
4.	 Obtaining the reliability polynomials using interpolation of Legendre polynomial

The validity of applying each of the above approaches with details is explained in 
the previous section. In this section, the simulation results obtained by implementing of 
mentioned approaches above on a set of graphs are presented.
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4.1 � Sample graphs

In the previous section, the importance of simulating the complex networks was 
emphasized. To evaluate each complex network using simulation, we need a set of 
graphs. These graphs can be divided into two types of application-driven (real) or 
synthetic. In the application-driven model, the resulting graph is related to a real 
complex network, whereas in the synthetic model, the resulting graph is constructed 
based on the possible parameters of the model.

From another perspective, the sample of graphs can be divided into two cate-
gories. In the first category, the reliability polynomial coefficients can be obtained 
exactly. In the second, those coefficients because of the large number of nodes and 
edges (increasing the graph size) are not computable practically and must be calcu-
lated approximately. In the following, the evaluation parameters will be described, 
and we will find that these parameters will vary depending on how accurately we 
can calculate the polynomial. In general, the reliability polynomials cannot be deter-
mined for large-size networks exactly, it is necessary to use the numerical values 
derived from Monte Carlo simulations. Hence, the evaluation parameters under 
these conditions will be different.

Figure  3 demonstrates the simulated graphs as the samples. All graphs are 
selected in the size for which the exact value of the reliability polynomial coeffi-
cients can be calculated. These twelve graphs are simulated to evaluate the perfor-
mance and effectiveness of the proposed methods. In this set of graphs, the topolo-
gies such as semi-mesh (G11), graphs with low degree nodes (G5), graphs with high 
degree nodes (G10), complete graph (G8) and others have been simulated. In addi-
tion, the specific details of these graphs, including the number of nodes, the num-
ber of edges, and the maximum degree of the reliability polynomial for each of the 
graph samples, are listed in Table 2.

5 � Performance evaluation

In this section, the various evaluation measures are examined. Obviously, all evalu-
ation measures must determine the difference between the exact values of the reli-
ability polynomial provided by the analytical model and the approximate values 
resulting from the simulation. If we have the exact value of the coefficients, then 
the difference between the two diagrams, i.e., the discrepancy between the actual 
and the approximate ones is determined as an evaluation metric. If the exact values 
of the coefficients are known, the following criteria can be utilized to quantify the 
accuracy of the proposed method.

•	 MSE1 Criterion: Usually this criterion is used when trying to determine the dif-
ference between two graphs. In this criterion, it is assumed that the two graphs 
are plotted and the difference between them is to be calculated. To calculate 

1  Mean Squared Error.
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the difference between the graphs, with predetermined precision, consider the 
points as X-axis of diagrams (the probability value of p). Then, these points 
are assigned to both graphs, and we obtain two values for Y-axis (i.e., the cor-
responding reliability value). These two values are subtracted from each other 

Fig. 3   The sample graphs used for different proposed methods

Table 2   Characteristics of the sample graphs illustrated in Fig. 3

Graph G #Nodes #Edges Min-degree 
of R(G,p)

Graph G #Nodes #Edges Min-
degree of 
R(G,p)

G0 7 14 8 G6 7 10 4
G1 6 9 4 G7 22 32 11
G2 6 7 2 G8 5 10 6
G3 10 20 11 G9 5 6 2
G4 10 20 11 G10 10 17 8
G5 21 26 6 G11 16 24 9
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and the power is doubled to eliminate the positive or negative issues. Then, these 
values for every X are averaged. Obviously, the higher the accuracy of the X (the 
distance between two X’s from each other or their number in a fixed interval), 
the higher the accuracy of the MSE value. MSE criterion for the exact reliabil-
ity polynomial (R) and the estimated reliability polynomial captured from a pro-
posed approach (R′) can be obtained from the following equation.

•	 Fi-Difference Criterion: Since the accurate and estimated values of Fi are avail-
able, the difference of Fi’s can be averaged. As mentioned earlier, the index i in 
Fi can range from 0 to m − n + 1. This criterion is called EFi. For the two reliable 
polynomials (with Fi) and the estimated polynomials (with F’i), this criterion is 
obtained by:

•	 The difference of the final coefficients of the reliability polynomials: Another cri-
terion that can be used to evaluate the proposed methods is to compare the coef-
ficients of the two reliability polynomials after replacing the numerical values of 
Fi. In this criterion, like the previous criterion, the absolute value of the differ-
ence between the final reliability polynomial coefficients is calculated and finally 
the mean of them is obtained. The final coefficients of the reliability polynomials 
are also from p0 to pm−n+1. This is referred as Eci.2 For two exact reliability poly-
nomials (with Ci coefficients) and estimated reliability polynomials (with C’i), 
this criterion is given by:

We mentioned earlier that if for any reason the exact value of the reliability poly-
nomials coefficient is not available, then we need to use the values derived from 
the Monte Carlo method to perform the evaluation. The numerical values of Monte 
Carlo simulation are actually pointed on the graph. Since the exact values of Fi and 
Ci are not available in this case, we cannot use the EFi and Eco. In this case, the only 
evaluation criterion will be MSE. The Monte Carlo simulation output yields a pair 
of ordered X and Y, where Y as the exact output values of the reliability polynomial 
and X as the input values to the approximate polynomial. The MSE criterion for 
evaluating the estimated reliability polynomial (R’) with n numerical pairs (xi, yi) 
derived from Monte Carlo simulation is given by:

(25)MSE =
1

n + 1

∑
i

[R(i) − R�(i)]2 i ∈ {0,
1

n
,
2

n
,
3

n
, ..., 1}

(26)EFi
=

1

m − n + 2

m−n+1∑
i=0

|Fi − F�
i
|

(27)ECi
=

1

m − n + 2

m−n+1∑
i=0

||Ci − C�
i
||

2  Error of coefficient.
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5.1 � Analyzing the proposed methods

In this section, the proposed methods are simulated and evaluated. In order to 
do validation, the empirical experiments have been conducted using MATLAB 
due to the ease and efficiency of the matrix operation. First, the exact methods to 
determine the coefficients of reliability polynomial including top-down and bot-
tom-up algorithms are implemented, and then, their performance will be evalu-
ated for some given graphs. Then, all the methods are implemented separately 
and evaluated based on the evaluation metrics mentioned above.

Initially, for each of the twelve graphs (see Fig. 3), the reliability polynomial 
diagrams for all methods are plotted. The reason is to present a more compre-
hensive overview of each of these methods. In Fig. 4, the reliability polynomial 
diagrams are illustrated for graphs G0 to G11, respectively. In these diagrams, the 

(28)MSE =
1

n

∑
i∈xi

[R�(xi) − yi]
2

Fig. 4   Reliability polynomial diagrams, Rel(G, p), for graphs G0 to G11 in terms of the probability of 
link failure (p) in Exact, Top-Down, Iteration, Combination (smart merging), and Interpolation methods
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exact values ​​obtained by the iterative method, the smart merging of coefficients, 
the integration approach using Benford’s law, and finally, the proposed interpola-
tion method with Legendre polynomials have been simulated and demonstrated.

Comparing the diagrams in Fig. 4 can yield very useful results on the different 
approaches that estimate the coefficients of reliability polynomials. The following 
is referred to them.

1.	 Graphically, (0, 0) is the starting point and (1, 1) is the end point as expected in all 
diagrams, but how to get this point is also important. For example, if we compare 
the two graphs G0 and G5, it can be seen that when p reaches 0.6, the reliability 
of the graph G5 is almost zero. However, the output value excludes of zero after 
passing p of 0.2 at G0. This phenomenon suggests that G5 graph is more tolerable 
than G0.

2.	 In graph G2, Fi values are so small, which all the methods are fully able to 
approximate the coefficients as well as the exact reliability polynomials. It is 
observed that all diagrams are located on each other.

3.	 In some graphs, such as G3 and G4, the output of some of the estimated methods 
(available methods and not the proposed methods in this paper) exceeds the value 
of 1, which is false due to the normal reliability level that is between zero and one. 
This problem is rooted in the estimation method in some upward conditions.

4.	 In graph G9, which is a small size graph, although all methods are expected to 
calculate the reliability polynomial accurately, each of the two top-down and 
bottom-up algorithms for one of Fi had one error unit, and this error did not occur 
in the iterative method. It is worthy to note that in the smart integration method, 
we have finally been able to achieve the exact value, although we have used the 
values of Fi of all three top-down, bottom-up and iterative methods. That is why 
we call it the smart integration method because we know exactly which values of 
Fi in each method should we extract to be close to the exact value.

5.	 In graph G8, the reliability diagram for the two top-down and bottom-up meth-
ods exceeds 1. We have already stated the reason for this. The important point in 
this situation is that the method of integration by the Benord’s law has not been 
adequately overcome this problem, while the smart integration method has been 
able to satisfactorily solve this problem, and it has not provided a value more than 
1. Because it knows, exactly what values of Fi will take to bring the result closer 
to the exact value.

It is not clear from the diagrams of Fig. 4 that which method is better than the 
other methods. Hence, for a fair comparison it is recommended to utilize the eval-
uation criteria set out in Sect.  4. Therefore, the reliability polynomials of sample 
graphs are comparable. One criterion is MSE, in which two diagrams are compared 
point by point and the difference between them is measured. In Table 3, under the 
MSE criterion, the comparison values for each of the top-down and bottom-up meth-
ods as well as the four methods proposed in the manuscript with the exact value of 
the coefficients of reliability polynomial have been evaluated. As shown in the mean 
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row of the table, the mean of MSE for each of the twelve plots is calculated. Finally, 
at the last row, all normalized averages to the best value are expressed.

According to the normalized values, the iterative approach performed bet-
ter than the other methods. With a very slight difference, the smart integration 
method comes in second. With a slight difference, third and fourth ranks are the 
interpolation approach (based on the Legendre polynomial) and the integration 
method (based on the Benford’s law), respectively. The last two ranks belong to 
the top-down and bottom-up algorithms [21, 23], which are the old random algo-
rithms. In summary, the results listed in Table 3 show that among all the meth-
ods, the efficiency and performance of the proposed methods were better than the 
two top-down and bottom-up algorithms.

Another evaluation parameter introduced in Sect. 4 is the difference values of Fi 
with their exact values. The values are depicted in Table  4. The last two rows of 
the table are similar to Table 3. According to this criterion, the smart integration 
approach gets the best rank, the second and the third ranks are assigned by iterative, 
and interpolation approaches, respectively. Moreover, the integration method (based 
on Benford’s law) is worse than the bottom-up algorithm while almost the differ-
ence values for all three top-down, bottom-up, and Benford methods are close to 
each other. The worst-case of the integration method using Benford’s law can have 
the same results as the worst-case in the three top-down, bottom-up and iterative 
algorithms. This criterion tries to have an equal and fair view of all the approaches. 
However, it is possible that it does not move in the right direction.

Table 3   The values of MSE obtained by applying different methods

The method

Graph Top-Down Bottom-to-Top Iteration Smart Merg-
ing

Benford’s law Interpolation 
(Legend’s 
Polynomial)

G0 0.018707 0.001278 1.11E-05 1.38E-05 2.62E-05 0.000432128
G1 0.000181 0.003381 4.81E-06 0.000106 0.000139 0.000332582
G2 0 0 0 0 0 0
G3 0.0118 0.000375 4.59E-05 0.000133 0.000361 1.13E-05
G4 0.000102 0.00212 8.82E-06 2.08E-06 0.00307 9.23E-06
G5 2.16E-05 4.28E-05 8.40E-07 7.54E-08 4.95E-06 1.77E-05
G6 8.31E-06 0.001394 3.40E-06 0 0.000212 2.83E-06
G7 5.02E-05 0.00161 3.85E-06 1.28E-05 0.000571 5.98E-05
G8 0.001106 0.004062 0.000206 1.54E-05 0.001212 5.15E-06
G9 0.000155 0.001164 0 0 0.000155 0.00062098
G10 0.000143 0.006375 2.63E-06 2.63E-05 5.76E-05 0.000191181
G11 0.000105 0.000749 8.04E-06 1.36E-05 0.000458 3.50E-05
Mean 0.002698 0.001879 2.46E-05 2.69E-05 0.000522 0.000143166
Normalized 

to the best 
result

109.5634 76.30813 1 1.092221 21.20915 5.8131709
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Table 4   The difference between the values of Fi captured by the proposed methods

The method

Graph Top-Down Bottom-to-
top

Iteration Smart merg-
ing

Benford’s 
law

Interpolation 
(Legend’s 
polynomial)

G0 72.444444 35.888889 18.6666667 12.5555556 26.4444444 69.3333333
G1 2 7.4 0.4 1.8 1.8 0.4
G2 0 0 0 0 0 0
G3 6588.9167 1430.6667 1150.33333 1922.41667 2965.91667 449.416667
G4 929.75 3920.5 688.833333 613.916667 2902.83333 559.75
G5 806.42857 49.857143 142.142857 26.8571429 643.142857 392.857143
G6 1.4 2.8 0.6 0 1.6 0.8
G7 239,121.17 211,302.92 64,697.4167 46,718.75 213,387.25 115,828.917
G8 9.1428571 7.1428571 4.57142857 1.28571429 4.71428571 2.57142857
G9 0.3333333 0.3333333 0 0 0.33333333 0.66666667
G10 170.66667 462.77778 44.8888889 124 133.666667 159
G11 2243 3639.1 3427.9 2694.1 3637.5 3540.3
Mean 20,828.771 18,404.949 5847.97943 4342.97348 18,642.1001 10,083.6677
Normalized 

to the best 
result

4.7959701 4.2378681 1.34653814 1 4.29247386 2.32183496

Table 5   Difference between the final coefficients obtained from the proposed methods

The method

Graph Top-down Bottom-to-
top

Iteration Smart merg-
ing

Benford’s 
law

Interpolation 
(Legend’s 
polynomial)

G0 6827.33333 235.8667 1106.6667 265.733 711.46667 1168.13333
G1 12.4 46.6 3.2 12 13.2 1.8
G2 0 0 0 0 0 0
G3 561,480.095 32,027.52 343,579.43 624,716 619,577.71 44,867.4286
G4 78,082.6667 101,831.4 360,365.33 33,153.2 161,572.19 30,985.7143
G5 7341.62963 155.5556 512.51852 28.6667 9685.3333 5463.03704
G6 7.27272727 4.181818 4.3636364 0 2.9090909 3.27272727
G7 22,918,587.8 5,915,185 3,511,588.1 9,325,555 46,449,984 25,325,758.5
G8 27.6363636 8.181818 34.909091 12.7273 86.727273 14.7272727
G9 0.57142857 0.285714 0 0 0.5714286 0.85714286
G10 614.444444 2839.444 1229.4444 5893.56 2389.1111 1796.11111
G11 11,208.48 74,048.56 376,988 61,626.2 74,045.92 450,690.64
Mean 1,965,349.19 510,531.9 382,950.99 837,605 3,943,172.4 2,155,062.52
Normalized 

to the best 
result

5.1321167 1.333152 1 2.18724 10.296807 5.62751516
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The third and the last criterion against which the methods can be compared, is 
the difference criterion for the final coefficients of the reliability polynomial. The 
numerical values shown in Table 5 have compared the different methods from this 
point of view. According to this criterion, the iterative method has the best ranking. 
It is interesting that the second rank belongs to the bottom-up algorithm. It should 
be acknowledged that the criterion for the difference of the final polynomial coef-
ficients is not at all a good measure since it does not actually consider the position of 
the coefficient in the reliability polynomials and what the coefficient of p is, and all 
coefficients are viewed with similar insight.

It is almost possible to say that the best evaluation criterion among these three 
criteria is MSE, which compares equitably and point by point the difference between 
the final diagram of the proposed method and the value of the reliability polynomial 
diagram. Putting this assumption based on the comparison, then it can be argued 
that all of the four proposed methods perform better than the two old top-down and 
bottom-up algorithms. Based on existing simulation experiments and the MSE cri-
teria, the mean error for the two top-down and bottom-up algorithms was 27.1% and 
18.8%, respectively. This value was reduced to 2%, 3%, 5.2%, and 14%, in iterative, 
intelligent combination, the combination based on Benford’s law and the interpola-
tion methods, respectively.

Another important point is that with the increase in the size of the graphs, it will 
be no longer seen this error reduction process. In other words, for large graphs, the 
percentage error reduction will not be linear, and it cannot be argued with the pro-
portionality ratio that if the error of the top-down algorithm is reduced from 27.1% 
to 27%, then the error of the iterative method will remain 20%. Nevertheless, clearly 
none of the four proposed approaches in the present study increases the time com-
plexity of the computation and thus improves the accuracy of the estimation to a 
much greater degree than the real state.

6 � Robustness analysis

Robustness in complex networks is one of the vital and important features and has 
become one of the important and growing research fields in recent years. So far, 
various criteria have been proposed to measure and evaluate the strength and flex-
ibility of networks that an important part of them is dedicated to the graph theory 
and its study.

Fault tolerance is a key consequence for evaluating and analyzing a network. 
Nodes and edges may be removed from the network due to faults, and as a result, 
the local or global characteristics of the network as well as its proper opera-
tion may change. Failures may not only reduce the operational and computational 
power of the network but may also alter the topology of the network and lead to its 
disconnection.

Extensive researches have been attempted in the related studies to evaluate the 
robustness of graphs and networks in order to explain the robustness of graphs 
against random failures and systematic attacks. In this section, we aim to introduce 
some of the most important of these measures and show how they can be interpreted 
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to assess the robustness of graphs. It is worth mentioning that our purpose is not 
about providing a comprehensive, completing research report on the types of robust-
ness metrics and comparing their effectiveness. Appropriate classification of robust-
ness metrics and finding similarities or inconsistencies between them is one of the 
esteemed research aspects in this field. However, the multiplicity and diversity of 
criteria for evaluating resilience and sometimes contradictions and inconsistencies 
in their interpretation may cause confusion for any researcher in explaining each 
of these measures. Therefore, accurate, appropriate and consistent classification of 
metrics, finding similarities and differences between them, as well as expressing the 
advantages and disadvantages of each and, most importantly, knowing a class of 
graphs that these measures can be used more reliable in them, can be considered as 
valuable and separate research work, solely.

6.1 � Classifying the robustness metrics

For selecting and categorizing the robustness measures, one can rely on the litera-
ture review and a wide range of related keywords. There are a number of robustness 
measures that some of them share similar characteristics. A basic question is “how 
the robustness measures can be assigned to the appropriate categories without over-
lapping?” By studying the properties of graphs that represent a particular subject, as 
well as the networks which can be generated by models, the difficulties ahead can be 
largely overcome. In summary, the following three main factors can be considered 
for selecting an appropriate measure.

a.	 Ability to apply the desired criterion to at least one type of graph
b.	 Direct measurement of one of the known aspects of the robustness graph
c.	 A clear relationship between the selected robustness criterion and one of the 

known characteristics of the graph

In addition, the characteristics considered for selecting the robustness metric can 
be summarized in the following five cases.

1.	 Graph type (i.e., simple, weighted, un-weighted, directed, or in-directed)
2.	 Being globally or locally (focusing on the connectivity of each node or extracting 

properties about the whole graph)
3.	 Static or dynamic network under evaluation
4.	 Co-domain of the robustness measure
5.	 Ability to calculate the robustness measure, which may be NP-hard or NP-com-

plete.

Thus, in the classification of graph robustness metrics, the following three major 
classes can be mentioned.

1.	 Distance-based metrics
2.	 Min-cut based metrics
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3.	 Spectral-based metrics

In the continuation of this section, we will analyze each of these categories and 
one of the most important measures of each category as a detailed example. It 
should be noted that each metric may belong to one or even more main classes and, 
in other words, the classes overlap with each other. Obviously, a good classification 
method should be able to reduce this overlap as much as possible. This important 
issue needs to be addressed in future studies.

6.1.1 � Distance‑based measures

Any measure in this class answers the important question of how the path length 
between two nodes can be related to the network robustness. Random failures and 
targeted attacks increase the distance between nodes, reduce the speed of data trans-
mission and increase the costs. For example, a node that is on average less distant 
from other network nodes can act as an important central node with high traffic 
throughput.

6.1.1.1  Diameter stability: persistence  For finite paths, the co-domain of diameter is 
in the range [1, n − 1]; otherwise, it is in the range [1,∞).

Definition 13  [34]: Diameter stability is the minimum number of nodes that must be 
failed to increase the diameter of the network.

This measure is important in graphs and communication networks because it 
shows how the latency of messages in the network may increase based on the failure 
of its nodes or edges. Usually, the vector called the persistence vector is defined as 
follows

where pi represents the worst case of the diameter of graph G when i is the number 
of faulty edges (nodes).

6.1.2 � Min‑cut‑based measures

The major issue in defining the classical connectivity is that it does not provide any 
information about which links or nodes are sensitive (critical) and it only refers to 
the vulnerability of networks. Hence, the metrics based on the min-cut can be seen 
as a derivation of the classical connectivity problem. Another problem is that the 
connectivity does not provide any information about the components and subnets 
that remain after the disintegration of the graph and does not evaluate the perfor-
mance degradation by the failure of independent nodes and links. In the measures 
based on the min-cut, the main problem is to find the minimum number of com-
ponents of the network, which their elimination will cause the disintegration of the 

(29)P(G) = (p1, ..., pn)
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network. Sometimes the problem is NP-complete, especially for graphs with large 
sizes.

6.1.2.1  Toughness  This measure indicates the survivability of a network, which was 
introduced by Chvátal [35]. This metric seeks to find how many connected compo-
nents in the underlying graph can be partitioned upon a failure occurs in a certain 
number of nodes. In the graph theory, toughness can be a measure of the connectivity 
of a given graph G.

Definition 14  [35]: For a given real number t, graph G is said to be t-tough if, for 
every integer k > 1, G cannot be decomposed into k different connected components 
by removal of less than tk vertices.

Mathematically, the toughness of G is the largest t for which the following ine-
quality holds

in which S is an arbitrary set of nodes and ‖S‖ is its cardinality. Moreover, ‖G∖S‖ 
indicates the number of connected components remains in G after removal (failure) 
of the nodes of set S.

If the number of components obtained by removing a set of vertices is always 
greater than the number of vertices removed, then the toughness of graph is 1. In 
addition, it is proved that the lower limit of toughness is kv/β0 where kv is the node 
connectivity and β0 denotes the independent number of graph. This parameter indi-
cates the size of the maximum set of nodes in which no two nodes in this set are 
directly connected to each other by an edge. This measure does not impose any con-
straints on the relative sizes of the components that remain as soon as the graph is 
disconnected. However, it is not a suitable practical measure for assessing the net-
work reliability. This can be the disadvantage of the toughness metric.

6.1.3 � Spectral‑based measures

Nowadays, an important part of algebraic graph theory is devoted to the study of 
the spectrum of an adjacent matrix of a graph, also known as a graph spectrum. 
By definition, the graph spectrum is matrices which uniquely represent the structure 
of a graph. For example, the spectrum of the adjacent, Laplacian, and the distance 
matrices.

6.1.3.1  Algebraic connectivity  Definition 15  [36]: Algebraic connectivity is the sec-
ond smallest value of the Laplacian matrix L of a graph. Eigenvalues of L can be 
ordered such that 0 = �1 ≤ �2 ≤ ... ≤ �n. Thus, the algebraic connectivity is equal 
to λ2.

(30)t ≤ ‖S‖
‖G∖S‖
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Algebraic connectivity can be considered as an instance of the graph connectivity 
and therefore a criterion for measuring the graph vulnerability. If and only if the 
graph is disconnected, then λ2 = 0; it will be equal to the total number of vertices 
of the graph when all nodes are connected. According to Fiedler’s theorem [36], 
the algebraic connectivity of any incomplete graph will not be greater than its con-
nectivity of the vertex and edge. In addition, the multiplicity of roots of the val-
ues aequals zero corresponds to the number of connected components of the graph. 
Hence, it seems that the larger the measure of algebraic connectivity, the greater the 
robustness of the graph. This metric is global and static that can be easily computed. 
It should be noted that the algebraic connectivity depends only on topology and is 
a de-normalized measure. Another disadvantage of this metric is that for a discon-
nected network, its value is zero, while there may still be sufficiently large connected 
components remaining in the network.
6.1.3.2  Number of spanning trees  A spanning tree is a subgraph that contains n − 1 
edges which contain all n vertices without any cycle. However, this definition is not 
unique; that is, a graph can have several spanning trees. One way for evaluating the 
robustness is counting all possible spanning trees for a given graph. The result is nor-
mally an integer that can grow exponentially. Baras and Hovarshti [37] have shown 
that the number of spanning trees in the graph abstraction of the communication 
system could be used as a reasonable measure for system robustness against the com-
munication topology changes.

According to Kirchhoff’s tree matrix theorem [28], all cofactors of Laplacian 
matrix of graph G are equal to the number of spanning trees. In the ATR-reliability 
problem, the number of min-paths is the same as the number of spanning trees.

A very interesting point to note here is that the reliability polynomial of a graph 
has a positive correlation to the number of spanning trees of that graph. It is shown 
that the reliability polynomial of graph G, when p→0, denotes the following equa-
tion [27]

in which �(G) indicates the number of spanning trees of graph G. Interestingly, this 
metric makes a similar decision with the reliability polynomials (when p → 0) about 
comparing the robustness of two arbitrary graphs G1 and G2. Mathematically, we 
get

In this manner, the reliability of the two graphs can be compared with each other 
through the number of their spanning trees. It should be noted that in real networks, 
the edge failures are rare and therefore the assumption of p→1 is more reasonable. 
However, when p tends to zero, the number of spanning trees will correspond to the 
reliability polynomial.

In order to have a fair and accurate assessment of the robustness of graphs, the 
values of the independence number, toughness, algebraic connectivity, and the num-
ber of spanning trees for the graphs G0 to G11 (see Fig. 3) are determined and listed 

(31)R(G) = �(G)pn−1 + O
(
pn−1

)

(32)if 𝜉
(
G1

)
< 𝜉

(
G2

)
, p → 0 ⇒ R

(
G1

)
< R

(
G2

)
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in Table 6. With these numerical quantities, in addition to the reliability polynomi-
als, a fair comparison of graphs based on their robustness can be achieved.

As mentioned before, to measure the robustness of graphs, suitable metrics are 
needed to capture the network capabilities adequately, including graceful degra-
dation, against all types of failures. Metrics such as the connectivity are usually 
worst-case criteria and have limited expressiveness. So, in another step, we looked 
for more expressiveness measures, some of which were mentioned above, and 
listed their quantitative values in Table 6. Another important metric is the diameter 

Table 6   Numerical values of independence number, toughness, algebraic connectivity, and the number 
of spanning trees for graphs G0 to G11 shown in Fig. 3

Graph Independence No. 
(β0)

Toughness (t) Algebraic connectiv-
ity (λ2)

No. of spanning trees

G0 2 2.5 1.55 720
G1 2 2 1.43 64
G2 2 2 1 14
G3 3 2.33 1.61 24,704
G4 5 1 1.65 24,693
G5 7 2 0.17 15,667
G6 4 0.75 1 45
G7 8 1.75 0.21 2,059,264
G8 1 4 5 125
G9 2 1.5 1 9
G10 6 0.66 1.23 2252
G11 4 3 1.36 208,328,480

Fig. 5   Comparison the robustness of G0 to G11 networks (shown in Fig. 3) based on the diameter persis-
tence (stability) in terms of the probability of link failure
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persistence (stability). According to this measure, one can evaluate the networks 
depicted in Fig. 3 and compare their resilience with each other.

Figure 5 reveals the comparison of the diameter persistence of graphs G0 to G11 
(see Fig. 3). The horizontal axis in this figure reveals the probability of link failure, 
while the vertical axis depicts the variations in the network diameter due to such 
failures. The smaller the variations, the greater the diameter persistence. For exam-
ple, the better grade belongs to the complete graph G8, and the graphs such as G5 
and G7, which correspond to real-world networks, have the lowest rank among the 
networks and have the lower diameter stability.

7 � Concluding remarks and future work

The robustness of any network is usually expressed in terms of its tolerance to ran-
dom failures and targeted attacks. Networks are highly subject to such treatments, 
and thus, evaluating and improving the resilience of networks are essential aspects 
of their design. Deciding whether a network is robust requires a method of quanti-
tative measurement. Over the recent years, various metrics have been proposed to 
measure the network’s robustness. However, scientists working in this field have not 
reached an agreement on which measures are superior to the other; so, this need 
and effort is still ongoing. In this article, we briefly review the network robustness 
measures and three important classes, i.e., connectivity-based, distance-based, and 
spectral-based classes. We aimed to suggest efficient methods to explain the degree 
of resilience of networks. The main purpose of this study was not to provide a com-
prehensive report about such metrics and compare their effectiveness thoroughly. 
Proper classification of measures and finding similarities or inconsistencies between 
them is one of the aspects of valuable research that is suggested as one of the impor-
tant future work to continue this research.

The reliability polynomial of a graph is one of the most important criteria for 
measuring the robustness of graphs based on the graph spectrum. Unlike the other 
metrics that attribute a numerical value (usually normalized) to the robustness of 
a graph, the reliability polynomial attributes a function in terms of the probability 
of link failure. Some of the practical applications of this research are array-based 
designs (such as vertical FET (VFET), vertical slit FET (VeSFET), FinFETs and 
nano-electromechanical systems (NEMS)), the arrays of CMOS, an axon communi-
cation, probabilistic gate matrix (PGM), molecular networks of biological systems, 
the effect of structural motifs on the diffusive dynamics (such as the spread of infec-
tious disease), and finally, targeting interventions to control the outbreak of epidem-
ics. These are all examples of applications that can be well-fitted to the networks 
whose robustness can be effectively determined and measured with the reliability 
polynomials.

One of the most important challenges for utilizing the reliability polynomial as a 
robustness indicator is determining its coefficients that can only be accurately deter-
mined for graphs of small order and size. Hence, the exact determination of the coef-
ficients lies in the category of NP-hard problems. In this paper, to meet such a chal-
lenge, four efficient methods are suggested. In the first method, using an iterative 
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method, the reliability polynomial coefficients are estimated. This method, on aver-
age, has the same accuracy as the two methods in the literature, namely top-down 
and bottom-up approaches. In addition, the idea of smart merging the coefficients 
is suggested for three methods, namely, top-down, bottom-up, and iterative. In this 
scheme, the values of the coefficients for the smaller, the larger, and the middle indi-
ces, have been estimated, respectively, using the top-down, the bottom-up, and the 
iterative approaches. The simulation experiments in most of the underlying graphs 
demonstrate that the smart merging and the iterative methods have the best effi-
ciency and accuracy among the other ones. Additionally, as a third idea, we fortified 
Benford’s law to integrate the coefficients in a proper manner. Moreover, as a final 
idea, we utilized the Legendre interpolation method to estimate the coefficients of 
reliability polynomial, accurately.

One of the future researches that can be mentioned in the current study is that 
the assumption of failure independence in different network components may seem 
unrealistic in some cases. For example, in geometric and geographic networks, such 
as transportation networks and optical telecommunication networks, which can 
affect a large geographical area, the failures are no longer independent. The joint 
probability of two or more nearby component failures has a significant correlation. 
Further, it has shown that the failure probability of some links depends on the length 
of the link, and in such cases, we are dealing with geographically correlated failures.
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