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Abstract
As the world population continues to age, chronic diseases are on the rise. One of 
these diseases is stroke, which is a dangerous disease that can lead to many social 
and economic difficulties. Strokes can cause persistent neurological sequelae and 
physical disabilities; in some cases, motor function of the upper or lower body may 
be impaired, resulting in abnormal walking patterns or a loss of walking ability. 
These differences can be captured through walking patterns and gait information. 
There is therefore a need for research examining systems that can quickly detect 
signs of stroke based on human biosignals collected during daily life, such as motor 
function and the walking speed of the upper and lower limbs. By accurately pre-
dicting the early symptoms of stroke diseases, neural damage can be reduced with 
timely visits to medical institutions for treatment. In this paper, we designed and 
implemented a new AI-based system using real-time motion data for predicting 
stroke in the elderly. Initial data were collected from elderly Koreans while walk-
ing with attached wearable sensors. The sensors were placed on both shoulders and 
quadriceps. The data were processed, and we obtained a total of 12 motion attributes 
(angles and acceleration information). Predictive models using machine learning and 
deep learning algorithms were then constructed. The performance of the proposed 
system was verified with high prediction accuracies of 98.25% for the C4.5 deci-
sion tree model, 98.72% for RandomForest, 96.60% for XGBoost, and 98.99% for 
long short-term memory (LSTM). Hence, this paper provides a method for quickly 
and accurately predicting the early onset of stroke based on motion attribute values 
obtained while walking.
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1  Introduction

The 4th Industrial Revolution has placed substantial focus on information and 
communications technologies (ICT), such as artificial intelligence (AI), the Inter-
net of Things (IoT), big data, and blockchain. In the healthcare industry, there 
has been a renewed interest in telemedicine and other smart healthcare services 
[1–3]. AI is a technology through which machines have the ability to understand, 
perceive, and judge like humans [1–3]. There have already been several studies 
suggesting that AI can perform as well as or better than humans at key healthcare 
tasks, such as diagnosing disease. IoT technology is a hyper-network in which 
people and objects are connected to the Internet, thus allowing them to create, 
collect, share, and use information. Even without human intervention, many intel-
ligent devices are capable of making decisions, working as groups, and sending 
information to the cloud automatically [1, 2]. Big Data refers to the vast amounts 
of data generated and collected in everyday activities. In the medical field, big 
data is used for the development of new drug and treatment recommendation ser-
vices [4]. Blockchain is an innovative technology that does not store transaction 
books called blocks on a central server, but instead distributes them on personal 
computers which are then connected like chains for public storage. This is use-
ful for personal health information because it is secure and because it enables 
individual transactions without the need for intermediaries [5, 6]. These ICT 
technologies collect, integrate, and store medical data such as Electronic Medical 
Records (EMR) and genomic data to make it big data, thus making it very easy to 
be used for various analyses and other purposes. The convergence of big data and 
artificial intelligence technology is expected to be highly useful in the develop-
ment of digital health care and smart services based on vast amounts of medical 
and health data.

With the advancements that have been made in medicine, life expectancy 
has been prolonged, leading to an increase in the elderly population. The World 
Health Organization (WHO) reported that, with a rapidly ageing population, the 
number of chronic diseases can be expected to increase as well. Stroke is one 
of the highest prevalence diseases, and according to the WHO, 5.7 million peo-
ple died from a stroke in 2016, ranking third after malignant neoplasm (cancer) 
and heart disease [7]. Stroke is a disease in which brain cells die because of the 
clogging or bursting of cerebral arteries, resulting in necrosis of brain cells, and 
in the worst case, death [8, 9]. Depending on the location and type of stroke, 
brain dysfunction such as hemiplegia and verbal or consciousness disorder may 
be observed. Stroke is known to cause disability in both the elderly and in adults 
[9, 10]. Patients can recover from a stroke if they are identified quickly and trans-
ferred to a medical institution for treatment. Therefore, a quick and accurate diag-
nosis is essential.

Due to its many symptoms, it is difficult to detect stroke early. While there has 
been substantial research into stroke risk factors, differences in the definition or 
methodology affect the prediction accuracy. The main risk factors that are con-
sistently used for stroke prediction are smoking, diabetes, high blood pressure, 
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and obesity [10]. The Framingham Heart Study developed a stroke risk prediction 
model based on cardiovascular disease and cerebrovascular disease [11]. How-
ever, it is difficult to apply such models to elderly Koreans who have very dif-
ferent social and behavioral characteristics than the participants in those studies. 
In response to this, Jee [13] and Yu [14] developed prediction models of stroke 
disease for Koreans. Jee et al. [13] developed a prediction model (10-year average 
stroke risk prediction model) on the probability of stroke within 10 years using 
EMR items such as age, diabetes, alcohol consumption, smoking, total choles-
terol, and body mass index. Meanwhile, Yu et al. [14] attempted a semantic inter-
pretation of stroke patients using the NIHSS (National Institutes of Health Stroke 
Scale) value for the elderly at Chungnam National University Hospital. However, 
these initial studies used the same methodology as the Framingham Heart Study, 
which does not consider the possibility of death or competitive risk due to causes 
other than stroke. While past medical records and health check-up information 
are important, there is still a need to grasp the degree of risk in daily life. In other 
words, comprehensive analysis and prediction systems using patterns and biosig-
nals are urgently required.

Walking is the most basic exercise for the human body [15, 16]. Gait is an alter-
nating motion in which many skeletal muscles move the body in a constant direc-
tion through cooperation with various joints of the upper and lower extremities [15, 
16]. Research has shown that stroke patients may suffer from a loss of symmetric 
posture, decreased walking ability, and impaired balance response and motor ability 
[17, 18]. When one’s walking abilities are limited, it often leads to social isolation 
[17] and reduces the daily activities of that patient [19]. For stroke patients, recover-
ing one’s walking ability is an important factor that determines an individual’s qual-
ity of life. Therefore, patterns in walking have emerged as a key component of early 
prediction for the onset of stroke and post-stroke patient rehabilitation [20]. There-
fore, one should be able to detect stroke as soon as there are changes to a person’s 
walking pattern. Therefore, there is a need for a precise and quick diagnosis method 
that detects pedestrian asymmetry.

In this paper, we designed and implemented a new AI system that automati-
cally extracts important features from the collected motion data and predicts stroke 
disease in real time. The motion sensors were attached to all of the study partici-
pants, and data were collected from both stroke and elderly patients during walk-
ing. The collected data were sent to a server which predicts and analyzes stroke 
using machine learning or deep learning algorithms. Depending on the algorithms, 
our system was able to predict stroke using the shoulders and quadriceps angles, 
angular velocity, and angular acceleration. The performance of the proposed sys-
tem was verified by confirming the prediction accuracies of 98.25% for the C4.5 
decision tree model, 98.72% for RandomForest, 96.60% for XGBoost, and 98.99% 
for LSTM. Altogether, this study presents a machine learning-based model that can 
accurately detect and predict the prognostic symptoms of stroke disease in real time. 
This system overcomes the limitations of previous models that require history and 
EMR data.

The rest of this paper is structured as follows. Chapter  2 describes stroke and 
previous research methods. Chapter 3 describes the stroke disease prediction system 



8870	 J. Yu et al.

1 3

using motion biosignals obtained while walking, and Chapter 4 describes the experi-
mental and analysis results in detail. Finally, Chapter 5 discusses the conclusion and 
future research topics.

2 � Related work

2.1 � Stroke disease

Stroke is a brain disorder caused by the sudden onset of neurological deficiency due 
to the blockage or bursting of blood vessels in the brain [21, 22]. Stroke patients 
generally have permanent dysfunction or complications such as motor, language, 
sensory, perceptual cognition, vision, and quadriplegia [22, 23]. There are two types 
of strokes: Cerebral infarction (ischemic) caused by the blockage of blood vessels 
and cerebral hemorrhage (cerebral hemorrhage) caused by the rupture of blood 
vessels [23]. Cerebral infarction is further divided into thrombosis, wherein blood 
clots form in the blood vessels damaged by arteriosclerosis, and cerebral embolism, 
wherein blood clots that have formed in the large arteries block the blood vessels to 
the brain. Meanwhile, cerebral hemorrhage can be further divided into intracerebral 
hemorrhage and subarachnoid hemorrhage. Cerebral hemorrhage in the brain paren-
chyma occurs spontaneously without external shock, and hypertension is its main 
cause. Subarachnoid hemorrhage is a disease in which a part of a blood vessel wall 
has weakened in elasticity and then swells in an alveolar shape, after which the cere-
bral aneurysm ruptures and blood leaks under the arachnoid membrane surrounding 
the brain [23, 24]. In particular, subarachnoid hemorrhage has been reported to be 
fatal enough to cause death before reaching the hospital in more than 30% of stroke 
patients [24].

Acute stroke disease causes disorders in the autonomic nervous system and cen-
tral nervous system which are accompanied by heart problems such as arrhythmia in 
the electrocardiogram [25]. Acute stroke is a potentially fatal disease that can also 
cause permanent dysfunction and complications which cause difficulties in social or 
economic activities [26]. In particular, 85% of elderly patients in the early stages of 
stroke show upper limb disability, while 55–75% report upper limb disability over 
six months after onset [27]. The weakening of the upper limb muscle strength is 
caused by decreased nerve response and changes in the median nerve boundary, as 
well as muscle weakness due to inactivity [28]. Most social activities are restricted 
due to physical dysfunction, thus resulting in a poor quality of life. In addition, low 
motivation leads to mental disability such as depression, anger, and loss of pleasure, 
all of which adversely affect function recovery in stroke patients [29]. It is therefore 
necessary to early detect stroke symptoms that occur in the daily lives of the elderly, 
respond quickly, and make a thorough diagnosis by visiting the appropriate medical 
institutions. As a result, there is a need for research that can help minimize the social 
and economic damage caused by the aftereffects of stroke. Multilateral studies on 
the immediate detection and diagnosis of stroke diseases and various rehabilitation 
treatments are urgently needed to improve the quality of life of the elderly.
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2.2 � Previous Stroke Studies on motion

The human autonomic nervous system, sympathetic nervous system, and mus-
culoskeletal system are integral for walking, and they presuppose human body 
movements [16]. The conditions of the walking load energy consumption 
decrease as the load approaches the center of the body. In walking, the feet are 
the only part of the human body in contact with the supporting ground, and they 
therefore play a crucial role in all weight loads [30]. The foot not only provides 
the driving force necessary for body-to-body movement when walking, but it also 
has a mechanism that adapts to irregular ground by absorbing the physical impact 
that occurs at such times. Each person’s walking and upright posture are inher-
ently unstable because they maintain a high-pressure center on a relatively small 
base plane provided by their feet. To provide additional stability, the muscles of 
the waist and legs are activated. This posture adjustment is very complex when 
performing movement in an unstable state, and it shows high muscle activity 
because it uses many muscles [31]. The measurement of walking ability can be 
measured by dividing it into qualitative and quantitative aspects; gait measure-
ment (gait cycle, cadence, swing period, stance period, step length, stride length, 
and walking speed) provides a quantitative respective [20, 32, 33]. Regarding 
qualitative measurements, walking asymmetry is a typical measurement value, 
and it occurs when the base and raised angles of both feet do not match each other 
during walking. Walking speed is a typical quantitative measurement method, 
and it has the advantage of being able to be measured relatively easily and simply 
while ensuring reliability.

For stroke patients, walking asymmetry can typically be observed as a signifi-
cant difference in the degree of asymmetry in the normal state through changes 
in the movement of the upper and lower extremities [32, 33]. Akay et  al. [34] 
developed a technique to measure and quantify acceleration information compar-
ing between stroke patients and healthy elderly while walking. They introduced 
a maximum likelihood estimator (MLE)-based fractal analysis for the complex-
ity of body motion, and the results showed that people with stroke had signifi-
cantly higher values than healthy people. Chen et  al. [35] were able to classify 
stroke patients based on data from daily living activities collected using wearable 
devices. In that paper, daily activity data were analyzed, and 11 stroke subjects 
were selected. The collected data were subjected to machine learning algorithms 
such as Decision Tree, RandomForest, Support Vector Machine (SVM), and 
eXtreme Gradient Boosting (XGBoost). The results indicated that XGBoost can 
accurately predict seven daily activities. Carmo et  al. [36] reported a statistical 
analysis of the changes in arm and leg movement as well as motion values during 
walking in stroke patients and control groups. The experimental results confirmed 
that stroke patients had a reduced range of motion in the glenohumeral and elbow 
joints when walking. Motion data measured during walking focuses on statistical 
and correlation analysis. Therefore, it can determine whether there is asymmetry 
due to stroke based on motion data collected in real time while walking. It is 
essential to research methods that can quickly diagnose stroke before receiving 
treatment from medical staff.
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2.3 � AI‑based stroke research

Several researchers have applied AI technology to the field of predicting and diag-
nosing stroke [14, 37–43, 45]. For example, Yu et al. [14] published the results of an 
analytic and prediction stroke model based on the severity of NIHSS using a C4.5 
decision tree algorithm, a representative predictive model of data mining. The rules 
of the operating principle provided by the C4.5 decision tree were analyzed in detail. 
However, there is still a need for an in-depth analysis of the data, as the rationale of 
the decision tree algorithm only provides a partial resolution. Shanti et al. [37] were 
able to detect the risk of stroke using an artificial neural network (ANN) algorithm. 
The paper showed that ANN’s Backpropagation algorithm was used for learning, 
and that the consistency and diagnostic accuracy of the prediction was improved. A 
similar method by Hanifa et al. [38] used an ANN-based predictive model that can 
detect stroke patients with high accuracy of 95.33% from the experimental data of 
300 people. Nevertheless, the classification and prediction of stroke diseases based 
on the ANN algorithm is still difficult to interpret, and its operating principles only 
emphasize accuracy. Hanifa et al. [39] presented the results of predicting and ver-
ifying stroke risk factors by adjusting the parameter values of the support vector 
machine (SVM) prediction model. A relatively accurate model which detailed the 
stroke risk situation was presented using the RBF kernel function of the SVM. How-
ever, the focus of that model was on determining the severity and prognosis after 
the onset of stroke, rather than detecting and predicting symptoms before a stroke. 
Chiun et al. [40] developed a system for detecting ischemic stroke using the extended 
patch images of CT scans as the input of the CNN model; it obtained greater than 
90% prediction accuracy. Liu et al. [41] proposed a Res-CNN model that automati-
cally classifies acute ischemic stroke lesions in multi-modality MRIs. The results 
confirmed that this model solved the problem of performance degradation using the 
residual unit, and that the model performance can be improved through data expan-
sion. Chantamit et  al. [43] introduced a method of integrating ICD-10 [44] codes 
into health records and integrating potential risk factors into predictive patterns and 
models in EMR information. Based on the integrated EMR information, a deep-
learning LSTM-RNN model was applied for stroke prediction.

Recent studies have used different human biosignals to determine and predict 
stroke diseases in the elderly [23, 42–45]. For example, Choi et al. [23] used Elec-
troencephalogram (EEG) biosignals to detect and predict stroke precursor symp-
toms. First, a signal at each timepoint was decomposed from raw EEG data with 
Fast Fourier Transform (FFT), thus giving values for alpha (α), beta (β), gamma (γ), 
delta (δ), and theta (θ) for six EEG channels. In addition, the ratio values ​​between 
low β, high β, and θ were extracted and used with the RandomForest algorithm to 
obtain a stroke prediction accuracy of up to 92.51%. Yu et al. [42] proposed an early 
stroke detection method based on machine learning and deep learning that meas-
ures the electromyography (EMG) of thighs and calves during walking in daily life. 
They presented a methodology that can accurately detect and predict stroke precur-
sor symptoms with EMG data collected in real time, as opposed to past information 
such as EMR or CT scans. The experimental results for elderly daily activities were 
verified with accuracies of 90.38% and 98.958% using the RandomForest algorithm. 
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Choi et  al. [45] proposed a deep learning model that can predict stroke diseases 
using raw data that has not undergone frequency attributes of EEG biosignals and 
that has only been subjected to basic pretreatment. These studies confirmed that the 
LSTM model of deep learning is suitable for the time series analysis of biosignals. 
However, for biosignals measured and generated in daily life such as walking or 
driving, the convenience of wearing and the reliability of the data are paramount. 
Therefore, there is a need for a new alternative for predicting stroke diseases in the 
elderly during daily activities which can overcome the limitations of the traditional 
methodology as well as the disadvantages of biosignal measurement and collection.

3 � Stroke disease prediction system using motion information 
while walking

We proposed an AI-based stroke disease prediction system that uses motion infor-
mation collected during the daily activities of the elderly. Figure 1 shows the sys-
tem, which consists of five modules in total: (1) Measures and collects motion data 
in real time; (2) Collects motion data in real time to extract data preprocess and 
important attributes; (3) Integrates and distributes collected motion data with ECG, 
EMG, EEG, and individual EMR data; (4) Predicts motion disease, and (5) Visual-
izes the results. The proposed system extracts and stores optimized preprocessing 
and attributes algorithms for various biosignals, such as ECG, EMG, and EEG, as 
well as motion data collected from the elderly during daily activities. Data for each 
of the biosignals are used as input values for both machine learning and deep learn-
ing models to provide optimal real-time prediction and analysis results for stroke 
diseases.

3.1 � A module for measuring and collecting motion data while walking

In addition to the motion data, other biosignals such as ECG, EEG, and EMG 
were measured to predict stroke diseases in the elderly. All biosignals were 

- Features Extraction Data
- Prediction/Validation Data

Vital Signal DB Vital Signal DB Model Repository Manager DB(RDB)

- Patient Information
- Event/Emergency History

- Raw Vital Signal Data - Prediction Model of 
ML/DL

Legend
Batch Processing 
Real-Time Processing 

Integrated Distributed Storage

Vital Signal Raw Data Collector

Data Preprocessing Module Real-Time Stroke Training 
and Predictor Module

Predictor Model  
SaverFeature Extractor

Missing Value Handling 
and Data Cleaning Real-Time Predictor

Prediction Result 
and Verifier

Medical Doctor Diagnosis

ML-based Model  
Loader Feature Loader

Data Interface

Stream 
Vital 
Signal

Optimal 
Model Loading

Model Update and Save Reporting

Visualization Module of Prediction 
and Analysis Results

Walking

Driving

Sleep

Collection App

Control and 
Management Module

Smart Phone

MiniPC/Gateway

Collection Module

Control and 
Management Module

Vital Signal Collection 
Transmission Module

Bluetooth

LTE/5G

WiFi/Serial

Visualization Module of Prediction

Fig. 1   The overall structure of the real-time stroke disease prediction system using motion biosignals
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measured in real time using the Captiv motion analyzer [46, 47]. The collected 
data were used to verify the prediction and analysis for stroke in the elderly. Fig-
ure 2 shows the attachment locations of all the wearable sensors on each subject.

Voice 
Recording

EEG
Sensor

Motion
Sensor

ECG
Sensor

EMG
Sensor

Foot 
Sensor

Fig. 2   The location of each sensor for collection of biosignals in real time

Quadriceps
Waist 

Shoulder 
Back 

Fig. 3   Real-time measurement and collection of motion biosignals
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Figure 3 shows the specific locations of sensors for motion biosignals. The Captiv 
motion analyzer was chosen for its high accuracy (gyroscope ± 2000o/s, accelerome-
ter ± 16 g, and magnetometer ± 2.5 gauss) and because it has been used in many medi-
cal and rehabilitation fields. To maximize the measurement accuracy, the sampling rate 
was set to 128 Hz. Raw data of four quaternions (qx, qy, qz, and qw) were collected 
from six locations on the body: (1) Left and right Shoulders, (2) Left and right quadri-
ceps, (3) Back, and (4) Waist.

3.2 � Pre‑processing of motion data and extracting important attributes module

The motion data measured at the six locations (Fig. 3) are transmitted to a smartphone 
or gateway through BLE communication. Other methods, such as Wi-Fi, LTE, and 5G, 
can also be used depending on the system settings. The messaging standard was JSON 
(JavaScript Object Notation). Incomplete data or missing values raw data received from 
the module were removed. Since the categories of the minimum and maximum val-
ues are different for each data, a normalization process was also performed. The sys-
tem was designed to extract the attribute values of angle, angular velocity, and angular 
acceleration based on the quaternion values ​​of qx, qy, qz, and qw for each position. 
Table 1 summarizes the raw data of motion extracted and collected in this paper with 
some additional explanations.

By using the quaternion value for each motion data listed in Table  1, the angle, 
angular velocity, and angular acceleration properties were extracted for each measure-
ment position and used in the experiment (Table 2). Since the waist and back are refer-
ence positions, separate attribute values were not extracted for these.

3.3 � Module for integrating and distributed storage of data by multiple biosignals

The motion data-based stroke disease prediction system proposed in this paper can col-
lect and manage various types of biosignals, such as motion, ECG, EEG, EMG, and 
PPG. The various biosignals including these motions are sequential values according 
to time. From the time-series data, the suitable attribute values for predicting stroke in 
the elderly are extracted according to Sect. 3.2. Therefore, for the real-time storage of 
raw data for each biosignal, the system was designed and developed to integrate and 
distribute storage as representative MongoDB of Not Only SQL (NoSQL). Depending 
on each of the biosignals, raw or processed data were extracted for statistical informa-
tion and important attributes. These will be distributed and stored in a Relational Data-
base (RDB) and NoSOL according to the characteristics. These raw data and important 
attribute values ​​stored in the RDB and NoSOL can be used for disease prediction and 
multifaceted analysis based on machine learning and deep learning.

3.4 � Machine learning and deep learning‑based learning and real‑time prediction 
modules

Real-time motion data collected from the elderly are time-series data that have 
sequential values over time. It is necessary to consider the time-series properties 
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of motion data. Therefore, the LSTM model of deep learning, which can express 
the properties of time series data, was used to predict stroke diseases. This LSTM 
method has the advantage of solving the long-term dependence problem of RNN 
in deep learning. Further, a predictive model using machine learning methodology 
for the values of angle, angular velocity, and angular acceleration attributes from 
each measurement location was extracted. This machine learning method has the 
additional advantage of being able to receive predictive performance and hermetic 
information for stroke disease.

The machine learning- and deep learning-based learning and prediction module 
proposed in this paper constitutes the following two subblocks (see Fig. 4): first, in 
the batch processing block, machine learning and deep learning are performed by 

Table 2   Important attributes and descriptions extracted from motion data

Order Features Explanation

1 Shoulder_Left_Angle Angle value of the left shoulder
2 Shoulder_Left_Angle_Velocity Angular velocity value of the left shoulder
3 Shoulder_Left_Angle_Acceleration Angular acceleration value of the left shoulder
4 Shoulder_Right_Angle Angle value of the right shoulder
5 Shoulder_Right_Angle_Velocity Angular velocity value of the right shoulder
6 Shoulder_Right_Angle_Acceleration Angular acceleration value of the right shoulder
7 Quadriceps_Left_Angle Angle value of the left thigh
8 Quadriceps_Left_Angle_Velocity Angular velocity value of the left thigh
9 Quadriceps_Left_Angle_Acceleration Angular acceleration value of the left thigh
10 Quadriceps_Right_Angle Angle value of the right thigh
11 Quadriceps_Right_Angle_Velocity Angular velocity value of the right thigh
12 Quadriceps_Right_Angle_Acceleration Angular acceleration value of the right thigh
13 Class Discriminant information of elderly/stroke 

patients (labeling with normal/stroke)

Our Services

Motion Signals
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Motion
Preprocessing

Features Extraction
and Management ML/DLs-based Model Storage

Motion Data
Collection

Motion
Preprocessing

STROKE!

Real-Time Stroke Prediction
based Motion Medical Staff Diagnosis

Batch Processing

Real-time Processing

Walking

Motion Data

Feature DB

Features Extraction

ML/DLs-based 
Model Real-time Loading

Risk level 
analysis result

Fig. 4   Machine learning and deep learning-based learning and real-time prediction modules
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storing and preprocessing motion data collected in real time to extract important 
attributes. In the real-time processing block, stroke diseases are predicted as soon 
as motion data are measured and collected during walking of the elderly, and the 
risk values are provided to the medical staff, the patient themselves, their next-of-
kin, and the visualization module described in Sect. 3.5. In the real-time process-
ing block, raw motion data of more than 3 s were collected, features were extracted 
and predictions were executed. Through the experiments, it was confirmed that the 
extracted features for machine learning-based algorithms and raw data for deep 
learning-based algorithms, provided prediction results within 0.05 s.

3.5 � A module that visualizes and provides prediction and analysis results

The visualization and prediction information of stroke created using the motion and 
the various biosignals obtained during walking are provided (see module on the 
right). The screen is designed to provide predictive results and semantic analysis 
information of stroke to the medical staff, the patients themselves, and their next 
of kin. According to the judgment of stroke risk analysis, medical staff or hospitals 
may support the patient by contacting the patient and quickly transporting them to 
the hospital to conduct precise examination and diagnosis services. However, vari-
ous clinical difficulties and risks exist in predicting and determining stroke diseases 
using raw data and the important attributes of motion. The judgment of an expe-
rienced medical staff with professional medical knowledge is essential in distin-
guishing whether an elderly person is having a stroke based on various biosignals, 
including motion. Consequently, this study conducted experiments and verification 
to provide scientific and meaningful information that enables the faster and more 
accurate judgment of medical staff and hospitals, rather than a system that directly 
predicts the precursors and risk of stroke in elderly patients.

4 � Experiment and analysis

4.1 � Data set and experimental environment

This section describes the verification and performance of the system for the 
prediction of stroke using motion. Sensors were placed at six locations on the 
patient. The waist and back sensors were used as reference points while the real-
time data were collected from the left and right shoulders and quadriceps at a 
sampling rate of 128 Hz per second. This motion data positioning is because the 
joint movement and the movement speed of the upper and lower bodies can be 
measured in a patient with stroke symptoms during walking. To elaborate, it is 
possible to check the movement of the upper body and the movement range both 
in the standing state and during walking, and the movement speed can be deter-
mined according to the change of the main joints and muscles of the pelvis in 
the lower body. These raw data were sent to the server for processing. Next, the 
angle, angular velocity, and angular acceleration were automatically calculated 
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and obtained. These motion biosignals are widely used in the study of gait 
changes and rehabilitation exercises in patients with hemiplegia. In the case of 
stroke, patients’ walking patterns and related factors are analyzed based on fine 
symptoms, as the decreases in walking speed and the increases in the duration of 
the foot on the ground compared to the settler are evaluated. The motion informa-
tion angle, angular velocity, and angular acceleration values of the shoulders and 
quadriceps are important precursor symptoms of stroke. Therefore, in this paper, 
we intend to analyze walking disorders caused by minute symptoms or balance 
abnormalities during walking using motion data that can serve as medical and 
kinematic parameters.

The motion data of stroke elderly and normal elderly were obtained at Chungnam 
National University Emergency Center and Department of Rehabilitation Medicine. 
From 2017 to 2018, various biosignals such as ECG, EEG, and EMG, including 
motion, were measured and collected from elderly participants over 65  years old 
[42, 45]. Patients who were confirmed to have had a stroke within one month and 
who were undergoing rehabilitation treatment were selected as stroke subjects. In 
2017, data were obtained from 48 elderly stroke patients and 75 controls; in 2018, 
data were obtained from 13 stroke patients and 137 controls. To balance the num-
bers of stroke patients and controls, all 61 stroke patients and 61 randomly extracted 
controls were selected. All subjects repeated each scenario a total of five times: 
walking, standing, sitting in a chair, raising and lowering their arms, speaking, and 
sleeping. The first and last measurements were excluded from the experimental data, 
as the subjects may have experienced discomfort in wearing the sensors, tension, 
and fatigue from repetition. The model development in this paper was conducted 
in an environment using Ubuntu 18.04.4 LTS, an Intel Core i9-10900X CPU, an 
NVIDIA Quadro RTX 8000 GPU, and 256 MB RAM.

4.2 � Performance indicators of experimental results

This section defines the performance evaluation indicators used to verify the per-
formance of the stroke system with motion data [14, 23, 42, 45, 48].

–	 Accuracy: The percentage of people who have tested positive for stroke and 
negative for normal and control groups among all people.

–	 F1-score: The harmonic mean of precision and recall.
–	 Recall: The percentage of stroke patients that have tested positive.
–	 Precision: The proportion of people who are stroke patients among those who 

have tested positive.

When a stroke patient is misclassified as a normal person, the untreated dis-
ease can have an impact on that person’s daily life. Therefore, accuracy is the 
most important performance indicator in the field of disease prediction and 
healthcare. A predictive model should minimize the rate of misclassification of 
stroke patients as normal people (see Table 3).
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4.3 � Experiment and analysis based on machine learning

In this section, the attribute values of angle, angular velocity, and angular accel-
eration for each measurement location were put through a machine learning meth-
odology. This experiment used C4.5 decision tree, C5.0 decision tree, alternating 
decision tree, RandomForest, logistic regression, naïve Bayes, multi-layer percep-
tron, SVM, C&RT, XGBoost, and QUEST. Each machine learning-based stroke 
disease prediction model attempted to achieve the highest accuracy based on dif-
ferent learning and prediction datasets. Two different experiments were conducted. 
In these experiments, 67% of the randomly extracted data were used for learning 
and the rest of the data were used for testing. Likewise, data extracted by the same 
method at a rate of 80% were used for learning, and the remaining 20% of data were 
used for testing. Finally, the entire dataset was divided into 5-Fold, 10-Fold, and 
20-Fold Cross-Validation, and the predictive model verification and experiment 
were conducted.

In total, 12 motion attribute values (Sect.  3.2) were used in this experiment. 
Since motion data change at a rate of 128 Hz per second based on the sensors, 
data were extracted in units of 0.1  s when extracting attribute values. In total, 
122 subjects comprising 61 stroke patients and 61 elderly people with a total of 

(1)Accuracy =
TP + TN

TP + FN + FP + TN

(2)F1 - Score = 2 ×
Precision × Recall

Precision + Recall

(3)Recall =
TP

TP + FN

(4)Precision =
TP

TP + FP

Table 3   Confusion matrix of 
performance evaluation for 
stroke prediction

a TP (True Positive): predicting stroke elderly as stroke elderly
b FP (False Positive): predicting stroke elderly as general elderly 
(normal)
c FN (False Negative): predicting general elderly (normal) as stroke 
elderly
d TN (True Negative): predicting general elderly (normal) as general 
elderly

Predicted condition True condition

Stroke group Control group

Stroke group TPa FPb

Control group FNc TNd
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283,734 attribute values (141,867 cases each) were extracted and tested. To ver-
ify the performance in this experiment, the four performance indicators defined in 
Sect. 4.2 were used for verification. Tables 4 and 5 present the data sets classified 
into each machine learning algorithm using 12 motion attribute values, and the 

Table 4   Predictive accuracy and F1-score (%) for each algorithm using 12 attribute values of motion

CV cross-validation, Acc. accuracy, F1 F1-score, DT decision tree, LR logistic regression, MLP multi-
layer perceptron

Methods Data sets

Train(67)/
Test(33)

Train(80)/
Test(20)

5-Fold CV 10-Fold CV 20-Fold CV

Acc. F1 Acc F1 Acc F1 Acc F1 Acc F1

C4.5 DT 96.81 96.80 96.90 90.90 96.83 96.82 96.93 96.92 97.12 97.11
C5.0 DT 94.18 94.18 94.34 94.35 94.24 94.23 94.59 94.59 94.66 94.66
Alternating DT 86.55 86.55 87.06 87.03 87.02 87.03 87.15 87.15 87.16 87.16
RandomForest 97.61 97.61 97.78 97.77 97.76 97.77 97.93 97.93 98.01 98.01
LR 62.86 62.86 63.32 63.31 63.00 63.00 63.12 63.41 63.14 63.14
Naive Bayes 64.17 65.55 65.20 66.42 65.35 66.55 65.29 66.80 65.33 67.27
MLP 84.23 84.23 84.78 84.78 85.76 85.77 87.34 87.34 86.98 86.97
SVM 81.77 81.77 81.57 81.57 81.79 81.76 82.20 82.19 81.25 81.26
C&RT 83.58 83.58 83.72 83.57 83.51 83.52 83.74 83.74 83.71 83.72
XGBoost 95.52 95.51 95.57 95.61 95.61 95.61 95.67 95.66 95.69 95.68
QUEST 80.82 80.82 80.90 80.86 80.87 80.86 81.05 81.05 81.11 81.11

Table 5   Recall and Precision (%) for each algorithm using 12 attribute values of motion

Prec. Precision

Methods Data sets

Train(67)/
Test(33)

Train(80)/
Test(20)

5-Fold CV 10-Fold CV 20-Fold CV

Recall Prec. Recall Prec Recall Prec Recall Prec Recall Prec

C4.5 DT 96.80 96.80 96.90 96.91 96.82 96.82 96.92 96.93 97.11 97.11
C5.0 DT 94.19 94.17 94.33 94.37 94.23 94.24 94.60 94.58 94.67 94.65
Alternating DT 86.56 86.55 87.07 87.07 87.03 87.03 87.17 87.14 87.17 87.16
RandomForest 97.62 97.61 97.77 97.80 97.75 97.79 97.92 97.95 98.00 98.02
LR 62.87 62.85 63.33 63.30 62.97 63.03 63.11 63.72 63.14 63.14
Naive Bayes 64.18 66.99 65.18 67.71 65.27 67.89 65.21 68.46 65.30 69.37
MLP 84.22 84.24 84.77 84.79 85.77 85.77 87.34 87.34 86.97 86.98
SVM 81.79 81.76 81.57 81.57 81.75 81.77 82.16 82.23 81.22 81.30
C&RT 83.57 83.59 83.71 83.73 83.55 83.49 83.75 83.74 83.74 83.71
XGBoost 95.51 95.52 95.58 95.56 95.63 95.60 95.68 95.65 95.69 95.68
QUEST 80.81 80.84 80.89 80.92 80.88 80.85 81.07 81.04 81.12 81.10
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performance indicators of prediction accuracy, F1-score, recall, and precision are 
summarized.

Next, the 12 attributes of motion data were tested after normalization using the 
Z-score method (Tables 6 and 7). However, the deviation of the maximum and mini-
mum values is very large for the 12 attributes. This creates a problem of bias in the 

Table 6   Predictive accuracy and F1-score (%) for each algorithm applying Z-score to 12 attributes of 
motion

Methods Data sets

Train(67)/
Test(33)

Train(80)/
Test(20)

5-Fold CV 10-Fold CV 20-Fold CV

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

C4.5 DT 97.82 97.81 97.88 97.88 98.15 98.15 98.25 98.26 98.22 98.22
C5.0 DT 95.12 95.12 95.11 95.12 95.23 95.24 95.37 95.37 95.35 95.34
Alternating DT 88.01 88.01 88.12 88.12 88.07 88.06 88.36 88.35 88.39 88.37
RandomForest 98.57 98.58 98.60 98.59 98.67 98.66 98.72 98.72 98.71 98.70
LR 64.99 64.97 65.03 65.04 64.97 64.97 65.22 65.22 65.34 65.35
Naive Bayes 66.02 66.02 66.19 66.19 66.33 66.34 66.52 66.53 66.49 66.50
MLP 86.13 86.14 86.19 88.18 86.57 65.55 87.98 87.98 88.06 88.06
SVM 83.54 83.53 83.72 83.73 83.69 83.68 84.28 84.29 84.45 84.44
C&RT 83.37 83.37 85.47 85.46 85.39 85.38 86.61 86.61 86.66 86.44
XGBoost 96.36 96.36 96.47 96.48 96.38 96.38 96.60 96.61 96.63 96.64
QUEST 82.76 82.76 82.79 82.80 82.82 82.82 83.34 83.34 83.16 83.15

Table 7   Recall and precision (%) by algorithm applying Z-score to 12 attributes of motion

Methods Data sets

Train(67)/
Test(33)

Train(80)/
Test(20)

5-Fold CV 10-Fold CV 20-Fold CV

Recall Prec. Recall Prec Recall Prec Recall Prec Recall Prec

C4.5 DT 97.81 97.81 97.90 97.87 98.15 98.15 98.27 98.26 98.21 98.23
C5.0 DT 95.11 95.14 95.14 95.10 95.22 95.26 95.39 95.36 95.33 95.36
Alternating DT 88.00 88.02 88.14 88.11 88.09 88.04 88.39 88.32 88.38 88.36
RandomForest 98.61 98.56 98.61 98.57 98.66 98.67 98.74 98.71 98.71 98.70
LR 64.99 64.96 65.07 65.01 65.00 64.95 65.24 65.21 65.37 65.31
Naive Bayes 66.00 66.05 66.19 66.19 66.41 66.27 66.56 66.50 66.53 66.47
MLP 86.15 86.14 88.22 88.15 86.58 86.52 87.99 87.97 88.09 88.04
SVM 83.51 83.56 83.77 83.69 83.68 83.69 84.33 84.26 84.46 84.43
C&RT 83.33 83.42 85.49 85.44 85.40 85.37 86.63 86.59 86.68 86.61
XGBoost 96.34 96.39 96.49 96.48 96.38 96.38 96.63 96.59 96.62 96.66
QUEST 82.76 82.77 82.83 82.77 82.83 82.81 83.37 83.31 83.14 83.17



8883

1 3

AI‑based stroke prediction system using body motion biosignals…

measurement units, which adversely affects learning. Therefore, stable learning and 
prediction results can be guaranteed when the same weight is applied by converting 
the values to the same range from 0.0 to 1.0 for each attribute through the normali-
zation method. In Eq. (5) below, σ and μ respectively refer to the standard deviation 
and average of the attribute x, α is the weight value, and 1.0 was set in the experi-
ment conducted in this paper.

After normalization, the overall performance improvement in terms of prediction 
accuracy for stroke in the elderly was about 1.0% (Table 6). The prediction model 
with the highest prediction accuracy was RandomForest, which had 98.72% accu-
racy. For the parameter setting of the RandomForest algorithm, the number of trees 
was set to 50, the random seed value was set to 1, the tree depth was set to 30, and 
the minimum number of node splits was set to 2.

4.4 � Experiment and analysis based on deep learning

Experiments on deep learning to predict stroke were performed with LSTM models 
due to its proven track record in time series analysis [42, 45]. LSTM is a model that 
overcomes the structural shortcomings of the existing RNN, and it is designed to 
solve vanishing gradients where the amount of computation increases and the value 
decreases as the error value is backpropagated [42, 45]. LSTM consists of four cell 
states along with input, forget, and output gates. This LSTM has a structure that 
transfers past information to the next state. At this time, the vector value output from 
each gate is generated through the sigmoid layer and the tanh layer. As a result, the 
LSTM learns long-term dependent values, and the cell state operates in the order 
of passing information from the past to the next state. All 24 raw data points from 
Sect. 3.2 were used. To generate a predictive model, learning data were randomly 
extracted, and the remaining data not used for learning were used for testing. To ver-
ify the experimental and prediction results, the data segmentation ratio was divided 
into 67% to 33% as well as 80% to 20%.

In this experiment, the important parameters for performance verification 
using motion data-based deep learning LSTM were set, and they are described 
as follows. Among the parameters, nUnit means the number of cells in the LSTM 
network and Iteration means the total number of learning iterations. Next, the 
learning rate is a scheduling value that adjusts the rate of learning. It is important 
to set appropriate values as learning rates do not reduce learning errors; over-
fitting or underfitting may occur when learning progresses too fast or too slow. 
1st Decay LR (Learning Rate) can prevent overfitting and induce stable learn-
ing error reduction by multiplying the initial learning rate by the 0.1 value from 
the corresponding number of learning. "2nd Decay LR" was used for stable con-
vergence to determine the optimal predictive model by multiplying the reduced 
learning rate in "1st Decay LR" by 0.1 again. A hidden node is a parameter value 
for setting the number of hidden nodes included in a cell in one LSTM. In this 

(5)��⃗x
i
=

x
i
− 𝜇

𝜎
× 𝛼
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experiment, Adam optimizer, which showed a stable performance in prediction 
accuracy and loss among various optimizers of LSTM, was selected and used to 
predict stroke in the elderly. As presented in Table 8, when 80% of the data were 
randomly extracted for learning and the remaining 20% ​​was used for validation, a 
stroke prediction accuracy of 98.994% was obtained.

Figure 5 shows the prediction accuracy and error rate with 80/20 data from the 
7th experiment in Table 8. In Fig. 5b, the error is reduced according to each itera-
tion, and a stable stroke disease prediction is guaranteed. As a result, the LSTM 
model showed optimal predictive performance when using 5000 learning itera-
tions as well as a learning rate of 0.005 and with the number of hidden neurons 
(or hidden nodes) in the cell set to three times the nUnit parameter.

Figure 6 shows the ROC (receiver operating characteristic) curve of the LSTM 
models in Table 8. The ROC curve expresses the threshold and performance of 

Table 8   Accuracy of predicting stroke diseases based on LSTM using motion raw data (%)

Number Parameters

Iteration nUnit Learning rate 1st Decay 
LR

2st Decay 
LR

Hidden 
Neuron

Accuracy (%)

67/33 80/20

1 1000 64 0.01 500 750 192 94.753 94.761
2 1000 256 0.001 500 750 512 95.568 95.564
3 2000 128 0.01 1000 1500 526 96.551 96.562
4 2000 256 0.001 1000 1500 716 97.688 97.731
5 3000 128 0.01 1500 2250 256 97.980 97.982
6 3000 128 0.001 1500 2250 512 98.273 98.281
7 5000 256 0.005 1500 2250 768 98.992 98.994
8 5000 512 0.005 1500 2250 1024 98.885 98.887
9 10,000 256 0.01 2500 3750 764 97.995 97.998
10 10,000 512 0.001 2500 3750 1536 98.436 98.440

(a) Trend of prediction accuracy according to iterations (b) Trend of error rate according to iterations

Fig. 5   Changes in prediction accuracy and error rate through LSTM model. a Trend of prediction accu-
racy according to iterations. b Trend of error rate according to iterations
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binary classification prediction of elderly stroke disease, where the x-axis indi-
cates specificity, and the y-axis indicates sensitivity.

5 � Conclusion

In this paper, we propose a new system that can predict stroke in the elderly using 
machine learning and deep learning algorithms based on real-time motion biosig-
nals. The proposed system overcomes the limitations of the current predictive mod-
els for stroke occurrence, which are based on the past 10 years of medical history 
and EMR data, or the stroke risk factors suggested in the Framingham Heart Study. 
The proposed achieved prediction accuracies of 98.25% for the C4.5 decision tree 
model, 98.72% for RandomForest, and 96.60% for XGBoost with attribute values 
obtained during walking. For deep learning experiments, the LSTM model achieved 
98.99% accuracy for stroke disease prediction. To conclude, we showed that the 
impairment of the upper and lower motor functions can be used as a prognostic 
symptom of stroke disease for early detection. The use of AI can reduce the number 
of false positives and allow for a preemptive response for stroke to be taken.

In a future research project, we intend to conduct research and develop a service 
predictive of stroke by organically combining various biosignals and EMR by meas-
uring and collecting real-time biosignals in sleep or driving situations.

Specificity 

Se
ns

iti
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Fig. 6   The ROC curve of LSTM model using raw motion biosignals
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