
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:7677–7699
https://doi.org/10.1007/s11227-021-04164-x

1 3

A novel approach with an extensive case study
and experiment for automatic code generation
from the XMI schema Of UML models

Anand Deva Durai1 · Mythily Ganesh2 · Rincy Merlin Mathew3 ·
Dinesh Kumar Anguraj4

Accepted: 19 October 2021 / Published online: 3 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Software models at different levels of abstraction and from different perspectives
contribute to the creation of compilable code in the implementation phase of the
SDLC. Traditionally, the development of the code is a human-intensive act and
prone to misinterpretation and defects. The defect elimination process is again an
arduous time-consuming task with increased time-to-deliver and cost. Hence,
a novel approach is proposed to generate the code with the activity diagram and
sequence diagram as the focus. The activity diagram and sequence diagrams and
are defined as part of the UML definition to define the object flow of the system and
interaction between the objects, respectively. An XMI schema is a text representa-
tion of any software model that is exported from a modeling tool. The modeling tool
BoUML exports the required schema from the given input models such as sequence
diagrams and activity diagrams. The proposed JC_Gen extracts artifacts from the
XMI schema of these two models to generate the code automatically. The focus is
mainly on class definition, member declaration, methods’ definition, and function
call in generated code.

Keywords XMI schema · Automatic code generation · UML diagram

 * Mythily Ganesh
 mythily.m@gmail.com

1 College of Computer Science, King Khalid University, Abha, Saudi Arabia
2 Department of Computer Science and Engineering, Karunya Institute of Technology

and Sciences, Coimbatore, Tamilnadu, India
3 Department of Computer Science and Information System, College of Science & Arts, King

Khalid University, Abha, Saudi Arabia
4 Department of Computer Science and Engineering, KL University, Vaddeswaram,

Andhra Pradesh, India

http://orcid.org/0000-0002-3534-6285
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04164-x&domain=pdf

7678 A. D. Durai et al.

1 3

1 Introduction

Automatic code generation is a typical need for the industry to avoid time delays
on project delivery. The challenge is converting the model to text and extracting
the proper properties of the model. UML is the de facto standard for modeling
and design of software systems [1] in terms of structure and behavior. Thus, UML
diagrams are largely classified into structural diagrams and behavioral diagrams.
These diagrams are the high-level abstractions of the system.

The structural diagrams focus on the static structural aspects like entities and
their relations to the system. The diagrams such as class diagrams, component
diagrams, deployment diagrams fall into a structural category. The behavioral
diagrams depict the dynamic nature of the system. The diagrams such as sequence
diagrams, use-case diagrams, collaboration diagrams, state chart diagrams, and
activity diagrams fall into the behavioral category. A sequence diagram is an
interaction diagram that deals with the sequence of message exchanges between
one object and another. An activity diagram is one of the significant behavio-
ral modeling diagrams. It is the only UML diagram to represent the control flow
(workflow) of the business process. JC_Gen uses a sequence diagram to generate
the skeletal code and then the activity diagram to incorporate the business logic
into the skeletal code generated earlier.

To obtain the perfect code, the association between the activity diagram and
sequence diagram is needed, which represent object interactions and their behav-
ior. Even though activity and sequence diagrams are behavioral models, they rep-
resent two different perspectives of the same system. This eases the code genera-
tion process of JC_Gen.

BoUml is the modeling tool that supports drawing large-scale models. It also
runs on different platforms. To a greater extent, the XMI schema of the UML
models is produced through this tool.

In this article, part 2 represents a detailed study on various aspects of the
proposed system. Part 3 details the complete methodology and algorithms of
the suggested system. Part 4 has given a complete case and step-by-step out-
put/result production of the system. Finally, part 5 includes the future extension
possibilities.

2 Review of related publications

The data collection of research has stepped into different dimensions such as,
software modeling, model transformation, code generation, XMI tools. In this
section, consolidation of the search is presented based on the dimensions. To
note, code generation is a sub-category of model transformation.

UML is a standardized approach to represent models in the field of software
engineering. It represents a set of graphic notations to create visual models of
object-oriented software-intensive systems. There are a variety of applications

7679

1 3

A novel approach with an extensive case study and experiment…

that uses models as backbone are published in recent years. A model-based
aspect-oriented framework [2] is proposed for building intrusion-aware software
systems. In [3], proposes an aspect-oriented modeling (AOM) for incorporat-
ing security mechanisms in an application. Kong proposes [4], a graph grammar
to summarize the hierarchy of states. The execution of a set of non-conflicting
state transitions is predicted by a sequence of graph transformations. A group of
experiments [5] investigates whether the use of stereotypes improves the compre-
hension of UML sequence diagrams. Even Babenko describes [6] a concept of
information support as reusable. The proposed system also uses the UML Models
to produce the code. A methodology [7] in which the aspect-oriented modeling
AOM technique is used to customize the primary model by integrating different
business requirements.

Model transformation of the MDA approach focuses on considering a model as
an initiator and generating other models or the programming code automatically.
Process model of SDLC decides the project management and determines the sched-
ule, cost, time, and resource according to their liability. The model transformation
approach eases the designing phase that saves effort and reduces errors by automat-
ing the building of other models as per the need. It also performs a better role in
change management, where changes can be done in a single model and its impact
will be injected into other models automatically. CIM (Computational Independent
Business Model) to PIM (Platform Independent Behavioral Model) transformation
is a mandate operation that converts the business view of a model into an infor-
mation view [8]. This brings the need for information on business logic on model
representations. There are a variety of algorithms [9] and prototypes [10]on model
transformation to make an auto-conversion. Model transformation is classified as
unidirectional, bidirectional, declarative, imperative, and rules [11]. There are many
references to demonstrate how model transformation is achieved through different
approaches. The article [12] suggests model transformation from the class model to
relational model transformation with the help of model-driven engineering (MDE)
principles. A generalized approach of mapping guidelines for CIM- high-level busi-
ness model into PIM-low-level independent behavioral model is defined by [8]. A
matching algorithm was proposed by [13] to convert a particular structure of source
to destination model. Models can be transformed with different cardinalities like one
to many models or many to one model, etc. [10]suggests a transformation approach
of ATLAS model language to different modeling languages.

UML statechart diagram is used for modeling a system’s dynamic behavior. [14]
described an object-oriented approach for generating compact and efficient Java
code from the statechart diagram. The states are represented as objects and all the
behaviors associated with the states are retained as another set of objects. State
design patterns have been extended with the help of object composition and delega-
tion. JCode follows this approach to generate Java code after reading the specifica-
tions of the UML statechart diagram.

In their previous research [15], described a methodology where each state in the
statechart has a class that encapsulates all the transitions and actions of the state. A
readable, compact, and efficient code can be generated in the case of states without
using controls such as if and case statements. Also, they published [16], produced

7680 A. D. Durai et al.

1 3

executable legible, efficient, and compact code of the state diagram to an object-
oriented language like Java. Representing states like objects that stretch out the
hierarchical states’ representation using the concept of composition of objects and
delegation.

The gaps between the modeling and high-level programming languages are an
obstacle to produce satisfactory solutions. The automation tool proposed by [17]
addresses this issue by mapping the UML notations to Java. It can generate directly
the high-level Java code from multiple UML statecharts. It suggested a process of
requirements engineering that composes UML scenarios to obtain a comprehensive
description of a given service system. The derived services are transformed into the
source code. Four operators are suggested as, sequential, competing, conditional,
and iteration operators to compose a set of scenarios that describe the use case of a
given system.

An [18] investigation on the viability of automatic generation of code from cur-
rent systems design is taken place. Several different approaches have been experi-
mented with in terms of short-duration and futuristic approaches.

Usman and Nadeem [19] extended their work on a tool called UJECTOR [19]
for the automatic generation of executable Java code from UML diagrams. A set of
three UML diagrams, i.e., class diagram, sequence diagram, and activity diagram
are the input to the tool to generate a completely executable Java code automatically.

Parada et al. [20] presented a work to automatically generate structural and
behavioral code from UML class and sequence diagrams. In [21], Engels et al. con-
centrated on collaboration diagrams. The main objective is automatically generated
java code fragments to build a substantial part of the system’s functionality and to
avoid the loss of important information during the transformation process.

A comparison study on generated code [22] from rhapsody OPCAT, using object-
process methodology (OPM) case tool. The comparison concludes that the UML
consistency problem and its distributed representation of the system behavior are
reflected in the code. OPM models, which capture the static and dynamic aspects of
a system in a single view, also enable the generation of potentially complete applica-
tion logic rather than just skeleton code. The study also explained the unique archi-
tecture and functionality of OPM- GCG (Generic Code Generator) of OPCAT.

The research mainly focused on bridging the gap between software design and
implementation. Same as indented by [23], the systems-based components are used
in software architecture at the level of modeling/design. Then, the coordination par-
adigm components are used at the level of implementation.

In Singh has proposed [24], UML class diagram is used to generate XML
(Extended Markup Language) schema. The generated XML schema is used for code
generation. JIBX (Binding XML to Java code) is a Java-based open-source tool used
for code generation which is developed by IBM.

Gene-Auto ITEA European project [25], which aims at building a qualified C
code generator from mathematical models under MATLAB-Simulink and Scilab-
Scicos. The first version of the Gene-Auto code generator has already been released
and has gone for a validation phase on real-life case studies defined by each project
partner.

7681

1 3

A novel approach with an extensive case study and experiment…

Automation of model generation improves the reusability of the software devel-
opment process. This process is intended in designing the pictorial model of the
information and exporting it as a schema. Some of these tools assist the conversion
of the desired format of input and output of the system. ArgoUML is an object-ori-
ented case tool that facilitates the generation of a source model. ArgoUML contains
multiple functionalities for the UML model generation, and it exports the XMI of
the model [26].

A new approach of auto-code generation is proposed in [27], which uses the Rete
algorithm to generate rapid code generation using a uniform coding style.

BoUml is a modeling tool to support large-scale models and is easy to draw the
model. It also runs under different platforms. To a great extent, the XML schema of
the UML models produces through the tool [28]. The exported XML schemas are
taken as the source to develop the applications in Java [29]

The decisions about the functionality and structure of any software system are so
critical and decided at the design phase and the design of XML schemas involved
in the development as a consequence of those decisions. In [30] proposed, transfor-
mation algorithm to convert a UML profile into XML schema. This model-driven
approach allows designers to be freed from low-level implementation issues, by the
fully automatic mechanisms that transform UML models to XML schemas.

A learning system analysis metrics value from the existing system ad uses princi-
pal feature analysis to find the complexity, cohesion, and coupling is addressed [31].

A tool called PlantUML is a flow charter or UML model generator that takes
rendered text as input to generate specific models according to the given text annota-
tions [31]. Rendering is a process of joining the entire element and their relationship
to form the standard textual format so that the tool can regenerate images from text
[32].

Graphviz is an open-source tool that is used for generating graphical representa-
tions described in [33]. For the graphical representation, the design patterns and dot
tool of the Graphviz package are used in [34]. Object Relation Diagram (ORD) is
a directed graph, where nodes are classes and the edges represent the relationship
between classes, and advantage of this approach is that it reduces the cost of stub
creation.

3 Java‑specific code generator (JC_Gen)

The proposed tool JC_Gen makes use of sequence diagrams and activity diagrams
in generating code. Parsers segments data from the XMI into categories like action,
activity, model, state, transition, etc. Some of the Java APIs like DOM, SAX, dom4j,
and XOM are used for checking and validating the XML with DTD and Schema(s).
A DTD is a document type definition that defines the structure, legal elements, and
attributes of an XML document.

Kraft et al. [35] perform a comparative study on various parsers concerning
their parsing time and throughput. This involves a set of stream-based parser APIs
such as SAX (Simple API for XML), StAX, XMLPull, and tree-based APIs such as

7682 A. D. Durai et al.

1 3

document object model (DOM), JDOM, ElectricXML, DOM4j. Another deliberate
discussion on Java APIs of XML parser is done in [36].

A sequence diagram shows object interactions arranged in the time sequence of a
system. It depicts the objects involved in the scenario and the sequence of messages
exchanged between the objects needed to carry out the functionality of the scenario.

An activity in Unified Modeling Language (UML) is a major task of object-ori-
ented development that defines an activity as a sequence of activities that make up a
process.

The architecture of JC_Gen is shown in Fig. 1 which outlines the flow of pro-
cesses performed in obtaining the java code. Using the above models, the major
perspective of the coding can be retrieved. Especially sequence helps to identify
classes, data members, calling function, and called function. The activity model fills
the logic of the declared function. Therefore, these model suits well to generate code
automatically.

The following steps are involved in code generation.

1. XMI generation
2. SD Parsing (Sequence Diagram Parsing)
3. AD Parsing (Activity Diagram Parsing)
4. Structural code generation
5. Behavioral code generation

a. Mapping between sequence and class artifacts

Fig. 1 Architecture of JC_Gen

7683

1 3

A novel approach with an extensive case study and experiment…

b. Activity Interpretation

The XMI schemas of both sequence diagram and activity diagram form the
input to the respective parsers. The SD parser retrieves the information of structural
aspects such as class definition and members’ declaration from the SD XMI schema.
The output of the SD parser is used to produce the partial code of the software by
the structural code generator. The AD parser retrieves the logic of each member in
the form of activity in terms of action and flows. The behavior code generator takes
structural code and extracted elements from activity diagram to incorporate the busi-
ness logic code in the generated code.

3.1 XMI generation

The XMI schema generated by the modeling tool represents the behavior of the
model elements in the form of tags and their attributes. These elements are also
organized according to the order of their structure and action. The extraction of the
sequence diagram is intended to gather the structural information of the code. How-
ever, the Activity XMI representation focuses in-depth on each activity and its sub-
actions to derive the behavior aspects of the code. Dependency issues may raise with
XMI version usage due to the update of schema versioning. Until now the experi-
ment was carried by carefully using compatible schemas. Also, an alert message is
provided when the version is not supported by the developed system.

In the sequence diagram, each lifeline represents the object’s interaction time
ordered. The message passed between the objects decides the flow of the program.
Messages are the communication between objects. Each message reflects either an
invocation of a method or sending and receiving of a signal, so that message could
be of actions like synchronous call, asynchronous call, and asynchronous signal
[37]. Each message specification has sender and receiver in which the sender will be
calling or passing a message which resides on the receiver side. In a sequence dia-
gram, each message can be considered as part of the sequence flow, from one object
to another object over the timeline.

The activity diagram identifies the procedure of each method by its action and
sub-actions. The start and the top nodes of the activity delimit the scope of the
method specified. The action state provides a pseudovalue of the procedure rather
than a java code. These actions are mapped with the sequence diagram messages to
produce method definitions of corresponding members.

3.2 SD parser

The SD parser extracts the necessary elements from the XMI document. The
extracted elements are segregated according to their type value such as class, prop-
erty, operations, and messages. The relationships between the elements are main-
tained to generate the code. To achieve the extraction of elements and their relation-
ship in an optimized way, the parenthesis balancing algorithm is used [38]

7684 A. D. Durai et al.

1 3

XMI tags, the foundation of XMI define the scope of an element in XMI.
They can also be used to insert comments, declare settings required for parsing
the environment, and insert special instructions. XMI tags are represented in the
form of tree structure. Each tag has some relevant sub-tags. It has the facility to
store the property of each tag. For example,

<book category="education">

<title lang="en"> ecnerefeRetelpmoC </title>

<author <tlihcStrebreH> /author>

<year>2020</year>

<price>899</price>

</book>

It is found storage of extracted elements with their members and relationships
can be obtained efficiently by using tree structure storage. Therefore, the output
of the SD stage 1 parser is a tree with a set of nodes representing the XMI tags.
Each node retains its name, type, and xmi:id. It parses only the open and close
type tags. The algorithm used to create the class structure with its data members,
and member function is given in Algorithm 1.

Algorithm 1: SD stage 1 Parser
Input: XMI Schema
Output: Tree structure T
//XMI document is given as input and a tree is formed with the help of Stack.
Stack S –linear storage of the type node.
T_node – an object of a node with a name and type field.
T, open_T, close_T, and Combined_T- tags extracted at a particular iteration.
1. Repeat steps 2 and 3 until no more Tg
2. If Tg is open_Ti then create a node T_node
3. Extract the T_typei, T_namei, and XMI: id field to initialize the node.
4. If T_root is null then T_nodei becomes T_root.
5. S_Push() the T_nodei into the stack S.
6. Insert T_nodei as a child of the S_top node.
7. If the is close_Ti then
8. Perform S_pop()
9. End

The SD parser stage 1 generates a tree structure using a parenthesis balancing
algorithm. This is adopted and modified in the work to identify each pair of tags

7685

1 3

A novel approach with an extensive case study and experiment…

presented in the XMI Schema. Through this, the tree structure is formed by the
Stage 1 SD parser.

It determines the hierarchies of the classes and the data members as shown in
Fig. 2. This algorithm neglects the combined tag which only focuses on the collabo-
ration and more details of the model than the core components. The tree structure
thus produced by the SD stage 1 parser along with XMI schema is used to produce
mtd_Array and var_Array by the SD stage 2 parser.

The datatype and its initial value of the data members and prototype of each
method with its return type are obtained by the SD stage 2 parser using algorithm 2.
The SD stage 1 tree along with the XMI document is given as input to this algo-
rithm. The “operation” and “property” nodes of tree ‘T’ are processed repeatedly to
find this type. The output of the algorithm is stored in a sequence structure for fur-
ther processing. The SD stage 2 parser produces two structures to store data mem-
bers (var_Array) and member functions with (met_def) data types and return types,
respectively.

Fig. 2 Tree structure generated by SD stage 1 parser

7686 A. D. Durai et al.

1 3

Algorithm 2 SD stage 2 Parser
Input: XMI Schema and Tree Structure T
Output: mtd_Array and var_Array

1. Repeat steps 2 and 3 for all member nodes of the class.
2. For all the identified “operation” type node T_nodei (Member function)

a. Identify the <ownedOperation> tag where name=T_nodei :name
b. Extract the inner <Owned parameter> tag of <owned operation> and

check the name is return then go to step 3.
c. Extract the inner <type> tag of corresponding <ownedOperation> and

identify the xmi:idref value.
d. Identify the <packagedElement> tag where its xmi:id is equal to

xmi:idref of step ‘c’.
e. Return the name attribute of <packagedElement> (i.e., the return type

of T_nodei)
f. Store in mtd_arr as the method name and return type.

3. For all the identified “property” type node T_nodei (Data Members)
a. Identify <ownedAttribute> tag where name=T_nodei :name
b. Extract the inner <defaultValue> tag of corresponding

<ownedAttribute> and extract the initial value of member T_nodei

from value attribute
c. Extract the inner <type1> tag of corresponding <ownedAttribute> and

identify the xmi:idref value.
d. Identify the <packagedElement> tag where its xmi:id is xmi:idref of

step ‘c’.
e. Return the name attribute of <packagedElement> (i.e., the data type of

T_nodei)
f. Store in var_Array as variable_name and data_type.

The SD stage 3 parser extracts the sequence of object flow among the classes
using algorithm 3. The algorithm SD stage 3 uses the same inputs used for the
stage 2 parser. The output of the SD stage 3 parser is used to frame the func-
tion call inside the main function of the classes according to the source sequence
model.

7687

1 3

A novel approach with an extensive case study and experiment…

Algorithm 3 SD stage 3 Parser
Input: XMI Schema and Tree Structure T
Output: objFlow_array

1. Repeat step 2 for all the identified class type node T_nodei

2. Repeat steps 3 to 7 until all method calls are retrieved
3. Identify <ownedAttribute> tag where its “type” attribute is xmi:idclass

4. Identify <lifeline> tag where its “represents” attribute is xmi:idownedAttribute

5. Identify <fragment xmi:type="uml:MessageOccurrenceSpecification"> tag
where its “covered” attribute is xmilifeline.

6. Identify <message> tag where its sendEvent attribute is xmi:id
MessageOccurrenceSpecification

7. Return the name of the operation and the caller class which requested the
operation. The receive event of the message identifies the method owner by
performing the step 1 to 5 in reverse order. The message tag provides the name
of the operation to be called in the xmi:idclass.

8. Store in obj_Array with structure element Ele (function name, owner class,
and caller class) which represent the object flow between classes.

The 3 stages of the SD parser generate a set of data structures such as T, mtd_Array,
var_Array, and objFlow_array. These details produce an array of structural information
to generate the code.

3.3 AD parser

AD parser helps to extract the behavior aspects of the software under development.
It considers the XMI schema of the activity model generated corresponding to the
sequence model. Multiple discontinuous activity models are used to represent the tasks
performed inside the methods.

Each activity delimits the other activities by start and stop nodes. In between nodes
depict the logic of the operation. The output of the AD parser is stored in an array
where each element is the head of a singly linked list. Each singly linked list is used to
represent the execution sequences of an operation. AD parser incorporates the methods
defined in the appropriate place of the generated code by the SD parser. Algorithm 4
represents the AD parser. The element in mtd_def_Array shown in Fig. 6 represents the
logic of each method in its sequence.

7688 A. D. Durai et al.

1 3

Algorithm 4 AD Parser
Input: XMI Representation of Activity Diagram
Output: mtd_def_Array

1. Repeat steps 1 to 4 for each <packagedElement>i in XMI.
2. If XMI: type is Activity create a head node and store the name in the head

node.
3. Store head into an ith position of the mtd_def_Array.
4. Repeat steps 5 to 8 for each <edge>j in <packagedElement>.
5. If XMI: type is control-flow then find the id of source and target nodes.
6. If the source and target nodes are found in ith position of the array’s list then

create a node with “loopend” as data and insert it at the end of the list.
7. If the source node is not found in ith position of the array’s list then create a

new node with the source’s name and insert it at the end of the list.
8. If a target node is not found in ith position of the array’s list then create a new

node with the target’s name and insert it at the end of the list.

3.3.1 Structural code generator

The output of three SD stage parsers is given as an input to the structural code
generator. SD stage 1 parser defines the classes and their data members. The tree
structure ‘T’ indicates the relation between the different types of elements. SD
Stage 2 parser identifies the variable and returns types of members, and finally,
the SD stage 3 parser represents the function calls. This process is a clear map-
ping of parser extracted elements into the code statements. Each element of tree
structure ‘T’ is fixed into the code structure according to its position and type.
(e.g., Each class type element is created as a Class and the child of these ele-
ments in ‘T’ are its members. The data members and member function are iden-
tified based on the type.) Then, mtd_Array produces the return type and var_
Array produces data type and initial value.

objFlow_array indicates the class where the function is to be called and the
class to which the function belongs. Using this data, the function calling state-
ments are transformed to code structure. The template code generator [39]
adheres to the information by the parser to produce the java code. The structural
code generator produces the class definition inclusive of variable and method
declaration. It also focuses on the function calling to represent the object flow
from one class to another class. When the array is combined with the result of
the structural code generator will produce the compilable code of the given input
models.

7689

1 3

A novel approach with an extensive case study and experiment…

3.3.2 Behavioral code generator

This process updates the already generated code with method definition. The
method definition is a procedure of task accomplishment in the software. This
behavior is extracted from the activity diagram by the AD parser and stored in
mtd_def_Array in Fig. 6. Each element stores a particular method’s definition in
the form of a linked list. During this incorporation of definitions, the following
sub-tasks are performed.

3.3.2.1 Mapping between sequence and class artifacts This mapping identi-
fies the appropriate place to incorporate the method definition. If it matches the
function name of the code generated with the element name of mtd_def_Array in
Fig. 6. If there is a matching found, then the entire linked list with the same ele-
ment name is inserted inside the block below the matched node as in the sequence
Tree ‘T’. Set of pseudo-codes are produced as the method definitions, and it will
be modified by the activity interpreter.

Activity interpreter. The pseudo-code is replaced by java code by activity inter-
preter. The pseudo-statements of method definition are converted to java code
with the help of an interpreter. The start and final statements are replaced with
‘{‘and ‘}’ by the activity interpreter. Hence, the scope of the method is deter-
mined. The pseudo-code is treated as a keyword, and the replacement is done for
that statement. E.g., “add a, b” in the pseudo-code is replaced by “a = a + b;” oth-
erwise “calculate c = a + b;” replaced by “c = a + b;”. The output of this process
produces the pure java code.

Assumptions Some of the assumptions made after complete code generation are
listed below.

• If any method declaration does not found a match in mtd_def_Array then treat
it as an abstract function.

• If a class has one or more abstract functions, then the class is also considered
abstract.

• If no method definitions are found in a class, then it is an interface.
• Method calling happens only in the main method until it is explicitly specified

in the method definition.

4 Results and discussion

A case study on car driving has been taken as a sequence model with a set of
activity diagrams. The car, driver, and engine are identified as the call actions and
flow between these actions is captured by the corresponding objects. The input
models are generated using the BOUML tool and an XMI schema of the corre-
sponding source models is exported.

7690 A. D. Durai et al.

1 3

For the given sequence diagram in Fig. 3, the type of objects required (i.e.,
the corresponding classes) and their members are retrieved. A partial tree of the
source model is shown in Fig. 4 which represents the call action “car” of the
sequence model. The XMI schema exported from the modeling tool is further
classified by different levels of parsers. This schema contains different tags with
multiple attributes to reproduce the modeling diagram. The SD parser stage 1
generates a tree structure using a parenthesis balancing algorithm. This Tree
structure is represented as ‘T’ in further processes and each node of this tree
keeps track of its type, id, and link to the child. The elements are extracted from
the XMI schema, and a tree is formed. The types of nodes such as class, opera-
tion, and property are retrieved by the SD stage 1 parser. It also determines the
hierarchy of the elements as shown in Table 1. The members are incomplete with-
out their return type and data types. The driving model consists of 3 classes such
as driver, car, and engine.

Fig. 3 Driving sequence diagram as source model

7691

1 3

A novel approach with an extensive case study and experiment…

To retrieve the missing information SD stage 2 parser takes the ‘T’ as input
and traverses the entire array. If the node type is “operation,” then the return type
of function is identified and stored in mtd_Array; otherwise, if the node type is

Fig. 4 ‘T’ Structure of Car class and members

Table 1 Mtd_Array of driving
model

Name Return type

Turn on Boolean
Drive void
Turn off Boolean
Start electrical current Boolean
Inject fuel void
Change transmission void
Accelerate void
Decelerate void
Brake on void
Brake off void
Cut fuel void
Cut electrical current Boolean
Turn void

7692 A. D. Durai et al.

1 3

“property,” then data type and the initial value of the member identified are stored in
var_Array. Two arrays are produced by the SD stage 2 parser concerning the source
sequence model and are shown in Tables 1 and 2.

The next level of the parser is used to find the object flow from one class to
another class with the help of message flow. This SD stage 3 parser determines the
place of the function call and creates the object used to call the function. The dif-
ferent function calls of each class are identified and inserted into the main function.
According to the identified owner class, the objects are created to utilize the func-
tions. Even though there is more than one class in a source code file, only one main
function can exist in it. Hence, the main function is created under the initial class
with message flow in the model. The output of the SD stage 3 parser is stored in obj-
Flow_Array as shown in Table 3.

After the SD stage parsers of structural code are generated by the structural code
generator, it converts the data stored in mtd_Array, var_Array, and objFlow_array
into the code format. Each class structure is stored in a separate file with the class

Table 2 Var_Array of driving
model

Name Data type Initial value

Gear int False
Brake Int 0
Ignition Boolean False
Fuel int 0
Gear Int 0
Brake Int 0
Current Int 1
Turn Boolean False

Table 3 Objflow_Array in
driving model

Name Owner class Caller class

Turn on Car Driver
Drive Car Driver
Turn off Car Driver
Start electrical current Engine Car
Inject fuel Engine Car
Change transmission Engine Car
Accelerate Engine Car
Decelerate Engine Car
Brake on Engine Car
Brake off Engine Car
Cut fuel Engine Car
Cut electrical current Engine Car
Turn Engine Car

7693

1 3

A novel approach with an extensive case study and experiment…

name. The stage-by-stage code achievement concerning SD parsers is shown in
Table 4.

The behavior aspects of each operation are represented by another input model
called activity diagram as shown in Fig. 5. The input activity diagram represents
procedures for each method with a set of states. The set of activities of a method

Table 4 Code obtainment from SD stage parsers

Code after SD Stage1 Parser Code after SD Stage 2 Parser Code after SD Stage 3 Parser

public class Driver
{
}
public class Car
{
Gear;
Brake;
turnOn();
drive();
turnOff();
}
public class Engine{
Ignition;
Fuel;
Gear
Brake;
Current;
Turn;
ElectricalCurrent();
injectFuel();
changeTransmission();
accelerate();
decelerate();
brakeOn();
brakeOff();
cutFuel();
cutElectricalCurrent();
turn();
}

public class Driver
{
}
public class Car{
public int Gear = 0;
public int Brake = 0;
public boolean turnOn()
{
}
public boolean drive()
{}
public void turnOff()
{}
}
public class Engine
{
public boolean Ignition = False;
public int Fuel = 0;
public int Gear = 0;
private int Brake = 0;
public int Current = 1;
public boolean Turn = False;
public boolean startElectricalCur-

rent()
{}
public void injectFuel()
{}
public void changeTransmission()
{}
public void accelerate()
{}
public void decelerate()
{}
public void brakeOn()
{}
public void brakeOff()
{}
public void cutFuel()
{}
public boolean cutElectricalCur-

rent()
{}
public void turn()
{}
}

public class Driver{
public static void main(String args[])

{
Driver obj1 = new Driver();
Car car_obj = new Car();
car_obj.turnOn();
car_obj.drive();
car_obj.turnOff();
Engine Engine_obj = new Engine();
Engine_obj.startElectricalCurrent();
Engine_obj.injectFuel();
Engine_obj.changeTransmission();
Engine_obj.turn();
Engine_obj.accelerate();
Engine_obj.decelerate();
Engine_obj.brakeOn();
Engine_obj.brakeOff();
Engine_obj.cutFuel();
Engine_obj.cutElectricalCurrent();}}
public class Car{
public int Gear = 0;
public int Brake = 0;
public Boolean turnOn(){}
public void drive(){}
public Boolean turnOff(){}}
public class Engine {
public boolean Ignition = False;
public int Fuel = 0;
public int Gear = 0;
private int Brake = 0;
public int Current = 1;
public boolean Turn = False;
public boolean startElectricalCur-

rent(){}
public void injectFuel(){}
public void changeTransmission(){}
public void accelerate(){}
public void decelerate(){}
public void brakeOn(){}
public void brakeOff(){}
public void cutFuel(){}
public boolean cutElectricalCur-

rent(){}
public void turn()}

7694 A. D. Durai et al.

1 3

is grouped with a distinct name. The AD parser extracts the elements from the
XMI schema and stores each activity in a separate list. The head of each list is
stored in an array.

Fig. 5 Driving activity model as source model

Fig. 6 Mtd_def_Array with an activity list of Car class

7695

1 3

A novel approach with an extensive case study and experiment…

The array with car class methods is shown in Fig. 6. The partition of the activity
model is mapped with the mtd_Array of SD stage 2 parser. If any matching occurs,
then the activity list is inserted as the definition of the member function.

After the mapping, the behavior code remains as pseudo-code. To address this
issue, an activity interpreter is used to convert the pseudo-code into java code. This
activity interpreter makes the code a platform-specific model such as Java code.
A sample is shown in Table 5. This reduces the burden of the designer on code
generation.

Finally, a complete java code that represents both structural and behavioral
aspects of the models is produced. Through the source models, three classes are
achieved in the given case study as driver, car, and engine. The complete Java code
in Table 6 shows the compilable code placed in the given input models. Each class is
stored in a separate file, and the output of the main class is shown in Table 6. Similar
attempt of generating code was attempted earlier using different diagrams [40].

LPMT [13] is a logical prediction model transformation system that takes the
activity diagram as the source then produces a class diagram, use-case diagram, and
sequence diagrams. Extracts information from an XMI schema and applies rules on
the source model to destination models.

A comparison is between JC_Gen and LPMT model proposed in [LPMT] is
shown in Table 7. The table depicts the correlation among them since they are dif-
ferent forms of model transformation. The software metrics [41] do not reveal the
accomplishment of code generation from the models. But code generation approach
has proven the time reduction of code generation and only a few more contribution
expected from the human.

5 Conclusion

This initiative is a stepping stone in the development of java applications from the
models. The procedures followed here can also be extended to develop GUI pro-
grams using java without the knowledge of syntax. The final code produced by the
work is 95% compliable code. This research reduces the gap between design mod-
els and code generation. It strengthens the connectivity between the phases of the
SDLC process. It supports large-scale models compared to other flowchart interpret-
ers such as raptor, flowgorithm, visirule, etc., and concentrate on business aspects

Table 5 Sample interpreter table

Pseudocode Sample Java code

Initialize < var > to < val > /
Assign < var > to < val >

Assign Gear to 0 var = val

Check < var > to/not/grt/less < val > Check fuel less 10 If(var = /!/ > / < val)
Inc < var > Inc Brake var + + ;
pInc < var > pInc Accelerator + + var;
Calc < expr > Calc B = 3.14*rad*rad expr;

7696 A. D. Durai et al.

1 3

more than case tools such as StarUML, BoUML, ArgoUML, etc. The addressing
of behavioral aspects of the software using advanced models such as, activity and
sequence diagram is an added advantage of this system as it is capable of producing

Table 6 The output of the AD parser

Driver Car Engine

public class Driver
{
public static void main(String args[])
{
Driver obj1 = new Driver();
Car car_obj = new Car();
car_obj.turnOn();
car_obj.drive();
car_obj.turnOff();
Engine Engine_obj = new Engine();
Engine_obj.startElectricalCurrent();
Engine_obj.injectFuel();
Engine_obj.changeTransmission();
Engine_obj.turn();
Engine_obj.accelerate();
Engine_obj.decelerate();
Engine_obj.brakeOn();
Engine_obj.brakeOff();
Engine_obj.cutFuel();
Engine_obj.cutElectricalCurrent();
}
}

Public Class Car
{
public int Gear = 0;
public int Brake = 0;
public int turnOn()
{
Brake + + ;
Gear = 0;
System.out.println("turnOn");
return Brake;
}
public void drive()
{
Brake–;
Gear = 1;
System.out.println("drive");
}
public int turnOff()
{
Brake + + ;
System.out.println("turnoff");
return Brake;
}
}

Public class Engine
{public boolean Ignition = false;
public int Fuel = 0;
public int Gear = 0;
private int Brake = 0;
public int Current = 1;
public int Turn = 0;
public boolean startElectricalCurrent(){
if(Current! = 0)
{Ignition = true;} System.out.println
("StartElectricalCurrent");
return Ignition;}
public void injectFuel(){
if(Ignition = = true){
Fuel = 1;}
System.out.println("InjectFuel");}
public void changeTransmission()
{if(Gear! = 0)
{Gear = 0;}
else{
Gear = 1;} System.out.println("ChangeTra

nsmission");}
public void accelerate()
{Fuel + + ; System.out.

println("accelerate");}
public void decelerate()
{Fuel–;
System.out.println("deacelerate");}
public void brakeOn()
{Brake + + ;
System.out.println("brakeon");}
public void brakeOff(){
Brake–;
System.out.println("brakeoff");
}
public void cutFuel()
{if(Ignition = = false)
{Fuel = 0;}
System.out.println("cutfuel");}
public boolean cutElectricalCurrent(){
if(Gear = = 0){
Ignition = false;} System.out.println("cutEl

ectricalCurrent");
return Ignition;}
public void turn()
{if(Turn! = 0){
Turn + + ;}
else{
Turn–;}
Gear = 0;
System.out.println("turn");}}1

7697

1 3

A novel approach with an extensive case study and experiment…

the code with business logic when compiled produce necessary executables, which
are production-ready.

However, this system can be extended to other UML models and the high-level
concepts such as dynamic method dispatch, reusable design patterns, and inclusion
of library function.

Acknowledgements This research is done with the financial support by the Deanship of Scientific
Research at King Khalid University under research grant number RGP.1/210/42.

References

 1. James B, “System Development Life Cycle (SDLC)—Risk Management Frammework.” https://
www. oreil ly. com/ libra ry/ view/ risk- manag ement- frame work/ 97815 97499 958/ B9781 59749 99580
00053. xhtml Accessed June 03 2021

 2. Zhu ZJ, Zulkernine M (2009) A model-based aspect-oriented framework for building intrusion-
aware software systems. Inf Softw Technol 51(5):865–875. https:// doi. org/ 10. 1016/j. infsof. 2008. 05.
007

 3. George MLV, Vadakkumcheril T, Mythily M (2013) A simple implementation of UML sequence
diagram to java code generation through XMI representation. Int J Comput Theory Eng 3(12):35–
41. https:// doi. org/ 10. 7763/ IJCTE. 2009. V1.6

 4. Kong J, Zhang K, Dong J, Xu D (2009) Specifying behavioral semantics of UML diagrams through
graph transformations. J Syst Softw 82(2):292–306. https:// doi. org/ 10. 1016/j. jss. 2008. 06. 030

 5. Cruz-Lemus JA, Genero M, Caivano D, Abrahão S, Insfrán E, Carsí JA (2010) Assessing the influ-
ence of stereotypes on the comprehension of UML sequence diagrams: a family of experiments. Inf
Softw Technol 53(12):1391–1403. https:// doi. org/ 10. 1016/j. infsof. 2011. 07. 002

 6. Babenko LP (2003) UML-based software engineering. Cybernet Syst Anal 39(1):65–70
 7. Zou Y, Xiao H, Chan B (2007) Weaving business requirements into model transformations. Busi-

ness, 1–10
 8. de Castro V, Marcos E, Vara JM (2011) Applying CIM-to-PIM model transformations for the ser-

vice-oriented development of information systems. Inf Softw Technol 53(1):87–105. https:// doi. org/
10. 1016/j. infsof. 2010. 09. 002

 9. Asztalos M, Lengyel L (2008) A metamodel-based matching algorithm for model transformations.
Computational Cybernetics, 2008. ICCC 2008. IEEE International Conference on, pp 151–155

 10. Sanchez Cuadrado J, Guerra E, de Lara J (2014) A component model for model transformations.
IEEE Trans Softw Eng 40(11):1042–1060. https:// doi. org/ 10. 1109/ TSE. 2014. 23398 52

 11. Czarnecki K, Helsen S (2003) Classification of model transformation approaches. pp 1–17
 12. Bollati VA, Vara JM, Jiménez Á, Marcos E (2013) Applying MDE to the (semi-)automatic develop-

ment of model transformations. Inf Softw Technol 55(4):699–718. https:// doi. org/ 10. 1016/j. infsof.
2012. 11. 004

Table 7 Comparison between JC_Gen and LPMT

Parameter LPMT JC_Gen

XMI Schema ArgoUML BoUML
Parsers XOM parser SD and AD parser
Input Sequence Model Sequence and Activity
Output Class and Activity model Java Code
Methodology Logical Predictor in Model Transforma-

tion
Template-based code generation

Transformation PIM-M1to PIM-(M2 &M3) PIM to PSM

https://www.oreilly.com/library/view/risk-management-framework/9781597499958/B9781597499958000053.xhtml
https://www.oreilly.com/library/view/risk-management-framework/9781597499958/B9781597499958000053.xhtml
https://www.oreilly.com/library/view/risk-management-framework/9781597499958/B9781597499958000053.xhtml
https://doi.org/10.1016/j.infsof.2008.05.007
https://doi.org/10.1016/j.infsof.2008.05.007
https://doi.org/10.7763/IJCTE.2009.V1.6
https://doi.org/10.1016/j.jss.2008.06.030
https://doi.org/10.1016/j.infsof.2011.07.002
https://doi.org/10.1016/j.infsof.2010.09.002
https://doi.org/10.1016/j.infsof.2010.09.002
https://doi.org/10.1109/TSE.2014.2339852
https://doi.org/10.1016/j.infsof.2012.11.004
https://doi.org/10.1016/j.infsof.2012.11.004

7698 A. D. Durai et al.

1 3

 13. Mythily M, Valarmathi ML, Durai CAD (2018) Model transformation using logical predic-
tion from sequence diagram: an experimental approach. Clust Comput. https:// doi. org/ 10. 1007/
s10586- 017- 1618-5

 14. Niaz IA, Tanaka J (2005) An object-oriented approach to generate java code from UML statecharts.
Int J Comput Inf Sci 6(2):83–98

 15. Niaz IA, Tanaka J, Mapping uml statecharts to java code
 16. Niaz IA, Tanaka J Code generation from uml statecharts
 17. Jakimi A, Elkoutbi M (2009) Automatic code generation from UML statechart. Int J Eng Technol

1(2):165–168
 18. Burke PW, Sweany P (2007) Automatic code generation through model-driven design
 19. Usman M, Nadeem A (2009) Automatic generation of java code from UML diagrams using UJEC-

TOR. Int J Softw Eng Appl 3(2):21–37
 20. Parada AG, Siegert E, de Brisolara LB (2011) Generating java code from UML class and sequence

diagrams. Int J Comput Inf Sci, 99–101
 21. Engels GW, Hücking R, Sauer S (1999) UML collaboration diagrams and their transformation to

Java. In: International Conference on the Unified Modeling Language, pp 473–488. https:// doi. org/
10. 1007/3- 540- 46852-8_ 34

 22. Reinhartz-berger I, Dori D (2004) “Object-process methodology (OPM) vs. UML : a code genera-
tion perspective

 23. Stavrou A, Papadopoulos GA (2007) Automatic generation of executable code from software archi-
tecture models. In: information system development, Springer, Boston, MA, 2007, pp 1–12. https://
doi. org/ 10. 1007/ 978-0- 387- 78578-3_ 36

 24. Singh S (2012) Effort reduction by automatic code generation. Int J Comput Sci Eng Technol (lJC-
SET) 3(8):366–369

 25. Rugina A, Thomas D, Olive X, Veran G (2008) Gene-auto : automatic software code generation for
real-time embedded systems. In: proceedings of DASIA 2008 data systems in aerospace, no 1

 26. Robbins JE, Redmiles DF (2000) Cognitive support, UML adherence, and XMI interchange in
Argo/UML. Inf Softw Technol 42(2):79–89. https:// doi. org/ 10. 1016/ S0950- 5849(99) 00083-X

 27. Chen H (2020) Design and implementation of automatic code generation method based on model
driven. J Phys Conf Series. https:// doi. org/ 10. 1088/ 1742- 6596/ 1634/1/ 012019

 28. Bruno, “BOUMLtutorial,” 2011. http:// www. bouml. fr/ tutor ial/ tutor ial. html
 29. Barclay K, Savage AJ (2004) Object-oriented design with UML and java. Elsevier Butterworth-

Heinemann, [Online]. Available: http:// digil ib. mercu buana. ac. id/ manag er/ n!@ file_ ebook/ Isi19
64329 425705. pdf

 30. Domínguez E, Lloret J, Pérez B, Rodríguez Á, Rubio ÁL, Zapata MA (2011) Evolution of XML
schemas and documents from stereotyped UML class models: a traceable approach. Inf Softw Tech-
nol 53(1):34–50. https:// doi. org/ 10. 1016/j. infsof. 2010. 08. 001

 31. Dimaridou V, Kyprianidis AC, Papamichail M, Diamantopoulos T, Symeonidis A (2019) Towards
modeling the user-perceived quality of source code using static analysis metrics. ICSOFT 2017—
Proceedings of the 12th International Conference On Software Technologies, no. March 2019, pp
73–84, 2017, https:// doi. org/ 10. 5220/ 00064 20000 730084

 32. Kosower DA, Lopez-Villarejo JJ (2015) Flowgen: flowchart-based documentation for C++ codes.
Comput Phys Commun 196:497–505. https:// doi. org/ 10. 1016/j. cpc. 2015. 05. 029

 33. Flater D, Martin P, Crane M (2009) Rendering UML Activity Diagrams as Human-Readable Text.
Ike, pp 207–213, [Online]. Available: http:// dblp. uni- trier. de/ db/ conf/ ike/ ike20 09. html# Flate rMC09

 34. Riesco M, Fondón MD, Álvarez D (2008) Using graphviz as a low-cost option to facilitate the
understanding of unix process system calls. Electron Notes Theor Comput Sci 224(2):89–95. https://
doi. org/ 10. 1016/j. entcs. 2008. 12. 052

 35. Kraft NA, Lloyd EL, Malloy BA, Clarke PJ (2006) The implementation of an extensible system
for comparison and visualization of class ordering methodologies. J Syst Softw 79(8):1092–1109.
https:// doi. org/ 10. 1016/j. jss. 2005. 10. 019

 36. Haw SC, Rao GSVRK (2007) A comparative study and benchmarking on XML parsers. Int Conf
Adv Commun Technol ICACT 1:321–325. https:// doi. org/ 10. 1109/ ICACT. 2007. 358364

 37. Oliveira B, Santos V, Belo O (2013) Processing XML with Java—A Performance Benchmark. Int J
New Comput Architect Appl 3(1):72–85

 38. “UML sequence diagrams overview of graphical notation - lifeline, message, execution specifica-
tion, interaction use, etc.” https:// www. uml- diagr ams. org/ seque nce- diagr ams. html Accessed Mar 05
2018

https://doi.org/10.1007/s10586-017-1618-5
https://doi.org/10.1007/s10586-017-1618-5
https://doi.org/10.1007/3-540-46852-8_34
https://doi.org/10.1007/3-540-46852-8_34
https://doi.org/10.1007/978-0-387-78578-3_36
https://doi.org/10.1007/978-0-387-78578-3_36
https://doi.org/10.1016/S0950-5849(99)00083-X
https://doi.org/10.1088/1742-6596/1634/1/012019
http://www.bouml.fr/tutorial/tutorial.html
http://digilib.mercubuana.ac.id/manager/n!@file_ebook/Isi1964329425705.pdf
http://digilib.mercubuana.ac.id/manager/n!@file_ebook/Isi1964329425705.pdf
https://doi.org/10.1016/j.infsof.2010.08.001
https://doi.org/10.5220/0006420000730084
https://doi.org/10.1016/j.cpc.2015.05.029
http://dblp.uni-trier.de/db/conf/ike/ike2009.html#FlaterMC09
https://doi.org/10.1016/j.entcs.2008.12.052
https://doi.org/10.1016/j.entcs.2008.12.052
https://doi.org/10.1016/j.jss.2005.10.019
https://doi.org/10.1109/ICACT.2007.358364
https://www.uml-diagrams.org/sequence-diagrams.html

7699

1 3

A novel approach with an extensive case study and experiment…

 39. Geary RF, Rahman N, Raman R, Raman V (2006) A simple optimal representation for balanced
parentheses. Theoret Comput Sci 368(3):231–246. https:// doi. org/ 10. 1016/j. tcs. 2006. 09. 014

 40. Giuseppe N (2018) Template-based code generation with apache velocity, Part 1 - O’Reilly Media.
http:// www. onjava. com/ pub/a/ onjava/ 2004/ 05/ 05/ cg- vel1. html Accessed Mar 05 2018

 41. Li Z, Jiang Y, Zhang XJ, Xu HY (2020) The metric for automatic code generation. Procedia Comput
Sci 166:279–286. https:// doi. org/ 10. 1016/j. procs. 2020. 02. 099

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1016/j.tcs.2006.09.014
http://www.onjava.com/pub/a/onjava/2004/05/05/cg-vel1.html
https://doi.org/10.1016/j.procs.2020.02.099

	A novel approach with an extensive case study and experiment for automatic code generation from the XMI schema Of UML models
	Abstract
	1 Introduction
	2 Review of related publications
	3 Java-specific code generator (JC_Gen)
	3.1 XMI generation
	3.2 SD parser
	3.3 AD parser
	3.3.1 Structural code generator
	3.3.2 Behavioral code generator
	3.3.2.1 Mapping between sequence and class artifacts

	4 Results and discussion
	5 Conclusion
	Acknowledgements
	References

