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Abstract
Reliability measure of multiprocessor systems is of great significant importance to 
the design and maintenance of multiprocessor systems. As a generalization of tra-
ditional edge-connectivity, extra edge-connectivity is one important parameter to 
evaluate the fault-tolerant capability of multiprocessor systems. Fast identifying the 
extra edge-connectivity of high order remains a scientific problem for many useful 
multiprocessor systems. In this paper, we determine the h-extra edge-connectivity 
of the n-dimensional augmented cube AQn for h ∈ [1, 2n−1] . Specifically, we divide 
the interval [1, 2n−1] into some subintervals and obtain the monotonicity of �h(AQn) 
in these subintervals, and then deduce a recursive formula of �h(AQn) . Based on this 
formula, an efficient algorithm with complexity O(log2 N) is designed to determine 
the exact values of h-extra edge-connectivity of AQn for h ∈ [1, 2n−1] completely. 
Some previous results in Ma et al. (Inf Process Lett 106: 59-63, 2008) and Zhang 
et al. (J Parall Distrib Comput 147: 124-131, 2021) are extended.
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1 Introduction

Due to the development of very large scale integration (VLSI) technology and 
software technology, multiprocessor systems with hundreds of thousands of pro-
cessors are achievable. With the continuous increase in the size of multiprocessor 
systems, processor faults are inevitable. Hence, in the construction of multipro-
cessor systems, we have to consider the reliability of the multiprocessor systems. 
For convenience sake, a multiprocessor system can be usually enlightened as a 
simple connected graph, where each processor represents a vertex of the graph 
and each link between two processors represents an edge between two vertices in 
the graph. The graph is called the interconnection network of this multiprocessor 
system. The edge-connectivity of a graph G, denoted by �(G) , is the minimum 
number of edges whose removal leaves the remaining graph disconnected. Edge-
connectivity is an important parameter to measure the reliability and the fault tol-
erance of multiprocessor systems. The higher the edge-connectivity is, the more 
reliable a multiprocessor system is [24].

However, this parameter has some intrinsic shortcomings. Firstly, a lot of 
graphs with the same edge-connectivity behave quite differently in fault toler-
ance. Secondly, as explained by Xu [24], since edge-connectivity measures the 
worst-case failures, which seldom occur in the real world, the resilience of a net-
work is drastically underestimated. To overcome such shortcomings, several new 
concepts on the edge-connectivity of graphs, called conditional edge-connectiv-
ity, were proposed by Harary [12]. One of them is the extra edge-connectivity. 
The extra edge-connectivity was introduced by Fàbrega and Foil [9]. For a given 
positive integer h, an h-extra edge-cut of a connected graph G is defined as a 
set of edges whose deletion yields a disconnected graph with all its components 
having at least h vertices. The h-extra edge-connectivity of a connected graph 
G, denoted by �h(G) , is the minimum cardinality taken over all h-extra edge-
cuts of G. It is obvious that �1(G) = �(G) . There are some results of the h-extra 
edge-connectivity for some classes of the interconnection networks. For exam-
ple, Li and Yang [16] determined the h-extra edge-connectivity of the hypercube 
Qn for 1 ≤ h ≤ 2⌈

n

2
⌉ . Zhang et  al. [30, 31] investigated the h-extra edge-connec-

tivity of the folded hypercube FQn for 1 ≤ h ≤ 2⌈
n

2
⌉+1 and later designed an effi-

cient O(log2 N) algorithm to determine the h-extra edge-connectivity of the folded 
hypercube FQn for each 1 ≤ h ≤ 2n−1 . Regarding the computational complexity of 
the problem, Esfahanian and Hakimi [8] presented a polynomial-time algorithm 
for the computation of �2(G) . Montejano and Sau [21] discussed the complexity 
of computing the h-extra edge-connectivity for general cases. Given a graph G 
with N vertices, they proved that the problem of determining that whether there 
exists an h-extra edge-cut or not for 1 ≤ h ≤

N

2
 is NP-complete, even when the 

maximum degree of the G is at most 5. And for a given positive integer l, the 
problem of determining that whether the h-extra edge-connectivity of G is at most 
l is NP-hard. In addition, there are many interesting results related to the h-extra 
edge-connectivity, and others, one can refer [2, 7, 4, 10, 11, 14, 16, 17, 20, 22, 
23, 25–31] and the references therein for the details. The focus of these results is 
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either on some classes of graphs for several h or on some special graphs for lin-
early and even exponentially many values of h. However, seldom do the research-
ers pay their attentions on thoroughly solving this problem for some classes of 
networks for each h ≤

|V(G)|
2

.
The hypercube is the most popular topology being used in interconnection net-

works, which possess many good properties such as strong connectivity, small 
diameter, symmetry, recursive construction, relatively small degree, and regular-
ity [1, 15]. As an enhancement on the hypercube, the augmented cube, proposed 
by Choudum and Sunitha [6], not only retains some of the favorable properties of 
the hypercube, but also possesses some embedding properties that the hypercube 
does not have [13, 19].

Let n be a positive integer. The definition of the n-dimensional augmented 
cube is stated as follows.

The n-dimensional augmented cube, denoted by AQn , has 2n vertices, each 
labeled by an n-bit binary string and V(AQn) = {xnxn−1 ⋯ x2x1 ∶ xi = 0 or 1} 
where xi is called as the ith-coordinate of AQn for i = 1, 2,… , n . AQ1 is a com-
plete graph K2 of two vertices labeled with 0 and 1, respectively. For n ≥ 2 , 
AQn can be recursively constructed from two copies of AQn−1 , denoted by 
AQ0

n−1
 and AQ1

n−1
 , and by adding 2n edges between AQ0

n−1
 and AQ1

n−1
 , where 

V(AQ0
n−1

) = {0xn−1 ⋯ x2x1 ∶ xi = 0 or 1} , V(AQ1
n−1

) = {1xn−1 ⋯ x2x1 ∶ xi = 0 or 1} . 
Vertex u = 0un−1 ⋯ u2u1 ∈ V(AQ0

n−1
) is adjacent to v = 1vn−1 ⋯ v2v1 ∈ V(AQ1

n−1
) , 

if and only if either 

(1) ui = vi for 1 ≤ i ≤ n − 1 ; or
(2) ui = vi for 1 ≤ i ≤ n − 1 , where vi = 1 − vi.

From the definition, we can see that each vertex of AQ0
n−1

 has exactly two neigh-
bors in AQ1

n−1
 and vice versa. In fact, AQn can be obtained by adding two perfect 

matchings between AQ0
n−1

 and AQ1
n−1

 . Hence, AQn can be viewed as AQ0
n−1

⊕ AQ1
n−1

 
briefly. Clearly, AQn is (2n − 1)-regular. Hence, |E(AQn)| = (2n − 1)2n−1 . The aug-
mented cubes AQ1 , AQ2 , and AQ3 are illustrated in Fig. 1.

The exact values of the h-extra edge-connectivity of AQn for some h are 
given in the several literatures. Ma et  al. [18] proved that �2(AQn) = 4n − 4 , 
�3(AQn) = 6n − 9 . Zhang et  al. [32] gave the exact values of �h(AQn) for 
1 ≤ h ≤ 2⌊

n

2
⌋ , n ≥ 2.

Fig. 1  Illusion of AQn
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Our work in this paper concerns the h-extra edge-connectivity of the n-dimen-
sional augmented cube AQn for 2⌊

n

2
⌋
≤ h ≤ 2n−1 , n ≥ 2 . We redivide the integer 

interval [1, 2n−1] into some subintervals, and each subinterval will be further divided, 
to obtain some properties of �h(AQn) for h ∈ [1, 2n−1] . Furthermore, we deduce a 
recursive relation on �h(AQn) . This method is different from the existing methods 
in [18, 32]. Based on it, an efficient O(log2 N) algorithm is designed to totally deter-
mine the exact values of �h(AQn) for h ∈ [1, 2n−1] . Some previous results in [18, 32] 
are extended.

The paper is organized as follows: In Sect.  2, some notations, definitions, and 
some known results are given. In Sect.  3, the main result about the h-extra edge-
connectivity of AQn is determined, from which we obtain an algorithm to calculate 
�h(AQn) . In Sect. 4, the paper is concluded.

2  Preliminaries

Let G = (V(G),E(G)) be a simple, undirected graph, where |V(G)| denotes the size 
of the vertex set and |E(G)| denotes the size of the edge set. We use NG(v) to denote 
all neighbors of v in G and use dG(v) to denote the order of NG(v) . If W ⊆ V(G) or 
if W ⊆ E(G) , then G[W] denotes the subgraph of G induced by W. For two disjoint 
subgraphs or vertex sets X, Y of G, we use [X, Y] the edges with one endpoint in X 
and the other in Y. Let

�m(G) = min{�[X,X]� ∶ �X� = m ≤ ⌊ �V(G)�
2

⌋, and both G[X] and G[X] are connected }.

By the definition of �h(G),

The �h(Q3
n
) highly relies on the monotonic intervals and fractal-like structure of 

function �m(AQn) . If �h(G) = �h(G) , we say that G is �h-optimal.
Let exm(G)

2
 denote the maximum number of edges of the subgraph induced by a 

vertex set with a given size m in G, i.e., exm(G) is the maximum sum of degree of 
the subgraph induced by a vertex set with a given size m in G. For terminologies and 
notations undefined here, we follow [3].

For convenience, the vertex x = x1x2 ⋯ xn of the AQn can be represented by deci-
mal number 

∑n

i=1
xi2

n−i in this paper.
For 1 ≤ m ≤ 2n , the subgraph induced by vertex set {0, 1,… ,m − 1} (under 

decimal representation) of AQn is denoted by Lm , the subgraph induced by 
{2n − 1, 2n − 2,… , 2n − m} is denoted Rm.

Lemma 2.3 [32] Lm ≅ Rm for 1 ≤ m ≤ 2n . If we delete the edges [V(Lm),V(Lm)] , then 
both Lm and R2n−m are connected.

Lemma 2.4 [32]For 1 ≤ m ≤ 2n , exm(AQn) = 2|E(Lm)|.

Lemma 2.5 [32] If 1 ≤ m ≤ 2t where t ∈ {0, 1,… , n} , then exm(AQn) ≤ (2t − 1)m.

�h(G) = min{�m(G) ∶ h ≤ m ≤ ⌊ �V(G)�
2

⌋}.
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In what follows, we denote �(m) =
{

0, m is even;

1, m is odd.

We define m be a positive integer and m =
∑s

i=0
2ti be the decomposi-

tion of m such that t0 = [log2 m] and ti = [log2(m −
∑i−1

k=0
2tk )] for i ≥ 1 . Let 

f (m) =
∑s

i=0
(2ti − 1)2ti +

∑s

i=0
4 ⋅ i ⋅ 2ti + �(m).

Lemma 2.6 [32] Let m1 and m2 be any positive integers such that m1 ≤ m2 . Then

Lemma 2.7 [32] The following results hold. 

 (i) exm(AQn) = f (m);
 (ii) exm(AQn) = exm−2t0 (AQn) + ex2t0 (AQn) + 4(m − 2t0 );
 (iii) exm+1(AQn) − exm(AQn) = 4(s + 1)  w h e n  m  i s  e v e n ,  a n d 

exm+1(AQn) − exm(AQn) = 4s + 2 when m is odd.

3  The h‑extra edge‑connectivity of AQn

By (2n − 1)-regularity of the n-dimensional augmented cube AQn [12] and Lemmas 
2.3 and 2.4, it follows that

To deal with the integer interval (2⌊
n

2
⌋, 2n−1] , we divide the integer interval 

(2⌊
n

2
⌋, 2n−1] into ⌈ n

2
⌉ − 1 subintervals (2⌊

n

2
⌋+r−1, 2⌊

n

2
⌋+r

] for r = 1, 2,… , ⌈ n

2
⌉ − 1 . Let

where j = 0, 1,… , ⌈ n

2
⌉ − r − 1 . Thus, wr,0 = 2⌊

n

2
⌋+r−1 , wr+1,0 = 2⌊

n

2
⌋+r , 

wr,0 < wr,1 < ⋯ < wr,j < ⋯ < wr,⌈ n

2
⌉−r−1 < wr+1,0 , and wr+1,0 − wr,⌈ n

2
⌉−r−1 = 22r−�(n) . 

Each interval of (2⌊
n

2
⌋+r−1, 2⌊

n

2
⌋+r

] for r = 1, 2,… , ⌈ n

2
⌉ − 1 is further divided into 

⌈ n

2
⌉ − r subintervals: (wr,j,wr,j+1] with j = 0, 1,… , ⌈ n

2
⌉ − r − 2 and 

(wr,⌈ n

2
⌉−r−1, 2

⌊ n

2
⌋+r

].

Lemma 3.1 [32] For any positive integer h ∈ [1, 2⌊
n

2
⌋
] , n ≥ 2 , 

�h(AQn) = �h(AQn) = (2n − 1)h − exh(AQn).

The following properties of �m(AQn) play an extremely useful role.

Lemma 3.2 �m(AQn) ≥ �2k (AQn) for 2k ≤ m ≤ 2n−1 , k ∈ {0, 1,… , n − 2}.

exm1+m2
(AQn) ≥ exm1

(AQn) + exm2
(AQn) + 4m1.

(1)�m(AQn) = (2n − 1)m − exm(AQn).

wr,j =

j�
i=0

2⌊
n

2
⌋+r−1−i,
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Proof For 0 ≤ k ≤ n − 2,

For k ∈ {0,… , n − 2} , take any integer in [2k, 2k+1] , say m. Let m� = m − 2k . Then 
m′ ≤ 2k . By Lemmas 2.5 – 2.7, we have

The lemma follows by the above inequalities.   ◻

Lemma 3.3 
Proof For wr,⌈ n

2
⌉−r−1 < m < 2⌊

n

2
⌋+r , let m = wr,⌈ n

2
⌉−r−1 + m� . Then 0 < m�

< 22r−𝛿(n) , 
and so

The last inequality will hold, which is based on Lemma  2.5 that 
2(2r − 𝛿(n))m� − exm� (AQ

2
⌊ n
2
⌋+r ) > 0 where 0 < m�

< 22r−𝛿(n).
If m = wr,⌈ n

2
⌉−r−1 or m = 2⌊

n

2
⌋+r , similar to the above discussion, we have

�2k+1(AQn) − �2k (AQn)

= (2n − 1)2k+1 − ex2k+1(AQn) − (2n − 1)2k + ex2k (AQn)

= (2n − 1)2k − (ex2k+1 (AQn) − ex2k (AQn))

= (2n − 1)2k − ((2k + 1)2k+1 − (2k − 1)2k)

= (n − k − 2)2k+1 ≥ 0.

�m(AQn) − �2k (AQn)

= (2n − 1)m − exm(AQn) − ((2n − 1)2k − ex2k (AQn))

= (2n − 1)m� − (exm�+2k (AQn) − ex2k (AQn))

= (2n − 1)m� − 4m� − exm� (AQn)

= (2n − 5)m� − exm� (AQn)

≥ (2n − 5)m� − (2k − 1)m�

≥ 2(n − k − 2)m� ≥ 0.

𝜉m(AQn)

⎧
⎪⎨⎪⎩

> 𝜉
2
⌊ n
2
⌋+r (AQn), if wr,⌈ n

2
⌉−r−1 < m < 2⌊

n

2
⌋+r;

= (⌊ n

2
⌋ − r)2⌊

n

2
⌋+r+1, if m = wr,⌈ n

2
⌉−r−1, or m = 2⌊

n

2
⌋+r.

𝜉m(AQn) = 𝜉
2
⌊ n
2
⌋+r

−m�
(AQn)

= (2n − 1) ⋅ (2⌊
n

2
⌋+r

− m�0)

− ex
2
⌊ n
2
⌋+r

−m�
(AQn)

= 2(⌈n
2
⌉ − r) ⋅ (2⌊

n

2
⌋+r

− m�) + (2(⌊n
2
⌋ + r) − 1) ⋅ (2⌊

n

2
⌋+r

− m�)

− ex
2
[
n
2
]+r

−m�
(AQ[

n

2
]+r)

= 2(⌈n
2
⌉ − r) ⋅ (2⌊

n

2
⌋+r

− m�) + (2(⌊n
2
⌋ + r) − 1) ⋅ m� − exm� (AQ⌊ n

2
⌋+r)

= 𝜉
2
⌊ n
2
⌋+r (AQn) + (2(2r − 𝛿(n)) − 1) ⋅ m� − exm� (AQ⌊ n

2
⌋+r)

> 𝜉
2
⌊ n
2
⌋+r (AQn).
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The proof is completed.   ◻

Lemma 3.4 �m(AQn) ≥ �wr,j
(AQn) for any m ∈ [wr,j,wr,⌈ n

2
⌉−r−1] with 

j = 0, 1,… , ⌈ n

2
⌉ − r − 2 and r = 1, 2,… , ⌈ n

2
⌉ − 1.

Proof Let wr,j ≤ h ≤ wr,j+1 and h� = h − wr,j . Then 0 ≤ h� ≤ 2⌊
n

2
⌋+r−2−j and by 

Lemma 2.6, we have

Thus, �wr,j+1
(AQn) ≥ �wr,j

(AQn) and �h(AQn) ≥ �wr,j
(AQn) . Based on these inequalities, 

the results hold.   ◻

Theorem 3.5 If 2⌊
n

2
⌋+r−1

< h ≤ 2⌊
n

2
⌋+r for r = 1, 2,… , ⌈ n

2
⌉ − 1 ( n ≥ 3 ), then

Proof For 2⌊
n

2
⌋+r−1

< h ≤ 2⌊
n

2
⌋+r , there exists an integer j, such that wr,j < h ≤ wr,j+1 , 

j = 0, 1,… , ⌈ n

2
⌉ − r − 2 , or wr,⌈ n

2
⌉−r−1 < h ≤ 2⌊

n

2
⌋+r.

If wr,⌈ n

2
⌉−r−1 < h ≤ 2⌊

n

2
⌋+r , then by Lemmas 3.1–3.3,

If wr,j < h ≤ wr,j+1 with j = 0, 1,… , ⌈ n

2
⌉ − r − 2 , by (2), 

�h(AQn) = �wr,j
(AQn) + �h−wr,j

(AQn−2j−2) . Specially, 𝜉wr,j+1
(AQn) > 𝜉wr,j

(AQn) . By 

�wr,⌈ n
2
⌉−r−1(AQn) = �

2
⌊ n
2
⌋+r

−22r−�(n)
(AQn)

= �
2
⌊ n
2
⌋+r (AQn) + (2(2r − �(n)) − 1)22r−�(n)

− ex22r−�(n) (AQ⌊ n

2
⌋+r)

= �
2
⌊ n
2
⌋+r (AQn) = 2(⌊n

2
⌋ − r)2⌊

n

2
⌋+r.

(2)

�h(AQn) = �wr,j+h
� (AQn)

= (2n − 1)(wr,j + h�) − exwr,j+h
� (AQn)

= (2n − 1)(wr,j + h�) − exwr,j
(AQn) − exh� (AQn) − 4(j + 1)h�

= �wr,j
(AQn) + (2(n − 2j − 2) − 1)h� − exh� (AQn−2j−2)

= �wr,j
(AQn) + �h� (AQn−2j−2).

𝜆h(AQn) =

⎧
⎪⎪⎨⎪⎪⎩

𝜉
2
⌊ n
2
⌋+r (AQn) = (⌈ n

2
⌉ − r)2⌊

n

2
⌋+r+1, if wr,⌈ n

2
⌉−r−1 < h ≤ 2⌊

n

2
⌋+r;

𝜉wr,j
(AQn) + 𝜆h−wr,j

(AQn−2j−2), if wr,j < h ≤ wr,j+1

where j = 0, 1,… , ⌈ n

2
⌉ − r − 2.

�h(AQn) = min{�m(AQn) ∶ h ≤ m ≤ 2n−1}

= min{�m(AQn) ∶ h ≤ m ≤ 2⌊
n

2
⌋+r

}

= �
2
⌊ n
2
⌋+r (AQn)

= (⌈n
2
⌉ − r)2⌊

n

2
⌋+r+1.
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Lemma  3.4, �m(AQn) ≥ �wr,j
(AQn) , for any wr,j ≤ m ≤ wr,⌈ n

2
⌉−r−1 with 

j = 0, 1,… , ⌈ n

2
⌉ − r − 2 and r = 1, 2,… , ⌈ n

2
⌉ − 1 , we can deduce that 

min{�m(AQn) ∶ wr,j+1 ≤ m ≤ wr,⌊ n

2
⌋−r−1} = �wr,j+1

(AQn) . So for any 
wr,j ≤ h ≤ m ≤ wr,j+1 , min{�m(AQn) ∶ h ≤ m ≤ wr,⌈ n

2
⌉−r−1} = 

min{�m(AQn) ∶ h ≤ m ≤ wr,j+1} . Therefore, we have

Hence, the proof of Theorem 3.5 is completed.   ◻

According to equation (2), Lemma 2.7, Lemmas 3.1–3.4, and Theorem 3.5, an 
O(log2 N) ( N = |V(AQn)| = 2n ) algorithm to calculate �m(AQn) can be designed by 
the above formulas (Fig. 2).

Based on equation (2), Lemma  2.7, Lemmas  3.1–3.4, and Theorem  3.5, for 
given positive integers n and h with n ≥ 2 and h ≤ 2n−1 , we can redesign an algo-
rithm to determine the exact values of �h(AQn) and to find an integer m such that 
�h(AQn) = �m(AQn) as follows.

Step 1: Let m0 = 0.
Step 2: If h ≤ 2⌊

n

2
⌋ , then let m = m0 + h , �h(AQn) = �m(AQn) , and stop.

Step 3: If wr,⌈ n

2
⌉−r−1 < h ≤ 2⌊

n

2
⌋+r for some r ∈ {1, 2,… , ⌈ n

2
⌉ − 1} , then let 

m = m0 + 2⌊
n

2
⌋+r , �h(AQn) = �m(AQn) , and stop.

Step 4: If wr,j < h ≤ wr,j+1 for some integers r ∈ {1, 2,… , ⌈ n

2
⌉ − 1} and 

j ∈ {0, 1,… , ⌈ n

2
⌉ − r − 2} , let m�

0
= m0 + wr,j , n� = n − 2j − 2 , and h� = h − wr,j 

instead of m0 , n, and h, respectively. Then go to Step 2.
Steps 2 and 3 are based on Lemma 3.1, Lemma 3.3, and Theorem 3.5, respec-

tively. And Step 4 can be deduced by Theorem 3.5. The process described above 
will be terminated on Steps 2 or 3, since in each Step 4, both n and h are strictly 
reduced, n − 2j − 2 ≥ ⌈log2 h�⌉ + 1 ≥ 2 and 2n−1 = 2⌊

n

2
⌋ if n = 2 or n = 3 . Specially, 

if the process terminates in Step 2, then m = h and it is �h-optimal. Otherwise, it is 
not �h-optimal.

Combining with the equation to calculate �m(AQn) (see equation (2), Lemma 2.7 
(i), Lemma 3.1 and Theorem 3.5), the flowchart of the algorithm is given in Fig. 4, 
where �h(AQn) = �m(AQn) = S . The time complexity of the algorithm above is 
O(n) = O(log2 2

n) . In fact, the time complexity of algorithm is the same with the subpro-
gram to find m such that �h(AQn) = �m(AQn) and also is the same with the subprogram 

�h(AQn) = min{�m(AQn) ∶ h ≤ m ≤ 2n−1}

= min{�m(AQn) ∶ h ≤ m ≤ 2⌊
n

2
⌋+r

}

= min{�m(AQn) ∶ h ≤ m ≤ wr,j+1}

= min{�wr,j
(AQn) + �m−wr,j

(AQn−2j−2) ∶ h − wr,j

≤ m − wr,j ≤ 2⌊
n

2
⌋+r−j−2⌉

}

= �wr,j
(AQn) +min{�m−wr,j

(AQn−2j−2) ∶ h − wr,j

≤ m − wr,j ≤ 2⌊
n

2
⌋+r−j−2⌉

}

= �wr,j
(AQn) + �h−wr,j

(AQn−2j−2).
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to calculate �m(AQn) . In the subprogram to find m such that �h(AQn) = �m(AQn) , 
suppose that it needs t times to repeat the circulation. Then t ≤ ⌊ n

2
⌋ − 1 , b1 = ⌈ n

2
⌉ , 

r1 = r ≤ ⌊ n

2
⌋ − 1 , and j1 = j ≤ b1 − r1 . For i > 1 , in the ith time, the time complexity 

is at most 4 + 3ji + 5 , where bi = bi−1 − ji−1 , ri = ri−1 − i + 1 , and ji ≤ bi − ri . Hence, 
jt ≤ b1 − j1 −…− jt−1 − rt . Thus, j1 + j2 +…+ jt ≤ b1 − rt ≤ ⌈ n

2
⌉ and

In the subprogram to calculate �m(AQn) , the time complexity is at most 2n. There-
fore, the time complexity of the algorithm is O(log2 N) , where N = 2n . ◻

4  Application

In parallel computing, the n-dimensional augmented cubes can be used as underly-
ing topologies of several parallel systems. Moreover, the n-dimensional augmented 
cube has also been used in the construction of data center networks [5].

t�
i=1

(4 + 3ji + 5) ≤ 15⌈n
2
⌉.

Fig. 2  Flowchart on the algorithm of calculating �h(AQn)
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Our theoretical results offer a more refined quantitative analysis of indicators of 
the robustness of a n-dimensional augmented cube based on the multiprocessor sys-
tem in the presence of failing links. For the n-dimensional augmented cube network 
with N = 2n processors, the h-extra edge-connectivity of AQn is the minimum car-
dinality of set of links, whose removal disconnects the network with all its result-
ing components having at least h processors for each 1 ≤ h ≤

N

2
 . In other words, at 

least �h(G) number of links must be deleted to disconnect this network, provided 
that the deletion of these links does not isolate any subnetwork with at most h − 1 
processors.

By Lemma 3.1, Theorems 3.5, and equation (2), the values of the �h(AQn) have 
close relationship with �m(AQn) for 1 ≤ m ≤ h ≤ 2n−1 . Our algorithm is based on the 
fact that

for 1 ≤ m ≤ 2n−1.
For example, assume that n = 4 and h = 4 . We have

. Since 4 = 22 , we have t0 = 2, s = 0 , and

 However, if

and

then both [LT1
4
,L1

4
] and [L2

4
,L2

4
] are four extra edge-cuts of AQn with

If

then

We have �7(AQ4) = |[L7,L7]| = 30 . By our algorithm, the exact values of �h(AQ4) 
for each 1 ≤ h ≤ 23 are given in Table 1.

After processing Algorithm 1 for some small cases 1 ≤ n ≤ 4 and 1 ≤ h ≤ 2n−1 , 
the values of �h(AQn) are presented in Table  2, where the values of �h(AQn) not 
satisfying the equality �h(AQn) = �h(AQn) are marked in blue (bold in print version) 

�m(AQn) = |[Lm,Lm]| = (2n − 1)m −

s∑
i=0

(2ti − 1)2ti −

s∑
i=0

4 ⋅ i ⋅ 2ti − �(m),

S4 = {0, 1, 2, 3} and L4 = {0000, 0001, 0010, 0011}

�4(AQn) = |[L4,L4]| = (2 × 4 − 1) × 4 − ex4(AQn) = 28 − 3 × 22 − 4 × 0 × 22 = 16.

L1
4
= {0000, 0010, 0011, 0111}

L2
4
= {0000, 0001, 0010, 0100},

|[L1
4
,L1

4
]| = |[L2

4
,L2

4
]| = 18 > 16 = |[L4,L4]|.

h = 7 = 22 + 21 + 20,

L7 = {0000, 0001, 0010, 0011, 0100, 0101, 0110}.
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Table 1  �h(AQ4
) for 1 ≤ h ≤ 8

h Decomposition of h exh(AQ4
) �h(AQ4

) �h(Q
3

3
) Step

1 20 0 7 �
1
(AQ

4
) = �

1
(AQ

4
) = 7 Step1, Step1

2 21 2 12 �
2
(AQ

4
) = �

2
(AQ

4
) = 12 Step1, Step1

3 21 + 20 6 15 �
3
(AQ

4
) = �

3
(AQ

4
) = 15 Step1, Step2

4 22 12 16 �
4
(AQ

4
) = �

4
(AQ

4
) = 16 Step1, Step2

5 22 + 20 16 19 �
5
(AQ

4
) = �

8
(AQ

4
) = 16 Step1, Step4, Step3

6 22 + 21 22 20 �
6
(AQ

4
) = �

8
(AQ

4
) = 16 Step1, Step4, Step3

7 22 + 21 + 20 30 19 �
7
(AQ

4
) = �

8
(AQ

4
) = 16 Step1, Step4, Step3

8 23 40 16 �
8
(AQ

4
) = �

8
(AQ

4
) = 16 Step1, Step3, Step2

Table 2  Example of �h(AQn) AND �h(AQn)

h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

�h(AQ2
) 3 4

�h(AQ2
) 3 4

�h(AQ3
) 5 8 9 8

�h(AQ3
) 5 8 8 8

�h(AQ4
) 7 12 15 16 19 20 19 16

�h(AQ4
) 7 12 15 16 16 16 16 16

�h(AQ5
) 9 16 21 24 29 32 33 32 37 40 41 40 41 40 37 32

�h(AQ5
) 9 16 21 24 29 32 32 32 32 32 32 32 32 32 32 32

�h(AQ6
) 11 20 27 32 39 44 47 48 55 60 63 64 67 68 67 64

�h(AQ6
) 11 20 27 32 39 44 47 48 55 60 63 64 64 64 64 64

�h(AQ7
) 13 24 33 40 49 56 61 64 73 80 85 88 93 96 97 96

�h(AQ7
) 13 24 33 40 49 56 61 64 73 80 85 88 93 96 97 96

h 17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 32
�h(AQ6

) 71 76 79 80 83 84 83 80 83 84 83 80 79 76 71 64
�h(AQ6

) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
�h(AQ7

) 105 112 117 120 125 128 129 128 133 136 137 136 137 136 133 128
�h(AQ7

) 105 112 117 120 125 128 128 128 128 128 128 128 128 128 128 128
h 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
�h(AQ7

) 137 144 149 152 157 160 161 160 165 168 169 168 169 168 165 160
�h(AQ7

) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
h 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
�h(AQ7

) 165 168 169 168 169 168 165 160 161 160 157 152 149 144 137 128
�h(AQ7

) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
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and otherwise are marked in black. One can see that as the integer n increases, the 
number of h with �h(AQn) ≠ �h(AQn) also increases.

5  Concluding remarks

The h-extra edge-connectivity is the generalization of the traditional edge-con-
nectivity. In this paper, we focus on the n-dimensional augmented cubes AQn . We 
investigate the h-extra edge-connectivity of this kind of interconnection networks. 
To determine the h-extra edge-connectivity of the n-dimensional augmented cubes 
AQn , we divide the interval 1 ≤ h ≤ 2n−1 into some subintervals and investigate 
some properties of �m(AQn) in these subintervals. A recurrence relation of �h(AQn) 
is found. Based on them and some known results, an efficient O(log2 N) algorithm 
to determine the exact values of �h(AQn) is suggested. The problem on the h-extra 
edge-connectivity of the n-dimensional augmented cubes is completely solved.
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