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Abstract
To solve the problems of premature convergence and easily falling into local opti-
mum, a whale optimization algorithm based on dynamic pinhole imaging and adap-
tive strategy is proposed in this paper. In the exploitation phase, the dynamic pin-
hole imaging strategy allows the whale population to approach the optimal solution 
faster, thereby accelerating the convergence speed of the algorithm. In the explora-
tion phase, adaptive inertial weights based on dynamic boundaries and dimensions 
can enrich the diversity of the population and balance the algorithm’s exploitation 
and exploration capabilities. The local mutation mechanism can adjust the search 
range of the algorithm dynamically. The improved algorithm has been extensively 
tested in 20 well-known benchmark functions and four complex constrained engi-
neering optimization problems, and compared with the ones of other improved algo-
rithms presented in literatures. The test results show that the improved algorithm has 
faster convergence speed and higher convergence accuracy and can effectively jump 
out of the local optimum.
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1  Introduction

As a product of the combination of random algorithm and local search algorithm, the 
meta-heuristic algorithm proposes new feasible solutions for solving some complex 
engineering optimization problems. Compared with traditional algorithms, meta-
heuristic algorithms search for spaces that may contain high-quality solutions by 
simulating natural or physical phenomena to give a better “global optimal solution.” 
When encountering difficult non-convex problems formed by complex engineering 
problems, the meta-heuristic algorithm is more effective than the gradient algorithm 
that is common in the past. This is mainly because of several major advantages of 
meta-heuristic algorithms: 1. The principle is simple and easy to implement; 2. Does 
not rely on gradient information; 3. It can be combined with different disciplines to 
solve diversified problems. 4. Able to give a better “global optimal solution.”

In recent years, with the continuous development of meta-heuristic algorithms, 
it can be divided into the following three categories. The first category is evolution-
based algorithms. Evolutionary algorithms can simulate biological evolutionary 
behavior in nature. The most famous one is the genetic algorithm GA [1] proposed 
by learning Darwin’s biological evolution theory. In addition, there are genetic pro-
gramming GP [2] and evolutionary strategy ES [3]. The second category is phys-
ics-based algorithms. Commonly used in this type of algorithms are the simulated 
annealing algorithm for learning natural annealing phenomena in nature [4], and 
the gravitational search algorithm GSA [5], which is inspired by Newton’s law of 
universal gravitation. Similar to these algorithms are the Moth–flame optimization 
algorithm MFO [6], the small world search algorithm WCA [7], the central force 
algorithm CFO [8] and the hydrological cycle algorithm WCA [9]. The third cat-
egory is swarm-based algorithms. This type of algorithms is proposed after learning 
the clusters of biological populations and predation behavior in the natural world. 
For example, the particle swarm algorithm PSO [10] proposed by J. Kennedy and 
R. C. Eberhart et  al. was inspired by the swarm behavior of birds. After decades 
of development, it has been widely used in different disciplines and achieved good 
results. Similar algorithms include gray wolf optimization algorithm GWO [11] 
inspired by wolf hunting behavior, sparrow search algorithm SSA [12], salvia col-
ony algorithm SSA [13] and ant colony algorithm ACO [14].

Whale Optimization Algorithm (WOA) [15] is a swarm-based intelligent optimi-
zation algorithm proposed by Mirjalili et al in 2016. This algorithm simulates the 
unique bubble net predation behavior of humpback whales. Because of its simple 
structure and strong search capability, WOA is widely used in power economic dis-
patching, robot path planning, image segmentation, time series forecasting and other 
complex optimization problems. For example, Saha et al. [16] applied the improved 
WOA to the control of switched reluctance motors, and the test results showed 
that the algorithm has stable performance and reliability. Kong et al. [17] used the 
improved WOA to solve the complex parameter reduction problem, and the experi-
mental results showed that the improved WOA has excellent performance. Sulaiman 
et al. [18] used the improved WOA to solve the PEHE multi-objective optimization 
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problem. The experimental results show that this scheme is better than other meta-
heuristic algorithms.

At the same time, more in-depth researches and applications have also revealed 
the shortcomings of WOA itself. Aiming at the problems that WOA’s conver-
gence accuracy and convergence speed are insufficient, Gaganpreet Kaur et  al. 
[19] proposed a way to combine WOA with chaos strategy. The test results show 
that the convergence speed of WOA has been improved to a certain extent. Coin-
cidentally, Li et al. [20] also used the tent map in the chaotic map to initialize the 
population of WOA and achieved good results. These research contents not only 
put forward some improvement directions, but also show the importance of popu-
lation initialization. In 2019, Hemasian-Etefagh et al. [21] proposed the idea of 
whale grouping to improve the convergence of WOA. Facts show that when WOA 
search methods and search capabilities are changed, WOA performance can be 
significantly improved. For example, Kaveh et al. [22] changed the original for-
mula in WOA and applied it to specific engineering problems. The experimental 
results show that the performance of the improved WOA has been significantly 
improved. Along this research direction, more scholars have discovered the con-
nection between the position update formula and population diversity. Ma et al. 
[23] introduced the inertia weight into the MFO, which effectively enriched the 
moth population and allowed the algorithm to maintain a higher search efficiency. 
At the same time, the introduction of inertia weight also effectively strengthens 
the adaptability of the algorithm itself. Qiu Xingguo et  al. [24] used the sobel 
sequence, inertial weights and nonlinear strategies in the improvement of WOA. 
This scheme makes the initial population of WOA more abundant, so that the 
improved algorithm can continue to maintain a good search ability in the later 
stages of the iteration. At the same time, some scholars have also optimized WOA 
by introducing new content or combining WOA with other algorithms. Xiao 
Shuang et  al. [25] combined Lévy flight with adaptive weights to increase the 
convergence speed of WOA, and achieved the best performance in comparison 
with other optimization schemes. Luo et al. [26] successfully introduced the dif-
ferential mutation operator into WOA, and the addition of the mutation opera-
tor effectively improved the quality and reliability of solutions. Zhang et al. [27] 
combined WOA with the golden sine algorithm (GoldenSA) [28]. After exten-
sive testing, they found that the golden sine operator can effectively accelerate 
the convergence speed of the algorithm. In general, these schemes have effec-
tively improved the deficiencies of the algorithm to a certain extent. But in some 
typical non-convex problems, their performance is still very limited. Especially 
in some complex engineering problems, they still face the problem of prema-
ture convergence. In order to solve this problem effectively, this paper proposes 
a whale optimization algorithm based on dynamic pinhole imaging and adaptive 
strategies(DAWOA). The main contributions of this article are as follows:

•	 The theory of dynamic pinhole imaging is proposed and used to update the posi-
tion of search agents. This strategy can adjust the position of the leader adap-
tively, allowing it to quickly approach the global optimal solution, thereby accel-
erating the convergence speed of the algorithm.
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•	 Adaptive inertia weights based on dynamic boundaries and dimensions can 
adjust the algorithm in a feedback manner. It will adjust itself according to the 
location information of the individual population, so as to better balance the 
exploitation and the exploration capabilities of the algorithm.

•	 The local mutation strategy can dynamically adjust the shape of the logarithmic 
spiral according to the number of iterations, thereby changing the search range of 
the whale population. And, this can make the individual whale search state closer 
to the real whale.

At present, there are few studies on dynamic pinhole imaging and adaptive strategies 
in WOA algorithms. This analysis forms the basis of this work. The rest of the paper 
is structured as follows: Sect. 2 introduces the basic whale optimization algorithm. 
Section  3 discusses the three strategies proposed. Test problems and numerical 
results analysis are presented and discussed in Sects. 4 and 5, respectively. Section 6 
is a summary of this paper and prospects for future work.

2 � Principle and mathematical model of WOA

2.1 � Shrink envelope

At this phase, the whale population will approach prey constantly. The number of 
whale populations is N and the dimension is d. The algorithm assumes that the posi-
tion of the current optimal individual (search agent) is the global optimal position, 
and other whale individuals will use this as the target area to update their positions. 
The mathematical formula for this stage is:

where t is the current iteration number, A and C are coefficients. �⃗X*(t) is the current 
position vector of the best individual whale, and �⃗X(t) is the position vector of the 
current whale.The mathematical model of coefficients A and C is as follows:

where r1 and r2 are random numbers in (0, 1), the value of a will linearly decrease 
from 2 to 0 with the number of iterations. t is the current number of iterations, and 
Tmax is the maximum number of iterations.

(1)D =
|||C

�⃗X ∗ (t) − X(t)
|||

(2)�⃗X(t + 1) = �⃗X ∗ (t) − A ⋅
��⃗D,

(3)�⃗A = 2 �⃗a ⋅ ��⃗r1 − �⃗a

(4)C = 2r2

(5)a = 2 − 2t∕Tmax,
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2.2 � Development phase

At this phase, the whale population will attack the prey. During the attack, the whale 
will continue to spirally update its position. Its mathematical model is as follows:

where Dp is the distance between the whale and the prey, �⃗X*(t) is the current posi-
tion vector of the best individual whale. It is worth noting that b is a constant, used 
to define the shape of the logarithmic spiral. l is a random number in (−1, 1) . In 
this link, the whale must continue to shrink and envelope while spiraling close to 
the prey. In this process, the whale population will repeat the behavior of the first 
stage. For this synchronous behavior model, in order to simulate the actual offensive 
process, assuming that the probability of the whale choosing the spiral update posi-
tion is the same as the probability of choosing the shrink envelope, that is, p = 0.5 . 
Then, the mathematical formula at this stage can be expressed as:

In the development stage, the value of A will change continuously with the change 
of the value of a. And, the value of a can be any value in [-1,1]. Simply put, the 
individual whale can be in any position between the current position and the optimal 
position.

2.3 � Search phase

At this stage, the whale population will conduct a large-scale search. The algorithm 
will randomly select a whale individual as the search agent to change the original pre-
dation area of the whale population. In this way, the whale population will conduct a 
more extensive search. Therefore, we only need to make small changes to Eq(1)(2) to 
get the mathematical model of this stage:

where �⃗Xrand is the position vector of the randomly selected whale, which will be 
regarded as a new search agent. At this stage, due to |A| ≥ 1 , the whale population 
will be forced to leave its current location for a more extensive search. It is worth 
noting that the existence of this stage allows the algorithm to effectively avoid local 
optima.

(6)�⃗X(t + 1) = ����⃗X*(t) + Dpe
bl cos(2𝜋l)

(7)Dp =
|||
�⃗X ∗ (t) − �⃗X(t)

|||,

(8)�⃗X(t + 1) =

{
�⃗X ∗ (t) − A ⋅ D P < 0.5

�⃗X ∗ (t) + Dpe
bl cos(2𝜋l) P ≥ 0.5

(9)D =
|||C ∗ �⃗Xrand −

�⃗X(t)
|||

(10)�⃗X(t + 1) = �⃗Xrand − A ⋅ D,
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3 � whale optimization algorithm based on dynamic pinhole imaging 
and adaptive strategy

This section will give a detailed introduction to the three improvement strategies in 
the proposed improved algorithm (DAWOA).

3.1 � Dynamic pinhole imaging strategy

Generally speaking, the actual operation of an algorithm should be divided into 
two stages: particle divergence and particle shrinkage. Good population initializa-
tion can often bring faster convergence speed and higher convergence accuracy for 
the algorithm. If most of the population individuals can be initialized near the opti-
mal solution, then in the particle shrinking phase of the algorithm, the population 
individuals only need a small amount of movement and search to reach the optimal 
value, which is undoubtedly a very ideal situation. In 2005, Tizhoosh proposed the 
Opposite-based learning theory [29], which revealed an efficient scheme for initial-
izing the population. If the population individuals produce an opposite individual 
at the opposite position of the current position, the probability that the two indi-
viduals are closer to the optimal solution is 50%. Therefore, only a few operations 
are required to generate a higher quality population. This can be reminiscent of the 
theory of pinhole imaging in optics. Compared with ordinary Opposite-based learn-
ing, the pinhole imaging theory is more accurate and can produce more diversified 
points of opposition.

Figure 1 shows a typical theoretical model of pinhole imaging. Applying it to the 
search space of the population, the following mathematical model can be obtained:

where Xbesti,j is the location of the current best individual (search agent), Xi,j is the 
opposite position in the theory of pinhole imaging. Ubi,j and Lbi,j are the dynamic 
boundaries of the i-th whale in the j-th dimension, Lp and L−p are the length of the 
virtual candle in the current best position and the opposite position, respectively. It 
is worth noting that the position of the candle in the figure is also the position of 
the search agent, but the point representing the individual whale does not have an 

(11)
Xbesti,j − (Ubi,j + Lbi,j)∕2

(Ubi,j + Lbi,j)∕2 − Xi,j

=
Lp

L−p
,

Fig. 1   Dynamic pinhole imag-
ing strategy



6096	 M. Li et al.

1 3

effective length. Therefore, the ratio of the two candles can be set as a variable K. 
From this, you can get:

It is not difficult to see from Eq.(12) that when two candles have the same length, 
this strategy evolves into a basic reverse learning strategy. Adjusting the value of K 
properly can change the position of the opposite point, allowing individual whales to 
have more search opportunities. In this paper, K is set to 1.5 × 104 . In this way, every 
iteration, a new opposite point will be generated near the center line of the search 
space. When the opposite point is in a better position, its position will become a new 
boundary.

3.2 � Adaptive strategy

When the algorithm is iterated to the later stage, the diversity of population indi-
viduals will decrease sharply. For the search space, the reduction of diversity will 
cause most of the population individuals to stagnate near the local optimal position. 
At this time, only a small number of whale populations are continuing to search, and 
the result is that the algorithm converges prematurely and falls into a local optimum. 
WOA is a swarm-based algorithm. Compared with an evolution-based algorithm, a 
swarm-based algorithm does not use a greedy strategy to discard poor values. WOA 
will retain the information of the previous generation for use in the next iteration. 
Therefore, an effective balance of algorithm’s development and exploration capa-
bilities is the key to enhancing the algorithm’s search capabilities. To put it sim-
ply, introducing the inertia weight into the original WOA formula can effectively 
balance the local development capabilities and global search capabilities of WOA, 
thereby enriching the diversity of whale populations. This allows the algorithm to 
maintain a certain intensity of the search state in the later stages of the iteration, so 
as to avoid the population from falling into the local optimum. The updated Eqs. (8, 
10) is as follows:

where � is the adaptive inertia weight that can be adjusted with the number of itera-
tions adaptively. The mathematical model is as follows:

(12)Xi,j =
(K + 1)(Ubi,j + Lbi,j) − 2Xbesti,j

2K

(13)�⃗X(t + 1) =

{
𝜔 ⋅

�⃗X ∗ (t) − A ⋅ D P < 0.5

𝜔 ⋅
�⃗X ∗ (t) + Dpe

bl cos(2𝜋l) P ≥ 0.5

(14)�⃗X(t + 1) = 𝜔 ⋅
�⃗Xrand − A ⋅ D,

(15)� =
C ×

√
t

M
× (1 −

t

Tmax

)
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where C = 0.1 , t is the current iteration number, Tmax is the maximum number of 
iterations, and N is the dimension. At the beginning of the iteration, almost only 
H and 

√
t play a role. As the number of iterations progresses, when the position 

of the optimal solution is from farther to nearer, the value of M will decrease, and 
the value of � will increase at this time. This will allow the population individuals 
to escape from their current positions and conduct exploration with a larger search 
radius, thereby effectively enhancing the algorithm’s extensive search capabilities to 
avoid falling into local optima. When the optimal solution is located farther away, 
the value of � will decrease relative to the previous iteration. As a result, individual 
whales will search in the high-quality solution space with a more precise spiral path 
to strengthen the local development capabilities of the algorithm. At the later stage 
of the iteration, H will hardly change again, and � at this time will become a stead-
ily decreasing variable. This allows each individual whale to have a stronger search 
ability and a more diverse location. In fact, the purpose of this strategy is to tap the 
potential of individual populations and allow each individual whale to improve its 
own performance to varying degrees. In other words, as long as a small number of 
enhanced whales jump out of the local optimum successfully, they can lead the opti-
mized population to the global optimum.

3.3 � Local mutation strategy

When a population individual finds a space that may contain high-quality solu-
tions, using an effective strategy to approach the target area can not only help the 
algorithm quickly lock the optimal value, but also fully search this space. The 
advantage of this is that it can prevent the population individuals from gathering 
at a point in the space, which will cause the algorithm to stagnate. In Eq. (13), 
the parameter b can determine the shape of the logarithmic spiral. In other words, 
b determines the search path of the individual whale near the target area. Under 
normal circumstances, b is a fixed value, which will lead individual whales to 
perform local development in a fixed pattern in each iteration. When the better 
solution keeps a certain distance from the logarithmic spiral search path, these 
optimal values will lose their attractiveness to the whale population. Therefore, 
adding an appropriate mutation to b can help the individual whale better dis-
cover the global optimal solution that may exist in the surrounding space. This 
approach is similar to the actual hunting behavior of individual animals in nature.
In the process of exploration, they will have a certain probability to deviate from 
the original path to develop possible prey because of the smell of the prey. The 
specific mathematical model is as follows:

(16)M =
√
H + N2

(17)H =

∑N

j=1
(Ubi,j − Lbi,j)

2

t
,
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It is not difficult to see from Eq. (18) and Fig.  2 that as the iteration progresses, 
the search area will gradually shrink, so the logarithmic spiral will also continue to 
become smaller. Individuals of the population can perform more careful repeated 
searches in a limited space. When the iteration progresses to the later stage, the 
movement of the whale population will becomes very gradual, which can effectively 
increase the utilization of the current space. The mutation mechanism will give the 
population individuals more opportunities to explore possible solutions.

As a summary, the effective combination of the three strategies can bring the 
initial population closer to the optimal solution, and the richness and quality of 
the population will be higher. In the search process, adaptive inertial weights can 
help the algorithm find a dynamic balance point in exploration and development. 
The local mutation mechanism can adjust the whale’s search range dynamically. 
As shown in Fig. 3, the original WOA will increase the possibility of falling into 
a local optimum due to insufficient population richness and too random initial 
position (Fig. 3a, b). The improved algorithm has richer population diversity and 
stronger search ability. The search agent in the current iteration process can also 
be initialized at a position closer to the optimal value (Fig.  3c, d). In this way, 
the algorithm can effectively jump out of the local optimal to find a better global 
optimal solution.

(18)b =

(
9 + rand)(1 −

t

Tmax

)

(a)

(b)

Fig. 2   Local mutation strategy
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3.4 � Analysis of DAWOA’s computational complexity

The time complexity of the algorithm is the time resources consumed by the com-
puter during the actual operation of the algorithm, which is an important refer-
ence for the actual performance of the algorithm. As far as DAWOA is concerned, 
the main factors that determine the time complexity are the total number of itera-
tions (T), population initialization, fitness sorting, three position update formulas, 
dynamic pinhole imaging strategy, adaptive inertial weighting and local mutation 
mechanism. Given that the number of populations is n and the dimension is D, then 
the time complexity for population initialization is O(n × D) . Since the sorting pro-
cess must be performed once in each iteration, its time complexity is O(T × n2) . 
Considering that the adaptive inertia weight and the WOA position update formula 
change together, the time complexity of the three formulas is O(T × n × D) . The 
dynamic pinhole imaging strategy needs to be compared and updated during each 
iteration. Therefore, its time complexity is O(T × n × D) . The local mutation strat-
egy is equivalent to the successive change of parameter b, so its time complexity is 
O(T × n × D) . If the worst case is considered, the upper limit of the total time com-
plexity of DAWOA is O(T × (n2 + n × d)).

The pseudo-code of DAWOA algorithm is shown in Table 1.

4 � Simulation experiment and numerical result analysis

20 well-known benchmark functions [30–33] composed of unimodal func-
tions (F1–F7), multimodal functions (F8–F13) and fixed-dimensional functions 
(F14–F20) will be used to test the specifics of the improved algorithm Performance, 
some specific information of these test functions are shown in Table 2. In the test 
process, DAWOA will be used to compare the numerical results and convergence 
status with WOA, SSA, the recently proposed optimization algorithms EWOA [34] 
and MWOA [35].

4.1 � Simulation test environment and evaluation standards

Simulation test environmentThe test environment for this experiment is as follows: 
Intel(R) core(TM) i5-6300HQ CPU @2.30 GHz 2.30 GHZ processor, 8G memory. 

(a) (b) (c) (d)

Fig. 3   DAWOA’s search process
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The MATLAB version is MATLAB (2019b). During the test, the population size N 
is set to 30, and the maximum number of iterations Tmax is set to 500. In addition to 
the fixed dimension function, other test functions will be tested in the three dimen-
sions of 10/30/50. Different algorithms will independently perform 30 tests of the 
same dimension in each test function and record the test results.

Evaluation standardsIn addition to introducing the mean (Mean) and standard 
deviation (Std) as the test criteria, this test will also introduce the Wilcoxon signed 
rank test [36] to compare the performance of each algorithm more reliably. Among 
the above detection standards, the average value test is used to detect the general 
performance and convergence accuracy of the algorithm; the standard deviation test 
is used to detect the overall stability of the algorithm. As a common nonparametric 
paired test, the Wilcoxon signed rank test is a fast and effective detection method. 

Table 1   Pseudo code of DAWOA
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It only needs to provide a small number of samples for reliable numerical analysis. 
The rules of the inspection method are very simple. In the numerical test results, if 
the target algorithm is better than the comparison algorithm, it is recorded as R+ ; 
otherwise, it is recorded as R− . Generally, speaking, the greater the number of R+ , 
the greater the advantage of the target algorithm. In order to facilitate recording and 
comparison, in the table, “+” will be used to indicate that the target algorithm is bet-
ter than the comparison algorithm, “−” is used to indicate that the target algorithm 
is inferior to the comparison algorithm, and “=” indicates that the two algorithms 
are in the same degree of superiority and inferiority, and Gm represents the differ-
ence between the number of “+” and the number of “−”.

Experimental parameter settingIn the comparative experiment in this chapter, the 
parameter settings of each algorithm are shown in Table 3.

4.2 � Unimodal function test and result analysis

Unimodal test functions are mainly complex spherical or valley-shaped numerical 
problems. They only have a global minimum but are difficult to find. Therefore, 
it can be used to test the exploitation capabilities of the algorithm. As shown in 
Tables 4, 5, and 6, among the three dimensions, DAWOA almost occupies a domi-
nant position in all unimodal functions, showing strong competitiveness. For the test 
functions F1–F4, although the convergence speed of MWOA is faster than DAWOA 

Table 2   Benchmark function F Function name V-no Range Fmin

F1 Sphere 10/30/50 [− 100,100] 0
F2 Schwefel 2.22 10/30/50 [− 10,10] 0
F3 Schwefel 1.2 10/30/50 [− 100,100] 0
F4 Schwefel 2.21 10/30/50 [− 100,100] 0
F5 Rosenbrock 10/30/50 [− 30,30] 0
F6 Step 10/30/50 [− 100,100] 0
F7 Quartic 10/30/50 [− 1.28,1.28] 0
F8 Schwefel 10/30/50 [− 500,500] − 418.9826D
F9 Rastrigin 10/30/50 [− − 5.12,5.12] 0
F10 Ackley 10/30/50 [− 32,32] 0
F11 Griewank 10/30/50 [− 600,600] 0
F12 Penalty1 10/30/50 [− 50,50] 0
F13 Penalty2 10/30/50 [− 50,50] 0
F14 Michalewicz 2 [− 65,65] 1
F15 Kowalik 4 [− 5,5] 0.0003
F16 Branin 3 [1,3] 0.398
F17 Hartmann 3D 6 [0,1] − 3.86
F18 Shekel 4 [0,10] − 10.1532
F19 Shekel 4 [0,10] − 10.4028
F20 Shekel 4 [0,10] − 10.5363
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in every dimension, DAWOA has more obvious advantages in the remaining uni-
modal functions. For example, the test function F5 (Rosenbrock), which is a typi-
cal non-convex function, requires complex numerical calculations to solve it. The 
global minimum of the Rosenbrock function is located in a narrow parabolic valley. 
Although this valley is easy to find, it is difficult to converge to the lowest point. 
As shown in Figs. 4, 5, and 6, the performance of WOA, MWOA, EWOA and SSA 
in the test function F5 are all unsatisfactory. However, the improved DAWOA can 
reduce the numerical result to 4 decimal places, which is undoubtedly a big improve-
ment. When the dimensions are 10 and 30, DAWOA’s performance in F6 is second 
only to SSA. But when the dimension rose to 50, DAWOA recovered its own advan-
tages. As shown in Fig. 4, during the convergence process, there were several cliff-
like declines in the curve. This shows that the dynamic pinhole imaging strategy 
has been trying to adjust the position of the leader to help it quickly approach the 
optimal area. At the same time, adaptive inertia weights are also helping the popula-
tion to maintain an efficient search state, thereby accelerating the convergence of the 
algorithm. The above conclusion fully shows that the local development capability 
of the algorithm has been significantly improved.

4.3 � Multimodal function test and result analysis

Different from the unimodal functions, the multimodal functions have many local 
optimal values. Moreover, the scale of this type of problem will increase expo-
nentially as the dimensionality increases. Therefore, the multimodal function can 
effectively test the exploration capabilities of the algorithm. In combination with 
Tables 4, 5, and 6, it can be seen that DAWOA performs significantly better than 
WOA, EWOA, MWOA and SSA in multimodal functions. For the test function F8, 
this is a typical multimodal function with a large number of local optimal values, 
and its shape is similar to a hill. Compared with WOA, EWOA and SSA, DAWOA’s 
numerical results in F8 have made a big leap. Although the test result of MWOA 
is very close to the theoretical value, the convergence accuracy of DAWOA is sig-
nificantly higher. This is because the addition of adaptive inertial weights increases 
the diversity of the whale population, allowing population individuals to be evenly 

Table 3   Experimental parameter 
setting

Parameter Optimization

This paper WOA MWOA EWOA

a [0, 2] [0, 2] [0, 2] [0, 2]

b N/A 1 1 1
K 15000 N/A N/A N/A
l [−1, 1] [−1, 1] [−1, 1] [−1, 1]

� N/A N/A 0.1 N/A
n N/A N/A 12000 N/A
b1∕b2 N/A N/A 1/2 N/A
r1∕r2 [0, 1] [0, 1] [0, 1] [0, 1]
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Table 4   Comparison of test results of different algorithms

F This paper WOA MWOA EWOA SSA

F1
Mean 0.000E+00 6.214E-72 0.000E+00 9.527E-144 1.631E-07
Std 0.000E+00 3.334E-71 0.000E+00 3.152E-143 1.560E-07
Wilcoxon + = + +
F2
Mean 0.000E+00 1.365E-45 0.000E+00 2.078E-81 2.497E+00
Std 0.000E+00 7.383E-45 0.000E+00 8.658E-81 1.543E+00
Wilcoxon + = + +
F3
Mean 0.000E+00 5.347E+04 0.000E+00 4.306E-07 1.720E+03
Std 0.000E+00 1.519E+04 0.000E+00 1.306E-06 1.047E+03
Wilcoxon + = + +
F4
Mean 0.000E+00 3.991E+01 0.000E+00 8.945E-46 1.186E+01
Std 0.000E+00 3.178E+01 0.000E+00 4.899E-45 3.811E+00
Wilcoxon + = + +
F5
Mean 5.762E-04 2.785E+01 2.602E+01 2.768E+01 1.569E+02
Std 1.078E-03 4.963E-01 7.005E+00 5.608E-01 2.402E+02
Wilcoxon + + + +
F6
Mean 1.671E-05 4.220E-01 1.998E-01 8.559E-01 1.376E-07
Std 2.291E-05 1.946E-01 7.153E-02 5.107E-01 2.019E-07
Wilcoxon + + + -
F7
Mean 4.187E-05 3.528E-03 7.039E-05 3.001E-03 1.861E-01
Std 2.788E-05 3.342E-03 6.947E-05 2.680E-03 5.669E-02
Wilcoxon + + + +
F8
Mean -1.257E+04 -8.951E+03 -1.243E+04 -7.583E+03 -7.505E+03
Std 9.056E-01 1.329E+03 3.005E+02 9.403E+02 8.894E+02
Wilcoxon + + + +
F9
Mean 0.000E+00 0.000E+00 0.000E+00 0.000E+00 5.801E+01
Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.807E+01
Wilcoxon = = = +
F10
Mean 8.882E-16 3.967E-15 8.882E-16 3.375E-15 2.432E+00
Std 4.012E-31 2.421E-15 4.012E-31 1.656E-15 1.238E+00
Wilcoxon + = + +
F11
Mean 0.000E+00 2.569E-02 0.000E+00 6.145E-03 1.583E-02
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Table 4   (continued)

F This paper WOA MWOA EWOA SSA

Std 0.000E+00 6.881E-02 0.000E+00 2.355E-02 1.409E-02
Wilcoxon + = + +
F12
Mean 9.975E-07 2.150E-02 8.582E-03 3.091E-02 6.989E+00
Std 1.938E-06 1.742E-02 5.419E-03 1.604E-02 2.896E+00
Wilcoxon + + + +
F13
Mean 1.247E-05 4.792E-01 1.451E-01 8.504E-01 3.264E-03
Std 1.859E-05 2.196E-01 6.744E-02 3.719E-01 5.775E-03
Wilcoxon + + + +
F14
Mean 9.980E-01 2.899E+00 1.622E+00 4.786E+00 1.097E+00
Std 1.826E-06 2.993E+00 2.000E+00 4.146E+00 3.033E-01
Wilcoxon + + + +
F15
Mean 3.323E-04 7.660E-04 4.980E-04 6.573E-04 3.534E-03
Std 1.834E-05 4.753E-04 1.411E-04 2.557E-04 6.720E-03
Wilcoxon + + + +
F16
Mean 3.980E-01 3.980E-01 3.982E-01 3.980E-01 –
Std 1.224E-04 1.694E-16 3.952E-04 1.694E-16 –
Wilcoxon + + - +
F17
Mean − 3.859E+00 − 3.826E+00 − 3.840E+00 − 3.857E+00 − 3.863E+00
Std 2.724E-03 1.403E-01 1.297E-02 9.939E-03 3.162E-15
Wilcoxon + + + +
F18
Mean − 1.015E+01 − 7.297E+00 − 1.008E+01 − 6.512E+00 − 6.811E+00
Std 2.782E-03 2.965E+00 1.510E-01 2.715E+00 3.498E+00
Wilcoxon + + + +
F19
Mean − 1.040E+01 − 7.420E+00 − 1.029E+01 − 7.456E+00 − 9.063E+00
Std 2.300E-03 3.038E+00 2.036E-01 2.783E+00 2.767E+00
Wilcoxon + + + +
F20
Mean − 1.053E+01 − 7.755E+00 − 1.046E+01 − 7.807E+00 − 8.134E+00
Std 5.992E-03 3.507E+00 1.039E-01 3.062E+00 3.504E+00
Wilcoxon + + + +
+/-/=/gm
69/9/2/67

The bolded results indicate the best results in the same group
“+” indicates that the proposed algorithm is better than the algorithm used for comparison
“-” indicates that the proposed algorithm is worse than the one used forcomparison Algorithm
“=” indicates that the performance of the proposed algorithm is equivalent to that of the algorithm used 
for comparison
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distributed in the solution space, thereby effectively avoiding local optima. Figs. 7, 
8, and 9 show the convergence curves of several algorithms in functions F8, F11 
and F12. In the early iteration of the algorithm, the dynamic aperture imaging strat-
egy is playing an active role. The algorithm quickly approaches the target area, and 
the convergence curve drops sharply. As the number of iterations progressed, the 
local mutation strategy began to operate. After a short search, the whale population 
avoided the many local best points in the solution space and successfully reached 
the target area. When the dimensionality gradually increases, the complexity of 
the search space will increase significantly. It is not difficult to see from Table  5 
and Table 6 that the increase in dimensions has not affected DAWOA’s dominant 
position, and the collaborative work of the three strategies has helped it open up a 
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Fig. 4   Convergence curve comparison of some unimodal test functions (30 dimensions)
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Fig. 5   Convergence curve comparison of some unimodal test functions (10 dimensions)
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Fig. 6   Convergence curve comparison of some unimodal test functions (50 dimensions)
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Table 5   Comparison of the numerical results of unimodal and multimodal functions (10 dimensions)

F This paper WOA MWOA EWOA SSA

F1
Mean 0.000E+00 3.734E−63 0.000E+00 8.378E−150 9.065E−10
Std 0.000E+00 1.181E−62 0.000E+00 4.319E−149 3.467E−10
Wilcoxon + = + +
F2
Mean 0.000E+00 3.891E−42 0.000E+00 1.163E−85 1.389E−02
Std 0.000E+00 1.448E−41 0.000E+00 3.980E−85 6.534E−02
Wilcoxon + = + +
F3
Mean 0.000E+00 1.080E+02 0.000E+00 8.009E−30 4.423E−06
Std 0.000E+00 1.686E+02 0.000E+00 4.387E−29 1.627E−05
Wilcoxon + = + +
F4
Mean 0.000E+00 1.058E+01 0.000E+00 5.892E−54 1.993E−05
Std 0.000E+00 1.084E+01 0.000E+00 2.015E−53 8.361E−06
Wilcoxon + = + +
F5
Mean 7.409E−04 7.332E+00 7.245E+00 6.850E+00 9.828E+01
Std 1.400E−03 4.201E−01 1.400E+00 4.252E−01 2.002E+02
Wilcoxon + + + +
F6
Mean 1.457E−05 4.862E−03 1.113E−02 2.950E−04 9.859E−10
Std 2.517E−05 2.449E−03 6.378E−03 5.145E−04 2.519E−10
Wilcoxon + + + −
F7
Mean 4.151E−05 2.689E−03 7.305E−05 2.565E−03 1.446E−02
Std 2.620E−05 2.251E−03 7.913E−05 3.108E−03 9.910E−03
Wilcoxon + + + +
F8
Mean -4.189E+03 − 3.257E+03 − 4.154E+03 − 2.681E+03 − 2.754E+03
Std 9.520E−01 4.762E+02 1.329E+02 3.830E+02 3.417E+02
Wilcoxon + + + +
F9
Mean 0.000E+00 4.737E−16 0.000E+00 6.384E+00 1.735E+01
Std 0.000E+00 2.595E−15 0.000E+00 1.535E+01 9.585E+00
Wilcoxon + = + +
F10
Mean 8.882E−16 5.862E−15 8.882E−16 3.138E−15 7.551E−01
Std 4.012E−31 1.770E−15 4.012E−31 1.741E−15 9.430E−01
Wilcoxon + = + +
F11
Mean 0.000E+00 4.132E−02 0.000E+00 1.185E−02 2.317E−01
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broader search space. The above results fully demonstrate that the improved algo-
rithm has good extensive search capabilities.

4.4 � Fixed dimension function test and result analysis

Fixed-dimensional functions are a type of complex multimodal functions with 
specific dimensional requirements. This type of problem can effectively test the 
overall performance of the algorithm, especially the ability to jump out of the 
local optimum. As far as the test function itself is concerned, most of the global 
optimal values of fixed-dimensional functions are not 0. This has the advantage 
of making the type of unknown solution space more comprehensive, and it also 
provides a more reliable test result and numerical basis for the specific perfor-
mance test of the algorithm. It can be seen from Table 4 that so far, DAWOA has 
achieved the best performance in most of the test functions. In the test function 
F16 (Branin function), the improved algorithm is slightly worse than EWOA, but 
the numerical results obtained by DAWOA are already very close to the theo-
retical values. It can be seen from Fig.  10 that in the test functions F15, F17, 
F18, F19 and F20, after the improved algorithm quickly approximates the region 
where the optimal value is located, the population individuals do not gather near 
a local optimal value. The local mutation mechanism allows them to continue 
to maintain an efficient search state after reaching the local optimal area, which 
allows some whale individuals to perceive the location of a better solution suc-
cessfully. In the test functions F15, F18, F19, F20, there are several obvious 
gradient drops in the convergence curve, which shows that the adaptive inertia 

Table 5   (continued)

F This paper WOA MWOA EWOA SSA

Std 0.000E+00 9.118E−02 0.000E+00 5.486E−02 1.388E−01
Wilcoxon + = + +
F12
Mean 1.166E−05 4.619E−02 3.003E−03 1.674E−02 7.386E−01
Std 1.892E−05 2.042E−01 2.029E−03 2.655E−02 8.749E−01
Wilcoxon + + + +
F13
Mean 2.320E−05 2.449E−02 1.845E−02 1.252E−01 1.696E−01
Std 2.809E−05 1.636E−02 1.325E−02 9.706E−02 9.123E−01
Wilcoxon + + + +
+/−/=/gm
44/7/1/43

The bolded results indicate the best results in the same group
“+” indicates that the proposed algorithm is better than the algorithm used for comparison
“-” indicates that the proposed algorithm is worse than the one used forcomparison Algorithm
“=” indicates that the performance of the proposed algorithm is equivalent to that of the algorithm used 
for comparison
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Table 6   Comparison of the numerical results of unimodal and multimodal functions (50 dimensions)

F This paper WOA MWOA EWOA SSA

F1
Mean 0.000E + 00 3.261E−60 0.000E + 00 6.728E−141 9.756E−01
Std 0.000E + 00 1.604E−59 0.000E + 00 2.974E−140 1.390E + 00
Wilcoxon + = + +
F2
Mean 0.000E + 00 1.178E−39 0.000E + 00 5.985E−14 8.065E + 00
Std 0.000E + 00 2.789E−39 0.000E + 00 3.278E−13 3.393E + 00
Wilcoxon + = + +
F3
Mean 0.000E + 00 2.011E + 05 0.000E−00 1.557E−01 1.027E + 04
Std 0.000E + 00 4.474E + 04 0.000E + 00 8.381E−01 5.418E + 03
Wilcoxon + = + +
F4
Mean 0.000E + 00 5.579E + 01 0.000E + 00 2.204E−47 1.987E + 01
Std 0.000E + 00 3.260E + 01 0.000E + 00 9.417E−47 3.586E + 00
Wilcoxon + = + +
F5
Mean 1.864E−03 4.831E + 01 4.493E + 01 4.793E + 01 1.815E + 03
Std 2.399E−03 2.565E−01 1.222E + 01 5.436E−01 2.727E + 03
Wilcoxon + + + +
F6
Mean 1.927E−05 5.349E−01 5.022E−01 2.221E + 00 9.781E−01
Std 2.433E−05 1.920E−01 1.620E−01 9.989E−01 1.535E + 00
Wilcoxon + + + +
F7
Mean 3.432E−05 3.510E−03 9.119E−05 3.320E−03 5.556E−01
Std 1.797E−05 1.827E−03 9.556E−05 3.635E−03 1.992E−01
Wilcoxon + + + +
F8
Mean -2.095E + 04 − 1.637E+04 − 2.086E+04 − 1.221E+04 − 1.226E+04
Std 9.893E + 00 2.549E + 03 3.145E + 02 1.874E + 03 1.096E + 03
Wilcoxon + + + +
F9
Mean 0.000E + 00 0.000E + 00 0.000E + 00 0.000E + 00 9.259E+01
Std 0.000E + 00 0.000E + 00 0.000E + 00 0.000E + 00 2.237E+01
Wilcoxon = = = +
F10
Mean 8.882E−16 6.217E−15 8.882E−16 3.494E−15 4.455E + 00
Std 4.012E−31 2.237E−15 4.012E−31 1.598E−15 8.524E−01
Wilcoxon + = + +
F11
Mean 0.000E + 00 4.261E−02 0.000E + 00 0.000E + 00 5.853E−01
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Table 6   (continued)

F This paper WOA MWOA EWOA SSA

Std 0.000E + 00 1.328E−01 0.000E + 00 0.000E + 00 2.496E−01
Wilcoxon + = = +
F12
Mean 7.474E−06 1.403E−02 1.177E−02 6.167E−02 1.323E + 01
Std 2.037E−05 3.661E−03 6.339E−03 3.238E−02 4.352E + 00
Wilcoxon + + + +
F13
Mean 2.729E−05 4.411E−01 2.991E−01 2.031E + 00 7.948E + 01
Std 2.406E−05 1.546E−01 1.368E−01 7.023E−01 1.062E + 01
Wilcoxon + + + +
+/−/=/gm
42/10/0/42

The bolded results indicate the best results in the same group
“+” indicates that the proposed algorithm is better than the algorithm used for comparison
“-” indicates that the proposed algorithm is worse than the one used forcomparison Algorithm
“=” indicates that the performance of the proposed algorithm is equivalent to that of the algorithm used 
for comparison
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Fig. 7   Convergence curve comparison of some multimodal functions (30 dimensions)
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Fig. 8   Convergence curve comparison of some multimodal functions (10 dimensions)
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weight effectively balances the algorithm’s extensive search capabilities and local 
development capabilities, allowing the information retained by the previous gen-
eration to be fully used. Therefore, the algorithm quickly found a better value 
after a short search and escaped the trap of local optimization. The total number 
of iterations in this test is only 500, which not only effectively reflects the search 
ability of the algorithm, but also makes the changes in the convergence curve 
more clear. In short, the cause of this phenomenon is easy to understand. The 
adaptive inertia weight is constantly receiving feedback information while adjust-
ing the performance of the algorithm. In this way, the algorithm can successfully 
find a dynamic balance point between the exploration capability and the devel-
opment capability to help the population quickly jump out of the local optimal 
value. The above data fully shows that the improved algorithm has a high success 
rate in solving such complex problems, and has a stronger ability to avoid local 
minimums.

4.5 � Analysis of the effectiveness of DAWOA

In order to verify the effectiveness of each strategy in DAWOA, this section intro-
duces effectiveness analysis. Adding the three strategies to WOA in the order of 
dynamic pinhole imaging strategy, local mutation strategy, and adaptive strategy can 
form three new algorithms: WOA-1, WOA-2 and WOA-3. In addition, this section 
selects three benchmark test functions to compare and test the four algorithms. The 
three benchmark functions are the unimodal function F1, F5 and the multimodal 
function F8 in turn. In order to ensure the fairness of the experiment, the dimension 
is uniformly set to 30. As shown in Table 7 and Fig. 11, no matter which test func-
tion it is, the three strategies of DAWOA are all effective. And, with the continuous 
addition of strategies, DAWOA’s performance is also continuously enhanced. This 
fully shows that the three strategies can not only work individually, but also work 
together to make the algorithm perform more comprehensively. At the same time, 
the specific effects of these strategies can also be briefly summarized as follows: 

(1)	 Dynamic pinhole imaging strategy (WOA-1). It is not difficult to see that the 
effect of the dynamic pinhole imaging strategy is significant. This shows that 
as the number of iterations increases, the dynamic pinhole imaging strategy has 
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Fig. 9   Convergence curve comparison of some multimodal functions (50 dimensions)
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been actively adjusting the position of the whale. This approach allows some 
whales to quickly jump to the vicinity of the optimal solution, thereby greatly 
improving the quality of leaders.

(2)	 Adaptive strategy (WOA-2). Although the dynamic pinhole imaging strategy 
helped the whale obtain a higher-quality search area, the search ability of the indi-
vidual whale has not been strengthened, which may cause WOA to fall into a local 
optimum to a large extent. It can be seen from Table 7 that the adaptive strategy 
can continuously adjust the search ability of the whale population under the action 
of the dynamic boundary to help the population quickly reach the target area. This 
approach can effectively improve the search capabilities of the algorithm.

(3)	 Local mutation strategy (WOA-3). The significance of the local mutation strat-
egy is to strengthen the local development capabilities of the algorithm. When 
the current two strategies help the algorithm approach the region where the 
optimal solution is located, the local mutation strategy can dynamically adjust 
the spiral search range of the algorithm following the number of iterations. With 
the continuous shrinking of the dynamic boundary, the dynamically reduced 
spiral path can effectively enhance the local search capability of the algorithm, 
allowing the algorithm to perform a more detailed search. This approach can 
significantly improve the convergence accuracy of the algorithm.

4.6 � Principle analysis

In order to more fully explain the role of the three strategies in DAWOA, this sec-
tion will analyze DAWOA from a theoretical perspective. Undoubtedly, the search 
process of most algorithms can be divided into particle shrinkage and particle diver-
gence phases. Therefore, we will discuss the advantages of DAWOA from the per-
spective of these two phases: 

(1)	 Particle divergence phase. At this phase, the population individuals of the algo-
rithm will spread as far as possible across the entire search space to obtain richer 
diversity. However, for WOA, its exploration process is not sufficient, and the 
quality of leaders is not high enough. Although the exploration phase of WOA 
has a high priority, it must share the search process with the spiral update loca-
tion phase. Therefore, the probability at this stage can be expressed as follows: 

 It is not difficult to see that this probability is much lower than expected. 
This is also the reason why WOA tends to fall into local optimum. When the 
dynamic pinhole imaging strategy comes into play, individuals in the popula-
tion have more diverse positions. In many cases, some low-quality population 
individuals can quickly jump to the vicinity of the optimal solution under the 
action of these strategies, which undoubtedly brings more possibilities to the 
algorithm.

(19)P|A|≥1 =
1

2 �
2

1
�

1

1a

d(2r − 1)da ≈ 0.1535
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(2)	 Particle shrinkage phase. For many typical non-convex problems, the algorithm 
is easy to find the target area. However, the ability of local search limits the accu-
racy of most algorithms, and WOA is no exception. The fixed search range makes 
it difficult for WOA to be attracted by the optimal solution near the search path, 
which leads to insufficient convergence accuracy. The local mutation strategy 
proposed in this paper can make the shape of the logarithmic spiral change with 
the number of iterations, which can to a large extent strengthen the develop-
ment ability of the algorithm. At the same time, this strategy also contains an 
uncontrolled mutation, which can create a lot of opportunities for the algorithm 
when whales perform local searches. In this way, DAWOA can perform a more 
careful search during the particle shrinkage phase.

In addition, even if the algorithm has a better location and more flexible search 
range, if the whale’s search ability is not improved, the performance of the algorithm 
will hardly be changed significantly. Therefore, this paper also proposes an adaptive 
strategy: the adaptive strategy allows the whale population to adjust its search ability 
according to changes in the environment to obtain a better global optimal solution. 
In this way, DAWOA can obtain more comprehensive performance under the syn-
ergy of the three strategies.

As a summary, the numerical experiment results in this section effectively prove 
the effectiveness of the improved algorithm. a). The unimodal function test results 
fully demonstrate the feasibility of the dynamic pinhole imaging strategy. Com-
pared with EWOA, WOA and SSA, DAWOA can quickly find the global optimal 
value and converge. b). Multimodal function test results show that adaptive inertial 
weights based on dynamic boundary feedback can effectively increase the diversity 
of the population, make the distribution of population individuals more even, and 
it is easier to avoid local optima. c). The results of the fixed-dimensional function 
test show that when the search space becomes more complex, adaptive strategies 
and local mutation strategies can effectively balance the exploitation and exploration 
capabilities of the algorithm. This can prevent the population from gathering near 
the local optimal points that are easy to find in the space, leading to premature con-
vergence of the algorithm. The effectiveness analysis further confirmed the above 
conclusions. In the following sections, DAWOA will be applied to more challenging 
engineering problems to further test its performance.

5 � The application of DAWOA in engineering problems

The purpose of algorithm optimization is to better solve real-world problems. In 
order to test the actual effectiveness of DAWOA, four complex constrained engi-
neering optimization problems will be used to test the specific performance of 
DAWOA. Among them, the specific parameters of the four engineering problems 
come from optimization literature [23, 37]. The detailed description of the problem 
and the analysis of the test results will be divided into four subsections to form the 
entire content of this section.
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5.1 � The problem of pressure vessel

The pressure vessel problem is a common optimization problem with complex 
mixed constraints in engineering. As shown in Fig. 12, this problem requires that 
the overall value be minimized while considering the cost of the structure, material, 
manufacturing, and welding of the vessel. Moreover, there are only four important 
design variables for the pressure vessel problem:

Table 7   Test results of the four algorithms in some benchmark functions

The bolded results indicate the best results in the same group
“+” indicates that the proposed algorithm is better than the algorithm used for comparison
“-” indicates that the proposed algorithm is worse than the one used forcomparison Algorithm
“=” indicates that the performance of the proposed algorithm is equivalent to that of the algorithm used 
for comparison

F WOA DAWOA-1 DAWOA-2 DAWOA-3

F1
Mean 6.214E−72 9.144E−141 0.000E + 00 0.000E + 00
Std 3.334E−71 4.577E−140 0.000E + 00 0.000E + 00
F5
Mean 2.785E + 01 6.446E + 00 1.844E−02 5.762E−04
Std 4.963E−01 1.189E + 01 6.075E−02 1.078E−03
F8
Mean − 8.951E + 03 − 1.121E + 04 − 1.255E + 04 − 1.257E + 04
Std 1.329E + 03 1.731E + 03 4.427E + 01 9.056E−01
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Fig. 10   Comparison of convergence curves of some fixed-dimensional test functions
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Fig. 11   Comparison of the convergence curves of the four algorithms in some benchmark functions

Fig. 12   Problem of pressure vessel

Table 8   Comparison of results of pressure vessel problems

The bolded results indicate the best results in the same group
“+” indicates that the proposed algorithm is better than the algorithm used for comparison
“-” indicates that the proposed algorithm is worse than the one used forcomparison Algorithm
“=” indicates that the performance of the proposed algorithm is equivalent to that of the algorithm used 
for comparison

Algorithm Optimal values for variables Optimum cost

X1 X2 X3 X4

This paper 0.7782424 0.3847675 40.323 200 5886.7645
MBA 0.7802 0.3856 40.4292 198.4964 5889.3216
RCGA-rdn N/A N/A N/A N/A 5893.8627
LSA-SM 0.8103764 0.4005695 41.98842 178.0048 5942.6966
DMMFO 0.743 0.3842 40.319619 200 6032.5484
WOA 0.8125 0.4375 42.098269 176.639 6059.741
PSO 0.8125 0.4375 42.091266 176.7465 6061.0777
GA 0.9375 0.5 48.329 112.679 6410.3811
DE 0.8125 0.4375 42.098411 176.63769 6059.734
ACO 0.8125 0.4375 42.103624 176.57266 6059.0888
MFO 0.8125 0.4375 42.098445 176.6366 6059.7143
GSA 1.125 0.625 55.98866 84.454203 8538.8359
ES 0.8125 0.4375 42.098087 176.64052 6059.7456
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X1—Thickness of the two lids of the container.
X2—The thickness of the container shell.
X3—Inner radius of the container.
X4—The length of the cylinder in the middle of the container.
Table 8 shows the best data comparison between DAWOA and WOA, LSA-SM, 

DE, ACO, GA, RCGA-rdn [38], MBA, DMMFO [23], GSA and ES. Most of the 
data used for comparison comes from the literature [15, 23, 39]. It is not difficult 
to see that the performance of DAWOA is better than other comparison algorithms, 
and the numerical results obtained by DAWOA are even better.

Fig. 13   Problem of cantilever beam

Table 9   Comparison of numerical results of cantilever beam problem

The bolded results indicate the best results in the same group
“+” indicates that the proposed algorithm is better than the algorithm used for comparison
“-” indicates that the proposed algorithm is worse than the one used forcomparison Algorithm
“=” indicates that the performance of the proposed algorithm is equivalent to that of the algorithm used 
for comparison

Algorithm Optimal values for variables Optimum cost

X1 X2 X3 X4 X5

This paper 6.0217 5.3125 4.4881 3.5011 2.1504 1.33652294
HWOANM 6.01812 5.31142 4.48836 3.49751 2.15833 1.33995
EWOA 6.01867 5.31481 4.49132 3.49907 2.15234 1.3399591
CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
GOA 6.01167 5.31297 4.48307 3.50279 2.16333 1.33996
MVO 6.02394 5.30601 4.49501 3.49602 2.15273 1.3399595
MMA 6.01 5.3 4.49 3.49 2.15 1.34
SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996
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5.2 � The problem of cantilever beam

The purpose of the cantilever beam problem is to minimize the weight of the square-
section cantilever beam. As shown in Fig. 13, five hollow blocks of different sizes 
constitute a typical cantilever beam. Among them, the number of hollow blocks 
determines the number of parameters, and Xi is the side length of the square block. 
Table 9 is the comparison of the numerical results of DAWOA and some algorithms. 
Among them, the test data of all the comparison algorithms are from the literature 

Fig. 14   Problem of three-bar truss

Table 10   Comparison of results 
of three-bar truss problems

The bolded results indicate the best results in the same group
“+” indicates that the proposed algorithm is better than the algo-
rithm used for comparison
“-” indicates that the proposed algorithm is worse than the one used 
forcomparison Algorithm
“=” indicates that the performance of the proposed algorithm is 
equivalent to that of the algorithm used for comparison

Algorithm Optimal values for variables Optimum cost

X1 X2

This paper 0.78867 0.40826 263.8958442
MBA 0.78857 0.40856 263.8958522
CS 0.78867 0.40902 263.9716
WDO 0.78662 0.41418 263.9085
Ray 0.795 0.395 264.3
MFO 0.78824 0.40947 263.8959796
GOA 0.7889 0.40762 263.8958810

Fig. 15   Problem of tension/compression spring
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[15, 37–39]. It is not difficult to see that DAWOA is still the best optimizer among 
them.

5.3 � The problem of three‑bar truss

The three-bar truss problem is a complex structural optimization problem. An obvi-
ous feature of this problem is that the algorithm is required to find the minimum 
value in a narrow search space. Therefore, the three-bar truss problem has a fairly 
broad research prospect. As shown in Fig.  14, there are two adjustable variables 
in the three-bar truss problem. The focus of the problem is to keep the weight of 
the entire structure as small as possible. DAWOA was used to compare with MBA, 
CS, GOA, WDO [40], Ray [41], MFO, and the comparison results are shown in 
Table  10. Among all the algorithms, DAWOA’s numerical results are better than 
other algorithms and have the most reliable performance.

5.4 � The problem of tension/compression spring

The tension/compression spring problem was first proposed by Belegundu in 1982. 
It is a very common and well-known constrained engineering optimization problem. 
As shown in Fig. 15, the problem contains three important parameters, the purpose 
is to minimize the weight of the entire spring while ensuring the performance of 
the spring. Table  11 is the comparison result of DAWOA and some algorithms. 
The data of these algorithms comes from literature [15, 40]. It can be seen from 

Table 11   Comparison of results 
of tension/compression spring 
problems

The bolded results indicate the best results in the same group
“+” indicates that the proposed algorithm is better than the algo-
rithm used for comparison
“-” indicates that the proposed algorithm is worse than the one used 
forcomparison Algorithm
“=” indicates that the performance of the proposed algorithm is 
equivalent to that of the algorithm used for comparison

Algorithm Optimal values for variables Optimum cost

X1 X2 X3

This paper 0.0516801 0.356503 11.3016 0.012665
WOA 0.051207 0.345215 12.004032 0.0126763
PSO 0.51728 0.357644 11.244543 0.012675
ES 0.51989 0.363965 10.890522 0.012681
GA 0.05148 0.351661 11.632201 0.012705
DE 0.051609 0.354714 11.410831 0.01267
SaC 0.0521602 0.3681587 10.6484422 0.0126692
MFO 0.0519945 0.3641093 10.868422 0.0126669
NM-PSO 0.05162 0.355498 11.333327 0.0126706
CPSO 0.051728 0.357644 11.24454 0.0126747
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the comparison results that the numerical results obtained by DAWOA are the best 
among all the algorithms (Table 11).

As a summary, this section tests the performance of DAWOA in four well-known 
engineering optimization problems with complex constraints. From the comparison 
of numerical results, DAWOA performs better than other comparison algorithms. 
These experimental results fully show that DAWOA can effectively solve some 
practical problems and has a certain practicability.

6 � Conclusion and future work

This paper proposes three strategies to help WOA improve its performance. The 
dynamic pinhole imaging strategy inspired by optics allows the leader to quickly 
approach areas that may contain high-quality solutions, thereby effectively accel-
erating the convergence speed of the algorithm. Adaptive inertial weights based 
on dynamic boundaries and dimensions can properly balance the exploitation and 
exploration capabilities of the algorithm, making the algorithm’s population diver-
sity richer. So as to effectively strengthen the search ability of the algorithm and 
prevent the algorithm from premature convergence. The local mutation strategy 
can dynamically adjust the search range of the algorithm according to the number 
of iterations, so that the whale population can have more diverse spiral paths. The 
improved algorithm has been extensively tested in 20 well-known benchmark func-
tions and four complex constrained engineering optimization problems, and com-
pared with other optimization algorithms presented in the literature. The test results 
show that the improved algorithm has faster convergence speed and higher conver-
gence accuracy, and can effectively jump out of the local optimum.

Although the performance of the improved algorithm DAWOA has been sig-
nificantly improved to a certain extent, its performance in some test functions will 
gradually decrease when the dimension increase. This situation reflects the deficien-
cies of DAWOA to a certain extent. If the leader is always unable to reach the vicin-
ity of the global optimal solution, no matter how many iterations, the entire whale 
population will most likely fall into a local optimum. How to ensure that the leader’s 
position update is efficient and reliable, this is the problem we are about to solve. In 
the future, we will conduct more in-depth research on WOA for ultra-high-dimen-
sional large-scale problems and multi-objective problems to solve more real-world 
problems.
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