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Abstract
Dynamic virtual machine (VM) consolidation is a constructive technique to enhance 
resource usage and is extensively employed to minimize data centers’ energy con-
sumption. However, in the current approaches, consolidation techniques are heavily 
relied on reducing the actively used physical servers (PMs) based on their current 
resource utilization without considering future resource demands. Also, many of the 
reported works for cloud workload prediction applied univariate time series-based 
forecasting models and neglected the dependency of other resource utilization met-
rics. Thus, resulting in inaccurate predictions, unnecessary migrations, high migra-
tion costs, and increased service level agreement violations (SLAVs) may nullify 
the consolidation benefits. To efficiently address this issue, we propose a multivari-
ate resource usage prediction-based hotspots and coldspots mitigation approach that 
considers both the current and future usage of resources with O(sk) time complex-
ity, where s and k denote the number of PMs and VMs, respectively. The proposed 
technique uses a clustering-based stacked bidirectional (Long Short-Term Memory) 
LSTM deep learning network to predict the future memory and CPU usage of PMs 
and VMs with high accuracy and O((Q(Q +W) ∗ Θ) computational complexity, 
where Q, W, and Θ represent the number of hidden layer cells, outputs, and train-
ing epochs, respectively. Through extensive simulations based on Google’s clus-
ter workload traces, we demonstrate that our proposed method obtains substantial 
improvements in terms of prediction performance, energy-efficiency, actively used 
PMs, VM migrations, and SLA violations over the benchmark approaches.
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1 Introduction

Cloud computing is rapidly emerging and evolving as a successful computing 
paradigm for providing on-demand and dynamic provisioning of IT infrastruc-
ture, services, and resources in a pay-per-use manner. The cloud provides not only 
readily available infrastructure but also the ability of rapid auto-scaling to sup-
port the massive and fluctuating big data workloads. In the cloud, the data centers 
are connected via networks and offer flexible and cost-effective services for indi-
viduals, organizations, and enterprises. To satisfy the diverse demands from dif-
ferent users, the commercial cloud Infrastructure-as-a-Service or IaaS providers, 
such as Amazon EC2, IBM, and Microsoft Azure, offer different VM instances 
with heterogeneous resources (or dimensions) (e.g., memory, CPU, storage and 
network bandwidth) based on pay-per-use business model [1]. In this regard, the 
virtualization technology such as VMware [2] and Xen [3] plays a vital role for 
efficient resource management in a multi-user environment. With a hypervisor or 
virtual machine monitor (VMM), it permits several VMs to share a single PM’s 
resources. By adopting such virtualized infrastructure technology, several public 
cloud service providers (CSPs) such as Microsoft, Amazon, Yahoo, and Google 
build massive data centers geographically distributed all over the globe to offer 
cloud services with low cost, global coverage, low latency, and high application 
availability.

However, cloud infrastructures’ rising demands are drastically increasing the 
global data center energy consumption [4]. As per the recent reports on world’s 
servers power consumption, the electricity consumption of servers worldwide 
accounts for 3% of the global electricity production [5]. Such high data center 
energy consumption not only leads to considerable operation expenses, but also 
generates substantial carbon dioxide (CO2) emissions. Gartner estimated that the 
information and communication technology (ICT) industry ecosystem accounts 
for greater than 2% of global CO2 emissions, which is equal to the aviation indus-
try’s emissions from fuel [6, 7]. In the context of ICT’s future energy demand, 
analysts also forecasted that the data center electricity usage would increase 
approximately 15 times by 2030, which may result in around 8% of the projected 
global demand of electricity [8]. Therefore, even though several phenomenal 
developments on cloud infrastructures are made, designing effective energy-
aware resource provisioning strategies to enhance energy-efficiency of data cent-
ers have become essential, as depicted in Fig. 1. Additionally, supporting a good 
quality of service (QoS) level is necessary for CSPs to satisfy users’ expectations 
concerning performance. Service level agreement (SLA) is the concrete imple-
mentation to define QoS requirements, which are contracts to describe service 
level details offered to consumers, such as downtime ratio, system throughput, 
and response time. Therefore, minimizing the overall energy consumption of data 
centers, while restricting the SLA violations (SLAVs), is the principle objective 
of this study.

The research on cloud data centers shows that the physical machines run at 10 
to 50% of their maximum CPU usage [9]. Additionally, the majority of PMs are 
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idle PMs, which consume about 70% of their peak power [10]. To reduce energy 
waste and improve resource utilization, the CSPs apply dynamic VM consolida-
tion approaches. By leveraging hardware virtualization technique [3], the VM 
instances are dynamically consolidated and packed in fewer PMs while consid-
ering their current resource demands. In addition, by using live migration tech-
nology [11], the virtualization enables the CSPs to dynamically allocate VMs in 
least active PMs and allows switching the idle PMs into sleep mode. Migration 
is transparent and beneficial when a physical server is highly overloaded (i.e., 
creating hotspot) or underloaded (i.e., creating coldspot) [12, 13]. However, con-
solidation policies reduce energy consumption significantly but live VM migra-
tion results in increased SLAVs. Consequently, an effective VM consolidation 
approach is crucial for reducing the energy expenses while meeting SLAs. In a 
cloud data center comprising thousands of heterogeneous PMs, the consolidation 
process comprises three phases [12]: 

1. Hotspots and coldspots detection Determining the PM is become overloaded (i.e., 
creating hotspots) or underloaded (i.e., creating coldspots);

2. VM selection What VMs can be chosen for migration from the hotspots and 
coldspots while achieving the objectives such as reducing migration cost or total 
number of migrations;

3. Destination PM selection What are the target PMs for VMs that should be 
migrated to mitigate the hotspots and coldspots.

Fig. 1  Green Cloud Computing
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1.1  Example

Consider the examples represented in Figs. 2 and 3 to illustrate the basic operations 
of dynamic VM consolidation, including hotspot mitigation and coldspot mitigation, 
respectively. Figure  2 demonstrates a hotspot mitigation example with three PMs 
< PM1, PM2, PM3 > and six VMs < VM1,… , VM6 > are placed on them. Assume 
the hotspot is detected on PM2 due to resource over-utilization. In this case, a few of 
the VM instances should be migrated to some other suitable PMs. Let’s say, VM2 is 
selected and migrated from PM2 to PM3.

In Fig. 3, we have presented an example of coldspot mitigation, where five VMs, 
i.e.,VM1,VM2,VM3,VM4 , and VM5 are hosted on three PMs. The coldspot mit-
igation process identifies the underloaded machines and tries to migrate all VMs 
from that PM to any other suitable PM without creating any other hotspots. In the 

Fig. 2  Hotspot mitigation

Fig. 3  Coldspot Mitigation
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given example, the consolidation process determines PM3 as a least loaded PM and 
migrate VM2 from PM3 to PM2 . With the intent that the PM3 could be switched to 
power-saving mode to maximize the energy-efficiency.

1.2  Motivation

In the context of the VM consolidation, many of the reported works have addressed 
the VM allocation and migration problem as a multi-dimensional bin-packing prob-
lem, known to be an NP-hard problem [14]. Similar to bin-packing, the physical 
servers would be considered as bins and VMs mapped with items. To apply in the 
VM placement and migration scenario, the classical bin-packing heuristics have to 
be modified in three aspects: first, unlike the bin-packing, the PMs are treated as 
bins with different sizes. Second, the PMs and VMs are characterized by varying 
dimensions of resource so that optimal balancing can be performed with respect to 
resource usage across several dimensions. Third, the objective of classical bin-pack-
ing algorithms is only to reduce the total number of bins. Still, in the case of a con-
solidation, there can be multi-objective such as minimizing SLA violations, actively 
used PMs and migrations. Thus, to find near-optimal solutions, it requires optimi-
zation algorithms. Also, for effective energy-efficient provisioning of resources in 
green data centers, several schemes have been provided. However, from the reported 
studies, we have found a few aspects of improvements: 

1. Many of the existing solutions only consider the current resource utilization for 
hotspots and coldspots mitigation.

2. Reported works on resource utilization prediction in the cloud only consider the 
univariate time series-based classical methods. Such methods apply only the past 
trends of the target resource usage metric, i.e., CPU utilization, only to generate 
future predictions.

3. Assignment of VMs to PMs to reduce energy cost as much as possible without 
considering the SLA violations.

4. Live VM migration is necessary as the VMs arrive and depart periodically in 
highly dynamic data centers, but it results in high migration cost (e.g., network 
cost).

5. Migration decision to mitigate the hotspots and coldspots, when there are not 
sufficient resources on least loaded PMs.

1.3  Contributions

In this paper, our approach is to predict future utilization of resources on the basis 
of past workload traces of PMs and VMs. Current and predicted future utilization 
metrics are applied for efficient hotspots and coldspots mitigation to improve the 
data centers’ energy-efficiency while preserving the QoS guarantee. The technical 
contributions of this work are highlighted as follows: 
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1. Demonstrate the advantages of using different feature selection methods to deter-
mine relevant features subset to predict future resource utilization.

2. Design of multivariate resource utilization prediction approach based on the 
clustering-based stacked bidirectional LSTM deep learning model to forecast 
future resource usage as per the past trace workload on the considered hosts.

3. Effective dynamic VM consolidation algorithms using current and future resource 
utilization is presented, namely prediction-based hotspots detection, prediction-
based coldspots detection, energy and QoS based VM selection, and destination 
PMs selection for migrated VMs.

4. Through real workload traces, we investigate the relationship in respect of predic-
tion accuracy, migration cost, energy consumption, actively used PMs, and SLA 
violations with resource utilization thresholds.

1.4  Article organization

The remaining of the current paper is structured as follows: Sect.  2 provides the 
related studies on the dynamic VM consolidation and prediction approaches for 
cloud data centers. The problem definition is presented in Sect. 3. The system model 
and performance models are provided in Sect.  4. In Sect.  5, we present different 
feature selection techniques, proposed clustering-based stacked bidirectional LSTM 
prediction model, the VM consolidation algorithms for hotspots and coldspots miti-
gation, including hotspots detection, coldspots detection, VM selection, and desti-
nation PMs selection, and complexity analysis. Simulation experiments with real-
world traces are demonstrated in Sect. 6. At last, Sect. 7 concludes the work with 
some of the future directions.

2  Related works

We study the problem of VM consolidation in data centers. Several studies compris-
ing VM consolidation and resource prediction in the cloud are discussed to address 
this problem.

2.1  VM consolidation

In recent years, there have been many methodologies reported in the literature on 
VM consolidation techniques under different settings [4, 15, 16]. In [13] Timo-
thy wood et al. presented the sandpiper system that combines the product of three 
dimensions, i.e., CPU, network, and memory utilization, into a single dimension 
volume metric. Sandpiper has implemented gray-box and black-box approach (BG) 
to automate the cloud system for continuous monitoring of hotspots. To capture the 
degree of overload, it uses the volume metric to sort all the overloaded servers and 
apply the volume-to-size ratio (VSR) for VMs in each server. The BG strategy then 
selects the highest volume server first and the highest VSR VM for migration. To 
allocate these VMs, it sorts the destination PMs based on their increasing volume 
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metric. The major limitation of sandpiper is that it does not provide good perfor-
mance while characterizing underloaded and overloaded servers. It is also limited to 
homogeneous servers and does not enable the coldspot mitigation.

Beloglazov et al. [12] proposed thresholds (i.e., lower and upper) based on adap-
tive heuristics. For host overloading detection, they presented MAD: median abso-
lute deviation, IQR: interquartile range, LR: local regression, and robust LR-based 
approaches that can be applied via the statistical investigation of the historical 
resource usage data. They also designed three policies for selecting VMs: maximum 
correlation, random selection, and MMT: minimum migration time. Furthermore, 
to identify the destination host, they have implemented a Power-aware Best Fit 
Decreasing (PBFD) technique, combining Best Fit Decreasing (BFD) bin-packing 
scheme and a power-aware model. They implemented these policies on CloudSim 
[17] with PlanetLab workload traces. Using experimental results, they showed that 
the LR-based method along with the MMT policy of selecting VMs performs better 
than existing approaches in regard to the number of migrations, energy consump-
tion, SLAVs, and ESV metric (where ESV = SLAV × energy consumption).

Farahnakian et al. [18] provided LR-based method to predict CPU utilization of 
PMs and simulated it using CloudSim. In [19], researchers have applied the K-near-
est neighbor regression approach to demonstrate that it could further enhance the 
SLAV and energy consumption more than the linear regression method. In [20], the 
authors have presented a metaheuristic algorithm named Ant Colony System (ACS) 
for VM consolidation. Through experimental results, they showed that it could 
improve the overall system performance in terms of VM migrations, energy con-
sumption, and QoS requirements. F. Farahnakian et  al. [21] designed a utilization 
prediction-based dynamic VM consolidation method. It applies a regression-based 
strategy to predict future usage of resources. Their approach uses both the current 
and future usage of resources to estimate the next time step memory and CPU usage 
of PMs and VMs. Through simulation results, they demonstrated that the consoli-
dation process could improve the performance of SLA violations, migrations, and 
energy consumption.

Moghaddam et al. [22] proposed machine learning (ML)-based resource predic-
tion models. They have tuned a forecasting framework for each VM independently, 
which uses the VM’s past behavior for predicting their CPU utilization. Haghshenas 
et al. [23] designed a regression-based technique to predict the resource utilization 
of PMs and VMs. They have applied a linear regression-based algorithm for desti-
nation host selection during the migration of VMs. Furthermore, they proposed an 
improved version of the approach to predict the host usage for underutilized host 
selection. Hsieh et  al. [24] suggested a VM consolidation technique for the host 
overload and underload detection. They have used a Gray-Markov-based model to 
estimate future resource utilization. Tarafdar et al. [25] applied a QoS and energy-
aware consolidation technique. They have applied a Markov chain-based model to 
detect the underloaded and overloaded PMs. Additionally, they applied a VM selec-
tion and placement scheme using the linear weighted sum technique.

Chen et al. [26] proposed an Exponentially Weighted Moving Average or EWMA 
scheme to identify host overloading. They further evaluated their approach using 
local regression and identified that when the constant value is 0.025, the EWMA 
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performs better with respect to SLAVs, energy-efficiency, and ESV. Donnell et al. 
[27] provided Gossip Contracts (GC)-based dynamic virtual machine consolidation 
approach for a decentralized solution. Their approach performs well in respect of 
power consumption and SLA Violations. Naeen [28] applied Markov chain models 
for VM consolidation with QoS constraints.

Li et al. [29] designed a quality and energy-aware VM consolidation (EQ-VMC) 
strategy to improve the service quality and energy-efficiency. They have developed 
a discrete differential evolution heuristic to explore the global optimum solution for 
VM assignment. El-Moursy et al. [30] designed a multi-dimension-based regression 
algorithms to identify overloaded PMs, which integrate memory, CPU, network BW 
usage. Ranjbari et  al. [31] suggested a technique of learning automata to improve 
resource usage while reducing energy consumption.

By reviewing the previous works, we have observed that most of the current solu-
tions apply a single prediction model for resource utilization prediction for all the 
VMs or PMs. In addition, most of the studies have meticulously focused on CPU uti-
lization and neglected the computational complexity and optimization of trade-offs 
between SLA violation, migrations and energy consumption. Most of the reviewed 
studies have examined future resource utilization of PMs and migration time inde-
pendently. While some of the current solutions only examine the current utilization 
of resources and address the single objective of energy cost minimization and may 
not be feasible to work in any arbitrary stage of the cloud data centers such as detect-
ing and mitigating multiple hotspots and coldspots at any time instant. Therefore, in 
the next subsection, we explore the prominent prediction models applied for cloud 
resource usage prediction.

2.2  Prediction models for cloud workloads

In the cloud, the problem of resource utilization prediction can be framed as a time 
series forecasting model, where we can analyze the past data of cloud resource uti-
lization to estimate future values. Several statistical models, such as Holt-winter 
[32], ARIMA (Autoregressive integrated moving average) [33], seasonal ARIMA 
(SARIMA) [34], Feed-forward neural network [35], and Markov models [36, 37], 
are proposed for utilization prediction. In contrast, Zhang et  al. [33] applied the 
ARIMA method to estimate the future cloud resource utilization. This model con-
siders the last t observations of past data RHt to predict the resource usage RHt+1 at 
time t + 1 . It can be expressed as:

where the notation � + i and �j represent the constants. �t is the independent error 
term. The other parameters n and k show the number of lags or previously measured 
resource usage values and error terms correspondingly. ARIMA is one of the well-
known time series prediction models. However, it is failed to detect the presence 
of nonlinear patterns present in the time series data. Caglar et al. [35] presented an 
iOverbook model, which applies a two-layer feed-forward artificial neural network 

(1)RHt+1 = �0RHt + .. + �m−1RHt−n+1 + �t+1 + �0�t +⋯ + �k−1�t+1−k,
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(ANN). It also generalizes the nonlinear and linear correlation between the input 
and output using a single hidden layer. It can be defined as:

where Δẑt defines the estimated resource utilization value at time t. The term m 
denotes total past lags, and n shows the total neurons present in the hidden layer 
of network. The training weight parameters are denoted by � and � . The term Υ(.) 
shows the activation function. However, most of the abovementioned studies have 
presumed that observations of resource usage in a long-time period are unassociated 
with each other. In addition, these techniques have also presumed that the time series 
data is memoryless and stationary. But Ghorbani et al. [38] identified the existence 
of long-range dependence (LRD) in the Google’s cluster workload trace [39]. The 
LRD may occur during the time series analysis, where the past-time lags may affect 
the next step value. The LRD may exist if the dependence decays more gradually 
than any decaying exponential and mostly similar to a power-like decay. Intuitively, 
the LSTM (Long short-term memory) models are more suitable to handle this issue, 
as it can model the LRD in time series.

Song et  al. [40] adopted univariate LSTM networks, where they have analyzed 
the past CPU resource utilization to forecast the future CPU usage trends. LSTMs 
are a robust kind of recurrent neural networks (RNNs) and work well on sequence-
based tasks having long-term dependencies. The basic difference between the com-
ponent of RNN architecture and standard LSTM architecture is the hidden layer. The 
LSTM’s hidden layer is also termed as LSTM cell. The basic LSTM block is shown 
in Fig. 4. It comprises a memory cell Ct , an input gate it , an output gate ot , and also 
a forget gate ft . The weight matrices are Wxc,Whc,Wxi,Whi,Wxo,Who,Wxf , and Whf  . 
The activation functions are Sigmoid and tanh denoted by � and tanh, respectively. 

(2)Δẑt =

n
∑

q=1

𝛼qΥ

(

m
∑

p=1

𝜃pqΔz
t−p

)

Fig. 4  LSTM memory block
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Moreover, the x denotes the point-wise multiplication. At time instant t, xt indicates 
the input and ht shows the hidden state. The memory cell’s candidate state is denoted 
by Ĉt . It decides how much input information is received by the cell state. The fol-
lowing expresses the formulation for each gate including input candidate, hidden 
states, and cell state:

It is observed that most of the workload prediction networks only analyze the 
past resource utilization trends of the required resource usage metric to predict sub-
sequent resource usage. But the other resource usage metrics are inter-related to 
each other, and it may impact the overall performance of desired resource metrics. 
Also, in [41, 42], it is shown that the multivariate approaches deliver high perfor-
mance and promising results than the univariate approaches. Hence, it is inevita-
ble to analyze the multivariate time series prediction to obtain correct behavior and 
correlation between the resource usage metrics. Several works have used feature 
selection methods to recognize the set of relevant features. Such as Dannecke et al. 
[43] applied the correlation-based feature selection method, where they have used 
the Pearson correlation technique to distinguish the relevant features set for energy 
demand prediction. Sun et  al. [44] proposed a Granger causality-based model for 
multivariate time series investigation of Parkinson’s telemonitoring and monitoring 
of water quality. In this work, we have used different features such as CPU usage, 
memory assigned, utilized memory, total page cache usage, unmapped page cache, 
utilization of maximum memory observed, disk I/O time, disk capacity space uti-
lization, usage of maximum CPU (over an interval), maximum disk I/O time (over 
an interval), memory accesses per instruction, and cycles Per Instruction (CPI). By 
analyzing the diverse set of features, we can identify the correlation between differ-
ent features.

Most of the studies in the cloud are limited to the unidirectional LSTM (i.e., 
forward dependencies) to predict future events, which only preserves the informa-
tion of past resource usage. In [45], Zhao et al. proposed a bidirectional time series 
model that can acquire the long-range context in both dependencies (i.e., forward 
and backward) using the extreme learning machines approach. They have observed 

(3)ft = �(xt ∗ Wxf + bf + ht−1 ∗ Whf )

(4)Ct = Ct−1 ∗ ft + Ĉt ∗ it

(5)Ĉt = tanh(bc + xt ∗ Wxc + ht−1 ∗ Whc)

(6)it = �(bi + xt ∗ Wxi + ht−1 ∗ Whi)

(7)ot = �(bo + xt ∗ Wxo + ht−1 ∗ Who)

(8)ht = ot ∗ tanh(Ct)



5816 Y. S. Patel et al.

1 3

that the prediction accuracy is highly improved in the bidirectional approach. For 
the forecasting of laser data, Wakuya et al. [46] applied the bi-directional time series 
computation and concluded that the prediction model’s quality is much better than 
the unidirectional model. Cui et al. [47] proposed a deep stacked bidirectional and 
unidirectional LSTM (SBU-LSTM) neural network, which applies both forward and 
backward dependencies of time series data, to predict the network wide traffic speed. 
Furthermore, Gupta et al. [48, 49] studied the multivariate LSTM and BLSTM mod-
els for cloud workload prediction using Google cluster trace. However, the applica-
tion of stacked bidirectional LSTM (BiLSTM) deep learners has not been reported 
for the interpretation of cloud workload patterns. To the best of authors’ knowledge, 
this study is a first attempt to use a clustering-based stacked BiLSTM based multi-
variate resource utilization prediction model for hotspots and coldspots mitigation in 
the cloud. Tables 1 and 2 highlight the key differences of existing techniques against 
our proposed approach.

3  Problem definition

To achieve maximum expected benefit in a virtualized data center, an efficacious 
consolidation strategy optimizes the VMs assignment for reducing the actively used 
PMs. This gain solely depends on two primary factors: minimize the SLA violations 
and migrations of VMs. We can realize these advantages in advance by placing the 
VMs to PMs on the basis of their future resource usages. Thus, to understand the 
limitation of the classical VM consolidation approach without predicting next time 
step resource utilization, let’s consider two examples represented in Figs. 5 and 6, 
respectively. Assume that there are two PMs and three VMs are placed on PMs. 
Through Fig. 5a, we can observe the CPU utilization of PMs namely PM1 and PM2 
as 55% and 40% separately. As PM1 has sufficient resources to place VM3 , a classi-
cal consolidation approach will migrate VM3 from PM2 to PM1 at time instant t and 
switch PM2 to the low-power state or sleep state. At the time instant t + 1 in Fig. 5b, 
when the CPU utilization demand of VM1 is increased from 30 to 38%. The PM1 is 
become overloaded due to the lack of adequate resources, and some SLA violations 
occur. Thus, in Fig. 5c, VM3 is migrated from PM1 to PM2 to eliminate the SLA vio-
lations further. In this scenario, a robust consolidation approach can avoid useless 
migrations and minimize SLA violations’ rate if it could predict the future resource 
demand of any VM prior to migration.

Another scenario is depicted in Fig. 6. In this case, at time instant t in Fig. 6a, 
VM3 is migrated from PM2 to PM1 since it has ample resource to fulfill the demand 
of VM3 . In Fig.  6b, PM2 is switched to the low-power state or sleep mode. We 
noticed that the CPU usage of VM3 is further increased from 40 to 50%, and a hot-
spot is created. To mitigate the hotspot and avoid the SLA violations further, VM3 is 
migrated to PM2 at time instant t + 2 as represented in Fig. 6c.

Through both the illustrated examples, we observe that the unnecessary migra-
tions and potential SLA violations could be eliminated if a consolidation process 
considers the future resource usage of PMs and VMs during the assignment of 
VMs. In this article, the problem of dynamic VM consolidation aims towards robust 
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decision-making during the detection of hotspots (when the PMs are overloaded) 
and coldspots (when the PMs are underloaded). Once the detection of hotspots and 
coldspots is performed, all potential VMs are migrated from such PMs to realize the 
goals of maximum QoS level and reducing energy consumption, respectively.

4  System model

We consider an IaaS cloud data center environment, where its users initiate VM 
requests as represented in Fig. 7. The data center contains a pool of m heterogeneous 
PMs denoted by LPM =

{

pm1, pm2, pm3,… , pmm

}

 . Each PM owns d types of 
resources namely memory, CPU, network bandwidth, and disk storage, etc., for 

Fig. 5  Mitigation example 1

Fig. 6  Mitigation example 2
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which Rd
j
 depicts the availability of resource d in pmj . The data center possesses 

ample capacity to serve all arriving and currently running requests. Next we assume 
a set of VMs denoted by LVM =

{

vm1, vm2, vm3,… , vmn

}

 . Here, n indicates the 
number of VMs and rd

i
 represents the resource demand d of vmi . The VMs require to 

be allocated to PMs via a hypervisor or Virtual Machine Monitor (VMM). For ini-
tial resource assignment of VMs to PMs, the BFD algorithm is applied as it is one of 
the most prominent heuristic to solve the bin-packing problem. BFD algorithm 
always prefers a PM in such a way that the resources requested by the VM is closest 
to the number of available resources so that the resource wastage in the destination 
PM can be minimized [20]. However, due to dynamic workloads in the cloud, the 
requested usage of PMs and VMs fluctuate over time. Therefore, we need to opti-
mize the initial VM placement using a consolidation process that could be applied 
periodically based on current and future workloads. In our proposed approach, the 
hotspots and coldspots mitigation algorithm is applied every 5 min in a cloud data 
center so that the actively used PMs and total energy consumption can be reduced 
based on the workload [20].

The proposed model comprises of two resource managers: (i) The Local Resource 
Manager (LRM) which resides on each PM as a component of the Hypervisor and 
(ii) The Global Resource Manager (GRM) which helps in acquiring data center 
view on a higher (global) level and in managing the VM requests in a data center 
[12]. The following steps illustrate the sequence of processes performed using these 
resource managers: 

Fig. 7  The system model
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1. LRMs continuously monitors the current resource usage of its assigned PM and 
the state of its constituent (running) VMs. It then forecasts the future resource 
usages of all VMs placed in a PM on the basis of historical workload traces via 
the clustering-based stacked bidirectional LSTM method and periodically sends 
the information obtained to the GRM.

2. The responsibility of the GRM is to communicate with LRMs and collect infor-
mation such as current and future resource usage of all VMs to acquire the global 
data center view.

3. Based on the information received, the GRM identifies hotspots and coldspots. 
It then builds a mitigation plan and issues the necessary commands to VMMs 
for its execution. The commands indicate the list of VMs for migration and their 
corresponding target PMs on the basis of mitigation algorithms.

4. After receiving the commands from GRM, the VMMs execute the actual migra-
tion of VMs.

Next, we discuss the power and energy modeling for PMs and the migration over-
heads of VMs to be migrated. Also, we describe the performance metrics to measure 
the QoS and SLA violations.

4.1  Power and energy modeling

In data centers, the energy consumption of computing nodes is mostly analyzed by 
the memory, CPU, power supplies, cooling systems, and disk storage. As reported in 
the literature [50], the CPU consumes maximum amount of energy, when compared 
to the other system resources of server power consumption. The SpecPower [51] 
benchmark defines the relationship between the server’s utilization and power con-
sumption. Based on this benchmark, the total power consumption of a cloud server 
increases linearly with the increase in its CPU usage [12]. Moreover, the server’s 
power consumption is directly proportional to its CPU usage as written in Eq. (9).

Therefore, using the server’s CPU utilization, we can model the server’s power con-
sumption value ΔPj as follows:

Here, the idle power consumption Pj,idle denotes the half of the peak power con-
sumption Pj,peak and UTj is the percentage of utilization in pmj . From Eq. (10), it is 
clear that the server’s power consumption is linearly proportional to its CPU usage.

In a virtualized data center, the server’s energy consumption is varied over time 
and depends on the incoming load or the VM’s sizes [52].

Corresponding to the workload variation, the CPU usage of a cloud server also 
varies over time. Thus, we can represent the utilization UTj as a function of time. 

(9)RUj = RUCPU
j

(10)ΔPj =

{

Pj,idle + (Pj,peak − Pj,idle) × UTj, if UTj > 0

0, otherwise
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Server’s total energy consumption ΔEj is determined via the energy model [50] rep-
resented as:

Determining analytical power consumption models for the modern multi-core and 
multi-thread processors is a very complicated research issue. Therefore, instead of 
adopting an analytical power model, we take advantage of real-time power con-
sumption data rendered by the SPECpower benchmark results [51]. For this, we 
picked 2 cloud server configurations of dual-core CPUs as published in Feb 2011: 
HP ProLiant ML110 G5 (Intel Xeon 3075, (2 cores × 2660 MHz, 4 GB), and HP 
ProLiant ML110 G4 (Intel Xeon 3040, 2 cores × 1860 MHz, 4 GB). The selected 
servers’ power consumption features are presented in Table 3 [12].

4.2  Overhead of live VM migration

Live VM migration permits to transfer of a VM between the PMs without suspending 
the running applications and with a short duration of downtime. It also assists in con-
solidating the VMs to a lesser number of PMs dynamically. Although, live VM migra-
tion affects the performance of running applications of migrating VMs [53]. Previous 
studies have shown that, due to migration, the average degradation of performance 
along with the downtime of the application running in that VM is almost 10% of its 
CPU usage [12]. Each migration phase may also produce an SLA violation. Thus, it is 
a very critical factor to reduce the VM migrations. The live VM migration time primar-
ily relies on the VM’s total memory and available network bandwidth. For interpreting 
the migration model, the overall delay and performance degradation of any VM vmi 
[12, 54] can be estimated as:

where Perfdegri represents the performance degradation realized by vmi ; Tmi
 indicates 

the time taken to finish the migration of vmi ; t0 denotes the time when the migration 

(11)ΔEj = ∫t

ΔP(UTj)dt.

(12)Perfdegi = 0.1 ⋅ ∫
t0+Tmi

t0

UTi(t)dt,

(13)Tmi
=

Mi

Bi

Table 3  Servers’ energy consumption with respect to load levels in Watts [12]

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP G5 93.7 97 101 105 110 116 121 125 129 133 135
HP G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
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of vmi begins; UTi(t) shows the CPU usage of vmi . Mi shows the total memory uti-
lized by vmi ; and Bi indicates the available network bandwidth.

4.3  QoS and SLA violation model

Meeting the customers’ QoS requirements is one of the primary objectives of cloud 
service providers (CSPs). QoS demands are generally determined through SLAs. 
Furthermore, the excessive VM consolidation may lead to the hotspots in PMs, VMs 
performance degradation, and increased response time while finishing the jobs exe-
cuting inside the VMs, which, in result, produces SLA violations and also impacts 
the QoS performance. In [12], the researchers proposed performance metrics to 
evaluate the SLA violation levels in an IaaS cloud. The performance metrics are as 
follows: SLA violation time per active PM (SLATAPM) as determined in Eq. (14), 
performance degradation due to migrations (PERFDM) represented in Eq. (15), and 
the merged SLAV metric expressed in Eqs. (16) and (17).

where Tmaxj
 is defined as the total time, when the pmj has encountered 100 % utiliza-

tion in any type of d resource and Tactj defines the total active state time for pmj.

where Perfdi denotes the performance degradation in vmi due to migrations and Tri is 
the total resource demand by vmi in its lifetime.

As stated by [12], the SLATAPM and PERFDM metrics are both equally essen-
tial to characterize the SLA violation level of the infrastructure. The key reason 
behind the SLATAPM formulation is in the case when a hotspot is created in any 
PM, or the CPU utilization reaches to 100%, then the running applications’ perfor-
mance inside the VMs assigned to that PM is restricted by the PM’s capacity. Con-
sequently, the VMs executing in that PM may not gain their expected performance 
level throughout the peak workloads. It means the SLATAPM metric value rapidly 
increases with the PMs’ over-utilization. On the other hand, the PERFDM metric is 
useful to measure the overall performance degradation due to migrations. The value 
of PERFDM rises with an increase in the VM migrations.

By combining the SLATAPM and PERFDM metrics, we can formulate the SLAV 
metric to determine the performance degradation and impact of QoS caused due to 
overloading of PM and also due to migrations. The SLAV metric can be stated as 
follows:

(14)SLATAPM =
1

m

∑

j∈PM

Tmaxj

Tactj

(15)PERFDM =
1

n

∑

i∈VM

Perfdi

Tri

(16)SLAV = SLATAPM × PERFDM
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We can minimize the energy consumption at the risk of an increased SLAVs level. 
Thus, we combined both the SLA violations and Energy factors as ESV perfor-
mance metric [12], which can be formulated as follows:

where ΔE signifies the overall energy consumption of all the PMs.

5  Proposed multivariate resource utilization prediction‑based 
hotspots and coldspots mitigation

In this section, our proposed multivariate resource utilization prediction-based hot-
spots and coldspots mitigation approach is segmented into the following parts: In 
Sects. 5.1 and 5.2, we discuss the clustering-based stacked BiLSTM deep learning 
model and feature selection methods, respectively. The proposed algorithms for hot-
spots and coldspots detection, potential VM selection, and destination PM selection 
are described in Sect. 5.3.

5.1  Multivariate resource usage prediction

The time series data components can be decomposed into four integral parts: sea-
sonality, trends, level, and noise or randomness. More often, the forecasting in time 
series applies the information in a time series to predict the given series’s future 
values. A univariate time series contains only one single time-dependent variable. 
To predict cloud resource usage, the models interpret the temporal usage patterns 
present in the desired resource metric’s historical data and forecast future trends of 
data. Nevertheless, for robust prediction performance in predicting new values of 
the target resource metric, the presence of temporal variations in other associated 
resource metrics can also be considered along with the target resource metric itself. 
A multivariate time series analysis considers more than one time-dependent variable 
simultaneously. During forecasting, each variable depends on its past values and 
has some dependency on other variables of the given dataset. Also, this dependency 
is utilized for predicting future resource values. Multivariate analysis for resource 
utilization prediction uses multiple resource usage metrics to investigate the rela-
tionships and their consolidated influence on the target resource usage metric. The 
multivariate time series analysis offers greater statistical power than exploring indi-
vidual features and strictly model the existence. Each decision includes the study of 
multiple variables [41]. It applies various statistical techniques to identify the rela-
tionship between numerous features and also correlate how an individual metric is 
more critical while generating a final out-of-sample usage prediction of the target 
metric.

(17)SLAV =
1

m

∑

j∈PM

Tmaxj

Tactj

×
1

n

∑

i∈VM

Perfdi

Tri

(18)ESV = ΔE × SLAV
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This paper analyzes the combined effect of different resource usage metrics for 
future utilization value of the target resource metric. Next, we assume Y is a multi-
variate time series to describe the system’s state by applying other resource metrics 
y with different time intervals. Here, Y is characterized as:

where yt =
[

yt
1
, yt

2
, ...., yt

L

]T
,∀ = 1, ..., T .

were T represents total observations used in the analysis, and yt
i
 indicates the 

value of any resource usage metric i, which is reported at t time period. The variable 
L signifies the number of resource metrics used for observation.

For multivariate time series prediction, the forthcoming value of any resource yj 
is predicted using the combination of two individual functions G1(.) and G2(.) as:

where the function G1(.) is intended to learn the correlation of the target metric with 
itself, and function G2(.) is designed to learn the correlation of the target metric with 
the other associated metrics.

This paper suggests extending the classical univariate time series prediction mod-
els to deep learning-based multivariate time series prediction models.

5.1.1  BiLSTM (Bidirectional LSTM)

Bi-LSTM combines LSTM networks, and Bi-directional RNNs (BiRNN) [55], 
which processes the input sequence in both directions, i.e., forward and backward. 

(19)Y =
(

y1, y2, ...., yt, ..., yT
)

(20)ŷj
t
= G1

(

yt−1
j

)

+

D
∑

p=1,p≠j
G2

(

yt−1
p

)

Fig. 8  Structure of BiLSTM
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It has been shown that the bidirectional networks perform better than the unidirec-
tional LSTM in several domains. Figure 8 shows the unfolded BiLSTM layer archi-
tecture comprising a forward and backward layer of LSTM. Here, the forward layer 
output sequence denoted by �⃗h , is repetitively computed by applying inputs in a posi-
tive order via time series T − n to T − 1 , while the sequence of backward layer out-
put, �⃖h , is determined by operating the reversed inputs via time series T − 1 to T − n . 
By using conventional LSTM equations given in Eqs.  (3) to (8), we can find the 
forward layer and backward layer outputs. Finally, the BiLSTM layer produces YT 
processed output vector, where each element is determined by applying the follow-
ing equation:

where � function integrates the two output sequences. Equivalent to the LSTM 
layer, we can represent the final output of a BiLSTM layer through a vector, 
YT = [yT−n, ..., yT−1] , in which the yT−1 denotes the predicted next time step value.

5.1.2  Clustering‑based stacked bidirectional LSTM

The deep LSTM model can build up with several stacked LSTM networks’ hid-
den layers. The LSTM hidden layer output will be given as an input to the succes-
sive LSTM hidden layer. Such stacked layers of architecture improve the capability 
of neural networks. As discussed earlier, the BiLSTMs utilizes both forward and 

(21)yt = 𝜎( �⃗h, �⃖h)

Fig. 9  Proposed architecture
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backward dependencies. Therefore, in this study, we present a Stacked BiLSTM 
architecture, which uses the BiLSTMs to learn more useful information via the spa-
tial-time series data and the LSTM layer as the top (last) layer of the architecture 
which only utilize learned features through lower layers, to calculate and generate 
the predicted values.

In Fig. 9, we have illustrated the proposed deep learning architecture. In input, 
it takes the spatial time series data and predicts the future resource utilization val-
ues for multiple future time steps. This network is based on the hypothesis that the 
cluster data contain a group of patterns, and recognizing those groups and train-
ing against them, an individual deep learning model for each will result in better 
predictions.

In Algorithm 1, we have discussed the step-by-step phases of the proposed deep 
learning network. To calculate the out-of-sample prediction, first, we classify our 
dataset into training and test sets. Moreover, the training set is classified into k 
number of clusters with the help of an unsupervised learning model, i.e., K-Means. 
Obtaining the optimal value of k is a critical factor. If the value of k is very high, 
then there might be some pattern redundancy, and also, a large number of network 
models will have to be trained, which would be computationally expensive. While, 
if the value of k is low then there might be some undetected patterns left in the data 
and scattered over several clusters. Therefore, the value of k is selected by the trial-
and-error method. This model is saved and further used for classifying samples of 
the test dataset. By using the stacked BiLSTM deep learners, we train each of these 
clusters separately. Thus, there is a total k number of stacked BiLSTM deep learners 
for learning of k clustered datasets. For each stacked BiLSTM deep learner, there is 
a BiLSTM layer that acts as the first feature-learning layer, and, on top of that, an 
LSTM layer works as the final layer. For complex and exhaustive feature learning 
using input data, we apply additional BiLSTM layers. The clustering-based stacked 
BiLSTM deep learners are capable of the multi-step-ahead predictions using the his-
torical resource usage values.

To capture the relevant features set, we combine the clustering-based stacked 
BiLSTM deep learning model with the feature selection approaches. In the next 
subsection, we discuss some feature selection schemes for the effective selection of 
resource metrics from the dataset. 
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5.2  Feature selection schemes for prediction of multivariate resource usages

5.2.1  Pearson’s correlation

Pearson’s correlation can be defined as the linear correlation between two variables 
A and B. Therefore, a subtle change in A will also result a similar change in B. This 
form of relation outputs a value from − 1 to 1, where − 1 represents a negative lin-
ear correlation and a + 1 represents a positive linear correlation. Thus, change is 
proportional. If there is no linear correlation at all, the formula outputs 0. Pearson’s 
correlation is given as:

where A and B are represented as ai and aj , respectively. These two variables are 
resource matrices such that ai =

[

a1
i
, a2

i
, a3

i
, ...aN

i

]

 and aj =
[

a1
j
, a2

j
, a3

j
, ...aN

j

]

 whereas 
�i an �j are the mean value of the respective features. Thus, the target metric is cor-
related with every other resource metric to obtain a value between -1 and + 1. A 
threshold is primarily decided, and only those resource metrices are picked whose pr 
value greater than the limit of threshold. The threshold limit stated as M, which is 
the median of all the scores evaluated by the correlation formula.

(22)pr = cor(ai, aj) =

∑N

n=1
(an

i
− �i)(a

n
j
− �j)

�

∑N

n=1
(an

i
− �i)

2

�

∑N

n=1
(an

j
− �j)

2
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5.2.2  Spearman’s correlation

This correlation is also called as a rank coefficient, is a measure of ranks between two 
variables (termed as features). This correlation indicates the direction between ai and 
aj . It is assumed that the two variables tend to change at different rates; therefore, they 
are numbered or ranked in order to achieve a value between − 1 to + 1. Here, + 1 indi-
cates that if one variable increases, the other is bound to increase, and − 1 depicts the 
correlation that if one variable decreases, so will the other. The values in the metrices 
are ranked from high to low, meaning the highest value in the variable will be ranked 1 
so on and so forth up until the last value is ranked N. The Spearman’s correlation coef-
ficient is denoted by rs and is given by,

where dn is the difference between the ranks of the two resource metrices.

5.2.3  Granger causality

Granger’s Causality is a statistical procedure which states that if a variable A “Granger 
causes” another variable B, then past values of A has some valuable details about B that 
will help predict B in a better way. Here, the two variables are denoted as time series. It 
is substantial to note that unlike other correlation techniques, Granger causality is 
asymmetric, meaning if A Granger causes B, it does not mean B will Granger cause A. 
Let A and B be two-time series denoted by the variables ai and aj . The causality is cal-
culated by applying linear regression on the value we need to predict. Suppose we have 
to predict ai ; therefore, ai will be formulated in two linear regressions. One, where âi is 
predicted only using the past values of ai (termed as ân

i (restricted)
 ) and secondly, a predic-

tion using the past values of ai as well as aj (termed as ân
i (unrestricted)

).

where w and w’ are the weights calculated by the linear regression on learning from 
the past values. � represents the number of steps taken back to predict the next value 
in the series. G-Test is the test that depicts the overall significance of the calculation 
and whether or not aj ’s past will truly help us predict ai or not.

where � is denoted as sum of square error in prediction. Given as,

(23)rs = 1 −
6
∑N

n=1
(dn)2

N(N2 − 1)

(24)âi
n

(restricted)
=w0a

n−1
i

+ w1a
n−2
i

+⋯ + w𝜌−1a
n−𝜌

i

(25)
âi

n

(unrestricted)
=w0a

n−1
i

+ w1a
n−2
i

+⋯ + w𝜌−1a
n−𝜌

i
+ w�

0a
n−1
j

+ w�
1a

n−2
j

+⋯ + w�
𝜌−1a

n−𝜌

j

G-Test =
�restricted − �unrestricted

�unrestricted

(

N − (2� + 1)

�

)
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5.2.4  Mutual information

The mutual information technique measures the relationship between two random 
variables. It is described as the mutual dependencies between the two variables and 
how much information a random variable A has about another random variable B. 
It is given as the two variables’ entropy combined subtracted from the sum of the 
uncertainty of the two variables separately. Here again, the variables are the two 
resource metrices. One is our candid resource metric (CPU rate), and the other is the 
resource metric that needs to be validated for acceptance or rejection.

where �
(

an
i

)

 is the probability distribution of the resource metric an
i

Therefore, mutual information can be given as

Larger the value of mutual information depicts a higher dependency of the two 
resource metrices, and such a metric cannot be omitted. If M(ai, aj) is higher than 
the threshold, then it is accepted by the algorithm. The range of the value is [0,∞].

5.2.5  ANOVA

Analysis of variance is the ratio between variability between the sample means and 
variability within the distributions.

The variability between the means in the numerator is large compared to the vari-
ance within the samples in the denominator, the ratio will be much larger than 1. 
Then, the samples most likely do not come from a common population. Therefore, 

(27)𝛿unrestricted =

N
∑

n=1

(

âi
n

unrestricted
− an

i

)2

(28)𝛿restricted =

N
∑

n=1

(

âi
n

restricted
− an

i

)2

(29)E(ai) =

N
∑

n=1

�
(

an
i

)
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we discard the null hypothesis, which states that the means are equal. The inputs 
will be taken in the format of (nsamples, nfeatures) and output a 1D array, including 
an F test score for each of the feature (1, nfeatures).

5.2.6  Kendall’s Tau

Kendall’s nonparametric Tau, more commonly known as Kendall’s rank correlation 
coefficient, is the degree of consistency between two columns of ranked data. Ken-
dall’s Tau outputs a value from − 1 to + 1. This method deals with concordant and 
discordant pairs in two columns. A concordant pair represents the measure ranks lie 
below a certain rank that is greater than it. Therefore, a discordant pair shows the 
observed ranks lower than a stated rank whose values are lesser than the stated rank.

5.3  Prediction‑based hotspots and coldspots mitigation

Prediction-based hotspots and coldspots mitigation perform 3 steps to accomplish 
an optimal dynamic VM consolidation (as shown in Algorithm 2). First, the algo-
rithm distinguishes the PMs having hotspots (Sect. 5.3.1), then selects some VMs 
from each hotspot PM to perform migration (Sect.  5.3.3) and determines destina-
tion PMs for the VMs (Sect. 5.3.4). To detect coldspots (Sect. 5.3.2), the algorithm 
chooses one PM with the lowest CPU usage from the PM list not having hotspots 
and migrates its deployed VMs to a suitable destination PM. 

5.3.1  Prediction‑based hotspots detection

In the process of dynamic VM consolidation, each PM must be identified 
whether having a hotspot or not. To detect the PMs with hotspots, we propose a 
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prediction-based hotspots detection method as presented in Algorithm 3. It takes a 
set of active PMs as input and determines whether the PMs creating a hotspot or not. 
Algorithm 3 is explained step-by-step as follows: In line 3, we set the minimum win-
dow length of historical data as 20 using the cross-validation technique for best time 
window selection. In line 3, the utilization of a pm at time instant t is determined 
by using the current usage and total capacity of pm . For hotspot detection, we use 
a dynamic upper threshold method. If the utilization value of at least one resource 
(i.e., memory or CPU) for any pm is greater than the threshold value, then it has a 
hotspot. In this method, the threshold value is decided by using the median absolute 
deviation (MAD) as discussed in [12]. In lines 6–10, if the PMs have insufficient 
utilization data, then the hotspot decision is only made by comparing the current 
utilization of pm UTpm(t) with a static threshold. In lines 12–16, if the PMs have 
sufficient history data, then the algorithm uses the future value as well. For this, it 
first determines the future utilization of pm by applying the clustering-based stacked 
BiLSTM model (line 12). The pm is considered to be in the set of hotspots pm if the 
current and future usage value is higher than the upper threshold level of pm (line 
13). This condition demonstrates that the pm is a potential candidate that executes 
the migration operation if and only if it has a hotspot in both the current time instant 
t and near future at time instant t + 1 . It means Algorithm 3 analyzes not only the 
present situation but also the near-future situation. It can avoid useless migrations 
by performing necessary migration only. Moreover, a clustering-based stacked BiL-
STM deep learning model can avoid an SLA violation rate by detecting a pm has a 
hotspot in advance. 

5.3.2  Prediction‑based coldspots detection

Once the hotspots are identified, the coldspots detection procedure is executed. 
To bring down the overall energy consumption, the actively used PMs are 
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switched into a low-power state or sleep state. The proposed prediction-based 
coldspots detection algorithm works as follows: Algorithm  4 takes the active 
PM set’s input and evaluates whether the PM is having a coldspot or not. The 
phases of Algorithm 4 is almost similar to the steps of Algorithm 3. The differ-
ences lie in lines 7 and 13. If the UTpm(t) is less than or equal to Thcold , then the 
pm is having coldspot. After collecting the windowLength of 20 utilization his-
torical data, the pm is considered to be in the set of coldspots pm if the current 
and future utilization values are less than or equal to the lower threshold. 

5.3.3  Energy and quality aware VM selection

After detecting the PMs with hotspots, the next stage is to pick VMs to be 
migrated from that PM. It is obvious that the selection of VMs with lower CPU 
utilization will lead to a smaller rise in energy consumption. Thus, to improve 
the QoS level and migration time, we should select the VMs with smaller mem-
ory for migration. Therefore, whenever any PM creates hotspot, we compute the 
cost of energy and QoS (EQV) for each of the VMs assigned to it. The EQV 
value of VM stated as follows:

In comparison to a VM with a higher EQV cost, we can achieve maximum energy-
efficiency and minimum performance degradation by migrating the VM with a 
smaller EQV cost.

(34)EQVvm = w1 ⋅
CUCPU

vm
(t)

CapCPU
vm

(t)
+ w1 ⋅

CUMEM
vm

(t)

CapMEM
vm

(t)
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5.3.4  Destination PM selection

After building the list of selected VMs for migration, VM consolidation’s last step is 
to obtain the target PMs for the selected VMs. VMs to PMs placement is an NP-hard 
problem and could be solved with the help of a multidimensional bin packing prob-
lem. In the bin packing, each PM is considered as a bin and each VM is mapped with 
an item of a different volume. The bin packing problem’s objective is to pack all the 
items into bins such that the used number of bins can be minimized [13]. To achieve 
this goal, we designed a solution based on the BFD algorithm because it used a 
minimum number of bins compared to the First-Fit and Next-Fit schemes [56]. The 
step-by-step process of destination PM selection is illustrated in Algorithm 5. 

The destination PM selection algorithm sorts all chosen VMs in the decreasing 
sequence of their predicted CPU value. In next step, the algorithm assigns each VM 
to a PM having maximum CPU utilization after placement. This is because select-
ing the PM with higher CPU usage fulfills the consolidation goal effectively, which 
allows the packing of many VMs to a lesser number of PMs. In the initial phase, 
when the length of historical records is less than the window length, we apply the 
Power-aware BFD (PBFD) algorithm [12] as no predicted CPU utilization value is 
available yet.

5.4  Complexity analysis

To compute the time complexity of Prediction Algorithm (Algorithm  1), we 
observe the computational complexities of different neural network approaches ana-
lyzed in the work of Behera et  al. [57]. Based on this study, we consider a basic 
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neural network model having Q number of cells in the hidden layer, T inputs, 
and W outputs. In the case of simple multi-layer perceptron (MLP) with one hid-
den layer, we can formulate the total parameters as: CMLP = TQ + QW . For RNN, 
if we replace the hidden layer cells with RNN units, then the total parameters will 
be CRNN = TQ + Q2 + QW , here Q2 represents the recurrent connection. Simi-
larly, in the case of LSTM cell with 3 gates and a cell state, the total parameters 
can be represented as CLSTM = 4TQ + 4Q2 + 3Q + QW . While in the case of a 
GRU cell with two gates and a hidden state, the total parameters can be expressed 
as: CGRU = 3TQ + 3Q2 + 3Q + QW . In the case of BiLSTM, we know that each 
BiLSTM layer is stacked with two BiLSTM layers. Thus, we can express the total 
parameters for a BiLSTM layer as: CBiLSTM = 2 ∗ CLSTM . If we stack up P number 
of layers, the total parameters can be represented as: CBiLSTM = P ∗ CLSTM . If we 
consider the input layer to be the same across all stacked networks, then the overall 
complexity of the proposed prediction model with Θ number of training epochs can 
be expressed as Cmodel ≈ O((Q(Q +W) ∗ Θ).

In order to describe the time complexity of hotspots and coldspots mitigation 
algorithm, we analyze the time complexity of its sub-algorithms, respectively. The 
hotspots and coldspots mitigation algorithm (Algorithm  2) comprises Prediction-
Based Hotspots Detection (Algorithm  3), Prediction-Based Coldspot Detection 
(Algorithm 4), and Destination PM Selection (Algorithm 5). Assuming s number of 
PMs and k number of VMs, the time complexity of hotspots and coldspots mitiga-
tion algorithm is O(sk) in worst-case. The time complexity of both Prediction-Based 
Hotspots Detection (Algorithm 3), and Prediction-Based Coldspot Detection (Algo-
rithm  4) is O(k) in worst-case. Destination PM Selection (Algorithm  5) identifies 
each PM for MigrateVMList, so its worst-case time complexity is O(sk). Thus, the 
total time complexity of hotspots and coldspots mitigation algorithm (Algorithm 2) 
is O(sk).

6  Experimental results

First, we discuss workload data, the simulation environment with assumptions, per-
formance metrics, and benchmark approaches. Then, we present the experimental 
evaluations for validation of our proposed method.

6.1  Workload data

In this work, we apply the real trace data of a Google cluster [39]. This trace provides 
cluster’s workload data containing 12,500 PMs recorded in May 2011. The Google 
cluster trace comprises running-time traces of over 650 thousand real-time jobs 
dynamically entering, executing, and leaving the Google cluster for 29 days, where 
resource utilization values are bundled at 10 seconds time-frame. Resource tables 
of Google cluster trace are broadly classified into three major categories, Machines, 
Jobs & Tasks, and Resource Usage. Each category has one or more than one table 
containing multiple features. In the present study, we have used the resource usage 
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table, and from a total of 20 columns, only 12 different resource usage metrics are 
taken for CPU and memory usage prediction. Like the others, resource metrics such 
as start_time, end_time, job_ID, and tasks_ID, etc., do not provide any correlation 
with CPU or memory. The diverse resource utilization metrics applied in this work 
are described in Table 4.

During the data preparation, the rows with missing and incomplete information 
are dropped. Each row corresponds to data collected by the cluster for over 10 sec-
onds. We have merged rows corresponding to 5 minutes’ worth of data into a single 
row for prediction. A total of 10 days of resource workload with 86,880 samples is 
taken to train the deep learning models and predict CPU and memory usage. Both 
resource usage values are normalized, respectively. In Figures and , we represent the 
sample CPU and memory data. To show the characteristics of the workload traces, 
in Figures and , we present the rolling mean and standard deviation of CPU and 
memory data, respectively. Furthermore, we have applied different feature selection 
approaches to decide the most relevant set of features for prediction. For evaluation, 
we categorized the data into a validation, training, and test sets. For validation, we 

Table 4  List of resource usage 
metrics

Resource metrics Description

CPU Usage of aggregated CPU
MEM Usage of aggregated memory
MAXM Maximum memory utilization observed
VM Assigned memory (may or may not be used)
MAXC Maximum CPU utilization (over interval)
UPC Aggregate unmapped page cache
TPC Usage of total page cache
CPI Cycles per instruction over all nodes
MAXD Maximum disk I/O time detected (over interval)
DSP Disk capacity space utilization over all nodes
MAI Memory accesses per instruction over all nodes
DIO Disk I/O time over all disks

Fig. 10  Sample values of Google cluster traces
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perform the parameter tuning of different models. Then, we select the best fitting 
parameters for each of the corresponding models to generate future predictions for 
the next 90, 180, and 270 steps (Figs. 10 and 11).

6.2  Simulation environment

To validate the proposed method’s performance, we use CloudSim 3.0.3 toolkit 
[17]. We have conducted our simulations on a compute server powered with Intel(R) 
Xeon(R) Processor E5-2630 v3 @ 2.40 GHz with 2 CPU sockets (2 ∗ 8 = 16 core) , 
1 TB Hard disk, 128 GB RAM, and 64-bit Windows 10 OS. Moreover, a cloud data 
center is simulated with 800 heterogeneous PMs. Each PM of data center comprises 
a 2-core processor, 4  GB memory, 1GB/s network bandwidth, and MIPS is ran-
domly generated between 1860 or 2660 MIPS for each core. In the PM list, half of 
the PMs are HP ProLiant ML110 G4 servers while the other half are HP ProLiant 
ML110 G5 servers. Based on the information available in Amazon EC2, 4  VM 
instances are used, i.e., small (1000 MIPS, 1.7 GB), micro (500 MIPS, 613 MB), 
High-CPU Medium (2500 MIPS, 0.85 GB) and Extra large (2000 MIPS, 3.75 GB) 

Fig. 11  Analysis of rolling mean and standard deviation

Table 5  Hyper-parameter 
settings of the proposed model

Architecture details

Parameter Value

Default hidden layers 3
Units in hidden layers 60,120,60
Training step/epochs 70
Batch size 100
Loss function Mean squared error
Optimizer Adam
Activation function tanh
Input layer neurons 12
BiLSTM layer neurons 60,120,60
Final layer neurons 1
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[12]. The energy consumption value of all PMs is computed using the data repre-
sented in Table 3.

The list of hyper-parameters for the proposed deep learning model is shown in 
Table 5. To implement deep learning models’ network architecture, we have used 
the Python language with the Keras library through the TensorFlow back-end via 
functional API.

6.3  Evaluation metrics

We have applied different performance metrics to validate the effectiveness of the 
proposed hotspots and coldspots mitigation approach. For analyzing the accuracy of 
prediction models, we have used the RMSE: Root Mean Square Error metric, which 
computes the standard deviation of the absolute errors as follows:

where ΔT  indicates the length of prediction at 90, 180, and 270 steps. We use i 
to represent the desired resource usage metric. yt

i
 shows the actual resource usage 

metric’s value at particular time instant t, and ŷi
t indicates the predicted value of 

resource metric at time instant t. We have used the iterative multi-step ahead 
resource usage predictions, which predict the CPU and memory resource utilization 
at 90, 180, and 270 steps ahead.

Then, we analyze the overall energy consumption across all PMs of data center. 
Each PM’s energy consumption value is computed via the power and energy model, 
as discussed in Sect. 4.1. Next, we have considered the total migrations of all VMs 
during the mitigation of hotspots and coldspots in the data center. Another metric 
we have utilized to monitor the QoS and SLA violations. For this, we calculated the 
SLATAPM, PERFDM, and SLAV metrics, as explained in Sect.  4.3. Finally, the 
ESV metric is applied to measure the trade-off between QoS and energy consump-
tion, as expressed by Eq. (18).

6.4  Benchmark approaches

For overall performance analysis of the proposed scheme, we have implemented the 
following algorithms present in the literature: 

1. Sercon [58] This technique is based on the greedy bin-packing algorithm, which 
follows all-or-none migration property. In order to free the least loaded host, it 
tries to migrate all the VMs from the least loaded host to the most loaded host. 
During the migration process, if any of them is failed, then no migration is per-
formed.

2. ACSVMC (Ant Colony System based VM Consolidation) [20] ACSVMC policy 
follows the meta-heuristic bin-packing approach. It applies an ant colony algo-

(35)RMSE =

�

∑P

t=1
(yt

i
− ŷi

t
)2

ΔT
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rithm to minimize SLA violations and energy consumption and produces a migra-
tion plan.

3. MBFD (Modified Best Fit Decreasing) [21, 50] In MBFD, the VMs are assigned 
to a most-loaded PM only if the total utilized capacity of the destination PM and 
migrated VM is not violating the hot threshold limit of the PM’s total resource 
capacity. It means: 

 Although the MBFD algorithm does not apply any prediction model, thus it 
can only migrate VMs of the PMs, creating hotspots to avoid SLA violations. 
Moreover, MBFD maximizes energy-efficiency via mitigating coldspots.

4. Modified First Fit Decreasing (MFFD) [21]
  The MFFD algorithm applies the First Fit (FF) strategy and allocates a VM to 

the first PM that meets the current resource demands of the VM and ensures that 
VM and PM’s total utilized capacity is less than the hot threshold limit of the 
PM’s full resource vector. It means: 

5. PUP-VMC (PM Usage Prediction-aware VM Consolidation) [21] This technique 
only inspects the future resource usage of a target PM for assigning any VM. It 
also ensures that the PM’s predicted total utilized capacity and the VM’s current 
demand capacity should be lesser than the hot threshold limit of the PM’s total 
resource capacity. It means: 

6.5  Simulation results

1. Prediction performance using all features We assess multivariate prediction 
models’ accuracy for predicting future CPU usage and memory usage in Google 

(36)UTpm(t) + UTvm(t) ≤ Thhot × Cappm(t)

(37)UTpm(t) + UTvm(t) ≤ Thhot × Cappm(t)

(38)UTpm(t + 1) + UTvm(t) ≤ Thhot × Cappm(t)

Fig. 12  Cluster analysis
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cluster workloads. In Fig. 12, we analyze the optimal size of clusters to be utilized 
for the proposed deep learning network model. With 3 clusters, the overall RMSE 
is minimal; hence, we set the cluster size to 3. The influence of all features (as dis-
cussed through Table 4) is investigated for out-of-sample CPU usage and memory 
usage predictions at 90 steps (15 min), 180 steps (30 min), and 270-steps-ahead 
(45 min). In Table 6, we present the RMSE of the multi-step ahead CPU and 
memory utilization predictions caused employing univariate, bivariate, and all 
features. From the table, it can be observed that the error produced by the multi-
variate models with all features is smaller than the error of univariate models. It 
is due to the fact that the multivariate methods analyze the correlations between 
the desired resource metric, and therefore, they can acquire the overall dynamics 
of the time series data. Moreover, the proposed prediction method performed bet-

Table 6  RMSE analysis for CPU and memory usage prediction using Google cluster’s trace

 Here, the entries in bold shows the best performance of model

RMSE of CPU usage prediction

Model Univariate Bivariate All features

90 steps 180 steps 270 steps 90 steps 180 steps 270 steps 90 steps 180 steps 270 steps

ARIMA 0.00667 0.00674 0.0064 0.01087 0.01113 0.01122 0.00762 0.00773 0.00777
Linear 

Regres-
sion

0.00567 0.00571 0.00572 0.00555 0.00563 0.00568 0.00549 0.00555 0.00557

GRU 0.00560 0.00564 0.00566 0.00549 0.00553 0.00554 0.00539 0.00544 0.00547
LSTM 0.00558 0.00562 0.00565 0.00546 0.00550 0.00552 0.00537 0.00541 0.00542
BiLSTM 0.00555 0.00559 0.00561 0.00542 0.00546 0.00548 0.00534 0.00538 0.00540
Cluster-

ing-
based 
Stacked 
BiL-
STM

0.00551 0.00555 0.00558 0.00540 0.00543 0.00546 0.00531 0.00535 0.00537

RMSE of memory usage prediction

Model Univariate Bivariate All features

90 steps 180 steps 270 steps 90 steps 180 steps 270 steps 90 steps 180 steps 270 steps

ARIMA 0.00542 0.00546 0.00544 0.00545 0.00556 0.00546 0.00545 0.00556 0.00546
Linear 

Regres-
sion

0.00475 0.00475 0.00476 0.00473 0.00473 0.00473 0.00424 0.00424 0.00425

GRU 0.00456 0.00457 0.00457 0.00456 0.00456 0.00457 0.00413 0.00415 0.00417
LSTM 0.00452 0.00452 0.00453 0.00455 0.00455 0.00455 0.00411 0.00413 0.00414
BiLSTM 0.00450 0.00450 0.00451 0.00451 0.00451 0.00451 0.00409 0.00411 0.00412
Cluster-

ing-
based 
Stacked 
BiL-
STM

0.00447 0.00448 0.00450 0.00444 0.00445 0.00445 0.00405 0.00407 0.00409
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ter than the other prediction models and generated minimum RMSE in all cases. 
Furthermore, in Figs. 13 and 14, we present the predictions of ARIMA, Linear 
regression, GRU, LSTM, BiLSTM, and proposed method for CPU and memory 
usage predictions, respectively, using all 12 features.

2. Prediction performance using feature selection techniques Figure 15 analyzes 
the Pearson and Spearman correlation schemes, Mutual information, Granger’s 
causality, ANOVA, and Kendall’s feature selection methods at different threshold 
values to distinguish the most suitable features from the given set. In the Pearson 
(Fig. 15a), we can see that features such as DIO, MAXC, MAXD, CPI, and MAI 

Fig. 13  Multi-steps-ahead CPU prediction with all features using  a ARIMA, b Linear Regression, c 
GRU, d LSTM, e BiLSTM, f Clustering-based Stacked BiLSTM
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are clearly below the threshold and must not be selected as the prime features 
for training the model to predict the CPU usage. In the Spearman (Fig. 15b), 
values below the median rank such as MAXM, DIO, CPI, MAI are omitted from 
our selected features. In the Granger causality (Fig. 15c), after calculating the 
G-Test value for each of the resource metrics against that of our candid metric 
(CPU Rate), we may omit any feature whose G-Test value is lower than that of 
the threshold. In the Mutual information (Fig. 15d), values below the Median rate 
of mutual information are suggested to be removed for optimum result. In the 
ANOVA (Fig. 15e), values below the median rank such as MAXM, DIO, DSP, 

Fig. 14  Multi-steps-ahead memory prediction with all features using a ARIMA, b Linear Regression, c 
GRU, d LSTM, e BiLSTM, f Clustering-based Stacked BiLSTM
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CPI, and MAI are eliminated from the feature set. In Kendall’s Tau (Fig. 15f), 
we have tested the feature selection with the nonparametric Tau B. Many of the 
methods we have encountered have clearly marked CPI and MAI as features with 
the least correlation to CPU utilization.

  Table 7 presents the selection of features assuming a median M as a threshold 
to compare the various feature selection methods. A “Yes” entry in the table 
represents the selection of particular features, whereas a “No” entry shows the 
feature is not selected by the method. From the tabular results, it can be noted 
that applying Spearman, Kendall, and Pearson feature selection techniques pro-
duce almost an identical set of feature preferences. In Table 8, we represent the 
RMSE of all feature selection methods for multi-step ahead CPU and memory 
usage predictions. From the results, it can be perceived that multivariate models 
with a selected set of features deliver better performance than the models with all 
sets of features. The tabular results report that the feature selection approaches 
achieve better performance with other resource utilization prediction models. For 
example, CPU utilization prediction, ARIMA, and linear regression models per-
form better with the Kendall feature selection technique, while the GRU, LSTM, 
BiLSTM, and proposed clustering-based stacked BiLSTM model work better with 
Spearman correlation-based feature selection technique. Form memory usage 
prediction ARIMA model performs better with the Pearson feature selection tech-
nique. In comparison, the other models work better with Spearman correlation-
based feature selection approach. Figures 16, 17, 18, 19, 20 and 21 depict resource 
usage prediction models’ performance using the Pearson, Spearman, and Kendal 
methods, respectively, for different multivariate prediction models. We compare 
the prediction performance at a different step size of 90, 180, and 270 steps 
ahead. From the results, it is noted that with the increase in step-size, all methods’ 
predictions degrade. It is due to the errors’ accumulation for executing multiple 
steps ahead of out-of-sample predictions. It is also observed that the prediction 
techniques generate different predictions with different feature selection methods.

3. SLA violations In this experiment, we simulated many VMs and obtained the 
plots on different threshold values set within 30% to 100%. Figure 22a shows the 
SLA violations provoked by Sercon, MFFD, PUP-VMC, MBFD, ACS-VMC, and 
proposed methods at different threshold values. As a result, the proposed method 

Table 7  Selection of features using different feature selection methods

Method Set of features

VM MEM UPC MAXM TPC DIO MAXC DSP MAI CPI MAXD

Kendall ✓ ✓ ✓ × ✓ × ✓ ✓ × × ✓

ANOVA ✓ ✓ ✓ × ✓ × ✓ × × × ✓

Pearson ✓ ✓ ✓ ✓ ✓ × × ✓ × × ×

Spearman ✓ ✓ ✓ × ✓ × ✓ ✓ × × ✓

Granger causality × ✓ ✓ × ✓ ✓ × ✓ ✓ × ×

Mutual information ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ×
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leads to fewer violations than the other existing approaches. The reason behind the 
high performance is that the proposed method applies prediction and assures that 
the destination PM does not create any hotspot whenever any VM is migrated on 
it. To avoid further SLA violations, the proposed method always tries to migrate 
VMs from the PMs that may create hotspots and predicted hotspots only. Thus, it 
prevents 100% usage of PMs and prevents the migration of VM instances to PMs, 
showing the potential of turning into hotspots by predicting the future utilization 
of PMs and VMs through the proposed prediction method.

4. Energy consumption analysis PMs’ energy consumption relies on the utilization 
of resources mainly memory, network bandwidth, CPU, etc. However, existing 
researches reveal that the CPU utilizes more power than other resources. Hence, 
we represent the PM’s resource usage by its CPU usage. As compared to the 

Table 8  RMSE of CPU and memory usage prediction for selected features in Google cluster trace

The bold entries represents the best performance of feature selection method in various networks

RMSE of CPU usage prediction

Model Pearson Spearman Kendall

90 steps 180 steps 270 steps 90 steps 180 steps 270 steps 90 steps 180 steps 270 steps

ARIMA 0.00763 0.00774 0.00779 0.00763 0.00774 0.00778 0.00761 0.00773 0.00776
Linear 

Regres-
sion

0.00540 0.00544 0.00546 0.00539 0.00543 0.00549 0.00538 0.00541 0.00546

GRU 0.00536 0.00540 0.00543 0.00535 0.00540 0.00542 0.00535 0.00540 0.00543
LSTM 0.00535 0.00539 0.00541 0.00533 0.00538 0.00540 0.00534 0.00538 0.00540
BiLSTM 0.00534 0.00539 0.00541 0.00532 0.00536 0.00538 0.00533 0.00537 0.00539
Cluster-

ing-
based 
stacked 
BiL-
STM

0.00533 0.00537 0.00539 0.00530 0.00535 0.00536 0.00531 0.00536 0.00537

RMSE of memory usage prediction

Model Pearson Spearman Kendall

90 steps 180 steps 270 steps 90 steps 180 steps 270 steps 90 steps 180 steps 270 steps

ARIMA 0.00488 0.00488 0.00485 0.00545 0.00546 0.00546 0.00535 0.00535 0.00536
Linear 

Regres-
sion

0.00434 0.00435 0.00435 0.00430 0.00431 0.00431 0.00431 0.00432 0.00432

GRU 0.00433 0.00434 0.00434 0.00429 0.00428 0.00427 0.00430 0.00430 0.00430
LSTM 0.00429 0.00430 0.00430 0.00423 0.00424 0.00425 0.00425 0.00425 0.00426
BiLSTM 0.00428 0.00429 0.00429 0.00422 0.00423 0.00424 0.00424 0.00424 0.00425
Cluster-

ing-
based 
stacked 
BiL-
STM

0.00426 0.00427 0.00428 0.00422 0.00423 0.00423 0.00423 0.00424 0.00424
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energy consumption caused by different algorithms, the suggested approach uses 
a lesser amount of energy, as represented in Fig. 22b. The reason being that the 
PMs having their usage lower than the threshold limit are switched to power-
saving mode. The energy consumption of PMs is further optimized via packing 
the VMs into the most loaded PMs.

5. Migration cost analysis As displayed in Fig. 23a, the total migrations are less 
when compared with the existing algorithms. The depreciation of migrations due 

Fig. 15  Feature selection witha Pearson’s correlation coefficient b Spearman’s correlation c Granger’s 
causality d Mutual information e ANOVA and f Kendall’s Tau
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to an explicit selection of VMs to mitigate hotspots and coldspots and prevent a 
VM’s migration to a PM might result in the creation of new hotspots in the near 
future. Furthermore, the EQV-based VM selection increases energy savings and 
reduces the migration cost. The EQV metric always tries to assign VMs on PMs 
with less CPU utilization and smaller memory. Thus, it balances both the energy 
cost and migration cost.

6. ESV Figure 23b shows the performance comparison of ESV (product of Energy 
and SLAV) metric. The proposed scheme depicts significant improvement 
because it minimizes energy consumption and the SLAV violation rate. Thus, it 
maintains a trade-off between power cost and QoS guarantee.

Fig. 16  Multi-steps-ahead CPU prediction with Pearson using a ARIMA, b Linear Regression, c GRU, d 
LSTM, e BiLSTM, f Clustering-based Stacked BiLSTM
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  The results demonstrate that the proposed scheme remarkably outperforms the 
benchmarks in terms of prediction accuracy, energy consumption, migrations, 
SLAV, and ESV values.

Fig. 17  Multi-steps-ahead memory prediction with Pearson using a ARIMA, b Linear Regression, c 
GRU, d LSTM, e BiLSTM, f Clustering-based Stacked BiLSTM
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7  Conclusions

This study presents deep learning-based multivariate resource utilization predic-
tion for hotspots and coldspots mitigation in energy-efficient cloud data centers. We 
proposed a clustering-based stacked bidirectional LSTM deep learning network. We 
have divided our mitigation algorithm into different phases for hotspots and colds-
pots mitigation into various stages to generate an efficient mitigation plan. Firstly, it 
performs CPU and memory usage predictions using a deep learning model. Then, 
it considers both future and current resource usage to detect hotspots and coldspots 
formed in heterogeneous PMs. After their detection, we perform VM selection and 

Fig. 18  Multi-steps-ahead CPU prediction with Spearman using a ARIMA, b Linear Regression, c GRU, 
d LSTM, e BiLSTM, f Clustering-based Stacked BiLSTM



5849

1 3

Deep learning‑based multivariate resource utilization…

select the target PMs for VMs. Moreover, this study also presents trace-driven simu-
lations using Google cluster workload traces. The obtained results show significant 
improvements over existing approaches concerning RMSE of prediction, energy-
efficiency, migration cost, the number of actively used PMs, SLA violations, and 
ESV.

Future research might include considering network topology, communication 
cost, and implementation on the real-world cloud platform, such as OpenStack. 
Moreover, we have also observed some of the limitations of the proposed technique. 

Fig. 19  Multi-steps-ahead memory prediction with Spearman using a ARIMA, b Linear Regression, c 
GRU, d LSTM, e BiLSTM, f Clustering-based Stacked BiLSTM
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For instance, the deep learning models are suitable for small- and medium-scale 
cloud data enters, but for large-scale data centers, global machine learning models 
are best suited for overall resource usage prediction of VMs. Also, the considera-
tion of concurrent migrations and resource over-subscription could result in different 
variations in migration and energy cost analysis.

Fig. 20  Multi-steps-ahead CPU prediction with Kendall using a ARIMA, b Linear Regression, c GRU, d 
LSTM, e BiLSTM, f Clustering-based Stacked BiLSTM
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Fig. 21  Multi-steps-ahead memory prediction with Kendall using a ARIMA, b Linear Regression, c 
GRU, d LSTM, e BiLSTM, f Clustering-based Stacked BiLSTM
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