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Abstract
Minkowski timespace has the capability to overcome the limited accuracy of L2-
norm based range-free localization methods. This paper proposes the concept of 
Minkowski triangulation uncertainty (MTU) in wireless sensor networks (WSNs) 
for localization of unknown target. To set up a localization framework, triangula-
tion uncertainty parameter is defined using Lemma 3.1. A two-stage estimation 
algorithm is then presented: countLocalized and countAnchor. countLocalized com-
putes the number of localized sensor nodes by leveraging the uncertainty strategy 
based upon indeterminate independent measurement. countAnchor designates the 
anchor nodes to triangulate the unknown target by formulating a convex hull model. 
The convex hull is the Minkowski sum of the actual and projected positions of the 
two vector node positions. The proposed MTU technique establishes that the num-
ber of triangulations formed by Minkowski method is inclusive of the triangulations 
formed by conventional L2-norm range of sensor nodes in a WSN. Measurement 
strategies such as angle, distance and positioning error are compared in the simu-
lation. The said technique links Minkowski space to localization by ensuring effi-
ciency in large target areas and number of nodes in manifolds. Results confirm that 
the MTU technique is better than the existing models by at least 12%, 50%, 5.5% 
and 24% in terms of localization ratio, localization error, neighbour anchor nodes 
and network connectivity, respectively.
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1  Introduction

1.1 � Motivation and applications

Sensor networks suffer from connectivity and localization issues. They require care-
ful consideration both in time domain as well as spatial domain. Although physi-
cal dimensions can be dealt with by simply considering the coordinate space, but 
additional insights could be made by taking help of time–space domain together. 
Minkowski space is one such example that considers time space analysis. It has been 
used in the domain of image processing and convex-polygon geometry because of 
its ability to mimic convolution of different physical entities. Minkowski space and 
their operations have been dealt with extensively in a survey spread over multiple 
sections, in [1] and [2]. Minkowski triangulations are discussed in detail in [3]. 
Minkowski distance has been used in applications such as multi-objective optimi-
zation in [4], wireless medical sensor network systems [5] and Internet of Things 
(IoT) security. Sensor localization could be classified broadly as ranged, range-free 
or hybrid, based on whether the node is to be localized to a point, or to a region. 
Ranged methods are computationally complex but relatively accurate, whereas 
range-free methods are simple to implement and more suited to computationally 
constrained environments. In any case, localization parameters need to be evalu-
ated in terms of their accuracy and inter-linkages [6] to determine how node deploy-
ment strategy affects node localization. In order to localize nodes, mechanisms such 
as “PG algorithm” [7], Maximum likelihood criteria for soil-air interface [8], dual 
beacon nodes for localization based on time difference of arrival (TDoA) and angle 
of arrival (AoA) [9] are proposed in the literature. To reduce the error associated 
with localization of nodes [10], suitable estimators are designed to achieve Cramer 
Rao lower bounds (CRLB) [11] under feasible conditions. Further, estimators are 
developed, which predict locations of target even under uncertainties [12]. There is 
a dearth of study that relates localization uncertainty using triangulation [13] meth-
ods. The main motivation behind pursuing triangulation-based localization, is the 
fact that it trades localization accuracy for computational simplicity. If methods and 
techniques are developed in this direction that could reduce the localization errors 
while still maintaining algorithmic simplicity, it would benefit wireless sensor net-
works (WSNs) [14] in all the three terrains: Terrestrial, underwater as well as aerial.

1.2 � Literature review

In [15], a two stage Statistical Resolution Limit (SRL) has been presented. Although 
it could be applied to node localization, however, it does not consider the detailed 
impact of node geometry on triangulation uncertainty. To further dive into node 
geometrical topology, [16] considers Minkowski distance based k-nearest neigh-
bourhood discovery. Although the interaction between anchor-anchor node is 
described in terms of virtual viscoelastic mesh, but the erroneous range & angular 
estimation formulation is entirely different from the concept of triangulation uncer-
tainty as it calculates the cosine distance, the angular distance and the Minkowski 
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distance metrics without the measurement of angle from the drop axes. Authors in 
[17] have considered sparse sensing technique for the retrieval of signals using a 
blind sensing problem. When applied to a wireless sensor network, the authors pro-
pose a ‘fractal dimension’ metric to finely discretize the Minkowski space, which 
may be applied to localize targets in a sparse environment. Triangulation geometry 
remains to be implemented, though, the solution to blind sensing problem has been 
rigorously derived in the context of stochastic setting. To deal with the persistent 
issue of dissatisfactory localization accuracy, a Minkowski Sum based estimation 
technique has been proposed in [18]. The technique has been established with the 
help of a rigorous mathematical analysis on fusion-based sensor node geometry. It 
foregoes the discussion about triangulation uncertainty because it considers ellip-
soidal calculus under decentralized estimation. A three stage event based estima-
tion approach in wireless sensor networks has been elaborated with the backdrop of 
Kalman filter in [19]. For each stage, a Minkowski sum aids in the sensor fusion and 
determines the boundedness of measurement. Although the relationship between 
sensor nodes [20] and the size of estimation means is established, their relationship 
with triangulation and the associated positioning uncertainty is beyond the scope 
of discussion. The authors in [21] address the information geometry in UAV- sen-
sor networks. Accuracy of target localization has been improved using Minkowski 
determinant theorem. However, there is a scope of further investigation in terms of 
informational uncertainty, which will enable us to formulate techniques to combat 
positioning uncertainty.

1.3 � Key contributions

Based on the literature review, a critical analysis reveals the follows research gaps:

(a)	 Lack of sufficient works on Minkowski parameter in wireless sensor networks: 
One of the requirements of parameter measurement in sensor networks is the 
choice of norm. Appropriate norm formulation ensures non-erroneous param-
eter measurement. While traditional norms focus on point-to-point connectivity 
(such as L2-norm), real-life scenarios always require some sort of compensation 
or correction-factor in addition to the usual norm. Minkowski-norm promises a 
much-needed feature that would revolutionize the measurement of WSN param-
eters, hence the need for its formulation.

(b)	 Geometry of triangulation uncertainty in target positioning estimation: Range-
free localization heavily relies on sensor node geometry. Since triangulation 
uncertainty is one such parameter that quantifies the node geometry, it is a cru-
cial tool for estimation of target position in a WSN. Formulation of a suitable 
positioning technique which utilizes geometric triangulation uncertainty could 
potentially provide a solid framework for further analysis.

(c)	 Lack of Minkowski timespace based localization techniques: Minkowski times-
pace is used to compute the dynamic environment of topology coordinates with 
respect to time. When applied to localization, it could address the perennial prob-
lem of positioning task allocation when dealing with a moving target. However, 
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its implementation requires careful planning in a multi-stage algorithm to suit 
the purpose.

These lacunas have been addressed strategically in the present treatment, and 
their major highlights are as follows:

(a)	 Based on the concept of triangulation uncertainty, a proposed Minkowski-Trian-
gulation Uncertainty (MTU) technique is formulated for a two-stage localization 
of unknown target node in a wireless sensor network.

(b)	 the first stage formulates countLocalized algorithm to compute Minkowski dis-
tances between the sensor nodes, anchor nodes and the target node to come up 
with the number of localized sensor nodes.

(c)	 the second stage formulates a countAnchors to determine how many of the sen-
sor nodes are capable of acting as anchor nodes, to be used for triangulating the 
unknown target.

(d)	 Performance analysis of the proposed MTU method in terms of localization ratio, 
error computation, anchor node density and network connectivity to compare 
with standard mature models of localization in WSNs.

1.4 � Organization of paper

The rest of the paper is organized as follows: Section  2 describes the conceptual 
model in which “Minkowski triangulations” and “Triangulation Uncertainty” are 
briefly stated. Section 3 details on the methodology behind the localization frame-
work. Next, the sources of range estimation error and interior angle estimation error 
are dealt with. Finally, the proposed Minkowski Triangulation Uncertainty (MTU) 
technique is detailed with the help of two proposed algorithms, namely the count-
Localized algorithm and the countAnchor algorithm. Simulation setup parameters 
and the simulation environment used are discussed in Section 4. An in-depth analy-
sis of results in the form of a comparison of the proposed work to the literature 
is explained in the “Results and Discussion” of Section 4. Conclusion and Future 
Works are summarized in Section 6.

Notations: Bold letters denote vectors and matrices. ‖ ⋅ ‖ denotes Minkowski-dis-
tance in 2 dimensions. | ⋅ | denotes absolute value, or, in certain cases, the count of 
the number of objects.

2 � Conceptual model

In the present section, a conceptual framework of the Minkowski theory is pre-
sented. Minkowoski Triangulation is stated in section A and proven through Lemma 
3.1. Equations (3) and (4) briefly touch upon Triangulation Uncertainty in Section 
B. The concepts discussed here lay the foundation of the proposed algorithms in the 
subsequent sections.
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Localization in wireless sensor networks may be carried out by performing ranged 
measurements as well as range-free methods. Ranged measurements such as received 
signal strength information (RSSI), time of arrival (ToA), AoA, TDoA estimate the 
location of target node to a point, whereas range free methods such as Convex position 
estimation (CPE) and approximate point in triangulation (APIT) estimate the region 
in which the target node has the highest probability of being detected. Although range 
free measurements are not as pinpointed as ranged methods, but they offer significant 
computational simplicity and higher tolerance to scenarios with drifting nodes or non-
line of sight (nLOS) localization. The current implementation of triangulation based on 
Minkowski spaces is used because triangle is the simplest polygon that can effectively 
make use of two sensor nodes to calculate the target node triangulation uncertainty. 
Within this paper, triangulation uncertainty, localization uncertainty, node uncertainty 
or simply uncertainty, all mean the same and have been used interchangeably without 
any change in context. The symbol notations used in this paper are enlisted in Table 1.

2.1 � Minkowski triangulations

Minkowski Space is the multidimensional space–time region which has diverse appli-
cations in research, ranging from Minkowski Sum, Minkowski Fractal, Minkowski dis-
tance [16], Minkowski Decomposition, to name a few. Minkowski-sum is used to put 
an Upper and Lower bound on the number of triangulations possible with polygons. 
The polygons themselves may be either convex or arbitrary. The computational com-
plexity of the Minkowski sum varies with ℝ2, ℝ3 and ℝd as shown in Table 2.

The upper bound on triangulation of simple polygons P and Q with ‘m’ and ‘n’ ver-
tices, respectively, is given by Eq. (1)

Equation (1) emphasizes that if the number of triangulations is the same for two 
different polygons, then the vertices could be comprised of the same set of nodes. 
In the subsequent sections we shall see that the error in estimation of range or of 

(1)Triangulate P =

m−2⋃

i=1

TP
i
; Triangulate Q =

n−2⋃

i=1

T
Q

i

Table 1   Symbol notations used 
in this paper

Sl. No Description Notation

1 Triangulation of simple polygon P TP

2 Minkowski distance Mn

3 Triangulation uncertainty U

4 Error in interior angle estimation Φerror
∡���

5 Error in range estimation by both ith and jth node Φerror
li lj

6 Error in triangulation uncertainty ΔU

7 Estimated Triangulation Uncertainty Φestimated
U

8 Cumulative range estimation errors Elength

9 Cumulative angular and range error by ith node Φerror
�,li
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internal angles is highly dependent on the triangulation geometry of the deployed 
nodes.

In the domain of wireless sensor networks, the limited range of connectivity of 
each node means triangulations formed by linked nodes will usually be less than the 
Minkowski Triangulation.

Lemma 3.1  If the number of Minkowski Triangulations is denoted by TM
i

 and the 
number of 2D Sensor Triangulations is denoted by TS

i
 , then TS

i
⊆ TM

i
.

Proof  We need to prove that the number of triangulations formed by Minkowski 
method is inclusive of those formed by l2-norm range of sensor nodes in a WSN. We 
know that the number of links formed by n- Minkowski distance where xi and yi are 
d-dimensional vectors, is given by Eq. (2).

Since the number of Minkowski Triangulation considers ‘m’ vertices polygon 
unlike ‘m’ independent nodes of a sensor network, hence |||T

M
i

||| ≥
|||T

S
i

||| . Thus, 
TS
i
⊆ TM

i
.

2.2 � Triangulation uncertainty

When a set of three nodes communicate in close proximity, then it is possible to tri-
angulate an unknown target situated within the region of triangulation. The accuracy 
of localization under the concept of triangulation is explained by the term “Uncer-
tainty” in triangulation. Authors in [22] have dealt with triangulation uncertainty in 
a great detail. According to the formulation, Triangulation Uncertainty is calculated 
as shown in Eq. (3).

where lside 1 and lside 2 are the lengths of the sides of the triangle having a common 
third vertex as illustrated in Fig. 2. sin∠

(
lside 1, lside 2

)
 is the interior angle formed by 

the target vertex node at the apex position, as shall be explained in the subsequent 
illustrations. It may be broadly observed that triangulation uncertainty increases 

(2)Mn =
n

√√√√
d∑

i=1

||xi − yi
||
n
, n ≥ 1

(3)U =
(
lside 1 × lside 2

)/(|||sin∠
(
lside 1, lside 2

)|||
)

Table 2   Complexity of 
Minkowski sums

Polygon Convex, convex Convex, arbitrary Arbitrary, arbitrary

ℝ2 O(m + n) O(mn) O(m2n2)
ℝ3 O(mn) O(lklogk) O(m3n3)
ℝd O((mn)[d/2]) Use-case specific O(mdnd)
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with decrease in the interior angle. U also increases if the target node is situated far-
ther away from the two sensor nodes. If the communication range between the target 
node (represented by the Minkowski vector � ) and sensor nodes (denoted by � and 
� ) is given by the set of all points along the ray [�, �⟩ and [�, �⟩ , respectively, then 
the angle measurement of the target (denoted by ∡��� ) is defined by Eq. (4).

where 𝐚̂ =𝐚∕‖𝐚‖ and 𝐛̂ =𝐛∕‖𝐛‖ represent the unit vectors in Minkowski space of 
order 2. Because this uncertainty depends not only on the size of the links but also 
on the shape of geometry, therefore having node deployments such that the triangu-
lations are symmetric, helps to efficiently localize any target node.

Summarizing Section  2, the concepts of Minkowski Triangulation as well as 
Triangulation Uncertainty shall enable the strategical formulation of the proposed 
methodology in Section 3.

3 � Localization framework

In this section, an attempt has been made to propose a framework of localization in 
WSNs based on the concept of Minkowski distance and Triangulation Uncertainty. 
The detailed methodology for computation of triangulation uncertainty is mentioned 
in Section A. Sources of estimation error in a geometric sensor network topology is 
derived in Eqs. (13) to (32) of Section B. Based on the foundation laid down by Sec-
tion A and B, a Minkowski Triangulation Uncertainty (MTU) technique for locali-
zation of unknown target in a WSN is proposed in Section C. The MTU technique 
comprising of two algorithms, namely countLocalized and countAnchor is explained 
here. The numerical computations follow in the subsequent sections.

3.1 � Methodology

An illustration of triangulation uncertainty calculation is shown in Fig. 1. To meas-
ure interior angle of the triangulation, suppose nodes N1 and N3 act as vector nodes. 
Then, the node N2 shall be designated as the apex node, as shown in Fig. 2.

The angular measurements are taken according to three different perspectives. 
For node N1 as the apex node, as in Fig. 3a, the node N2 and N3 act as vector nodes 
through which the location and angle measurements of the target node is to be made. 
For the sake of simplicity, we take that the target node location coincides with the 
apex node. The localization uncertainty is then calculated by the formula mentioned 
in Eq.  (3). However, we do not know if the exact proximity of the target node is 
towards which anchor node (N1, N2 or N3). Hence, we individually calculate the 
three inner angles of the apex nodes, as shown in Eqs. (5), (6) and (7), illustrated in 
Figs. 2, 3a, b.

(4)∡��� = cos−1
[
(1∕2) ×

(
2 −

‖‖‖�̂ − �̂
‖‖‖
2
)]
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(5)∡���|
�=�

�
= cos−1

[
(1∕2) ×

(
2 −

‖‖‖�̂ − �̂
‖‖‖
2
)]|||||�=�

�
,�=�

�

(6)∡���|
�=�

�
= cos−1

[
(1∕2) ×

(
2 −

‖‖‖�̂ − �̂
‖‖‖
2
)]|||||�=�

�
,�=�

�

(7)∡���|
�=�

�
= cos−1

[
(1∕2) ×

(
2 −

‖‖‖�̂ − �̂
‖‖‖
2
)]|||||�=�

�
,�=�

�

Fig. 1   Pictorial representation 
of node deployment scenario 
with three anchor nodes and a 
target node

Fig. 2   Nodes N1 and N3 acting 
as vector nodes and N2 as apex 
node. U2 would denote triangu-
lation uncertainty of the case 
when target node position would 
coincide with apex node N2
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where the vector distance (1∕2) ×
(
2 −

‖‖‖�̂ − �̂
‖‖‖
2
)

 lies in the interval [0, 1] . In 

Eq. (5), the target node position � coincides with the apex vertex �
�
 . Subsequently, 

�
�
 and �

�
 act as the vector nodes. The target node � in Eq. (6) is overlapped with the 

apex vertex �2 . The job of vector nodes is subsequently performed by the two nodes 
�

�
 and �

�
 . When the vector nodes �

�
 and �

�
 are used to triangulate the target � , the 

coinciding apex node is �
�
 . The triangulation uncertainties of the three prospective 

nodes will be given by Eqs. (8)–(10).

(8)U|
�=�

�
=
(
l
�

�
,�

�
⋅ l

�
�
,�

�

)/(|||sin
(
∡���|

�=�
�

)|||
)

(9)U|
�=�

�
=
(
l
�

�
,�

�
⋅ l

�
�
,�

�

)/(|||sin
(
∡���|

�=�
�

)|||
)

Fig. 3   a Nodes N2 and N3 act-
ing as vector nodes and N1 as 
apex node. U1 would denote 
triangulation uncertainty of the 
case when target node position 
would coincide with apex node 
N1. b Nodes N1 and N2 acting 
as vector nodes and N3 as apex 
node. U3 would denote triangu-
lation uncertainty of the case 
when target node position would 
coincide with apex node N3



5059

1 3

Range free localization technique under erroneous estimation…

where the uncertainty U|
�=�

�
 of Eq. (8) is described by the scenario of Fig. 3b, and 

the triangulation uncertainty U|
�=�

�
 of Eq. (10) is represented by Fig. 3a. The target 

node is supposed to have an overall triangulation uncertainty associated with it. The 
different approaches possible are mentioned as follows:

Approach 1: Take the average of the three uncertainties (8)–(10), since the target 
node is equally probable to be present towards any of the three corners. This is given by 
Eq. (11).

Approach 2: Select only the peak uncertainty, since it would take into considera-
tion, the worst-case possibility of locating the target node. The target node uncertainty 
would then be given by Eq. (12).

Approach 3: Consider the triangulation only if 30° < θ < 120° and 0.5 <
(
li
/
lj
)
< 2 , 

else discard the triangulation. This approach is also called the Steiner-point approach 
[23].

The current paper selects Approach 2 in order to grasp the worst-case scenario of 
the entire proposed model.

3.2 � Sources of error

During the region estimation for the target node, errors may arise in two ways:
(a) Interior angle estimation by the two vector nodes � and � incurs errors. Let us 

denote it by Φerror
∡���

.
(b) Range estimation error by the vector nodes, denoted by Φerror

lilj
 . These are illus-

trated in Fig. 4.
Error in localization region could be modelled using the convex hull formed by 

Minkowski sum of the actual and projected positions of the two vector node positions, 
as shown in Fig. 5. Localization error due to target node uncertainty may be modelled 
as in Eqs. (13)–(24).

(10)U|
�=�

�
=
(
l
�

�
,�

�
⋅ l

�
�
,�

�

)/(|||sin
(
∡���|

�=�
�

)|||
)

(11)Utarget = (1∕3)

3∑

i=1

U|
�=�

�
=
(
U|

�=�
�
+ U|

�=�
�
+ U|

�=�
�

)/
3

(12)Utarget = Max
{
U|

�=�
�

}
, i ∈ {1, 2, 3}

(13)Φestimated
U

= Φactual
U

± ΔU

(14)where, ΔU = f
(
Φerror

∡���
, Φerror

lilj

)

(15)or, Φestimated
U

=
(
li ± Δlerror

i

)
⋅

(
lj ± Δlerror

j

)/
|sin (� ± Δ�error)|
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Fig. 4   An illustration for 
sources of error during uncer-
tainty estimation. There can be 
error in distance estimation or in 
angle estimation, or a combina-
tion of both

Fig. 5   Minkowski sum of the 
actual and erroneous positions 
of the two vector node positions 
gives rise to four virtual loca-
tions, the convex hull of which, 
forms the uncertainty area for 
target node
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where,

For simplification,

Thus,

when (Δ𝜃error∕𝜃) ≪ 1,

So, the second term in the denominator,

Equation (17) then becomes

where,

Thus, it may be seen that the estimation error in triangulation uncertainty is 
due to the collective errors of angle and ranging from the two vector nodes which 
are given the task of triangulation of the target node. Minimization of these errors 

(16)
⇒ Φestimated

U
=

(
lilj ± liΔl

error
j

± ljΔl
error
i

+ Δlerror
i

Δlerror
j

)

|sin � cos (Δ�error) ± cos � sin (Δ�error)|

(17)⇒ Φestimated
U

=

(
lilj + Elength

)

sin �
||||

(
cos (Δ�error) ± cos �

sin (Δ�error)

sin �

)||||

(18)Elength = Δlerror
i

Δlerror
j

± liΔl
error
j

± ljΔl
error
i

(19)Δlerror
i

Δlerror
j

≈ 0.

(20)Elength = ±liΔl
error
j

± ljΔl
error
i

(21)⇒ (sinΔ𝜃error∕sin 𝜃) ≪ 1

(22)
(
cos (Δ�error) ± cos �

sin (Δ�error)

sin �

)
≈ cos (Δ�error)

(23)Φestimated
U

=
lilj ± liΔl

error
j

± ljΔl
error
i

sin � cos (Δ�error)

(24)or, Φestimated
U

= Φactual
U

+ Φerror
�,li

+ Φerror
�,lj

(25)

Φerror
�,lj

= ±liΔl
error
j

/
Φerror

∡���
,

Φerror
�,li

= ±ljΔl
error
i

/
Φerror

∡���

Φerror
∡���

= sin � cos (Δ�error)
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shall directly benefit accuracy of the uncertainty. Taking the common approach of 
virtual nodes, we may attempt to provide more sets of observations to triangulate 
the target. A simple representation is as follows: For a triangulation, we need two 
vector nodes Ni and Nj . Let us estimate two unknown parameters l and � using 
multiple observations from the vector nodes. The pdf of the observed data be 
given by X ∼ N

(
�, �2

)
 , where, observed data are X =

{
X1,X2,… ,Xm

}
 . Let 𝜃̂ be a 

rule by which we can guess the value of the unknown parameter � . 
𝜃̂

(
X
)
= 𝜃̂

(
X1,X2,… ,Xm

)
 denotes the estimator 𝜃̂ . Similarly, l̂ be a rule by which 

we can guess the value of the unknown parameter l . l̂
(
X
)
= l̂

(
X1,X2,… ,Xm

)
 

denotes the estimator l̂ . There could be two approaches to estimate � , as outlined 
below:

Approach 1: Both the nodes Ni and Nj separately measure the drop-angle from 
the reference point (0°) till -90°, denoted by 𝜃̂i and 𝜃̂j , respectively, as illustrated 
in Fig. 6a. The rule 𝜃̂ , is then given by Eq. (26).

Approach 2: Location of Ni is known to Nj . So, entire � = ∡��� is estimated, 
but, at least once from each of the vector node, as illustrated in Fig. 6b. The rule 
𝜃̂ , is then given by Eq. (27).

(26)𝜃̂ =
(
1∕m

) m∑

k=1

(
𝜃̂i
k
+ 𝜃̂

j

k

)

Fig. 6   a Nodes Ni and Nj meas-
ure angle from the reference 
drop axes. b Nodes Ni and Nj 
measure angle from each other
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If the mean of the estimated data is unknown and the variance is known to be σ2, 
then we have the joint pdf of the rule as �

(
X
)
∼ N

(
�� , �

2
�

)
 , where �� = unknown mean 

of the angle to be estimated, and �2
�
 = known variance of the measured angle. A simple 

estimator 𝜇̂1
𝜃
 that averages the first and the last observation, would be given by 

𝜇̂1
𝜃

(
X
𝜃
)
=
(
1∕2

)(
X𝜃
1
+ X𝜃

m

)
 . Breaking down this estimator into two respective compo-

nents of two vector nodes i and j, we have Eq. (28)

The variance of such an estimator is expressed as Eq. (29)

We observe that mere two observations do not yield a very consistent estimator. So, 
multiple samples of the observation must be taken. The usual way forward would be an 
m-sample averaging estimator 𝜇̂2

𝜃
 , described by Eq. (30).

The variance would then be given by Eq. (31).

Similarly, variance of the range is var
(
𝜇̂2
l

)
= 𝜎2

l

/
m , which is more consistent than 

var
(
𝜇̂2
l

)
= 𝜎2

l

/
2 . Asymptotically, these estimators would be minimum variance, and 

would satisfy the lower bounds of variance. The length estimator 𝜇̂2
l
 needs to be indi-

vidually calculated for each of the two lengths corresponding to the two vector nodes i 
and j, given by Eq. (32), that is,

(27)𝜃̂ =
(
1∕2m

) m∑

k=1

(
𝜃̂i
k
+ 𝜃̂

j

k

)

(28)and,

𝜇̂1
𝜃i

(
X
𝜃i
)
=
(
1∕2

)(
X
𝜃i
1
+ X

𝜃i
m

)

𝜇̂1
𝜃j

(
X
𝜃j
)
=
(
1∕2

)(
X
𝜃j

1
+ X

𝜃j
m

)

i, j ∈ #(feasible triangulations)

(29)(or)
var

(
𝜇̂1
𝜃

)
= var

[(
1∕2

)(
X𝜃
1
+ X𝜃

m

)]

var
(
𝜇̂1
𝜃

)
= 𝜎2

𝜃

/
2

(30)and,

𝜇̂2
𝜃

�
X
𝜃
�
=
�
1∕m

� m∑
k=1

�
X𝜃
k

�

𝜇̂2
l

�
X
l
�
=
�
1∕m

� m∑
k=1

�
Xl
k

�

(31)(or)
var

�
𝜇̂2
𝜃

�
= var

��
1∕m

� m∑
k=1

�
X𝜃
k

��

var
�
𝜇̂2
𝜃

�
= 𝜎2

𝜃

�
m

(32)
𝜇̂2
li
=
�
1∕m

� m∑
k=1

�
X
li
k

�

𝜇̂2
lj
=
�
1∕m

� m∑
k=1

�
X
lj

k

� for node i and j.
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3.3 � Proposed Minkowski triangulation uncertainty (MTU) algorithm

We have used the concept of triangulation uncertainty to decide the region in 
which a target node is most likely present. Our version of localization, thus, 
depends on the relative area that a triangulation covers. A flow chart to visualize 
the steps of the approach taken is illustrated in Fig. 7. For this paper, we have set 
the criteria based on Lemma 3.1 of Section 3 that a node is said to be localized if 
the upper bound on its uncertainty U∗ is given by Eq. (33).

where Umax is the upper bound on uncertainty for a given threshold range and k is 
a value between 0 and 1. Once the relevant nodes are localized, we designate those 
localized nodes which have an appreciably low bound on their uncertainty, consider-
ing the area of deployment. For this paper, we have set the criteria that a localized 

(33)U∗
≤ k × Umax

Fig. 7   Flow chart of the proposed MTU technique
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node is said to be an anchor node if the upper bound in its uncertainty is given by 
Eq. (34).

where t is the tolerance set for electing an anchor node. To perform triangulation 
uncertainty-based localization, we propose two algorithms: countLocalized and 
countAnchor. The steps to be followed in the algorithm countLocalized are explained 
in brief as follows:

After the nodes are deployed in the rectangular 2D area, the number of unique 
links, that is, sensor-to-sensor linkages are counted and stored in an array along 
with their corresponding sensor node IDs. From these unique links, the number 
of unique triangulations is counted and stored in a separate array, along with their 
constituent triplet of nodes. Next, the target uncertainty associated with each 
unique triangle is computed, and the nodes are counted as localized if the uncer-
tainty is below certain threshold. Then, those localized nodes which are probable 
candidates for being apex node (that is, as target node) are counted and stored in 
the variable countLocalized. Their uncertainty parameter is stored as well.

Algorithm countLocalized

1 Deploy Nodes
2 uniqueLink.nodeID = struct_array1, uniqueLink.nodelocations = struct_array2, 

countLink = #rows(struct_array1)
3 uniqueTriangles.nodeID = struct_array3, uniqueTriangles.nodelocations = struct_array4
4 countTriangles = #rows(struct_array3)
5 Associated Uncertainty = length(side1) × length(side2)∕|sin∠(side1, side2)|
6 target_localized.nodeID = �
7 if target_U < k × Umax

8 horzcat(Uniquelocalized.nodeID, target_node)
9 uncertaintyIndex = �
10 if triangulation ∈ localized node as a target node
11 uncertaintyIndex = store uncertainties of localized target nodes
12 countLocalized = length(unique_localized_nodes)

The steps for countAnchor algorithm are as follows:
Amongst the localized nodes with their corresponding uncertainties for trian-

gulation, those nodes are identified whose triangulation uncertainty is below the 
reference tolerance level. These nodes are designated as anchor nodes, and stored 
in the array countAnchor. Next, the number of anchor-anchor linkages, anchor-
sensor linkages and sensor-sensor linkages are identified and stored in their 
respective arrays.

(34)U∗
≤ t%(Ar(deployment))

(35)For example, U∗
≤ 500 m2 for t = 5
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Algorithm countAnchor

1 Look for U* < A m2 amongst uncertaintyIndex 
{actually atleast one U* < A m2 for any node}

2 Designate such localized nodes as “anchor nodes”
Store their nodeIDs in “anchorID”

3 countAnchor = length(anchorID)
4 Identify
5 #anchor-anchor linkages = Na:a

6 #anchor-sensor linkages = Na:s

7 #sensor-sensor linkages = Ns:s

Thus, summarizing Section 3, the problem formulation for wireless sensor net-
work localization under the presence of range estimation error and interior angle 
estimation error was described. It was found that the position of the unknown target 
could be safely approximated to coincide with an apex node, following which the 
minkowski-distance based triangulation uncertainty could be calculated. How this 
formulation translates quantitatively, shall be observed in Section 4 and 5.

4 � Simulation

In this section, the details regarding simulation environment and simulation tool are 
mentioned. The justification of the simulation parameters such as localization rate, 
localization error, node-to-node linkages are explained through Eqs. (36)–(41). The 
value of simulation parameters is justified in text as well as in tabular form. The 
choice of standard models used for comparison of the proposed method is discussed 
in brief.

For computation of the Algorithms countLocalized and countAnchor, the simula-
tion tool MATLAB is used in Windows 10 operating system. A workstation with 
Intel Xeon Gold 5218 CPU @2.8 GHz with 64 GB DDR4 RAM @2666 MHz is the 
hardware used for running the simulations. To simulate a wireless sensor network, 
a set of 29 sensors are deployed in a 2D-uniform point process [24] in an area of 
100 × 100 m2. The maximum diagonal distance of the deployment area turns out to 
be 141.4 m, and is denoted by dmax. The communication range of each sensor node 
is set as 1% till 20% of dmax. To compare the results with mature models, a Convex 
Triangulation of Optimal node Localization (C-TOL) is taken [22]. In C-TOL, the 
computation of the algorithms countLinks and countTriangles is aided by a Weight-
edUncertainty technique which computes the empirical weight coefficient of the 
links between sensors and anchor nodes. The concept of L2-norm is preferred as 
opposed to the Minkowski norm of this paper. As a result, triangulations of dis-
tinct symmetry are formed and compared subsequently. The proposed Minkowski-
triangulated Uncertainty based technique is abbreviated as MTU in the simulation 
graphs. MTU method is also compared to the Polygonal-Geometry based Weighted 
Least Squares technique (abbreviated as PG-WLS in the graphs), in which the sen-
sor node geometry is responsible for non-coherent localization of target [25]. This 
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method is significant because the WLS computation enables the authors to compute 
pentagonal uncertainty of both the space-based (spatial) geometry as well as time-
based (temporal) geometry. The parameters for simulations are outlined in Table 3.

The four primary parameters used here to justify the performance of the proposed 
method are as follows:

Localization Ratio: It is the ratio of number of localized nodes to that of total 
number of nodes. In terms of uncertainty, localized nodes are those nodes that can 
communicate with neighbour nodes, can form triangulations, and have a target node 
uncertainty of less than 20% of the maximum node uncertainty for a kind of deploy-
ment. If Nloc denotes number of localized nodes, Ntri is the nodes which can form 
triangulations (but may or may not be localized) and N denotes the total number of 
nodes deployed, then localization ratio is given by Eq. (36)

Localization error: In terms of triangulation uncertainty, localization error is the 
average difference between the actual uncertainty and the measured uncertainties, 
with respect to every localized target node. For the purpose of worst-case computa-
tion of the error, the peak uncertainty amongst all triangulation of a target node is 
chosen as the actual uncertainty. We denote Ntarget as the total number of triangula-
tions made by a target node. If U∗ denotes the measured uncertainty, and Utri denotes 
the uncertainty of the triangulations made by the same target node, then localization 
error is given by Eqs. (37)–(39).

where (L.E.)i
abs

 denotes absolute localization error, (L.E.)i
Least - squares

 denotes the least 
squared errors and (L.E.)MSE denotes mean squared error.

Average number of neighbouring anchor nodes: Anchor nodes may be linked 
with other anchor nodes or sensor nodes, thus forming anchor-anchor linkages 

(36)Localization ratio = Nloc∕N

(37)(L.E.)i
abs

=
|||U

∗ − Ui
tri

|||,i ∈ Ntarget

(38)(L.E.)i
Least - squares

=
|||U

∗ − Ui
tri

|||
2

,i ∈ Ntarget

(39)(L.E.)MSE =
1

Ntarget

Ntarget∑

i=1

|||U
∗ − Ui

tri

|||
2

Table 3   Parameters 
implemented in the localization 
model

Sl. No Description Value

1 Number of sensor nodes 29
2 Network area 100 × 100 m2

3 Node deployment pattern 2D-uniform point process
4 Maximum diagonal length dmax 141.4 m
5 Threshold range 1% to 20% of dmax
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and anchor-sensor linkages. The ratio of sensors which are connectible to anchors 
(denoted by Ns∶a ) to the total number of sensor nodes gives us the average num-
ber of neighbouring anchor nodes, shown by Eq. (40)

Network connectivity: The ratio of nodes which form sensor-sensor linkages 
(denoted by Ns∶s ) to the total number of sensor nodes gives us the network con-
nectivity for a given threshold range, as shown in Eq. (41)

5 � Results and discussion

In this section, a detailed technical discussion is presented for the results of the 
simulation. The proposed method is compared to standard models with respect to 
Localization ratio in Section A, root mean square error (RMSE) in localization in 
Section B, average number of neighbouring anchor node calculation in Section C. 
Section D demonstrates the performance in terms of average connectivity of sen-
sor nodes. The effectiveness of the proposed method is tabulated in the end.

(40)Avg_neighb_nodes = Ns∶a

/
N

(41)Net_conn = Ns∶s

/
N

Fig. 8   Localization ratio for different communication threshold ranges
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5.1 � Localization ratio

Figure 8 depicts the ratio of localization for different sets of threshold communica-
tion range of each sensor node. They are compared to the percentage of nodes par-
ticipating in the triangulation of target nodes. For short ranges of 10.6 m and 14.1 m, 
although there are nodes participating in triangulation, but there are no localized 
nodes, because the uncertainties associated with such triangulations must be beyond 
the upper bounds of localizability. The method C-TOL exhibits poor localization 
ratio below 21.15 m. At 21.15 m threshold, C-TOL localization ratio is 12% lower 
than the proposed MTU method. As node range is increased further (17.67 m till 
28.2  m) the steady increase in possible triangulations results in increase in local-
ization ratio from 20.69 to 79.31%. Throughout all threshold ranges, the number 
of nodes that participate in triangulation, is consistently higher than the number of 
nodes that are localized. Without perturbation, the PG-WLS technique is stuck at 
31% at 24.748 m range and lower than the proposed MTU method by a fair margin 
of 36%. This means, although some nodes participate in triangulation, the triangula-
tion themselves are very asymmetric. Most probably, the angle formed by the target 
node with the two sensors is very small, leading to a high value of associated uncer-
tainty. The percentage of nodes participating in triangulation rises from 6.89% till 
86.21% when the threshold range is varied from 10.6 to 28.2 m.

5.2 � Localization error

Localization errors occur when a target node has several triangulations to its credit 
with different associated uncertainties. Since the peak uncertainty of them all 
is taken as the actual uncertainty, the RMS localization errors for each threshold 

Fig. 9   Localization errors for various communication threshold ranges
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consists of the RMS errors of each of the target nodes, of which there are increas-
ingly many, as the threshold is increased. Figure 9 shows the RMS errors in local-
ization of the triangulated targets for each triangulation possible in a deployment 
scenario with different sets of threshold communication range. From the graph, we 
may infer that large threshold range invites a large number of target nodes, each 
target node involves several triangulations, the RMS error of several triangulations 
is a single value for every target node. Thus, each point on a threshold range cor-
responds to the respective number of target nodes. More number of points closer to 
the x-axis would indicate target nodes with more accurate localization. The circles 
towards the upper region of the graph indicate those target nodes with poor localiza-
tion accuracy. The proposed MTU technique faces slightly raised error at 0.05Umax 
setting as compared to the C-TOL method at 24.748 m and 28.2 m simply because 
the proportions of anchor nodes to that of the sensor nodes turns out to be unbal-
anced. At 21.15 m threshold, the proposed MTU error is at least 600m2 lower than 
the corresponding C-TOL error, while being 200 m2 lower than the PG-WLS error. 
The overall trend of the RMS error is generally more consistent for the proposed 
MTU technique than the compared techniques.

5.3 � Average number of neighbouring anchor nodes

The ratio of anchor-sensor linkages to that of total sensors is shown in Fig. 10. Since 
localization is negligible when the node communication range is highly restricted 
(10.6 m or 14.1 m), there are no anchor nodes to speak of. When the communica-
tion range is more expansive (17.67 m and higher) then the number of anchor-sensor 
linkages increase from 13.04% up till 55.55%. A higher percentage of neighbouring 
anchor nodes is a desirable parameter. It means that there is a higher prospect of 

Fig. 10   Average number of neighbouring anchor nodes for different communication threshold ranges
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accurate localization because of availability of a greater number of anchor nodes 
surrounding the target nodes. Compared to the proposed MTU method, the C-TOL 
performance at 0.1Umax absolutely tanks below 24.748 m, indicating the absence of 
anchor-sensor linkage either due to dearth of anchor nodes, or due to anchor nodes 
being farther than the communication region.

5.4 � Network connectivity

Network connectivity depends directly on the number of sensor-sensor linkages. 
Thus, for longer communication threshold range, there would be more sensor link-
ages. However, since the total number of sensors deployed here is fixed, and there-
fore, increasing the range results in increase of the number of anchor nodes too. 
After crossing certain range (21.15 m, here,) we observe a slight drop of network 
connectivity because some of the erstwhile sensor nodes have now become anchor 
nodes, hence some of the sensor-sensor linkages are now sensor-anchor linkages or 
even anchor-anchor linkages, which do not directly contribute to network connectiv-
ity. The peak connectivity achieved in current scenario is 78.95%. Figure 11 shows 
the percentage of sensor-sensor linkages amongst all other linkages for different 
threshold ranges. The role of Minkowski spacetime in the justification of network 
connectivity is as follows.

In terms of Minkowski spacetime Ms in a four dimensional real vector space 
[26], if any unknown target � in Ms shall define a triangulation TM

i
 , then an arbitrary 

future-directed timelike vector of triangulation shall be denoted by Φ+ , whereas its 
counterpart shall be a past-directed timelike vector of triangulation Φ−  such that 
sensor-sensor linkages shall be formed when the unknown target � shall lie in both 
the triangulation TM

i
 as well as a directed timelike vector Φ . In other words,

Fig. 11   Network connectivity for different communication threshold ranges
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where TM
+

(
x0
)
≈ TM

i

(
x0
)
∩ Φ+ and TM

−

(
x0
)
≈ TM

i

(
x0
)
∩ Φ−.

Thus, when the triangulation TM
+

(
x0
)
 shall coincide with the triangulation TM

−

(
x0
)
 , 

the network shall be linked by pairs of anchor node and sensor node, establishing a 
viable network connectivity.

It may be observed that with decrease in the number of anchor nodes, there is a 
complimentary increase in the number of non-anchor nodes. What counted earlier as 
an anchor once, is now a sensor, either a localized one or a non-localized one. Since 
the total number of nodes deployed in the current work and the area of deployment 
are fixed (29 nodes in an area of 100 × 100 m2), the percentage of anchors and non-
anchor nodes merely gets redistributed upon changing the communication range of 
the nodes. Table 4 summarizes the four simulation results.

Summarizing Section 4 and 5, the proposed method was found to improve upon 
the existing techniques for an average of 28% over C-TOL method and about 30.1% 
over PG-WLS method which holds true in the respective optimal scenarios.

6 � Conclusion and future work

This paper presents a consistent two-dimensional localization scheme that has been 
verified for small set of node deployment in a small, regularly shaped area. Two 
algorithms, namely, countLocalized and countAnchor are proposed in order to local-
ize the sensor nodes and elect anchor nodes. A triangulation uncertainty criterion is 
proposed as the basis for localization. Preliminary error analysis reveals that uncer-
tainty is dependent on the accuracy of estimation of two parameters of the target 
node, namely, its distance from two vector nodes and the interior angle made when 
the target node location coincides with the apex node position. Simulation results 

(42)TM
i

(
x0
)
=
{
x ∈ Ms ∶

(
x − x0

)
∈ Φ

}

(43)That is, TM
i

(
x0
)
∩ Φ+ or TM

i

(
x0
)
∩ Φ−

(44)TM
+

(
x0
)

or TM
−

(
x0
)

Table 4   Optimal parameter interval

Parameter Improvement 
over C-TOL 
(%)

Improvement 
over PG-WLS 
(%)

Comments

Localization ratio 12 36 More localized nodes are always better
RMS error 70 50 RMS error starts saturating from 21 m 

range onwards
Average No. of neighbour-

ing anchor nodes (Na:s)
6 5.5 Optimal scenario around 24 m range

Network connectivity (Ns:s) 24 29 Optimal scenario around 21 m range
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indicate that the proposed method is the most effective when the communication 
range of the nodes is 15%-17.5% of the longest diagonal of the deployment area.

The proposed MTU technique improves upon the existing methods by a margin 
of up to 36% in terms of localization ratio, up to 70% in terms of RMS positioning 
error, up to 6% in terms of anchor-sensor linkages, and up to 29% in terms of sensor-
sensor linkages. This establishes the versatility of Minkowski spacetime combined 
with triangulation uncertainty as a dominant trait of the proposed MTU method. 
The proposed method needs to be investigated for scalability testing, since the cur-
rent work has been restricted to a small set of nodes under a fixed area of deploy-
ment. Further parameters need to be analysed to make localization criteria more 
robust, and triangulations more symmetric. We are working on finding a suitable 
way to incorporate Steiner points criteria for optimizing the uncertainty threshold to 
improve localization efficiency.
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