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Abstract
Association rule mining (ARM) is a data mining technique to discover interest-
ing associations between datasets. The frequent pattern-growth (FP-growth) is an 
effective ARM algorithm for compressing information in the tree structure. How-
ever, it tends to suffer from the performance gap when processing large databases 
because of its mining procedure. This study presents a modified FP-growth (MFP-
growth) algorithm to enhance the efficiency of the FP-growth by obviating the need 
for recurrent creation of conditional subtrees. The proposed algorithm uses a header 
table configuration to reduce the complexity of the whole frequent pattern tree. Four 
experimental series are conducted using different benchmark datasets to analyze the 
operating efficiency of the proposed MFP-growth algorithm compared with state-of-
the-art machine learning algorithms in terms of runtime, memory consumption, and 
the effectiveness of generated rules. The experimental results confirm the superior-
ity of the MFP-growth algorithm, which focuses on its potential implementations in 
various contexts.

Keyword  Association rule mining · FP-tree. FP-growth · Frequent itemset mining · 
Particle swarm optimization

1  Introduction

Currently, association rule mining (ARM) has attracted significant attention in the 
research areas of data mining. It involves defining the frequency of items and eval-
uating conditional inference rules between them. Applications of data mining are 
scattered internally and externally over numerous techniques [1]. Data mining is 
a method by which beneficial data are collected from some large datasets, results 
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analysis, and stored information processing. It is generally exploring and analyz-
ing massive information blocks to discover significant patterns and correlations. 
Besides, it also discovers hidden relationships between different items in large data-
sets. Frequent itemsets are necessary for frequent item mining (FIM) from trans-
action databases. It is essential to investigate association rules in various real-life 
applications, such as cross-marketing, retail, market basket analysis, fraud detection, 
and spam email filtering. Frequent itemsets may be transactional or relational [2, 3].

Discovering behavioral patterns has been widely used in association analysis. It 
focuses on the support and confidence threshold to comprehend whether the data are 
correlated. Support is the occurrences of items in the transaction dataset. Confidence 
is the indication of the strength of a rule in terms of percentage. An itemset is called 
frequent when its support level is exceeded or equals the minimum support defined 
by the user. The methodology is to first find the frequent items by scanning the data-
set according to the support and confidence level and then extract association rules 
[4]. Discovered association rules with confidence values less than the minimum con-
fidence are eliminated. ARM [5] is one of the widely used techniques for associa-
tion analysis. Based on the ARM, we can identify potential relationships between 
items in a large transaction database. The ARM seeks to recognize the transactional 
behaviors that conform to the primary metrics used to build an association rule [6]. 
Minimum support and confidence are the primary metrics for evaluating the effec-
tiveness of the generated rules in the database.

An association rule can be identified by I = {i1, i2, i3 …….in} including several 
different items, and a database of transactions DB = {T1, T2, T3 …Tm} consists of 
several transactions where every transaction T is a subset of items list I. The form 
of an association rule is X → Y and X ∩ Y = φ, where X, Y is a subset of I. The set 
of items X is referred to as antecedent and Y is referred to as the consequent. The 
support of X will be dependent on the occurrence frequency in the database, and 
freq(X)/DB is determined from the fraction of every row including the items speci-
fied in support of itemset X. An association rule support is determined from the 
combination of the antecedent and the consequent (X, Y) as follows:

An association rule confidence is determined by the percentage of rows, which 
includes itemset X and Y as follows:

ARM seeks to recognize all rules, which meet user-specific constraints. Asso-
ciation mining aims to derive similarities with attention grabbing, frequent patterns, 
and association rules in transaction databases or various data repositories. This data 
industry has created numerous data mining applications that can be used to show-
case the product in retail shopping, telecommunication networks [7], textile industry 
[8], physical education [9], and the Internet of Things (IoT) [10]. These applica-
tions work for all items that have specific attributes—patient/symptoms, restaurants/
menus, internet/keywords, basket/products, and railways /timings.

Support(X → Y) = (X ∪ Y)∕DB

Confident(X → Y) = P(X∕Y) = sup port(X ∪ Y)∕Support(X)
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Several aspects are of great concern, such as analyzing the market basket, promot-
ing financial products, planning the warehouse, recommending news, and analyzing 
the network faults. Market basket analysis indicates the products that are frequently 
purchased together and it might provide data for promotion strategies. For example, 
the purchase of shampoo is accompanied by the purchase of a conditioner. The pro-
motion of shampoo might increase the sale of the conditioner. The users themselves 
specify the primary metrics for discovering the association rules of traditional algo-
rithms. Whether the value is smaller or larger as the results will be affected.

With frequent pattern mining techniques, there are two major problems. First, the 
database is scanned several times. Second, the complicated candidate method for 
generating a candidate with too many itemsets is generated. These two problems are 
the bottleneck of efficiency in FIM.

Many FIM techniques are discussed extensively, and the studies are shown in 
the literature survey of frequent itemset mining [11, 12]. One of the most famous 
algorithms is Apriori which uses to find frequent itemsets from large databases and 
extending them to larger frequent itemsets [13]. The frequent patterns identified 
by Apriori are used to generate association rules. However, the Apriori algorithm 
repeatedly scans the database in the mining process, which influences the mining 
running speed and the average search space for all frequent itemset is large. Many 
enhancement algorithms [14, 15] have been proposed to increase the Apriori effi-
ciency based on the original algorithm. Several useful algorithms for distributed 
and parallel frequent itemset mining have been proposed. The AprioriTID algorithm 
[16] is a variation of the Apriori algorithm. The TID list is a list that stores the 
IDs of transactions containing that itemset. In the AprioriTID algorithm, the former 
uses the encoding of the candidates created in the previous iteration. So, after every 
pass, the encoding size is reduced, which reduces the complexity of the mining to a 
certain extent. However, many challenges still exist [17]. The management of unbal-
anced and cost-sensitive information is also an essential concern. The mining of 
massive data algorithms is a challenge. Furthermore, the creation of efficient algo-
rithms for valuable patterns for iterative and collaborative mining is a major interest 
in big data applications [18].

A further achievement in FIM is the FP-growth algorithm [19, 20] which pro-
poses a method for compressing the required information for the frequent pattern 
mining in FP-tree without candidate generation and recurrently builds FP-trees for 
all frequent patterns. The prefix-trees are used to store the database in the FP-tree 
compact model. It is divided into subtrees called conditional pattern bases, and then, 
it separately mines the frequent itemsets.

To compensate for this deficit in the mining procedure, this study proposes the 
modified FP-growth (MFP-growth) algorithm based on existing methods. The pro-
posed MFP-growth is defined based on three main features. Firstly, it employs the 
structure of an address table to reduce the mapping difficulty of recurrent item-
sets in the MFP-tree. Secondly, a modern FP-tree* structure eliminates the need 
to construct conditional FP-trees. Thirdly, the proposed algorithm has lower mem-
ory demand and superior efficiency than FP-growth-based algorithms of using the 
header address table and FP-tree *.



5482	 M. Shawkat et al.

1 3

Experimental results indicate the proposed method and associate them with vari-
ous existing algorithms, including the FP-growth particle swarm optimization algo-
rithm (PSOFP-growth) [21]. PSOFP-growth is an enhanced algorithm implemented 
into a new algorithm to find the appropriate support level and mining rules using 
the FP-growth algorithm. The MFP-growth and PSOFP-growth algorithms applied 
to the association analysis of a social security incident, which was not easy to solve. 
The experimental results showed that the MFP-growth analyzes effectively the fre-
quent itemsets with less need for storage requirements using filter data to provide an 
accurate output of association rules that meet the specific requirements. The MFP-
growth outperforms other algorithms under various minimal supports in execution 
time.

The applicability of traditional association rule algorithms has decreased as a 
result of the explosive growth of data, and it is hard to discover the rules we need 
directly from a large amount of data. Thus, in the context of large-scale data, the 
proposed MFP-growth enhances the mined rule efficiency and decreases the algo-
rithm running time and memory consumption. The major contributions of this paper 
are listed below:

•	 Proposing the MFP-growth algorithm to boost FP-growth efficiency.
•	 An address table layout is used to present frequent itemsets in an MFP-tree, 

which reduces the mapping complexity of the MFP-tree.
•	 Presenting the structure of the MFP-tree mining methodology to obviate the 

requirement of constructing conditional pattern bases facilitates the configura-
tion of the MFP-tree.

•	 Evaluating the performance of the modified algorithm on twenty various datasets 
with different minimum support levels.

•	 Testing the validity of the proposed algorithm efficiency by conducting compara-
tive experiments with numerous advanced algorithms, such as FP-growth and 
PSOFP-growth algorithms.

•	 Presenting a simplified model willing to increase the reliability of association 
rules, and boost user experience greatly.

•	 The MFP-growth algorithm is mined using filter data to measure the strength of 
generated rules.

The rest of the paper is arranged as follows. Section  2 introduces the related 
work with a brief survey of current FIM and association rule mining algorithms. 
The MFP-growth algorithm and MFP-tree construction are discussed in Sect. 3. The 
comparative experiments using real and synthetic datasets such as dataset descrip-
tion, runtime consumption, and memory consumption are analyzed in Sect.  4. 
Finally, Sect. 5 concludes the paper and presents future work.
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2 � Related works

Nowadays, the construction of a conditional FP-tree involves space and time com-
plexity [17, 19–47]. Many attempts [20–36, 47] have been made to resolve this issue. 
Zaki [22] has developed the equivalence class transformation (ECLAT) algorithm 
for frequent itemset mining. It relies on the intersection property and can perform 
both sequential and parallel computing. Unlike Apriori and FP-growth, ECLAT 
works vertically and creates a TID list for each item. Unfortunately, ECLAT also 
suffers from the drawbacks of generating too many itemset candidates, like Apri-
ori. Hyper-structure mining of frequent patterns (H-Mine) algorithm [23] proposed 
to overcome the FP-growth performance bottlenecks by using queues rather than a 
tree data structure. H-Mine organizes transaction items into distinct queues and uses 
hyperlinks to connect transactions having the same first item name. It is considered 
good for sparse datasets and is efficient in terms of memory and runtime consump-
tion than Apriori and FP-growth. But in the case of dense datasets, FP-growth sig-
nificantly overpowers H-Mine. Borgelt [24] developed an effective implementation 
of an FP-growth projection design to accelerate the conditional FP-tree construction 
process. Grahne et al. [25] proposed a new FP-array approach to minimize tree tra-
versing time, but the recurring construction of conditional FP-trees still exists. Lin 
et al. [26] utilized a new address table improved FP-growth (IFP-growth) structure 
to boost FP-growth efficiency; however, it still requires much computation to gener-
ate a conditional FP-tree. Tanbeer et al. [27] introduced a new compressed pattern 
tree structure (CP-tree) capturing one scan (insertion phase) database information. 
It has been proved that CP-tree enhances frequent pattern mining efficiency and 
can be useful in applications, such as interactive and accumulative mining. Current 
methods of parallelization are based largely on the methodology of multithreading 
and distributed architecture. For example, the work in [28] parallels FP-growth with 
shared memory using a multithreading approach. FIM workflows are conducted on 
separate computing devices and performed the last results by analyzing output data. 
Another successful distributed computing framework implemented at Hadoop, Map-
Reduce [29] provided a secure, powerful, and fault-tolerant data processing service. 
For instance, the parallel FP-growth (PFP) algorithm [30] employed three Map-
Reduce phases to extract tasks of the FP-growth and combine intermediate data. 
The frequent node set-based boundary POC-tree (FNBP) algorithm [31] employed 
the Map-Reduce approach to identify mining tasks by establishing an early-stage 
boundary to remove the irrelevant patterns. The mining medical aggregation behav-
ior based on distributed computing (DCMMAB) methodology [32] incorporated 
the distributed Map-Reduce computing model with the ARM techniques to identify 
abnormal activities during the medical insurance process. It used a detection algo-
rithm throughout the medical cluster which focuses on distinct behaviors of patients 
in medical treatment based on frequent pattern mining. However, Map-Reduce 
would be generally not preferred to implement workflows with iterative opera-
tions that are extremely typical of the ARM algorithm due to the increased usage of 
the Apache Spark framework [33]. Many methods have been proposed to acceler-
ate Spark’s memory-based workflow engine, such as yet another frequent itemset 
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mining (YAFIM) [34]. These algorithms also suffer due to the inherent Apriori limi-
tation from the complexity of time and memory. Zhang et  al. [35] introduced the 
distributed frequent itemset mining (DFIMA) pruning procedure using a matrix that 
may minimize the computation complexity of the pattern growth stage. The parallel 
Spark workflow version of the array prefix-tree growth (PAPT-growth) algorithm 
[36] facilitated the processing of large data as a Spark workflow. There is also the 
associative classification (AC) method [37]; however, it suffers from many regula-
tions, which is an issue inherited from the ARM. The classification-based associa-
tion (CBA) [37] is one of the AC-developed algorithms. It employs the Apriori’s 
generating candidates function for exploring association rules from databases. 
The active pruning rules (APR) in [38] as a new method of classification showed 
an improvement in classification precision. The technique of sequential minimally 
optimized (SMO) ontology of context (EAA-SMO) employed an enhanced Apriori 
algorithm (EAA) for mining and analyzing collected data by using the discovered 
patterns and rules [39]. The fast incremental updating frequent pattern growth algo-
rithm (FIUFP-growth) is a new approach that focuses on incremental frequent item-
set mining by using a new incremental conditional pattern tree structure (ICP-tree) 
[40]. Table 1 summarizes all of the above-mentioned related works.

The above-related works provide us a better understanding of previous issues. 
Therefore, it is necessary to improve the operating efficiency of the FIM algorithms 
to mine the high-dimensional datasets. The contribution of this paper focused on 
how to enhance the efficiency of the execution time and the association rules of the 
algorithm. As irrelevant association rules will misguide the decision-making, and 
this is must be considered. This paper concentrates on improving the reliability and 
reduction of the memory space specifications of the mined association rules.

3 � The proposed modified FP‑growth algorithm

The proposed MFP-growth algorithm aims to decrease both runtime and memory 
usage. The FP-growth algorithm requires traversing the header table at item fre-
quency in descending order to collect each item and then scan the current FP-tree to 
collect the conditional pattern base of each item. Then, recurrently create the con-
ditional FP-tree without making the best use of some pruning strategies. Primarily, 
the pattern growth is derived through the series of suffix patterns with the frequently 
generated itemsets. Figure 1 presents an example of the recursive mining operation 
in the FP-growth algorithm [41]. These FP-tree recursive constructions require more 
time and memory. This, a new structure is required to avoid these costly operations 
to improve runtime performance.

The MFP-tree is a prefix-tree with a node layout and a frequent item address table 
consists of three fields: One field is indicated by a node list for the frequent item, 
whereas the other two fields carry the item and the total frequent count for every 
node throughout the node list. It also maintains the data between itemsets.

The structure of the proposed MFP-tree can be designed as shown as follows:
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It consists of three attributes namely:

•	 Root node: defined as “null.”
•	 Child node: a set of prefix subtrees.
•	 Header table: header table of frequencies of items.

There are three attributes in every node in the FP-tree:

•	 Item name: registers the names of the items stored in this file.
•	 Count: registers the number of item occurrences.
•	 Node link: prefers to the next node that holds the same item or is labeled with 

null if there is none.

There are two characteristics for every node in the FP-tree*:

•	 Item -name
•	 Head of node link: points to an address table.

The MFP-tree primarily builds over an FP-tree structure, which is devel-
oped to keep the information in the dataset without the need for a new genera-
tion of FP-tree. Besides, the MFP-growth algorithm eliminates the generation 
of subtrees and conditional pattern base that consumes more time and memory. 

Fig. 1   Recursive mining process of FP-growth algorithm
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Accordingly, the proposed algorithm has quickly traversed the tree. The FP-tree* 
technique is presented in this paper. It is used in every conditional pattern mining 
process to minimize the need for reconstructing FP-trees. By combining the FP-
tree* approach with the conditional FP-tree methodology, an MFP-tree mining 
approach has been proposed to effectively discover frequent itemsets. The FP-
tree* mining concept is similar to that of the conditional FP-trees, but the FP-
tree* mining direction differs from that of the conditional FP-tree. Every FP-tree* 
can be built on the original FP-tree which reduces the memory demands.

The FP-tree* construction is presented as follows: Each node in the FP-tree* 
consists of the item name, node count, and node link. Algorithm 1 shows the pro-
cedure of constructing an FP-tree*. Each parent node (PNode) support is accumu-
lated from the children nodes (CNode). The node link of every node connects the 
node with the same item name through its node link form.



5491

1 3

An optimized FP‑growth algorithm for discovery of association…

Figure  2 shows the mining scheme of the FP-tree* of item p. The frequent 
itemsets associated with f, c, and p are recursively mined. The frequent item 
“p” is derived and the following paths are drawn as follows: {< f:1, c:1, a:1, 
p:1 > , < f:1, c:1, p:1 > , < c:1, p:1 >} of node p. The supports of nodes f and c are 
2 in the tree are assembled from path < f, c, a, p > and < f, c, p > . In FP-tree*, the 
frequent item is in the address table, a frequent itemset {pc} is output, and the 
FP-tree* of {pc} is constructed for mining consecutively. There are no frequent 
itemsets derived from {pc} in the example. Therefore, the associated frequent 
itemsets of p are {p, pc}.

The FP-tree* procedure will be defined as follows: First, the memory use is saved 
without reconstructing conditional FP-trees as FP-growth. Second, the construction 
of the FP-tree* is quick because no extra costs are needed to eliminate infrequent 
items.

The MFP-tree generates and extracts frequent patterns. Algorithm  2 shows the 
basic steps of the MFP-tree construction, namely: (1) Find frequent itemsets by 
scanning the DB once, (2) sort the frequency of items in descending order, and (3) 
scan the DB and build the MFP-tree again. The MFP-growth adopts a hybrid method 
for frequent itemset mining. The frequent itemsets (P) are the output whenever new 
frequent itemsets are found. At the beginning of the algorithm, the frequent item-
sets in a single path are discovered. Then, the MFP-growth mining method recog-
nized the conditional pattern tree type. And depending on the conditional pattern 
tree (β) type, the algorithm generates all the frequent itemsets from the MFP-growth 
tree by performing the MFP-growth mining procedure shown in Algorithm 3. The 
explored frequent itemsets from MFP-tree are from last to first using the “bottom-
up” approach.

HHeeaaddeerr  TTaabbllee
NNooddee

IItteemm                  ccoouunntt            
hheeaadd

 f                 2
 c                 3
 a                 2

{}

f:2

c:2

a:2

RRoooott

p:1

c:1

p:1

p:1

Fig. 2   FP-tree* of item p
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Figure 3 shows the flowchart of the MFP-growth algorithm. The construction 
of MFP-growth is as follows. Table 2 presents the transaction database. Table 3 
displays the list of frequent items with their support count. A frequent item is 
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Get dataset

Process the dataset

Assign min_sup for each item

Item sup count 
>= min_sup

Ignore the 
pa�ern

Priori�ze the items

Construc�on of MFP-tree

MFP-growth using bo�om-up 
approach 

Generate frequent pa�erns

Generate header-table

No

Yes

End

start

Fig. 3   Flowchart of the MFP-growth algorithm

Table 2   Transaction database TID Item bought Ordered 
(frequent) 
items

100 f, a, c, d, g, i, m, p f, c, a, m, p
200 a, b, c, f, l, m, o f, c, a, b, m
300 b, f, h, j, o, w f, b
400 b, c, k, s, p cb, p
500 a, f, c, e, l, p, m, n f, c, a, m, p
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arranged in the descending sequence of support count. Items with lesser support 
value are pruned.

A simple example of the MFP-tree construction process is illustrated in Fig. 4. 
At first, the MFP-algorithm generates a node called “root.” The second scan starts 
generating nodes for each transaction. Figure 4 shows that the first transaction of 
the database contains five items f, c, a, m, and p arranged in descending order, 
building the first wing (f: 1) (c: 1) (a: 1) (m: 1) (p: 1) in MFP-tree with five nodes. 
The second transaction contains five items (f: 1) (c: 1) (a: 1) (b: 1) (m: 1), where 
the five nodes are generated. Here this branch shares the prefix ‘f, ‘c, ‘a with 
the existing path of transaction “01.” Following this approach, the count of the 
nodes is incremented to “2.” For items ‘b, ‘m new nodes are generated from item 
‘a. It continues for the remaining transactions. Figure  3(c) shows the complete 
MFP-tree.

4 � Results analysis and discussion

The validity of the proposed MFP-growth algorithm was examined through four 
experiments. The first experiment was performed on MFP-growth, CBA, and 
APR algorithms. The second experiment was conducted to test the MFP-growth 
algorithm superiority compared with the four recent frequent itemset mining 
algorithms. The third experiment is a comparative analysis of the MFP-growth 
and five FIM algorithms in terms of their memory consumption. Finally, the 
fourth experiment was performed to examine the runtime of the modified new 
algorithm MFP-growth, PSOFP-growth, and the famous algorithms Apriori and 
FP-growth. The runtime is the time to mine recurrent itemsets of entirely different 
transactions. For performance evaluation, datasets of various domains are chosen. 
Different support levels for each dataset were used. The Weka 3.8 workbench tool 
[42] for data mining tasks is used to conduct the evaluations. It is open-source 
machine learning software built in Java, which implements different data min-
ing methods such as classification, regression, association rule mining, and visu-
alization. The experimental setup was performed using a desktop computer with 
4 GB of free RAM and a Core i5 processor running Windows 10. The experiment 
measures the execution time against the “minsup” threshold parameter.

Table 3   Items priority Items Support

{f} 4
{c} 4
{a} 3
{m} 3
{p} 3
{b} 3



5495

1 3

An optimized FP‑growth algorithm for discovery of association…

Fig. 4   Construction of MFP-tree
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4.1 � EXP 1: classifier processing time

The proposed MFP-growth algorithm performance was evaluated using various 
repository datasets from the University of California Irvine (UCI) [43]. Table 4 
presents the entire information of the datasets used for the implementation where 
all numerical attributes have been described. Several established classification 
algorithms were used to conduct the experiments, which generate rule-based clas-
sifiers. In all experiments, the minimum support and minimum confidence for 
APR, CBA, and MFP-growth were set at 2% and 30%, respectively, according to 
[38]. The minimum support value has a significant influence in controlling the 
number of generated candidates. Furthermore, the minimum confidence value has 
a minimal influence on the execution and is set to 30%.

Figure  5 shows the time algorithms required for the classifier construction 
on UCI datasets. The proposed algorithm consistently outperforms the CBA 
and APR in terms of the required training time to generate the classifier. This is 
because of the MFP-growth classifiers pruning procedure discards the generation 
of conditional subtrees. This is not the case with CBA, because it assumes that 
all associated rules specified the confidence threshold. Thus, the CBA will test 
all the candidates until the training dataset is empty during the classifier con-
struction. On the other hand, the APR classifier needed a lower execution time 
than CBA to generate the datasets. That is noticeable on the “Mushroom” and 
“Led” datasets compared with the other datasets, which have a significant number 
of data examples. However, the proposed algorithm took less processing time to 
establish the classifier compared to CBA and APR which provides clear evidence 
of the MFP-growth pruning procedure effectiveness.

Table 4   UCI dataset 
characteristics

Dataset Size No. of classes

Glass 214 7
Iris 150 3
Tic-tac 958 2
Breast 699 2
Zoo 101 7
Heart 270 2
Diabetes 768 2
Pima 768 2
Vote 435 2
Balance scale 625 3
Mushroom 8124 3
Led 3200 3
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4.2 � EXP 2: execution time evaluation

Several workflow experiments were conducted on a Spark platform to evaluate 
the MFP-growth with the PFP, PAPT-growth, DFIMA, and YAFIM algorithms 
to test the execution time for the processing of large-scale databases [33]. Vari-
ous datasets were used in the experiments, such as mushroom, accidents, Kdd-
Cup99, and Kosarak, downloaded from [43], whereas the synthetic datasets, such 
as T10I4D100K and T40I10D100K were obtained from [44] using the IBM data 
generator for the latter. Table 5 presents the properties and characteristics of every 
dataset. Different minimum support levels run on every dataset in this experiment. 
Figures 6 and 7 show the experimental results for each dataset.

The mushroom dataset is not big but highly complex, and transactions were 
mostly replicated and irrelevant, indicating that it involves some possible frequent 
items within that dataset. Figure 6a shows the algorithm runtime on the mushroom 
dataset for different levels of support. Due to Apriori’s inherent limitation, the run-
ning time of YAFIM is far beyond the axis range. This is why the YAFIM curve is 
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Fig. 5   Processing time needed for creating the UCI dataset classifier

Table 5   Properties of the real-
life and synthetic datasets

Dataset Items Average Transaction Size

Mushroom 119 23 8124 507 KB
Accidents 468 34 340,183 33.85 MB
KddCup99 135 16 10,000,000 46.7 MB
Kosarak 41,270 8.1 990,002 30.5 MB
T10I4D100K 870 10 100,000 30.83 MB
T40I10D100K 1000 40 100,000 14.76 MB
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Fig. 6   Performance of running time on real-life datasets
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not presented in the figure. As shown in the figure, the PFP curve tends to rise with 
the threshold reaches 1% probably because there are a lot of items with a support 
count between 1 and 3%. The curves of MFP-growth, PAPT-growth, and PFP are 
quite smooth with a support count between 4 and 5%. In this experiment, the MFP-
growth outperforms the other three algorithms and the superiority was very obvious 
because the dataset is dense, which has a major influence on the operation of the 
candidate generation required by their pruning procedure.

The accidents database is a quite dense database that contains data about traf-
fic accidents. Figure 6b shows the experimental results on the accident dataset. The 
increase in minimum support value influences the runtime in all algorithms. The 
reason is that the associated patterns number is decreased with the increase in the 
level of support, which makes a significant improvement of the recursive process.

KddCup99 and Kosarak, known as UCI repository, are both unique real-life data-
bases. KddCup99 consists of several short transactions and small separate objects, 
making it fairly easy to process. Figure 6c and d shows the measurement of runt-
ime on KddCup99 and Kosarak, respectively. As shown in Fig.  6c, all the output 
curves increase gradually because the support threshold decreases. The MFP-growth 
outperforms the other state-of-the-art algorithms. Kosarak is a sparse dataset that 
contains a lot of distinct items. All performance curves gradually increase with the 
support threshold count decreasing, as shown in Fig.  6d. The MFP-growth has a 
better time performance than PFP, PAPT-growth, DFIMA, and YAFIM algorithms.

Figure  7 shows the measures of effectiveness for synthetic datasets, i.e., 
T10I4D100K and T40I10D100K. These datasets are created with different condi-
tions by the IBM data generator. Both are similar, but they vary in size and com-
plexity. All algorithms have a consistent efficiency with different thresholds, as seen 
in Fig.  7a and b. Because T10I4D100K consists of several distinct objects, there 
is little effect on the frequent itemset number due to the variability in the support 
value. Thus, the curves appear to be smooth. As shown in Fig. 7b, the MFP-growth 
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algorithm’s running time is very low; thus, increasing the mining speed. These 
results show that MFP-growth using the MFP-tree is superior based on the time cost 
for FIM over PAPT-growth, PFP, DFIMA, and YAFIM. Even if the minimum sup-
port is reduced, the MFP-growth provides an effective method. Therefore, the MFP-
growth is very appropriate for high-performance computing.

4.3 � EXP 3: memory consumption evaluation

This experiment illustrates the performance evaluation of six frequent itemset min-
ing algorithms on the zoo dataset. Zoo is a dense dataset that contains a lot of com-
mon items. The algorithms have been compared based on their memory usage for 

(a) T10I4D100K

(b) T40I10D100K.
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discovering the set of all valid association rules [45]. The entire information of the 
zoo dataset is shown in Table 6. The results obtained are shown in Fig. 8.

The graph longitudinal axis shows the memory in MB, and the latitudinal axis 
shows the different support threshold values. The charts portrayed in Fig. 8 show the 
memory consumption of the MFP-growth, Apriori TID, H-Mine, Apriori, ECLAT, 
and FP-growth algorithms. The support threshold varies from 20 to 40% to record 
the maximum utilization of memory at different counts of support. Since zoo is 
a dense dataset and it contains a lot of frequent items, the size of the constructed 
MFP-tree will be significantly lower due to the overlapping of frequent items. More-
over, the proposed algorithm eliminates the generation of conditional pattern base 
and conditional subtrees. This eliminates the need for space to store conditional 
patterns. Therefore, the experimental results proved the superiority of the proposed 
MFP-growth algorithm in terms of memory consumption. The FP-growth is the next 
best in memory usage due to the compact and small FP-trees construction. On the 
other hand, Apriori, and Apriori TID are the most expensive algorithms in terms of 
memory usage due to the storage of the huge number of candidate generations dur-
ing each pass and multiple database scans.

4.4 � EXP 4: number of generated association rules

This study investigates the association rules for social security incidents. We 
compare the proposed MFP-growth algorithm with the PSOPF-growth [21], the 
standard Apriori, and the FP-growth algorithms to confirm the superiority of 

Table 6   Dataset description

Dataset No. of transactions Items Average transaction size Type

Zoo 101 36 17 Dense
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our algorithm and analyze the output association rules. Table  7 shows that the 
association rules explored by the MFP-growth algorithm are approximately 29% 
lower than that of the Apriori and FP-growth algorithms by adjusting the present 
support value and using filter data to the association rule that satisfies the spe-
cific requirements. Some irrelevant rules were removed that reduced the memory 
space requirements, making it easy to find the rules we need from massive data-
sets. These results showed that the modified algorithm could construct a new set 
of rules with high confidence and improve efficiency, indicating the significant 
effect of using a data filter on the output.

The experiments were conducted with the adapted new algorithm MFP-growth, 
PSOFP-growth, Apriori, and FP-growth algorithms. The runtime comparison of 
the algorithms is presented in Fig. 9. The MFP-growth algorithm requires even 
less time than the PSOFP-growth, the Apriori, and FP-growth traditional algo-
rithms. As shown in the figure, the greater the support is set, the lesser the exe-
cution time of the algorithm, indicating the significant impact of support levels 
on the algorithm performance. These results showed that, in terms of time cost, 
the MFP-growth, using the MFP-tree is optimal for the ARM over the PSOFP-
growth, Apriori, and FP-growth algorithm.

Table 7   Comparison of the 
number of rules that are 
produced with the conventional 
algorithm

Support Apriori FP-growth PSOFP-growth MFP-growth

20 2150 2030 1480 1451
40 1385 1289 855 941
50 898 975 558 451
80 350 367 105 0
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5 � Conclusion

This paper presented a new scheme to discover associations from a wide range 
of relations across the dataset. Besides, we developed an improved MFP-growth 
algorithm that discovers frequent associations is developed by combining the FP-
tree* mining method and the header table of the FP-growth. The major advan-
tages of the MFP-growth and MFP-tree are that they eliminate the requirement 
for reconstructing conditional pattern base, subtrees, and simplify the function 
of tree construction. Extensive workflow experiments through different types of 
datasets showed that the MFP-growth significantly improves the recent mining 
speed FIM algorithms and the association rules generated with various support 
levels and confidence thresholds. The first experiment was evaluated on a set of 
12 different UCI datasets and compared its performance with the CBA and APR 
algorithms. To further evaluate the MFP-growth efficiency, the second experi-
ment was compared with four recent frequent itemset mining algorithms: PAPT-
growth, PFP, YAFIM, and DFIMA. The third experiment describes the associ-
ation rules that satisfy the degree of interest and the runtime of the enhanced 
MFP-growth algorithm, PSOFP-growth, Apriori, and FP-growth algorithms to 
the ARM of social security incidents. Different support levels for each dataset 
were used. Finally, data filters were also used to prove the effectiveness of asso-
ciation rules, facilitating the collection of productive knowledge. The findings 
confirmed the MFP-growth efficiency and ensured that it is a suitable algorithm 
for dense datasets. However, MFP-growth can also have the same constraint on 
efficiency as FP-growth because both need a prefix-tree to state transaction infor-
mation. The MFP-tree cannot be stored on one node in a transaction database 
greater than a certain size. Although the information is in a compact form in the 
MFP-tree structure, long-running times may render it impractical for time-critical 
applications. Thus, when the database is very large, the algorithm may not fit in 
the shared memory.

It is our future interest to further calculate the accuracy and performance evalu-
ation by applying the modified algorithm on other real-life datasets with a massive 
size. Moreover, association rule discovery can be a powerful weapon in fighting 
pandemics when it is utilized in data mining to develop sciences and to provide new 
insights into health care.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s11227-​021-​04066-y.
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