The Journal of Supercomputing (2022) 78:5479-5506
https://doi.org/10.1007/511227-021-04066-y

®

Check for
updates

An optimized FP-growth algorithm for discovery
of association rules

Mai Shawkat' - Mahmoud Badawi?? - Sally El-ghamrawy*® - Reham Arnous -
Ali El-desoky?

Accepted: 1 September 2021/ Published online: 24 September 2021
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract

Association rule mining (ARM) is a data mining technique to discover interest-
ing associations between datasets. The frequent pattern-growth (FP-growth) is an
effective ARM algorithm for compressing information in the tree structure. How-
ever, it tends to suffer from the performance gap when processing large databases
because of its mining procedure. This study presents a modified FP-growth (MFP-
growth) algorithm to enhance the efficiency of the FP-growth by obviating the need
for recurrent creation of conditional subtrees. The proposed algorithm uses a header
table configuration to reduce the complexity of the whole frequent pattern tree. Four
experimental series are conducted using different benchmark datasets to analyze the
operating efficiency of the proposed MFP-growth algorithm compared with state-of-
the-art machine learning algorithms in terms of runtime, memory consumption, and
the effectiveness of generated rules. The experimental results confirm the superior-
ity of the MFP-growth algorithm, which focuses on its potential implementations in
various contexts.

Keyword Association rule mining - FP-tree. FP-growth - Frequent itemset mining -
Particle swarm optimization

1 Introduction

Currently, association rule mining (ARM) has attracted significant attention in the
research areas of data mining. It involves defining the frequency of items and eval-
uating conditional inference rules between them. Applications of data mining are
scattered internally and externally over numerous techniques [1]. Data mining is
a method by which beneficial data are collected from some large datasets, results

P4 Sally El-ghamrawy
Sally_elghamrawy @ieee.org; sally@mans.edu.eg

Extended author information available on the last page of the article

@ Springer

http://orcid.org/0000-0002-5430-390X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04066-y&domain=pdf

5480 M. Shawkat et al.

analysis, and stored information processing. It is generally exploring and analyz-
ing massive information blocks to discover significant patterns and correlations.
Besides, it also discovers hidden relationships between different items in large data-
sets. Frequent itemsets are necessary for frequent item mining (FIM) from trans-
action databases. It is essential to investigate association rules in various real-life
applications, such as cross-marketing, retail, market basket analysis, fraud detection,
and spam email filtering. Frequent itemsets may be transactional or relational [2, 3].

Discovering behavioral patterns has been widely used in association analysis. It
focuses on the support and confidence threshold to comprehend whether the data are
correlated. Support is the occurrences of items in the transaction dataset. Confidence
is the indication of the strength of a rule in terms of percentage. An itemset is called
frequent when its support level is exceeded or equals the minimum support defined
by the user. The methodology is to first find the frequent items by scanning the data-
set according to the support and confidence level and then extract association rules
[4]. Discovered association rules with confidence values less than the minimum con-
fidence are eliminated. ARM [5] is one of the widely used techniques for associa-
tion analysis. Based on the ARM, we can identify potential relationships between
items in a large transaction database. The ARM seeks to recognize the transactional
behaviors that conform to the primary metrics used to build an association rule [6].
Minimum support and confidence are the primary metrics for evaluating the effec-
tiveness of the generated rules in the database.

An association rule can be identified by I={il, i2, i3 in} including several
different items, and a database of transactions DB={TI, T2, T3 ...Tm} consists of
several transactions where every transaction 7 is a subset of items list /. The form
of an association rule is X— Y and XNY=¢, where X, Y is a subset of I. The set
of items X is referred to as antecedent and Y is referred to as the consequent. The
support of X will be dependent on the occurrence frequency in the database, and
freq(X)/DB is determined from the fraction of every row including the items speci-
fied in support of itemset X. An association rule support is determined from the
combination of the antecedent and the consequent (X, Y) as follows:

Support(X - Y)=(XuUY)/DB

An association rule confidence is determined by the percentage of rows, which
includes itemset X and Y as follows:

Confident(X —» Y) = P(X/Y) = sup port(X U Y) /Support(X)

ARM seeks to recognize all rules, which meet user-specific constraints. Asso-
ciation mining aims to derive similarities with attention grabbing, frequent patterns,
and association rules in transaction databases or various data repositories. This data
industry has created numerous data mining applications that can be used to show-
case the product in retail shopping, telecommunication networks [7], textile industry
[8], physical education [9], and the Internet of Things (IoT) [10]. These applica-
tions work for all items that have specific attributes—patient/symptoms, restaurants/
menus, internet/keywords, basket/products, and railways /timings.

@ Springer

An optimized FP-growth algorithm for discovery of association... 5481

Several aspects are of great concern, such as analyzing the market basket, promot-
ing financial products, planning the warehouse, recommending news, and analyzing
the network faults. Market basket analysis indicates the products that are frequently
purchased together and it might provide data for promotion strategies. For example,
the purchase of shampoo is accompanied by the purchase of a conditioner. The pro-
motion of shampoo might increase the sale of the conditioner. The users themselves
specify the primary metrics for discovering the association rules of traditional algo-
rithms. Whether the value is smaller or larger as the results will be affected.

With frequent pattern mining techniques, there are two major problems. First, the
database is scanned several times. Second, the complicated candidate method for
generating a candidate with too many itemsets is generated. These two problems are
the bottleneck of efficiency in FIM.

Many FIM techniques are discussed extensively, and the studies are shown in
the literature survey of frequent itemset mining [11, 12]. One of the most famous
algorithms is Apriori which uses to find frequent itemsets from large databases and
extending them to larger frequent itemsets [13]. The frequent patterns identified
by Apriori are used to generate association rules. However, the Apriori algorithm
repeatedly scans the database in the mining process, which influences the mining
running speed and the average search space for all frequent itemset is large. Many
enhancement algorithms [14, 15] have been proposed to increase the Apriori effi-
ciency based on the original algorithm. Several useful algorithms for distributed
and parallel frequent itemset mining have been proposed. The AprioriTID algorithm
[16] is a variation of the Apriori algorithm. The TID list is a list that stores the
IDs of transactions containing that itemset. In the AprioriTID algorithm, the former
uses the encoding of the candidates created in the previous iteration. So, after every
pass, the encoding size is reduced, which reduces the complexity of the mining to a
certain extent. However, many challenges still exist [17]. The management of unbal-
anced and cost-sensitive information is also an essential concern. The mining of
massive data algorithms is a challenge. Furthermore, the creation of efficient algo-
rithms for valuable patterns for iterative and collaborative mining is a major interest
in big data applications [18].

A further achievement in FIM is the FP-growth algorithm [19, 20] which pro-
poses a method for compressing the required information for the frequent pattern
mining in FP-tree without candidate generation and recurrently builds FP-trees for
all frequent patterns. The prefix-trees are used to store the database in the FP-tree
compact model. It is divided into subtrees called conditional pattern bases, and then,
it separately mines the frequent itemsets.

To compensate for this deficit in the mining procedure, this study proposes the
modified FP-growth (MFP-growth) algorithm based on existing methods. The pro-
posed MFP-growth is defined based on three main features. Firstly, it employs the
structure of an address table to reduce the mapping difficulty of recurrent item-
sets in the MFP-tree. Secondly, a modern FP-tree* structure eliminates the need
to construct conditional FP-trees. Thirdly, the proposed algorithm has lower mem-
ory demand and superior efficiency than FP-growth-based algorithms of using the
header address table and FP-tree *.

@ Springer

5482 M. Shawkat et al.

Experimental results indicate the proposed method and associate them with vari-
ous existing algorithms, including the FP-growth particle swarm optimization algo-
rithm (PSOFP-growth) [21]. PSOFP-growth is an enhanced algorithm implemented
into a new algorithm to find the appropriate support level and mining rules using
the FP-growth algorithm. The MFP-growth and PSOFP-growth algorithms applied
to the association analysis of a social security incident, which was not easy to solve.
The experimental results showed that the MFP-growth analyzes effectively the fre-
quent itemsets with less need for storage requirements using filter data to provide an
accurate output of association rules that meet the specific requirements. The MFP-
growth outperforms other algorithms under various minimal supports in execution
time.

The applicability of traditional association rule algorithms has decreased as a
result of the explosive growth of data, and it is hard to discover the rules we need
directly from a large amount of data. Thus, in the context of large-scale data, the
proposed MFP-growth enhances the mined rule efficiency and decreases the algo-
rithm running time and memory consumption. The major contributions of this paper
are listed below:

e Proposing the MFP-growth algorithm to boost FP-growth efficiency.

e An address table layout is used to present frequent itemsets in an MFP-tree,
which reduces the mapping complexity of the MFP-tree.

e Presenting the structure of the MFP-tree mining methodology to obviate the
requirement of constructing conditional pattern bases facilitates the configura-
tion of the MFP-tree.

¢ Evaluating the performance of the modified algorithm on twenty various datasets
with different minimum support levels.

e Testing the validity of the proposed algorithm efficiency by conducting compara-
tive experiments with numerous advanced algorithms, such as FP-growth and
PSOFP-growth algorithms.

e Presenting a simplified model willing to increase the reliability of association
rules, and boost user experience greatly.

e The MFP-growth algorithm is mined using filter data to measure the strength of
generated rules.

The rest of the paper is arranged as follows. Section 2 introduces the related
work with a brief survey of current FIM and association rule mining algorithms.
The MFP-growth algorithm and MFP-tree construction are discussed in Sect. 3. The
comparative experiments using real and synthetic datasets such as dataset descrip-
tion, runtime consumption, and memory consumption are analyzed in Sect. 4.
Finally, Sect. 5 concludes the paper and presents future work.

@ Springer

An optimized FP-growth algorithm for discovery of association... 5483

2 Related works

Nowadays, the construction of a conditional FP-tree involves space and time com-
plexity [17, 19-47]. Many attempts [20-36, 47] have been made to resolve this issue.
Zaki [22] has developed the equivalence class transformation (ECLAT) algorithm
for frequent itemset mining. It relies on the intersection property and can perform
both sequential and parallel computing. Unlike Apriori and FP-growth, ECLAT
works vertically and creates a TID list for each item. Unfortunately, ECLAT also
suffers from the drawbacks of generating too many itemset candidates, like Apri-
ori. Hyper-structure mining of frequent patterns (H-Mine) algorithm [23] proposed
to overcome the FP-growth performance bottlenecks by using queues rather than a
tree data structure. H-Mine organizes transaction items into distinct queues and uses
hyperlinks to connect transactions having the same first item name. It is considered
good for sparse datasets and is efficient in terms of memory and runtime consump-
tion than Apriori and FP-growth. But in the case of dense datasets, FP-growth sig-
nificantly overpowers H-Mine. Borgelt [24] developed an effective implementation
of an FP-growth projection design to accelerate the conditional FP-tree construction
process. Grahne et al. [25] proposed a new FP-array approach to minimize tree tra-
versing time, but the recurring construction of conditional FP-trees still exists. Lin
et al. [26] utilized a new address table improved FP-growth (IFP-growth) structure
to boost FP-growth efficiency; however, it still requires much computation to gener-
ate a conditional FP-tree. Tanbeer et al. [27] introduced a new compressed pattern
tree structure (CP-tree) capturing one scan (insertion phase) database information.
It has been proved that CP-tree enhances frequent pattern mining efficiency and
can be useful in applications, such as interactive and accumulative mining. Current
methods of parallelization are based largely on the methodology of multithreading
and distributed architecture. For example, the work in [28] parallels FP-growth with
shared memory using a multithreading approach. FIM workflows are conducted on
separate computing devices and performed the last results by analyzing output data.
Another successful distributed computing framework implemented at Hadoop, Map-
Reduce [29] provided a secure, powerful, and fault-tolerant data processing service.
For instance, the parallel FP-growth (PFP) algorithm [30] employed three Map-
Reduce phases to extract tasks of the FP-growth and combine intermediate data.
The frequent node set-based boundary POC-tree (FNBP) algorithm [31] employed
the Map-Reduce approach to identify mining tasks by establishing an early-stage
boundary to remove the irrelevant patterns. The mining medical aggregation behav-
ior based on distributed computing (DCMMAB) methodology [32] incorporated
the distributed Map-Reduce computing model with the ARM techniques to identify
abnormal activities during the medical insurance process. It used a detection algo-
rithm throughout the medical cluster which focuses on distinct behaviors of patients
in medical treatment based on frequent pattern mining. However, Map-Reduce
would be generally not preferred to implement workflows with iterative opera-
tions that are extremely typical of the ARM algorithm due to the increased usage of
the Apache Spark framework [33]. Many methods have been proposed to acceler-
ate Spark’s memory-based workflow engine, such as yet another frequent itemset

@ Springer

5484 M. Shawkat et al.

mining (YAFIM) [34]. These algorithms also suffer due to the inherent Apriori limi-
tation from the complexity of time and memory. Zhang et al. [35] introduced the
distributed frequent itemset mining (DFIMA) pruning procedure using a matrix that
may minimize the computation complexity of the pattern growth stage. The parallel
Spark workflow version of the array prefix-tree growth (PAPT-growth) algorithm
[36] facilitated the processing of large data as a Spark workflow. There is also the
associative classification (AC) method [37]; however, it suffers from many regula-
tions, which is an issue inherited from the ARM. The classification-based associa-
tion (CBA) [37] is one of the AC-developed algorithms. It employs the Apriori’s
generating candidates function for exploring association rules from databases.
The active pruning rules (APR) in [38] as a new method of classification showed
an improvement in classification precision. The technique of sequential minimally
optimized (SMO) ontology of context (EAA-SMO) employed an enhanced Apriori
algorithm (EAA) for mining and analyzing collected data by using the discovered
patterns and rules [39]. The fast incremental updating frequent pattern growth algo-
rithm (FIUFP-growth) is a new approach that focuses on incremental frequent item-
set mining by using a new incremental conditional pattern tree structure (ICP-tree)
[40]. Table 1 summarizes all of the above-mentioned related works.

The above-related works provide us a better understanding of previous issues.
Therefore, it is necessary to improve the operating efficiency of the FIM algorithms
to mine the high-dimensional datasets. The contribution of this paper focused on
how to enhance the efficiency of the execution time and the association rules of the
algorithm. As irrelevant association rules will misguide the decision-making, and
this is must be considered. This paper concentrates on improving the reliability and
reduction of the memory space specifications of the mined association rules.

3 The proposed modified FP-growth algorithm

The proposed MFP-growth algorithm aims to decrease both runtime and memory
usage. The FP-growth algorithm requires traversing the header table at item fre-
quency in descending order to collect each item and then scan the current FP-tree to
collect the conditional pattern base of each item. Then, recurrently create the con-
ditional FP-tree without making the best use of some pruning strategies. Primarily,
the pattern growth is derived through the series of suffix patterns with the frequently
generated itemsets. Figure 1 presents an example of the recursive mining operation
in the FP-growth algorithm [41]. These FP-tree recursive constructions require more
time and memory. This, a new structure is required to avoid these costly operations
to improve runtime performance.

The MFP-tree is a prefix-tree with a node layout and a frequent item address table
consists of three fields: One field is indicated by a node list for the frequent item,
whereas the other two fields carry the item and the total frequent count for every
node throughout the node list. It also maintains the data between itemsets.

The structure of the proposed MFP-tree can be designed as shown as follows:

@ Springer

5485

An optimized FP-growth algorithm for discovery of association...

Kyrxordwoo awry-

Qan-xyaid e Suisn
(eseyd uonaasur) ssed 9[3urs ym
poyow Sururwr urdped juanbaiy

SumyronQ- (eseyd uonosur) ueds uQ- ® SI (991)-dD) 2on uiayed joedwo) Jan-dD [£2] 'Te 12 192que], S
juswarinbax AJowow ssof
M uoneIN3Yuod BIEP SANOJS Ue
Sursn Sururur SNt UONBIOOSSE 10}
soonqns 9Je1ouds Jou So0p- pasn s1)] “onbruyod) yimois ureped
AJowow pue W) Jo Junowe d3IeT- wyLIog[e 9[qe[eds pue JuAIdYJH- juanbaiy paroxdwir ue st YamoI3-gq] ImoI3-g A1 [92] ‘T 30 SunyD)-oy 1
KJoATs
-INJAI S921)-d,] [EUOTIPUOD p[Ing
0] POaU Y} 9JBIAQO JOU SAOP Jey)
as1eds are sjaselep on-d4 Inq 991 9Y) JO W) JUISIOART) oY)
oY} USYM AIOWOW QIOW SSWNSUO) - Sursioae 10J paau oY) Suronpay- 9seardop o} pasodoid swoyos Aeire-J,q Kerre-qq [sZ] Te 10 euyeIn "o
S1osBIRP ASUIP sjoseIep osreds Y)Im [[om SULIOJIo]- aImonys ejep payulpredAy e yim
i Suresp uoym swiofqoid sey) - sSumies paseq-AIOWOW UT ISe] SUMY- WYILIoS[e SUTUTW [0AOU € ST JUIA-H QUTN-H [ezled T
Sunndwoo [orrered
SIST QLL pue [erjuonbas yjoq I0J o[qeIIns SI I
Suno9sIaIUL JOJ SWIT} AIOW SPIAU - sjoselep [[ews Joj 9[qeyns s13[- ‘unpuod[e dn-wonoq e st (LY IDH)
sanrxa[dwoo aoeds A1owsy- 1ondy ueyy Arowew ssof sarmbar if- UOTJEWLIOJSURI) SSB[O dous[eanby jeroq [z2] e e mez
uoneIouas 9JepIpued
Kyxordwoo Jurddew oon-d.4- UOTBISUAS JePIPURD ON- noym surayed juonboiy Surpury
Kyrxodwos awry Suruuny- nondy uey) 19)se]- 10§ poypowt e sasodoid yimois-4q YIMoI3-dq [61] TR 1 URH [
agesn A1owaw 9onpal
syaswa jo J1oddns oy Jununoo 0) S9JBPIPULD JOSW)I JO FUIPOIU
owm reuoneindwod a1ow sarmbar J1- 10J 9seqelep ayj Ul pasn Jou SI - a 1oy $IST] L sosn LI Houdy 1L uoudy [91] Te 10 TemeIdy
soseqelep [euonoesuLI)
KIowaw Jo oSesn JAISSIIXH - sueos ofdn[nA- S1q UT S9[NI UOIRIOOSSE pue suroped
uoneIouas 9jepIpued wyioge juanbaiy saziugooar jey) A3010
QAISUdxX9 0] 9np SuUTWNSUOI-OWIL] - puejsiopun-o3-Ased pue ajdwrg- -poyjeuwt Jururw eyep e st uordy uoudy [€1] ‘Te 10 [emeISY Y
suone I soSejueApy EINikEele) POUISIA oyny

SIoM PJB[RI [ZOT 03 000 WOIJ MATAI AINJRIN] oY) Jo Arewrwuns | 3|qeL

pringer

As

M. Shawkat et al.

5486

S}osejep [[BWS UO UIAD PId
-AOJSIP SI[NI JO JOQUINU JAISSIIXS Y], -

uonendwod
QATIRIN JOJ YSNOUD JUAIOYJ JON -
QIempIey Ul 1800 oY -

syosejep
a3xe[it Sul[eap 9[IyMm aouUB[Rq pROT-

uonendwod
QATIRIAN JOJ YSNOUS JUSIOLYS JON-
Kiowow Jo junowre 931e] € Surinboy-

sonrxo[dwos Krowewr pue swnuny-

K9eINDOE UOTIO)IP PNEIJ) 9SeAIIU]-

Sunndwos [oqeIeg-
Aiqeess ysiy-

uonejuaweduwr [o[[eIed-
Aniqereos-

B1ep S1q IIM [00) [NJI9MOd-
[opowr Surwwerdord ojdwrg-
Surssoooid [oyeIed-

Qon-d,] 9[3urs
& Surp[ing ur sYo0[JY) SeyeurwI[g-

QouRINSUI YJ[eay Ul Spnelj
AJnuapr 0] YV pue ylomouwrerj
onpay-dey 9y sejerodioour
(YIWINDQ) Sunndwod pajnqLusip
uo paseq Joraeyaq uone3aiise
Teorpowr Surur jJo ASojopoyjow ayJ,
s1osWa)l Juanbayur oy} dAowAI
01 A1epunoq o3e)s-A[1es ue Surysiy
-qe)Is9 AQ Syse) Sururu saynuapI
‘doopeH sosn Jey) JI0MoWeIy ejep
1q & st wyLos[e (d4NA) 9918 D0d
Krepunoq paseq-1os apou juenbaij v
UONEPUIWIIOII
K1anb 10§ soseyd aonpay-dejy
so1yy pakordwe YImoI3-dA [offered
SMOSIOM
suonerado aAnEINT YIIm Judwo[duur
0 parrdjad jou A[e1oudd 9q pnom
J1INq ‘SI9)SN[O AFIB[UO D1AISS Ful
-ss9001d eJEp paIndas pue payrdurs
e sop1aoid yoeordde conpay-dejy oy,
10s59201d 9100-91dn N
& Sursn £q pajerouas ‘syseiqns Jud
-puadopur owos ojur yse} Jururu
oy SOPIAIP IMOIS-] [o[[ered

GVININDA

ddNd

ddd

Qonpay-dey

1MoI3-d [o[[ered

[zel Te19nOYZ *S

(1€ e 10 “Kroyeysig-19 ‘4

[og] e 10 Sueyz a

[62] 'Te 10 ueaq 't

[82] eI MIT T

suoneIwI|

soSeueApy

oAno0lq0

POUISIN

oyny

(ponunuoo) | |qey

pringer

As

5487

An optimized FP-growth algorithm for discovery of association...

syosejep sa[qerieA osieds
ym Surpesp ur Juswosoxduwr spasu Jf-

syuswaroxdwr swrn Sururen
puE 9ZIS 1S 9[NI Y} ‘AOBINIOR SPAAU I[-

suonjerodo payn
-qQLISIP JOJ ANSST AOUB[EQUIT PRO[YIOM-
Kiowow a31e] sexnbar 3 -

Surssoooid awm-[ear 10§ 11oddns ou-
$9sEO Jururu aIou Joj A[qeIns
9q 03 suoneziundo Ioy)Iny spasu Jy-

sanIxo[dwod K1owow pue dwl]-

Kouepunpai 9[n1 Suronpax
pue Koeinooe aanoipald soaoxdwy-

S[oqe[Sse[o
JURIQJJIP Auewl Y)IM S)aseIep Jururua
ur swaqoid uonesyIsse[d SUIA[oS-

douewtojrad owry Suruuna saroxdwy-

Kouaroyye
uoneindwos 9AneIdr soroidwy-
sonATeue ejep 31q Ioj pasn SIJ]-

Surssaooxd
BIBP 9ATIORIAIUT PUB JATIRIN
yIm [eap 03 A[reroadsa paudisoq-

UONEBOYISSE[d JO AOBINJOE Y] Ul
9SBAIOUT UB SMOUS Je} UOTJEOYISSE[O
jasejep ay) Joj Surunid o[nI uo paseq

SIOYISSB[O QATIEIOOSSE JO POyjowt

MU B ST (YJV) so[ni Surunid 9Anoy
anbruyo9)
uoneIouas s,aepipued LoLdy
oy Sursn soseqejep WoOIJ so[nI
uoneroosse mau sarodx? (yvg))
UOTJBIO0SSE PISEq-UOTBIYISSEID)

s1osWa)l Juanbaiy

Surpuy J0J wyio3re (YPImois-1dv)

yImoi13 dan-xyaid Aerre jo uors
-IoA mopjIom yredg foqrered v

sonATeue ejep

31q 103 yredg jo ainpasoxd Surunid

XLjeW € sasn (VIN[IQ) wyltioSre
Sururw Jesw1 Juanbary paynquusp v

uISua mopIoM

yreds oy} Jo A1owaw 9y} 15009 0}

paysa33ns onbruyoay [orrered e ur Sur

-urw Jaswayl juanbaig € st (JNTAVA)
Sururw Joswayr juonbaiy 1oyjoue 10X

qddv

vdao

PMOIS-IdVd

VINIAA

NWIdVA

[8¢] quefey 'a

[Le] e nIT g

[e€] TR0 NIN "X

[6¢] Te 10 Sueyyz

[¥€] Terenid ‘H

suoneIwI|

soSeueApy

oAno0lq0

POUISIN

oyny

(ponunuoo) | |qey

pringer

As

M. Shawkat et al.

5488

$921qNs PIJONISUOD
Q) 210)s 03 9oeds a3re[€ sarnbar J1-

(INAS) auryoewr
103094 J10ddns jo ssoooid Sururen oyJ-

s1o)owrered ugisop

Krewnid SurziuSooar ur sworqoid sey -
swopqoad xardwod yim Suresp

uoyM)BT 9OUISIOAUOD MO © SBY I -

QWM UOTINIIXA JIOYS © Sey IT-
saanqns
JO Ioquunu [[BWS © PIJONIISUOD J]-

UOnBINI
K13A9 12 wajqod (dQ) Sutw
-werSoxd onerpenb oy seonpai if-

SO[NI UOTRIDOSSE PAId
-AODSIP 3} UO dUINYUT J8AIT B Sey

yoym joddns rewndo ay3 spuy Iy-

own [euoneinduiod 110ys € sey J-

josejep parepdn
oy woiy sureped Juonbary mou urw
0) urege way) SuIsn pue sJUNOd
110ddns 110y} yym sureyped juonbaiy
POISA0OSTP SUTASLIJAI AQ SO[TLI UOT)
-BIO0SSE [BIUSWAIOUT SUTUIW JOJ
wypLIos[e NV MU € ST (YImoI3
-dINTd) wytode yymoid uroned
juonbaiy Sunepdn [ejuswAIOUL ISR)

1ziundo (vyg) wyuose toudy
PIOUBYUQ UE UO SII[I ey} S[nI
uoneroosse Juturw Joj yoeoidde
PLQAY € ST (OINS-V VH) 1XaIu0d
Jo A3o0103u0 (QINS) pazrwndo
[ewrurw fenuanbas jo anbruyod) sy,
wyoge
yImoI3-d. Y3 JO pre oyl YiIm so[ni
uoneroosse ay) ourwr pue roddns
rewndo ay) J19A09SIp 0) ‘w03
JUSSI[IUL UB OJUT PAdNPONUT
WILIOS[e PIoULRYUD U ST ((ImoI3
-d40Sd) Suturu o[nI UOTRIOOSSE
paseq-uonezrundo wIems a[onIed

Pamois-gdNId [0p] Te 19 uoyorInyL, M

(ONS)
pazrundo [ew
-t [enuenbag [g€] ‘Te 10 rwuysye[euIoS A

aoIs-g10Sd [12] 119 nOYZ "X

suoneIwI|

soSeueApy

oAno0lq0

pringer

POUIOIN oy

As

(ponunuoo) | |qey

An optimized FP-growth algorithm for discovery of association... 5489

Conditional pattern-base of “m”

(fca:2)
(fcab:1)

Header table @

Item | Head of node-link @

(o]

Conditional FP-tree of “m”

Global FP-tree

Fig. 1 Recursive mining process of FP-growth algorithm
It consists of three attributes namely:

e Root node: defined as “null.”
Child node: a set of prefix subtrees.
Header table: header table of frequencies of items.

There are three attributes in every node in the FP-tree:

e Item name: registers the names of the items stored in this file.
Count: registers the number of item occurrences.
Node link: prefers to the next node that holds the same item or is labeled with

null if there is none.

There are two characteristics for every node in the FP-tree*:

Item -name
Head of node link: points to an address table.

The MFP-tree primarily builds over an FP-tree structure, which is devel-
oped to keep the information in the dataset without the need for a new genera-
tion of FP-tree. Besides, the MFP-growth algorithm eliminates the generation
of subtrees and conditional pattern base that consumes more time and memory.

@ Springer

5490 M. Shawkat et al.

Accordingly, the proposed algorithm has quickly traversed the tree. The FP-tree*
technique is presented in this paper. It is used in every conditional pattern mining
process to minimize the need for reconstructing FP-trees. By combining the FP-
tree* approach with the conditional FP-tree methodology, an MFP-tree mining
approach has been proposed to effectively discover frequent itemsets. The FP-
tree* mining concept is similar to that of the conditional FP-trees, but the FP-
tree* mining direction differs from that of the conditional FP-tree. Every FP-tree*
can be built on the original FP-tree which reduces the memory demands.

The FP-tree* construction is presented as follows: Each node in the FP-tree*
consists of the item name, node count, and node link. Algorithm 1 shows the pro-
cedure of constructing an FP-tree*. Each parent node (PNode) support is accumu-
lated from the children nodes (CNode). The node link of every node connects the
node with the same item name through its node link form.

Algorithm 1: The FP-Tree* Construction

Input: Tree: a frequent pattern tree, count of frequency of T as freq;
Output: FP-Tree*;

Parameter: HTable: header-table;

Construct: Construct a new FP-Tree;

Temp=FP-Tree. Root;

while i €7 do

HTable[i].count=0;
HTable[i] nodelink=NULL,

end

Assume HTable[n].name=freq;

CNode=HTable[n].nodelink;

while CNode= NULL do
PNode=CNode.parent,

end
while PNode != ROOT do
Assume HTable[x].name=PNode.name;
HTable[x].count +=CNode.count;
if PNode has only one child node then
PNode.count= CNode.count,
PNode.nodelink=HTable[x].nodelink,
HTable[x].nodelink=PNode,
else
PNode.count+= CNode.count;
PNode=PNode.parent;
end
CNode=CNode.nodelink;,
return FP - Tree;
end

@ Springer

An optimized FP-growth algorithm for discovery of association... 5491

Header Table
Node
Item count

o —+

I
3—
2

Fig.2 FP-tree* of item p

Figure 2 shows the mining scheme of the FP-tree* of item p. The frequent
itemsets associated with f, ¢, and p are recursively mined. The frequent item
“p” is derived and the following paths are drawn as follows: {<f:1, c:1, a:1,
p:1>,<f:1, c:1, p:1>,<c:1, p:1 >} of node p. The supports of nodes f and c are
2 in the tree are assembled from path <f, c, a, p>and <f, ¢, p>. In FP-tree*, the
frequent item is in the address table, a frequent itemset {pc} is output, and the
FP-tree* of {pc} is constructed for mining consecutively. There are no frequent
itemsets derived from {pc} in the example. Therefore, the associated frequent
itemsets of p are {p, pc}.

The FP-tree* procedure will be defined as follows: First, the memory use is saved
without reconstructing conditional FP-trees as FP-growth. Second, the construction
of the FP-tree* is quick because no extra costs are needed to eliminate infrequent
items.

The MFP-tree generates and extracts frequent patterns. Algorithm 2 shows the
basic steps of the MFP-tree construction, namely: (1) Find frequent itemsets by
scanning the DB once, (2) sort the frequency of items in descending order, and (3)
scan the DB and build the MFP-tree again. The MFP-growth adopts a hybrid method
for frequent itemset mining. The frequent itemsets (P) are the output whenever new
frequent itemsets are found. At the beginning of the algorithm, the frequent item-
sets in a single path are discovered. Then, the MFP-growth mining method recog-
nized the conditional pattern tree type. And depending on the conditional pattern
tree () type, the algorithm generates all the frequent itemsets from the MFP-growth
tree by performing the MFP-growth mining procedure shown in Algorithm 3. The
explored frequent itemsets from MFP-tree are from last to first using the “bottom-
up” approach.

@ Springer

5492 M. Shawkat et al.

Algorithm 2:The MFP-growth Algorithm
Input: FP-tree*, DB and a minimum support threshold, a: "NUII” initially;
Output: A set of frequent itemsets P ;
//Call MFP-growth (MFP-tree, null);
Procedure MFP-growth (Tree, a);
if Tree contains a single path P then
foreach combination (denoted as) of the nodes in the path P do
generate pattern § (/ a with support = minimum support of nodes in P,
end
else
for each ai in the HTable of Tree do
generate pattern = ai {J a with support = ai .support;
end
end
if Tree f # O then
Call MFP-growth(Treep, f);
Return(freq itemset (P))
End

Algorithm 3:The MFP-tree construction
MFP-Growth Algorithm: F [1] (MFP-tree)
Fll]=0;

Foreach i € 7 that is in D in frequency increasing order do
F[I]=F[I] U {I U{i}};
Di=0;
H=0;
Foreachj € 7in D such that j <i do
Select j for which support (7 U {i, j}) > minsup ;
H=HnN{GY
end
foreach(T id, X) € D with i € Xdo
Di=Di U {Tid, {X\{i}}NH)} ;
Construct MFP-tree from Di , F;
Call F [T U {i}] (MFP-tree) ;
F[I]=F[I] U F[I U {i}] (MFP-tree) ;
end
end

Figure 3 shows the flowchart of the MFP-growth algorithm. The construction
of MFP-growth is as follows. Table 2 presents the transaction database. Table 3
displays the list of frequent items with their support count. A frequent item is

@ Springer

An optimized FP-growth algorithm for discovery of association...

5493

/ Get dataset /
]

Process the dataset

v

Assign min_sup for each item

Item sup count
>= min_sup

[Prioritize the items]
y
Construction of MFP-tree]

v
MFP-growth using bottom-up
approach

¥

Generate header-table

]

Generate frequent patterns

Fig. 3 Flowchart of the MFP-growth algorithm

Ignore the
pattern

Table 2 Transaction database TID

Item bought

Ordered
(frequent)
items

100
200
300
400
500

f,a,c,d, g i,m,p
a,b,c,f,1,m, o0
b,f,h,j,o,w
b,c,k, s, p

a,f,c,e,1,p,m,n

f,c,a,m,p
f,c,a,b,m
f,b

cb, p

f,c,a,m, p

@ Springer

5494 M. Shawkat et al.

Table 3 Items priority

Items Support
{f} 4
{c} 4
{a} 3
{m} 3
{p} 3
{b} 3

arranged in the descending sequence of support count. Items with lesser support
value are pruned.

A simple example of the MFP-tree construction process is illustrated in Fig. 4.
At first, the MFP-algorithm generates a node called “root.” The second scan starts
generating nodes for each transaction. Figure 4 shows that the first transaction of
the database contains five items f, ¢, a, m, and p arranged in descending order,
building the first wing (f: 1) (c: 1) (a: 1) (m: 1) (p: 1) in MFP-tree with five nodes.
The second transaction contains five items (f: 1) (c: 1) (a: 1) (b: 1) (m: 1), where
the five nodes are generated. Here this branch shares the prefix ‘f, ‘c, ‘a with
the existing path of transaction “01.” Following this approach, the count of the
nodes is incremented to “2.” For items ‘b, ‘m new nodes are generated from item
‘a. It continues for the remaining transactions. Figure 3(c) shows the complete
MFP-tree.

4 Results analysis and discussion

The validity of the proposed MFP-growth algorithm was examined through four
experiments. The first experiment was performed on MFP-growth, CBA, and
APR algorithms. The second experiment was conducted to test the MFP-growth
algorithm superiority compared with the four recent frequent itemset mining
algorithms. The third experiment is a comparative analysis of the MFP-growth
and five FIM algorithms in terms of their memory consumption. Finally, the
fourth experiment was performed to examine the runtime of the modified new
algorithm MFP-growth, PSOFP-growth, and the famous algorithms Apriori and
FP-growth. The runtime is the time to mine recurrent itemsets of entirely different
transactions. For performance evaluation, datasets of various domains are chosen.
Different support levels for each dataset were used. The Weka 3.8 workbench tool
[42] for data mining tasks is used to conduct the evaluations. It is open-source
machine learning software built in Java, which implements different data min-
ing methods such as classification, regression, association rule mining, and visu-
alization. The experimental setup was performed using a desktop computer with
4 GB of free RAM and a Core i5 processor running Windows 10. The experiment
measures the execution time against the “minsup” threshold parameter.

@ Springer

An optimized FP-growth algorithm for discovery of association... 5495

Header Table
Node
Item count head
f 1
1
1
m 1
o] 1

Header Table

Item count head

ER- I]
N

Header Table
Node

Item count head
f 1

c 1

a 1

b 1

m 2

o] 1

: l. \ j/
‘~>{ p:2 l——"mzl |

(c) Final MFP-Tree.

Fig.4 Construction of MFP-tree

@ Springer

5496 M. Shawkat et al.

4.1 EXP 1: classifier processing time

The proposed MFP-growth algorithm performance was evaluated using various
repository datasets from the University of California Irvine (UCI) [43]. Table 4
presents the entire information of the datasets used for the implementation where
all numerical attributes have been described. Several established classification
algorithms were used to conduct the experiments, which generate rule-based clas-
sifiers. In all experiments, the minimum support and minimum confidence for
APR, CBA, and MFP-growth were set at 2% and 30%, respectively, according to
[38]. The minimum support value has a significant influence in controlling the
number of generated candidates. Furthermore, the minimum confidence value has
a minimal influence on the execution and is set to 30%.

Figure 5 shows the time algorithms required for the classifier construction
on UCI datasets. The proposed algorithm consistently outperforms the CBA
and APR in terms of the required training time to generate the classifier. This is
because of the MFP-growth classifiers pruning procedure discards the generation
of conditional subtrees. This is not the case with CBA, because it assumes that
all associated rules specified the confidence threshold. Thus, the CBA will test
all the candidates until the training dataset is empty during the classifier con-
struction. On the other hand, the APR classifier needed a lower execution time
than CBA to generate the datasets. That is noticeable on the “Mushroom” and
“Led” datasets compared with the other datasets, which have a significant number
of data examples. However, the proposed algorithm took less processing time to
establish the classifier compared to CBA and APR which provides clear evidence
of the MFP-growth pruning procedure effectiveness.

Table4 UCI dataset

characteristics Dataset Size No. of classes
Glass 214 7
Iris 150 3
Tic-tac 958 2
Breast 699 2
Zoo 101 7
Heart 270 2
Diabetes 768 2
Pima 768 2
Vote 435 2
Balance scale 625 3
Mushroom 8124 3
Led 3200 3

@ Springer

An optimized FP-growth algorithm for discovery of association... 5497

160
140
120
« 100
E
k-
= 80
E
= 60
40
20 \ /\/\/\
0 !
> & o X N @ o @ D>
0\&’ < &,@\q’ Q)@{b% 4° \2@{\ ‘@&% & KOS N&Oo& %
N S
S

Algorithm per dataset
——CBA APR MFP-growth

Fig.5 Processing time needed for creating the UCI dataset classifier

4.2 EXP 2: execution time evaluation

Several workflow experiments were conducted on a Spark platform to evaluate
the MFP-growth with the PFP, PAPT-growth, DFIMA, and YAFIM algorithms
to test the execution time for the processing of large-scale databases [33]. Vari-
ous datasets were used in the experiments, such as mushroom, accidents, Kdd-
Cup99, and Kosarak, downloaded from [43], whereas the synthetic datasets, such
as T10I4D100K and T40I10D100K were obtained from [44] using the IBM data
generator for the latter. Table 5 presents the properties and characteristics of every
dataset. Different minimum support levels run on every dataset in this experiment.
Figures 6 and 7 show the experimental results for each dataset.

The mushroom dataset is not big but highly complex, and transactions were
mostly replicated and irrelevant, indicating that it involves some possible frequent
items within that dataset. Figure 6a shows the algorithm runtime on the mushroom
dataset for different levels of support. Due to Apriori’s inherent limitation, the run-
ning time of YAFIM is far beyond the axis range. This is why the YAFIM curve is

Table 5 Properties of the real-

Jife and synthetic datasets Dataset Items Average Transaction Size
Mushroom 119 23 8124 507 KB
Accidents 468 34 340,183 33.85 MB
KddCup99 135 16 10,000,000 46.7 MB
Kosarak 41,270 8.1 990,002 30.5 MB
T10I4D100K 870 10 100,000 30.83 MB
T40I10D100K 1000 40 100,000 14.76 MB

@ Springer

5498

M. Shawkat et al.

1

1

1

Running time(s)

140
120
100

80

60

Running time(s)

40

20

160
140
120
100

Running time(s)
] B D oo}
S (=} (=} (=]

(=}

40
20
00
80 —_
0 \
.‘ \
40 ¢ ‘\\
\vg §
20
— —— = u
0
1 2 3 4 5
Support(%)
wwpe PAPT-Growth ~ e=ii==MFP-growth == PFP DFIMA
(a) Mushroom
—
—l
10 20 30 40 50
Support(%)
e PAPT-Growth === MFP-growth === PFP DFIMA
(b) Accidents
—X
e—
*~— & e
v ¢ > —e

—o—PAPT-Growth

0.006 0.007

~—MFP-growth

0.008

Support(%)

(€) KddCup99

Fig. 6 Performance of running time on real-life datasets

@ Springer

0.009

0.01

—#&—PFP —¥—=YAFIM

An optimized FP-growth algorithm for discovery of association... 5499

120

100)\
v\\'\
% \'\\\'\

60 \\\NK

40

Running time(s)

20

0 l 1
0.1 0.2 0.3 0.4 0.5
Support(%)
=== P APT-Growth MFP-growth PFP DFIMA === Y AFIM

(d) Kosarak

Fig. 6 (continued)

not presented in the figure. As shown in the figure, the PFP curve tends to rise with
the threshold reaches 1% probably because there are a lot of items with a support
count between 1 and 3%. The curves of MFP-growth, PAPT-growth, and PFP are
quite smooth with a support count between 4 and 5%. In this experiment, the MFP-
growth outperforms the other three algorithms and the superiority was very obvious
because the dataset is dense, which has a major influence on the operation of the
candidate generation required by their pruning procedure.

The accidents database is a quite dense database that contains data about traf-
fic accidents. Figure 6b shows the experimental results on the accident dataset. The
increase in minimum support value influences the runtime in all algorithms. The
reason is that the associated patterns number is decreased with the increase in the
level of support, which makes a significant improvement of the recursive process.

KddCup99 and Kosarak, known as UCI repository, are both unique real-life data-
bases. KddCup99 consists of several short transactions and small separate objects,
making it fairly easy to process. Figure 6¢c and d shows the measurement of runt-
ime on KddCup99 and Kosarak, respectively. As shown in Fig. 6c, all the output
curves increase gradually because the support threshold decreases. The MFP-growth
outperforms the other state-of-the-art algorithms. Kosarak is a sparse dataset that
contains a lot of distinct items. All performance curves gradually increase with the
support threshold count decreasing, as shown in Fig. 6d. The MFP-growth has a
better time performance than PFP, PAPT-growth, DFIMA, and YAFIM algorithms.

Figure 7 shows the measures of effectiveness for synthetic datasets, i.e.,
T10I14D100K and T40I10D100K. These datasets are created with different condi-
tions by the IBM data generator. Both are similar, but they vary in size and com-
plexity. All algorithms have a consistent efficiency with different thresholds, as seen
in Fig. 7a and b. Because T10I14D100K consists of several distinct objects, there
is little effect on the frequent itemset number due to the variability in the support
value. Thus, the curves appear to be smooth. As shown in Fig. 7b, the MFP-growth

@ Springer

5500

M. Shawkat et al.

100

90 e |
80 N‘\

50
40
30

Running time(s)

70 > \
60

20 v A g : ;
10

0.1 0.2 0.3
Support(%)
MFP-growth PFP
(a) T1014D100K

g P APT-Growth

e
400 \‘\

0.4 0.5

DFIMA ==Y AFIM

L 4
L 4

S

0.6 0.7 0.8
Support(%)
et PAPT-Growth MFP-growth
PFP e YAFIM
(b) T40110D100K.

Fig. 7 Performance of runtime on synthetic datasets

0.9 1

DFIMA

algorithm’s running time is very low; thus, increasing the mining speed. These
results show that MFP-growth using the MFP-tree is superior based on the time cost
for FIM over PAPT-growth, PFP, DFIMA, and YAFIM. Even if the minimum sup-
port is reduced, the MFP-growth provides an effective method. Therefore, the MFP-
growth is very appropriate for high-performance computing.

4.3 EXP 3: memory consumption evaluation

This experiment illustrates the performance evaluation of six frequent itemset min-
ing algorithms on the zoo dataset. Zoo is a dense dataset that contains a lot of com-
mon items. The algorithms have been compared based on their memory usage for

@ Springer

An optimized FP-growth algorithm for discovery of association... 5501

Table 6 Dataset description

Dataset No. of transactions Items Average transaction size Type
Zoo 101 36 17 Dense
1800
1600 /
= 1400 ‘/‘(
< 1200 “—— ——Apriori TID
£1000 ——H-Mine
2 800 _—8 === Apriori
£ 0 —I—¢._./4\.,K/,\ ECLAT
§ 400 D s : : ‘ ==ie=FP-growth
200 .—_.—_.—_./. =®—MFP-growth
0
40 35 30 25 20

Minimum Support (%)

Fig. 8 Performance of memory usage on a dense dataset

discovering the set of all valid association rules [45]. The entire information of the
zoo dataset is shown in Table 6. The results obtained are shown in Fig. 8.

The graph longitudinal axis shows the memory in MB, and the latitudinal axis
shows the different support threshold values. The charts portrayed in Fig. 8 show the
memory consumption of the MFP-growth, Apriori TID, H-Mine, Apriori, ECLAT,
and FP-growth algorithms. The support threshold varies from 20 to 40% to record
the maximum utilization of memory at different counts of support. Since zoo is
a dense dataset and it contains a lot of frequent items, the size of the constructed
MFP-tree will be significantly lower due to the overlapping of frequent items. More-
over, the proposed algorithm eliminates the generation of conditional pattern base
and conditional subtrees. This eliminates the need for space to store conditional
patterns. Therefore, the experimental results proved the superiority of the proposed
MFP-growth algorithm in terms of memory consumption. The FP-growth is the next
best in memory usage due to the compact and small FP-trees construction. On the
other hand, Apriori, and Apriori TID are the most expensive algorithms in terms of
memory usage due to the storage of the huge number of candidate generations dur-
ing each pass and multiple database scans.

4.4 EXP 4: number of generated association rules
This study investigates the association rules for social security incidents. We

compare the proposed MFP-growth algorithm with the PSOPF-growth [21], the
standard Apriori, and the FP-growth algorithms to confirm the superiority of

@ Springer

5502 M. Shawkat et al.

Table 7 Comparison of the

S t Apriori FP- th PSOFP- th MFP- th
number of rules that are uppor priort grow grow grow

prodqced with the conventional 20 2150 2030 1480 1451
algorithm
40 1385 1289 855 941
50 898 975 558 451
80 350 367 105 0

our algorithm and analyze the output association rules. Table 7 shows that the
association rules explored by the MFP-growth algorithm are approximately 29%
lower than that of the Apriori and FP-growth algorithms by adjusting the present
support value and using filter data to the association rule that satisfies the spe-
cific requirements. Some irrelevant rules were removed that reduced the memory
space requirements, making it easy to find the rules we need from massive data-
sets. These results showed that the modified algorithm could construct a new set
of rules with high confidence and improve efficiency, indicating the significant
effect of using a data filter on the output.

The experiments were conducted with the adapted new algorithm MFP-growth,
PSOFP-growth, Apriori, and FP-growth algorithms. The runtime comparison of
the algorithms is presented in Fig. 9. The MFP-growth algorithm requires even
less time than the PSOFP-growth, the Apriori, and FP-growth traditional algo-
rithms. As shown in the figure, the greater the support is set, the lesser the exe-
cution time of the algorithm, indicating the significant impact of support levels
on the algorithm performance. These results showed that, in terms of time cost,
the MFP-growth, using the MFP-tree is optimal for the ARM over the PSOFP-
growth, Apriori, and FP-growth algorithm.

250
= 200
@
£
H
o0
2 150 —
E N\ |
=
o~
£ 100 S—— ——
<
-E \F\ R R
5 —e
2 50 ——
i N N O I A
0 20 40 60 80 100 120 140 160
Min. Support of the algorithm(count)
@ps PSOFP-growth Apriori FP-growth MFP-growth

Fig. 9 Comparison of runtime with different minimum support

@ Springer

An optimized FP-growth algorithm for discovery of association... 5503

5 Conclusion

This paper presented a new scheme to discover associations from a wide range
of relations across the dataset. Besides, we developed an improved MFP-growth
algorithm that discovers frequent associations is developed by combining the FP-
tree* mining method and the header table of the FP-growth. The major advan-
tages of the MFP-growth and MFP-tree are that they eliminate the requirement
for reconstructing conditional pattern base, subtrees, and simplify the function
of tree construction. Extensive workflow experiments through different types of
datasets showed that the MFP-growth significantly improves the recent mining
speed FIM algorithms and the association rules generated with various support
levels and confidence thresholds. The first experiment was evaluated on a set of
12 different UCI datasets and compared its performance with the CBA and APR
algorithms. To further evaluate the MFP-growth efficiency, the second experi-
ment was compared with four recent frequent itemset mining algorithms: PAPT-
growth, PFP, YAFIM, and DFIMA. The third experiment describes the associ-
ation rules that satisfy the degree of interest and the runtime of the enhanced
MFP-growth algorithm, PSOFP-growth, Apriori, and FP-growth algorithms to
the ARM of social security incidents. Different support levels for each dataset
were used. Finally, data filters were also used to prove the effectiveness of asso-
ciation rules, facilitating the collection of productive knowledge. The findings
confirmed the MFP-growth efficiency and ensured that it is a suitable algorithm
for dense datasets. However, MFP-growth can also have the same constraint on
efficiency as FP-growth because both need a prefix-tree to state transaction infor-
mation. The MFP-tree cannot be stored on one node in a transaction database
greater than a certain size. Although the information is in a compact form in the
MFP-tree structure, long-running times may render it impractical for time-critical
applications. Thus, when the database is very large, the algorithm may not fit in
the shared memory.

It is our future interest to further calculate the accuracy and performance evalu-
ation by applying the modified algorithm on other real-life datasets with a massive
size. Moreover, association rule discovery can be a powerful weapon in fighting
pandemics when it is utilized in data mining to develop sciences and to provide new
insights into health care.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11227-021-04066-y.

References

1. Fisch D, Kalkowski E, Sick B (2014) Knowledge fusion for probabilistic generative classifiers with
data mining applications. IEEE Trans Knowl Data Eng 26(3):652-666

2. Ceglar A, Roddick JF (2006) Association mining. ACM Comput Surv 38:5

3. Han X, Liu X, Chen J, Lai G, Gao H, Li J (2019) Efficiently mining frequent itemsets on massive
data. IEEE Access 7:31409-31421

@ Springer

https://doi.org/10.1007/s11227-021-04066-y
https://doi.org/10.1007/s11227-021-04066-y

5504 M. Shawkat et al.

4. Coenen F, Leng P, Ahmed S (2004) Data structure for association rule mining: T-trees and P-trees.
IEEE Trans Knowl Data Eng 16(6):774-778
5. HanlJ, Fu'Y (1999) Mining multiple-level association rules in large databases. IEEE Transact Knowl
Data Eng 11(5):798-805
6. Son LH, Chiclana F, Kumar R, Mittal M, Khari M, Chatterjee JM, Baik SW (2018) ARM-AMO:
An efficient association rule mining algorithm based on animal migration optimization. Knowl
Based Syst 154:68-80
7. LiT-Y, Li X-M (2011) Preprocessing expert system for mining association rules in telecommunica-
tion networks. Expert Syst Appl 38:1709-1715. https://doi.org/10.1016/j.eswa.2010.07.096
8. Yildirim P, Birant D, Alpyildis T (2017) Discovering the relationships between yarn and fabric
properties using association rule mining. Turk J Elect Eng Comput Sci 25:4788-4804. https://doi.
org/10.3906/elk-1611-16
9. Zhang T (2018) Automatic evaluation model of physical education based on association rules algo-
rithm. Wirel Pers Commun. https://doi.org/10.1007/s11277-018-5304-6
10. Khedr AM, Osamy W, Salim A, Abbas S (2020) A novel association rule-based data mining
approach for Internet of Things based wireless sensor networks. IEEE Access 8:151574-151588.
https://doi.org/10.1109/ACCESS.2020.3017488
11. Viger F, Lin JCW, Vo B, Chi TT, Zhang J, Le HB (2017) A survey of itemset mining. WIREs Data
Mining Knowl Discovery. https://doi.org/10.1002/widm.1207
12. Sinthuja M, Puviarasan N, Arun P (2019) Comparative analysis of association rule mining algo-
rithms in mining frequent patterns. Int J Adv Comput Res 8:1839-1846
13. Agrawal R, Mannila H, Srikanth R, Toivonen H, Verkamo AI (1996) Fast discovery of association
rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (Eds.) Advances in knowledge
discovery and data mining, pp. 307-328
14. Wu H, Lu Z, Pan L, Xu R, Jiang W (2009) An improved apriori based algorithm for association
rules mining. In: Sixth International Conference on Fuzzy Systems and Knowledge Discovery,
IEEE, vol. 2, pp. 51-55, 2009, https://doi.org/10.1109/FSKD.2009.193
15. Yabing J (2013) Research of an improved apriori algorithm in data mining association rules. Int J
Comput Commun Eng 2(1):25
16. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proc. 20th int. conf.
very large databases, VLDB, vol. 1215, pp. 487-499
17. Gan W, Lin CW, Chao HC, Zhan J (2017) Data mining in distributed environment: a survey. Wiley
Interdiscip Rev Data Mining Knowl Discov 7(6):e1216
18. Abdel-Hamid NB, ElGhamrawy S, El Desouky A, Arafat H (2018) A dynamic spark-based classifi-
cation framework for imbalanced big data. J Grid Comput 16(4):607-626
19. HanJ, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: ACM SIG-
MOD International Conference on Management of Data, pp. 1-12
20. Zhong R, Wang H (2011) Research of commonly used association rules mining algorithm in data
mining. In: Proc. IEEE Inter. Conf. Internet Comput. Inf. Services, Hong Kong, pp. 219-222, Sep.
2011
21. Su T, Xu H, Zhou X (2019) Particle swarm optimization based association rule mining in Big Data
environment. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2951195
22. Zaki MJ (1997) Fast mining of sequential patterns in very large databases. University of Rochester
Computer Science Department, New York
23. Peil, Han J, Lu H, Nishio S, Tang S, Yang D (2001) H-mine: hyper-structure mining of frequent
patterns in large databases. In Data Mining. In: Proc.s IEEE Inter. Conf., IEEE, pp. 441-448
24. Borgelt C (2005) An implementation of the FP-growth algorithm. In: Proceedings of the 1st Interna-
tional Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, ACM
25. Grahne G, Zhu J (2005) Fast algorithms for frequent itemset mining using FP-trees. IEEE Trans
Knowl Data Eng 17(10):1347-1362. https://doi.org/10.1109/TKDE.2005.166
26. Ke-Chung L, Liao IE, Sheng C (2011) An improved frequent pattern growth method for mining
association rules. Expert Syst Appl 38(5):5154
27. Tanbeer S, Farhan A, Jeong B, Lee Y (2008) Efficient single-pass frequent pattern mining using a
prefix-tree. Inf Sci 179:559-583
28. LiuL, Li E (2007) Optimization of frequent itemset mining on multiple-core processor. In: Interna-
tional Conference on Very Large Databases, University of Vienna, Austria, pp.1275-1285
29. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Confer-
ence on Symposium on Operating Systems Design and Implementation

@ Springer

https://doi.org/10.1016/j.eswa.2010.07.096
https://doi.org/10.3906/elk-1611-16
https://doi.org/10.3906/elk-1611-16
https://doi.org/10.1007/s11277-018-5304-6
https://doi.org/10.1109/ACCESS.2020.3017488
https://doi.org/10.1002/widm.1207
https://doi.org/10.1109/FSKD.2009.193
https://doi.org/10.1109/ACCESS.2019.2951195
https://doi.org/10.1109/TKDE.2005.166

An optimized FP-growth algorithm for discovery of association... 5505

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
4.
43.
44.
45.

46.

47.

Li H, Wang Y, Zhang D, Zhang M, Chang EY (2009) PFP: parallel FP-growth for query recommen-
dation. In: ACM Conference on Recommender Systems, pp. 107-114

El-Elshafeiy E, El-desouky A (2017) A Big Data framework for mining sensor data using hadoop.
Stud Inf Control 26(3):365-376

Zhou S, He J, Yang H, Chen D, Zhang R (2020) Big Data-driven abnormal behavior detection in
healthcare based on association rules. IEEE Access 8:129002-129011. https://doi.org/10.1109/
ACCESS.2020.3009006

Apache. Apache spark repository, 2016.

Qiu H, Gu R, Yuan C, Huang, Y (2014) YAFIM: a parallel frequent itemset mining algorithm with
spark. In: Parallel and Distributed Processing Symposium Workshops, pp. 1664-1671

Zhang F, Liu M, Gui F, Shen W, Shami A, Ma Y (2015) A distributed frequent itemset mining algo-
rithm using spark for big data analytics. Clust Comput 18(4):1493-1501

Niu X, Qian M, Wu C, Hou A (2019) On a parallel spark workflow for frequent itemset mining
based on array prefix-tree,” IEEE/ACM Workflows in Support of Large-Scale Science (WORKS),
Denver, CO, USA, pp. 50-59, 2019

Ma BLWH, Liu B (1998) Integrating classification and association rule mining,” in Proc. 4th KDD,
pp- 80-86

Rajab KD (2019) New associative classification method based on rule pruning for classification of
datasets. IEEE Access 7:157783

Sornalakshmi M, Balamurali S, Venkatesulu M et al (2020) Hybrid method for mining rules based
on enhanced Apriori algorithm with sequential minimal optimization in healthcare industry. Neural
Comput Applic. https://doi.org/10.1007/s00521-020-04862-2

Thurachon W, Kreesuradej W (2021) Incremental association rule mining with a fast incremental
updating frequent pattern growth algorithm. IEEE Access 9:55726-55741. https://doi.org/10.1109/
ACCESS.2021.3071777

Cheng H, Han J (2009) Pattern-growth methods. In: Liu L, Ozsu MT (eds) Encyclopedia of data-
base systems. Springer, Boston

Weka Data Mining Tool, (1999), http:// www.cs.waikato.ac.nz/ml/weka
UCILUcimachinelearningrepository, (2013)

Goethals B, Zaki M (2004) Advances in frequent itemset mining implementations: Report on
FIMI’03,” SIGKDD Explorations, pp. 109-117

Borah A, Nath B (2021) Comparative evaluation of pattern mining techniques: an empirical study.
Complex Intell. Syst. 7:589-619

ElGhamrawy SM (2016) A knowledge management framework for imbalanced data using frequent
pattern mining based on bloom filter. 2016 11th International Conference on Computer Engineering
& Systems (ICCES), IEEE, 2016

Hassib EM, El-Desouky A, El-Kenawy S, El-Ghamrawy S (2019) An imbalanced big data mining
framework for improving optimization algorithms performance. IEEE Access 7:170774-170795

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Mai Shawkat' - Mahmoud Badawi®? - Sally EI-ghamrawy*® - Reham Arnous® -
Ali El-desoky?

Mai Shawkat
shawkatmai @ gmail.com

Mahmoud Badawi
engbadawy @mans.edu.eg

Communications and Information Engineering Department, Faculty of Engineering, Mansoura
University, Mansoura, Egypt

@ Springer

https://doi.org/10.1109/ACCESS.2020.3009006
https://doi.org/10.1109/ACCESS.2020.3009006
https://doi.org/10.1007/s00521-020-04862-2
https://doi.org/10.1109/ACCESS.2021.3071777
https://doi.org/10.1109/ACCESS.2021.3071777
http://www.cs.waikato.ac.nz/ml/weka
http://orcid.org/0000-0002-5430-390X

5506 M. Shawkat et al.

Department of Computer Science and Informatics, Taibah University, Medina, Saudi Arabia

Department of Computer Engineering and Systems, Faculty of Engineering, Mansoura
University, Mansoura, Egypt

Computer Engineering Department, MISR Higher Institute for Engineering and Technology,
Scientific Research Group in Egypt (SRGE), Mansoura, Egypt

Computer and Systems Engineering Department, Delta Higher Institute for Engineering
and Technology (DHIET), Mansoura, Egypt

@ Springer

	An optimized FP-growth algorithm for discovery of association rules
	Abstract
	1 Introduction
	2 Related works
	3 The proposed modified FP-growth algorithm
	4 Results analysis and discussion
	4.1 EXP 1: classifier processing time
	4.2 EXP 2: execution time evaluation
	4.3 EXP 3: memory consumption evaluation
	4.4 EXP 4: number of generated association rules

	5 Conclusion
	References

