
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:4850–4881
https://doi.org/10.1007/s11227-021-04061-3

1 3

Scalable blockchain storage mechanism based on two‑layer
structure and improved distributed consensus

Chunlin Li1,2 · Jing Zhang2 · Xianmin Yang3

Accepted: 26 August 2021 / Published online: 10 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Existing public blockchain architectures suffer from the difficulty of scaling to sup-
port large-scale networks with high TPS, low latency and security. Using the idea
of network fragmentation, an improved Raft-based PBFT consensus mechanism
is proposed to solve the problem. The network nodes are grouped, and the group
adopts the improved Raft mechanism for consensus, and then, the leaders elected in
each group form the network committee, and the network committee uses the PBFT
mechanism for consensus within the network committee. The results show that
R-PBFT is more scalable than PBFT and Raft in a large-scale network environment
because it can guarantee high consensus efficiency while having Byzantine fault tol-
erance; similarly, to improve the fairness between user experience and TPS in block-
chain systems, based on the transaction fairness model, a fairness packing algorithm
is proposed for storing transactions. It is based on a two-level model, firstly sorting
the transactions in descending order based on GasPrice, moreover considering the
fairness model for descending order. The experimental confirmed that all the perfor-
mance of fairness packing is superior to Ethereum packing.

Keywords Public blockchain · Consensus mechanism · R-PBFT · Raft · Fairness
model

 * Chunlin Li
 chunlin74@aliyun.com

1 CAAC Key Laboratory of Civil Aviation Wide Survellence and Safety Operation Management
& Control Technology, Tianjin, China

2 School of Computer Science and Technology, Wuhan University of Technology,
Wuhan 430063, China

3 Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information
Science, Neijiang Normal University, Neijiang 641100, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04061-3&domain=pdf

4851

1 3

Scalable blockchain storage mechanism based on two‑layer…

1 Introduction

Blockchain [1] is a decentralized, traceable, tamper-evident, distributed database
maintained by multiple parties. Data are stored as distributed storage on multiple
nodes. The core of blockchain includes consensus mechanism, distributed stor-
age, cryptography and smart contracts. Blockchain generates data and updates
data through a distributed node consensus algorithm and securing blocks based
on cryptographic; blockchain programs and manipulates data through smart con-
tracts automatically generated by script code; blockchain has gained widespread
use in areas requiring credit authentication [2]. Among them, the consensus
mechanism focuses on solving the consistency problem of distributed systems,
aiming to ensure the consistency of data copies maintained by all nodes and avoid
the occurrence of data disparity and information asymmetry problems. Different
scenarios have different needs for the scalability, consensus efficiency and pri-
vacy of consensus mechanisms [3, 4].

Although blockchain has received widespread attention and is rapidly emerg-
ing, it is still in the development stage and therefore faces many challenges, such
as performance and throughput issues (The average transaction TPS of bitcoin is
7 per second and confirmation delays of up to 1 h, and most blockchain systems
are currently unable to meet the throughput requirements of centralized trading
systems), energy consumption issues (proof-of-work blockchains often require
extremely high arithmetic power consumption), security and convenience issues
(news of key loss and theft of cryptocurrency wallets is endless), etc. Blockchain
often requires extremely large amounts of arithmetic power consumption, secu-
rity and convenience issues (cryptocurrency wallets are inundated with news of
lost and stolen keys), etc. In addition, blockchain protocols need to make trade-
offs and compromise among "scalability," "security" and "decentralization."

The main contributions of this paper are as follows:

(1) Existing public blockchain architectures suffer from the difficulty of scaling to
support large-scale networks with high TPS, low latency and security. Based
on PBFT and Raft consensus mechanism and introducing a consistent hash
algorithm, a two-layer consensus mechanism, R-PBFT, is proposed to solve the
problem. the outer layer groups nodes, the group elects Leaders as representa-
tives and designs supervisory nodes to prevent malicious nodes; the inter-group
forms a committee together through Leaders and passes consensus through Raft.

(2) In order to improve the fairness between user experience and TPS in blockchain
systems, a fair packing algorithm for stored transactions is proposed based on
the transaction fairness model by introducing Jain’s fairness index [5]. This
model first sorted the transactions in descending order based on GasPrice, and
then in descending order based on fairness index. Through experiments, it has
been experimentally demonstrated that the fairness packing algorithm largely
outperforms the Ethereum packing algorithm for different transaction entry rates,
block generation times, block sizes and transaction read rates.

4852 C. Li et al.

1 3

(3) For the experimental demonstration of the proposed algorithm, a virtual block-
chain environment was constructed through servers and computers. The com-
plexity and diversity of node resources in a blockchain network are represented
by the division of many virtual machines with different CPU cores and hard
disks.

The rest sections of this paper are organized as follows: The related work is dis-
cussed in Sect. 2; A Raft-based improved Byzantine fault-tolerant consensus algo-
rithm for public blockchains is proposed in Sect. 3; a fairness packing algorithm in
the Ethernet based on Jain’s fairness index is proposed in Sect. 4; the experimental
environment and the performance of algorithms are discussed in; Sect. 5; the work
of this paper and future work is concluded in Sect. 6.

2 Related work

With the continuous development of blockchain technology, how to use blockchain
to replace existing distributed databases has become a hot issue [6]. Blockchain
is still in its infancy of development, and although it is developing rapidly there
are still many problems in terms of performance, smart contracts and consensus
mechanisms.

Currently, Bitcoin [7] has a theoretical throughput of 7 TPS (Transaction per sec-
ond). Ether [8] has a throughput of 25 TPS, which is not a significant improvement.
Hyperledger fabric, a representative of the federated chains, achieves throughputs of
more than 2000 TPS, but it is still not enough to replace existing practical solutions.
Therefore, analyzing the performance bottlenecks of blockchain and performing tar-
geted optimization has become one of the important directions of current blockchain
research.

Blockbench, developed by TTA Dinh et al. at the National University of Singa-
pore, is the first testing method to analyze the performance of private blockchain.
Blockchain is abstracted into four layers: data layer, consensus layer, application
layer and execution layer [9]. Blockbench evaluated the performance of Hyperledger
Fabric and Parity in terms of throughput, scalability, latency and fault tolerance
[10]. Thakkar et al. of the National Institute of Technology, India, experimented
with Hyperledger Fabric [11] by parameter tuning and proposed some optimiza-
tion methods accordingly. Gorenflo et al. at the University of Waterloo increased the
throughput of Hyperledger Fabric from 3000 TPS to 20,000 TPS by changing the
system architecture of the fabric [12]. Pongnumkul et al. at the National Electronics
and Computer Technology Center in Thailand tested the performance of Ether and
Hyperledger Fabric [13], but with a somewhat homogeneous selection of workload
types. Rouhani et al. of the University of Saskatchewan compared the performance
of two different Ether clients [14]. Li et al.’s resource management strategy based on
cost and user experience in edge cloud environment is a feasible idea in blockchain
environment [15, 16]. Ampel et al. at the University of Arizona experimentally iden-
tified a number of problems with Sawtooth that still need to be addressed [17]. Hao

4853

1 3

Scalable blockchain storage mechanism based on two‑layer…

et al. from Beijing University of Posts and Telecommunications studied how the pri-
vate blockchains are affected by consensus algorithms [18]. In addition, many other
teams have studied the performance of blockchain systems [19–24].

The theory of smart contracts was first proposed in 1994 by cryptographer
Nick Szab and defined smart contracts. Current research on the application areas
and development prospects of smart contracts is more focused. For example,
AmjadQashlan et al. proposed a smart contract model to ensure the security of IoT
smart appliances for the application of smart contracts in home life [25]; Li et al.
proposed a optimal task scheduling strategy can be obtained according to the Dijk-
stra shortest path algorithm based on Fibonacci heap [26, 27]; Shi-ChoCha et al.
developed a data framework of security for blockchain smart contracts in smart-
phone information security and proposed countermeasures to establish a risk pre-
vention and control model using blockchain smart contracts [28]; in addition, there
are also studies on smart contract regulation such as Markus Knecht, Burkhard
Stiller developed a platform for the deployment and management of smart contracts
in response to the difficulty of managing smart contracts [29].

As for the consensus mechanism, the existing consensus mechanisms include PoS
[30], PoW [31], DPoS [32] Practical Byzantine fault tolerance [33], Paxos [34], Raft
[35], etc. Classical blockchain consensus algorithms have many drawbacks, and the
most discussed one should be the scalability issue. Therefore, scholars have pro-
posed many solutions, for example, Bitcoin-NG [36] and Byz-Coin [37]. The key
block uses the classical PoW algorithm for leader election, and transactions are per-
formed in microblocks. In addition, to prevent double-spending attacks, Bitcoin-NG
introduces a "poison transaction" mechanism [38]. ByzCoin is a further improve-
ment based on Bitcoin-NG and PBFT protocols. It separates the leader election and
transaction confirmation in the original scheme, where the PoW algorithm remains
in charge of conducting the leader election, while the transaction is immediately
confirmed with the help of PBFT committee verification. In prototype experiments,
ByzCoin achieved Paypal-quantity throughput with a confirmation wait time of
15–20 s [37]. However, they still associate PoW with leader elections and introduce
other complex consensus mechanisms (e.g., BFT), which can significantly reduce
their efficiency in extreme cases. Li et al. improved PoS by developing a distrib-
uted block system that is more adapted to the digital economy [39]; Karakostas et al.
prevent attacks on nodes with weaker arithmetic in the PoW consensus by means
of checkpointing and timestamping [40]; Howard et al. compared the advantages,
disadvantages and differences between the Paxos and Raft algorithms in distributed
consensus [40]. Practical Byzantine Fault Tolerance (PBFT) is one of the common
blockchain consensus mechanisms [41]. Compared with it, Raft algorithm will be
more efficient. Raft is commonly accepted and applied as a consensus algorithm in
distributed systems. Its principle is briefly described as follows: each node must be
in one of three states: follower, leader or candidate. A follower becomes the leader
if it wins the leader election and continues to send heartbeats to other nodes after
becoming the leader. If the follower does not receive a heartbeat within the mini-
mum election timeout period, then it enters the leader election process. This pro-
cess is the core of Raft algorithm and is called leader election. Raft algorithm is
simplified from Paxos algorithm [42], which does not include leader election as an

4854 C. Li et al.

1 3

important element and is more decentralized and facilitates nodes to balance the
load [43, 44]. However, the implementation of the Paxos algorithm requires a com-
plex architecture and is difficult to apply in practice. Raft is widely used because its
security is comparable to the Paxos algorithm and it is easy to understand and build
the architecture.

In addition, blockchain-based distributed storage has gained widespread atten-
tion and application [45, 46], and it has been quite a reliable means of secure data
storage. In terms of existing research results, Rizun theoretically analyzed the input
costs and operational benefits of data nodes and empirically constructed the demand
and supply curves of blockchain systems and their equilibrium states [47]. Li pro-
posed a content placement method, which can effectively solve the content place-
ment problem by considering cost and latency factors and have an inspiring effect on
blockchain storage [48]; Moser and Bohome constructed a service processing prior-
ity model using queuing theory and empirically examined the effect of service cost
on the waiting time for service requests [49].

3 An improved PBFT consensus mechanism based on Raft

3.1 Introduction to R‑PBFT consensus mechanism

In order to provide a consensus algorithm with high scalability, low latency, high
security and high TPS, this section proposes an improved PBFT consensus mecha-
nism based on Raft —R-PBFT, by combining the security of PBFT with the advan-
tages of high consensus efficiency of Raft. The schematic illustration is shown in
Fig. 1.

R-PBFT consensus mechanism groups the blockchain network nodes, and the
leaders are elected to form a committee using Raft within each group, and PBFT is
used for consensus within the committee. In addition, supervisory nodes are intro-
duced to ensure the security of the algorithm.

3.2 Node grouping strategy

This section introduces the design idea of consistent hashing and utilizes the char-
acteristics of balance, spread and monotonicity of it to propose the node grouping
strategy applicable to R-PBFT.

The result of the consistent hashing is a 32-bit type integer, according to which
the hash values of the node mapping can be distributed on a circle from 0 to 232.
The consistent hashing algorithm ensures that the nodes are distributed as evenly as
possible and equalizes the load of leaders within each group, and its monotonicity
reduces the impact of node joining and exiting on the group.

The nodes grouping strategy using the consistent hashing algorithm is shown in Fig-
ure 2. Let every supervisory node be assigned to each r groups. The supervisory node s
is no less than 2r. Groups are set to 6 (with three virtual nodes), and every supervisory
node is assigned to each three groups, then s ≥ 2. When the number of groupings is too

4855

1 3

Scalable blockchain storage mechanism based on two‑layer…

little to cause data skewing problem due to uneven enough slicing, it means that some
of the slices are carrying most of the nodes, resulting in load imbalance. Therefore,
this paper also introduces the concept of virtual nodes of consistent hashing algorithm
to expand the number of groupings by setting multiple virtual groupings for the actual
groupings to make the groupings more uniform.

A grouping form of R-PBFT is given here as Fig. 3.
The node grouping algorithm based on consistent hashing algorithm is presented as

below.

Fig. 1 R-PBFT consensus
mechanism

4856 C. Li et al.

1 3

Fig. 2 Nodes grouping strategy

Fig. 3 Example of node grouping: each group contains a leader node, two supervisory nodes and three
normal nodes; each supervisory node is assigned to two groups; Group A contains nodes 1, 2, 3, 4, 5, 15;
Group B contains nodes 5, 6, 7, 8, 9, 10; Group C contains nodes 10, 11, 12, 13, 14, 15

4857

1 3

Scalable blockchain storage mechanism based on two‑layer…

3.3 Supervision strategy for supervisory nodes

For Raft algorithm, the supervision node plays an important role in improving its
security. The supervision node enables Raft to resist Byzantine malicious nodes.

Supervisory nodes exist anonymously in Raft; one or more supervisory nodes
may exist within a group after grouping; supervisory nodes also participate in mul-
tiple groups and do not participate in Leader elections; supervisory nodes ostensibly
follow the Leader as Follower to prevent the Leader from targeting them for fraud.

Raft adds a signature verification part to the consensus. The Leader signs the
message when sending it to the Follower. Supervisory nodes verify the signatures
and compare the contents after receiving messages from different Leaders as a way
to determine whether they are Byzantine malicious nodes.

The supervision strategy of the supervisory nodes is shown in Fig. 4, which is
divided into three stages: evidence collection, evidence presentation and verification.

4858 C. Li et al.

1 3

(1) Evidence collection: When performing Raft intra-group consensus, supervisory
nodes can receive messages sent by Leader to Follower in multiple groups at the
same time. First, verify their signatures and then compare whether the messages
sent by multiple Leader nodes are the same. If there is a Leader node with dif-
ferent messages from other Leader nodes, it can be judged as a malicious node
and enter the evidence presentation stage.

(2) Evidence presentation: The supervisory node packages the messages of the mali-
cious node into a verification message < V, t, i, No > and sends the message to the
node management service. Where V is the message identifier, t is the timestamp,
i is the message, and No is the node number of the supervisory node.

(3) Verification: The node management service judges the public key and other mes-
sage of the cited malicious node according to the content of the cited evidence
to verify and cite the legality and makes a verdict on whether to remove the
malicious node.

3.4 R‑PBFT consensus algorithm

3.4.1 Pre‑Prepare stage

R-PBFT consensus is divided into two stages before and after PBFT consensus and
Raft consensus. The PBFT stage is divided into several smaller stages, which will be
explained below.

In the Pre-Prepare stage, the master node broadcasts a Pre-Prepare message to the
other nodes. < PP, v, No, t, i, st > is the message format. PP is the message identifier
of Pre-Prepare stage; v is view; st is node’s signature. The same parameters will not
be stated twice.

The second step is the Prepare stage, where the Prepare messages are fed back
after the other nodes receive the information from the master node. < P, v, No, t, i,
st > is the message format. After the master node receives more than 2f messages,
Prepare-Collect messages will be broadcast to other nodes. < PC, v, No, t, info1,
st > is the message format. info1 is all messages received by the master node, t is
the timestamp. After the node receives the message and verifies that it is correct, it
proceeds to the next stage.

Finally, there is the commit phase. The node that passed the verification in the
previous step sends a message to the master node. < C, v, No, t, i, st > is the message
format, i.e., Commit message. The master node will broadcast the message when it

Fig. 4 Supervision strategy for supervisory nodes

4859

1 3

Scalable blockchain storage mechanism based on two‑layer…

receives more than 2f messages. < PC, v, t, info2, st > is the message format. After
passing the validation of other nodes, new blocks are generated into the blockchain.

If there are 2f Prepare messages pass the verification, the node enters the Com-
mit stage. The process of the Commit stage is similar to the Prepare stage. After the
node enters the Commit stage, it sends a Commit message to the primary node p in
the format of < C, v, No, t, i, st > , where v is the view number, No is the message
sequence number.

When the primary node p receives 2f + 1 messages from different consensus
nodes (including itself), view number v, and sequence number No, it will broad-
cast Commit-Collect message to all consensus nodes. The message format is < PC,
v, t, info2, st > . After the consensus node n receives the Commit-Collect message,
it confirms whether there are 2f + 1 correct Commit messages info2 sent by differ-
ent consensus nodes. After successful confirmation, the block is added to the local
blockchain to complete the consistency process.

3.4.2 Raft consensus stage

After entering the Raft consensus stage, the Leader broadcasts a message to the Fol-
lower, the Follower receives the message and gives feedback, the Leader determines
whether consensus is reached based on the feedback message and submits the log.
After the consensus is completed, reply to the client.

4860 C. Li et al.

1 3

3.4.3 R‑PBFT consensus algorithm

4861

1 3

Scalable blockchain storage mechanism based on two‑layer…

4 Block generation and blockchain storage based on fairness
packing

4.1 Block generation

Transactions are stored on blocks, and blocks are successfully generated to mark
the end of the transaction cycle. Block generation is the process by which min-
ing nodes pack the received transactions into blocks and find the random number
nonce to meet the mining difficulty by hash collision, which mainly includes two
parts: selecting the transactions and PoW mining. A legitimate block is required
to gain consensus from other nodes, and in order to guarantee the legitimacy of
the block, the legitimacy of the transactions must be guaranteed, so the min-
ing nodes will only choose legitimate transactions to pack into blocks. Figure 5
shows the node mining process.

To verify the legitimacy of the new block. It will broadcast to the neighboring
nodes. Mining nodes are rewarded for generating new blocks, including a fixed
block reward and a variable transaction fee reward. When mining nodes generate
blocks, packing as many transactions into the blocks as possible can maximize
the mining nodes’ transaction fee income while achieving block expansion. This
chapter focuses on how nodes verify the legitimacy of transactions and blocks,
and how mining nodes select transactions to maximize transaction fee revenue to
achieve block expansion.

4.2 Transaction legitimacy verification

Newly generated transactions are passed to neighboring nodes via broadcasts, and
the legitimacy of the transactions is then verified through them. If the transaction
is legitimate, it will be put into the transaction pool or isolated transaction pool and
wait to be packed into the block and will also broadcast the transaction to neighbor-
ing nodes. Of course, the transaction will be discarded if it is not legal. The legiti-
macy validation rules are as follows; a transaction needs to satisfy all of the follow-
ing rules at the same time to be considered legitimate and is not legitimate if it does
not satisfy one of the rules.

(1) Transactions are not packed into block.
(2) Transaction data conform to the version specification, including the way the

transaction data is organized, the content of the fixed fields, the length of other
fields, etc.

(3) The volume of the transaction is less than or equal to the largest transaction
volume and greater than or equal to the smallest transaction volume.

(4) Validate the transaction input. The transaction input list cannot be empty; if the
input list is not empty, go to validate the transaction input. For each transaction
input, the UTXO used is not used by an exchange in the blockchain, i.e., the
UTXO used does not exist in the UTXO pool; the unlock script provided in the
transaction input is verified to be valid; any of the transaction inputs is verified

4862 C. Li et al.

1 3

Fig. 5 Mining node block gen-
eration flow chart

4863

1 3

Scalable blockchain storage mechanism based on two‑layer…

to be valid; no two transaction inputs can use the same UTXO in the transac-
tion input. If the transaction input references a Coinbase transaction, then the
Coinbase transaction needs to get more than 100 confirmations, as well as the
signature length of the Coinbase field needs to be between 2 and 100 bytes.

(5) Verify the transaction output. If the transaction output list is empty, the trans-
action is not legitimate. If the output list is not empty, then go ahead and vali-
date the transaction output. For each transaction output, if the transaction out-
put amount is negative or less than the specified minimum transaction output
amount, the transaction output is invalid. Of course, the transaction output
amount cannot be arbitrarily large, or at least cannot exceed the amount of coins
in the whole network. If there exists a transaction output that is verified to be
invalid, then the whole transaction will also be considered illegitimate.

(6) The output amount of the transaction is not less than the transaction input
amount.

4.3 Blockchain storage based on transaction packing fairness

To address the problems encountered in using Ethereum as blockchain technology
for data storage, this section establishes a transaction fairness model, designs an
Ethereum blockchain packing algorithm, optimizes the Ethereum blockchain trans-
action processing process and improves the fairness of the system in the process of
conducting storage transactions.

In addition, this section establishes a transaction fairness model, designs a pack-
ing algorithm, optimizes the Ethereum blockchain transaction processing flow and
proposes a solution to the problems encountered in the process of data storage by
Ethereum blockchain technology.

5 Transaction processing in the Ethereum blockchain

5.1 Transaction fairness model

First, Jain ’s Fairness Index is defined:

Transaction fairness is defined according to it. Assuming that transaction ti is
uploaded at time si , confirmed at time vi. the response time ri for ti is defined as

Assume that n transactions that have been processed by the system t1, t2,… , tn
Response time is r1, r2,… , rn . The fairness of the system is defined as follows:

(1)J
(
x1, x2,… xn

)
=
(∑n

i=1
xi

)2
/

n ⋅
∑n

i=1
x2
i

(2)ri = vi − si

4864 C. Li et al.

1 3

Assuming that a submitted transaction ti is submitted at time si , the waiting
time wi for the transaction at time tw is

Given the waiting time of n transactions t1, t2,… , tn in the transaction cache
pool as w1,w2,… ,wn each block is packed with m transactions, and packing
the first m transactions with the longest waiting time can achieve the maximum
fairness.

Proof Suppose the transactions in the given transaction cache pool are listed
in descending order of waiting time, and the set of transactions is obtained as
T =

{
t1, t2,… , tn

}
 where the waiting time of transactions is w1,w2,… ,wn . Define

Strategy1 as the above packing policy, i.e., pack the first x transactions with the
longest wait time.

Now suppose there exists another packing strategy Strategy2, which achieves
greater fairness. The order of packaged transactions for this Strategy2 is
p1, p2,… , px . It is the order of arrangement different from the previous packaged
approach. Define y as the number of blocks obtained by this packing method.
Based on the above assumptions, Eq. (4) can be obtained.

According to the two packing strategies, x transactions are chosen to pack into
blocks each time, so the set of transactions can get ⌈n∕x⌉ blocks. Equation can be
obtained according to the packing methods of the two strategies.

Although the packing methods are different, the objects being packed are all transac-
tion sets T, so Eq. (6) can be obtained.

Suppose the time to generate a batch of transactions into a block is tg , the
response time per transaction using the packing Strategy1 is

t response time per transaction using the packing Strategy2 is

(3)F
�
t1, t2,… , tn

�
=

(
∑n

i=1
ri)

2

n
∑n

i=1
r2
i

(4)wi = tw − si

(5)
x∑

i=1

wi >

x∑

i=1

wpi

(6)∀2 < y < n∕x,

x∑

i=1

wi >

x∑

i=1

wpi

(7)
x∑

i=1

wi >

x∑

i=1

wpi

(8)w1 + tw,w2 + tw,… ,wx+1 + 2tw,… ,wn + ⌈n∕x⌉tw

4865

1 3

Scalable blockchain storage mechanism based on two‑layer…

Thus, the fairness results of the two strategies are shown in Equation (9)and
(10).

Because greater fairness is assumed to be achieved by Strategy2, it follows
that:

(9)wp1
+ tw,wp2

+ tw,… ,wpx+1
+ 2tw,… ,wpn

+ ⌈n∕x⌉tw

(10)FStrage1 =

�∑x

i=1
2(wi + ⌈i∕x⌉tw)

�2

x
∑x

i=1
(wi + ⌈i∕x⌉tw)2

(11)FStrage2 =

�∑x

i=1
2(wpi + ⌈i∕x⌉tw)

�2

x
∑x

i=1
(wpi + ⌈i∕x⌉tw)2

Fig. 6 Blockchain packaging
algorithm flowchart based on
transaction fairness model

4866 C. Li et al.

1 3

Since the two strategies act on the same set of transactions, it follows that:

According to Eqs. (9), (10), (11) and (13), it can be known that:

Expanding Eq. (14) yields Eq. (15):

From Eqs. (12) and (15):

By adding up Eqs. (4), (5):

(12)FStrage1 < FStrage2

(13)
x∑

i=1

w2
i
>

x∑

i=1

w2
pi

(14)
x�

i=1

�
wi + ⌈i∕x⌉tw

�
>

x�

i=1

�
wpi + ⌈i∕x⌉tw

�

(15)x ⋅

x�

i=1

�
wi + ⌈i∕x⌉tw

�2
> x ⋅

x�

i=1

�
wi + ⌈i∕x⌉tw

�2

(16)

n�

i=1

w2
i
+

n�

i=1

�
⌈n∕x⌉tw

�2
+ 2

n�

i=1

�
wi⌈n∕x⌉tw

�
>

n�

i=1

w2
pi
+

n�

i=1

�
⌈n∕x⌉tw

�2
+ 2

n�

i=1

�
wpi⌈n∕x⌉tw

�

(17)
n�

i=1

�
wi + ⌈n∕x⌉

�
>

n�

i=1

�
wpi + ⌈n∕x⌉

�

Fig. 7 Block-out process

4867

1 3

Scalable blockchain storage mechanism based on two‑layer…

By adding up equations (16), (17):

Simplify Eq. (18) to get formula (19):

Obviously, Eq. (19) contradicts Eq. (6) and therefore concludes that there is no
fairness strategy greater than Strategy1, i.e., sorting transactions by wait time and
selecting the transaction with the longest wait time for packaging can achieve maxi-
mum system fairness.

5.1.1 Blockchain packing algorithm based on transaction fairness model

The blockchain packing algorithm based on the transaction fairness model consists
of two main parts: The first part is based on the Ethereum packing transaction pro-
cess, which sorts the set of waiting packing transactions that satisfy the nonce value
in descending order of GASPrice, and this part still sorts the set of transactions
according to the principle that Ethereum packs transactions with large GASPrice
first. The second part is to consider the fairness packing. To achieve maximum fair-
ness in the system, the transactions with the same GASPrice are sorted in reverse
order according to the waiting time, and the transactions with long waiting time are
packed first. After the above two parts, the returned transaction set sequence is the
final packaged transaction sorting result considering both the principle of GASPrice

(18)
⌈n∕x⌉−1�

i=1

ix�

j=1

wj >

⌈n∕x⌉−1�

i=1

ix�

j=1

wpj

(19)

⌈n∕x⌉
n�

i=1

wi =

⌈n∕x⌉−1�

i=1

ix�

j=1

wj +

x�

i=1

�
wi⌈n∕x⌉

�
>

⌈n∕x⌉−1�

i=1

ix�

j=1

wpj +

x�

i=1

�
wpi⌈n∕x⌉

�
= ⌈n∕x⌉

n�

i=1

wi

(20)
x∑

i=1

wi =

x∑

i=1

wi

Fig. 8 Block-out system

4868 C. Li et al.

1 3

priority packing and for achieving the maximum fairness of the system. The pseudo-
code is presented in Algorithm 3, and its flowchart is shown in Fig. 6.

4869

1 3

Scalable blockchain storage mechanism based on two‑layer…

5.2 Block‑out method based on node verification

In the previous section, a fair packing algorithm is proposed to pack the transac-
tions; in this section, how to broadcast the blocks obtained from packing is stud-
ied (see Figure 7).

Step 1: The transaction information is obtained by the sorting node and
assigned to the N verification nodes.

(1) In this scheme, the transaction information in the system is first detected by
the sorting node and assigned to verification nodes, for example, sorting node
assigns transaction information detected within a period of time (e.g., 10 min)
to the N verification nodes.

(2) Among them, the sorting node may assign the transaction information to the N
verification nodes according to the predetermined assignment rules, for example,
the sorting node assigns the transaction information to the N verification nodes
in order of the time of receiving the transaction information; or the sorting node
divides the acquired transaction information into N copies and assigns them to
the N verification nodes, respectively.

Table 1 Experimental
environment

Equipment parameters Related properties

CPU Intel(R) Xeon(R) CPU E5-2630 v4
Hard disk 16.00 GB RAM
Blockchain platform Hyper ledger fabric v1.1
System environment Linux, Ubuntu 16.04
Container Apache 2.0 protocol, Docker
Development language Python, C + + , go
Testing tools Hyper ledger Caliper

1000

10000

100000

1000000

10000000

100000000

50 100 150 200 250 300 350 400co
m

m
un

ic
at

io
n

ov
er

he
ad

(b
it/

s)

Number of nodes

R-PBFT PBFT

Fig. 9 Comparison of the communication overhead between R-PBFT and PBFT

4870 C. Li et al.

1 3

Step 2: The N verification nodes verify the transaction information from the
sorting node and send the verified transaction information to the block node.

1. When a new transaction is generated, the transaction initiator broadcasts the
transaction, and the sorting node receives the generated transaction and validates
the transaction information. That is, when a new transaction is generated in the
system, the legitimacy of the transaction initiator needs to be verified as well as
verifying that the transaction initiator’s wallet is not being used fraudulently.

Unlike the prior art system where each node validates the transaction informa-
tion, in this scheme, each transaction information assigned is validated by the
N validation nodes assigned to the transaction information. The verification of
the transaction information by the verification nodes includes the verification
of the transaction initiator’s wallet address and the verification of the initiator’s
signature.

2. The legitimacy of the transaction initiator’s wallet can be verified by the address
of the initiator’s wallet, whereas the address of the initiator’s wallet is related to
the public key, verifying transaction initiator’s wallet means verifying it’s public
key. Optionally, transaction initiator’s wallet address can be verified through a
collection of public keys maintained by the system.

3. Further, to prevent the wallet from being used fraudulently, the initiator signs the
initiated transaction. Then public key of the transaction initiator can be used by
verification node to verify the signature, thereby verifying the legitimacy of the
transaction information.

In this scheme, N verification nodes perform the above verification on each
received transaction message, and after the verification is completed, the verified
transaction message is sent to the outgoing block node.

Step 3: The verified transaction information from said N validation nodes is pack-
aged and blocked by the blocking node.

10

100

1,000

10,000

1,00,000

0 20 40 60 80 100

C
on

se
ns

us
 la

te
nc

y

Number of nodes

R-PBFT(4 groups)

R-PBFT(10 nodes a
group)
Raft

Fig. 10 Comparison of the consensus latency between R-PBFT and PBFT

4871

1 3

Scalable blockchain storage mechanism based on two‑layer…

(1) The block-out node receives the verified transaction information from the N veri-
fication nodes, and since the transaction information has already been verified by
the verification nodes, the block-out node can directly package the transaction
information for block-out (see Fig. 8).

In this scheme, the above-mentioned sorting nodes, verification nodes and block-
out nodes are selected from M alternative nodes, and M is greater than the sum
of the number of sorting nodes, verification nodes and block-out nodes. There are
many alternative nodes set up in the blockchain. Sorting nodes, verification nodes
and block-out nodes are determined from the alternative nodes.

(2) The above alternative nodes are all nodes that satisfy certain conditions, such
as asset balance, activity and integrity value all satisfy the preset values. Asset
balance refers to the parameter used to measure the available assets of a node,
such as the balance of virtual currency held by the node.

(3) Activity refers to the parameters used to measure the node’s activity in logging
into the blockchain system and participating in block issuance, such as logging
time and number of block issuance, etc. Integrity value refers to the parameters
used to measure the node’s trustworthiness, such as whether there are forged
transactions, etc.

6 Results of experiments

6.1 Experimental result of R‑PBFT consensus algorithm

The PBFT consensus mechanism requires two nodes to communicate, and the
communication traffic is O(n2). The communication traffic of the Raft consensus
mechanism is O(n), and through network partitioning, the communication traffic of
R-PBFT decreases from O(n2) to O(n/k) + O(p2) compared to the PBFT consensus

0

1

2

3

4

5

6

7

12 14 16 18 20 22 24

TP
S(

t/s
)

x
10

00
0

Number of nodes

R-PBFT(4 groups)

R-PBFT(3 nodes a group)

PBFT

Fig. 11 Comparison of the TPS between R-PBFT and PBFT

4872 C. Li et al.

1 3

mechanism. The simulation sets the message content m = 256 bit, message size
r = 80 bit for replying client, and heartbeat packet size h = 64 bit for Raft consensus
process in one consensus process.

The consensus latency of this algorithm is the time from when the request was
initiated to when the request is acknowledged and uploaded to the chain. The aver-
age of 30 consecutive measurements is taken as the consensus latency of the algo-
rithm, and the data of the proposed algorithm R-PBFT and the comparison algo-
rithms PBFT and Raft are recorded separately for the same network size.

In blockchain systems, TPS is defined as the number of transactions M divided by
the transaction processing time t, i.e., each node can listen to requests from clients,
so a client program is bound for each node. All requests are finally collected and
packaged by the master node and propagated to other nodes through the consensus
mechanism. The block output interval is set to 10 s, and the stable 10 sets of data in
the database are taken after 5 min of system operation. The average of the 10 stable
data sets in the database is taken as the system TPS for this test.

Let f1 , f2 be integers greater than 0. Raft nodes’ groups m ≥ 2f1 + 1, and groups
g ≥ 3f2 + 1. Each r groups are assigned a supervisory node (s ≥ 2), and assuming the
same number of nodes in groups, the total number of nodes N satisfies:

(21)TPS =
M

t

(22)N = gm −
[g
s
(s − 1)

]
− [l(s − 1)]

(23)l =

{
0, g mod s = 0

1, g mod s ≠ 0

}

0

50

100

150

200

250

0 50 100 150 200 250 300

M
ax

im
um

 n
um

be
r

of
 e

rr
or

 n
od

es
 to

le
ra

te
d

Number of nodes

RBFT

Raft

PBFT

Fig. 12 Comparison of the fault tolerance between R-PBFT and PBFT

4873

1 3

Scalable blockchain storage mechanism based on two‑layer…

Maximum fault tolerance for the PBFT consensus stage is (g-1)/3, and the maxi-
mum fault tolerance for the Raft stage is (m-1)/2. With the participation of supervi-
sory nodes, the maximum fault tolerance of R-PBFT is:

The simulation is set to assign one supervisory node to each three groups (i.e.,
s = 3) and assume that the amount of nodes contained in all groups is the same.
Table 1 shows the experimental environment.

(24)

F ≤
g − 1

3
m +

(
s −

g − 1

3

)(
m − 1

2
− 1

)
+

[(
g −

g − 1

3

)
−

(
s −

g − 1

3

)](
m − 1

2

)

= 4f1f2 + 2f2 + f1 − s

(a) Avg.Response Time (b) Avg. Ethash Time

0

10

20

30

40

50

60

75 175 275 375 475 575

A
vg

.R
es

po
ns

e
T

im
e(

s)

Transactions Incoming Rate(t/s)

Fairness packing
algorithm

Ethereum packing
algorithm

20

21

22

23

24

25

26

75 175 275 375 475 575

A
vg

. E
th

as
h

Ti
m

e
(h

/k
s)

Transactions Incoming Rate(t/s)

Fairness packing
algorithm

Ethereum packing
algorithm

Fig. 13 The influence of the transactions incoming rate on the experimental

(a) Avg.Response Time (b) Avg. Ethash Time

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12

A
vg

.R
es

po
ns

e T
im

e(
s)

Block Generation Time(s)

Fairness packing
algorithm

Ethereum packing
algorithm

10

15

20

25

30

35

2 4 6 8 10 12

A
vg

.E
th

as
h

T
im

e
(k

h/
s)

Block Generation Time(s)

Fairness packing
algorithm

Ethereum packing
algorithm

Fig. 14 The influence of the block generation time on the experiment

4874 C. Li et al.

1 3

6.1.1 Communication overhead

Figure 9 shows a comparison of the communication overhead between R-PBFT and
the PBFT consensus mechanism. It can be seen that the communication overhead of
R-PBFT is much smaller than that of PBFT in the whole blockchain network. For
example, when the amount of network nodes is 117, the communication overhead of
the PBFT is much smaller than that of the blockchain network. The communication
overhead of the classical PBFT consensus mechanism is 3.49×106 bit. The commu-
nication overhead of R-PBFT is 4.11×104 bit, and the communication overhead is
reduced by 98.8%. As the amount of nodes increases, R-PBFT saves more commu-
nication overhead than PBFT.

6.1.2 Consensus latency

The results of the consensus latency of the PBFT and the comparison algorithm are
presented in Fig. 10. Consensus latency grows gradually as the increasing nodes.
PBFT algorithm grows the fastest, and Raft grows the slowest. For R-PBFT, increas-
ing nodes and keeping nodes constant while increasing the number of groups causes
higher consensus latency compared to keeping the groups constant while increas-
ing the nodes, as shown in Fig. 10 for R-PBFT (amount of nodes in the group: 10)
and R-PBFT (number of groups: 4). This is because increasing the groups essen-
tially expands the committee size and increases the consensus elapsed time in the
PBFT stage, so consensus latency is more affected by increasing groups. However,
the latency of R-PBFT is still much smaller than that of PBFT for the same node.
From Fig. 8, latency of PBFT increases sharply with the increase in node size, while
the latency of R-PBFT increases at a slower rate. Therefore, R-PBFT can still ensure
high consensus efficiency when the node size increases.

(a) Avg.Response Time (b) Avg. Ethash Time

10

20

30

40

50

60

70

0.4 1.4 2.4 3.4

A
vg

.R
es

po
ns

e
T

im
e(

s)

Blcok Size(kt/b)

Fairness packing
algorithm

Ethereum packing
algorithm

24
24.2
24.4
24.6
24.8

25
25.2
25.4
25.6
25.8

26

0.4 1.4 2.4 3.4

A
vg

.E
th

as
h

T
im

e(
kh

/s)

Block Size(kt/b)

Fairness packing
algorithm

Ethereum packing
algorithm

Fig. 15 The influence of the block size on the experiment

4875

1 3

Scalable blockchain storage mechanism based on two‑layer…

6.1.3 TPS(transaction per second)

The TPS test results of R-PBFT and PBFT are shown in Fig. 11. Consensus effi-
ciency is the main factor affecting TPS, and the higher the consensus efficiency, the
higher the transaction processing capacity. In addition, node concurrency is another
factor affecting TPS; the higher the node concurrency, the higher the transaction
traffic. However, the increase in block size requires higher bandwidth. (The exper-
iment uses a virtual machine to simulate the environment and does not reach the
upper limit of bandwidth, which can be equated to infinity.) Factors affecting TPS
also include the ability of each node to handle concurrent data, I/O read/write capa-
bility to the database, etc.

Figure 11 presents that the increase in nodes enhances the concurrency of nodes,
but transaction processing takes longer and TPS decreases as PBFT decreases con-
sensus efficiency when nodes increase. For R-PBFT, nodes are divided into four
groups, and when increasing nodes in the group, Sect. 6.1.3 presents that the algo-
rithm consensus efficiency is less affected and node concurrency is the main factor
affecting TPS. As nodes increases, TPS gradually increases. When nodes in a group
are fixed and groups are increased, consensus efficiency becomes the main factor
affecting TPS. As groups increase, TPS gradually decreases. However, in the same
network size, the TPS of R-PBFT is about 300% ~ 400% of that of PBFT. Therefore,
R-PBFT is more suitable for federation chain application scenarios with higher TPS
requirements.

6.1.4 Fault tolerance

Consensus efficiency and TPS are not affected by the amount of supervisory nodes
because the supervisory nodes are located in multiple groups and their communica-
tion is independent in consensus process. Therefore, the communication strength of
supervisory nodes increases, the overall communication strength of the consensus
algorithm remains unchanged. In terms of fault tolerance, an error of a supervisory

(a) Avg.Response Time (b) Avg. Ethash Time

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

A
vg

.R
es

po
ns

e T
im

e(
s)

Transactions Read Rate(%)

Fairness packing
algorithm

Ethereum packing
algorithm

24
24.2
24.4
24.6
24.8

25
25.2
25.4
25.6
25.8

26

0 20 40 60 80 100

A
vg

. E
th

as
h

tim
e

(k
h/

s)

Transactions Read Rate(%)

Fairness packing
algorithm

Ethereum packing
algorithm

Fig. 16 The influence of the transactions read rate on the experiment

4876 C. Li et al.

1 3

node is equivalent to an error of a node in all the groups containing that supervisory
node, and the maximum fault tolerance of the PBFT algorithm is given by Eq. (4) in
Sect. 5.2.4. Maximum fault tolerance performance of R-PBFT with PBFT and Raft
is compared in Fig. 12.

In Fig. 12, R-PBFT has higher fault tolerance than PBFT and Raft. The maxi-
mum fault tolerance is 2 for PBFT alone, 3 for Raft, and 4 for R-PBFT (equiva-
lent to the limit of three consensus groups of two nodes each, with one supervisory
node for each group). As the size of the nodes increases, the R-PBFT fault tolerance
increases. Therefore, R-PBFT has higher security.

6.2 Experimental result of fairness packing algorithm

Based on the transaction fairness model, blockchain packing algorithm is experi-
mented to evaluate its performance. In addition to fairness packing algorithm,
another classical blockchain packaging algorithm is selected for comparison.

The following four performance metrics are defined as important parameters for
the performance of the algorithm, respectively. They are transaction incoming rate,
transactions read rate, block generation time, block size, respectively. Transaction
incoming rate is adjusted by changing the PoW difficulty. Three other parameters
are adjusted by setting specific parameters and avg.response time (s) and avg.ethash
time (Number of hashes calculated per 1000 s, h/ks) of different algorithms are then
derived to compare the performance of the algorithms.

6.2.1 Transaction incoming rate

This section focuses on the effect of transaction incoming rate on the fairness pack-
ing algorithm. Set the block generation time to 5 s, block size to 2kt/b, and transac-
tion read rate to 100%. Transaction incoming rate in the experiment is set in the
range of 100 ~ 550(t/s), and the amount of change per step is set to 25(t/s).

When transaction incoming rate continues to increase, there will be more transac-
tions in the transaction buffer pool, and when the speed of transaction dealing can-
not keep up with transaction incoming rate, the transaction buffer pool will continue
to store more transactions. As shown in Fig. 13, the avg.response time of the fairness
packing algorithm has advantage over the Ethereum packing algorithm under differ-
ent transaction incoming rates. Avg.response time grows slowly with the increase
in task volume in the range of 100–175 (t/s) and then grows rapidly in the range of
175–550 (t/s) and it is speculated that when the transaction incoming rate is less
than 175 (t/s), there is no transaction in the transaction buffer pool, while the trans-
action incoming rate is greater than 175 (t/s), it starts to be greater than the transac-
tion dealing speed. The transaction buffer pool starts to accumulate a backlog of
transactions, resulting in a decrease in response speed.

The average ethash time of fairness packing algorithm and Ethereum packing
algorithm will continue to grow with the transaction incoming rate growth, and
eventually stop growing around 400 (t/s); The fairness packing algorithm has some
advantages over the Ethernet packing algorithm, but the advantages are not large.

4877

1 3

Scalable blockchain storage mechanism based on two‑layer…

The reason is relatively intuitive: transaction incoming rate at 100–175 (t/s) does
not reach the upper limit of the node’s processing capacity, so no matter how many
transactions incoming, they are packed into blocks; The transaction incoming rate
continues to grow, the node’s packing speed has reached the processing limit, and
the transaction starts to pile up in the transaction buffer pool and cannot be pro-
cessed in time, so the average ethash time reaches the maximum and cannot con-
tinue to rise.

6.2.2 Block generation time

How average response time and average ethash time are affected by block generation
time is studied in Fig. 14. The range of it is chosen from 2 to 12 s, and we set the
transactions incoming rate to 500 t/s, block size to 2kt/b, and transactions read rate
to 100%.

Under the premise of constant block size, the longer the block generation time,
the fewer transactions can be dealt per unit time, the speed of transaction dealing
cannot keep up with transaction incoming rate. The transaction buffer pool will
constantly stacked with new incoming transactions, making the avg.response time
longer. Overall, the response time of fairness packing algorithm is slightly shorter
than that of Ethereum packing algorithm, and the difference in performance between
the two algorithms is not significant.

The amount of transactions and ethash computation that can be dealt decreases
as the increase in block generation time. For example, when it is greater than 6 s,
because of the amount of dealt transactions is far from the upper limit of transaction
processing capacity, the performance gap between the two algorithms is not large;
when it is less than 6 s, it is close to the upper limit of transaction processing capac-
ity, which is equal to approaching the bottleneck of ethash computing capacity, and
the growth rate of avg.ethash time slows down greatly, while fairness packing algo-
rithm compared with Ethereum packing algorithm, the computational advantage of
ethash is also revealed.

In general, the performance difference between the two algorithms under differ-
ent block generation time conditions is not much, and the advantage of the fairness
packing algorithm is not significant for different block generation times.

6.2.3 Block size

Block size is a major factor affecting the transaction packing algorithm. In Fig. 15,
set the transactions incoming rate to 500 t/s, block generation time to 5 s, and trans-
actions read rate to 100%. The range of block size is set to 0.4–4.0kt/b, and the step
size is 0.2kt/b.

Firstly, the effect of block size on avg.response time can be summarized by Fig-
ure a. At 0.4–1.2 kt/b, the difference between the two algorithms is small; however,
after the block size rises larger, because the fairness packing algorithm for transac-
tion priority allocation is based on two-level allocation, it significantly outperforms
the Ethereum packing algorithm in terms of performance.

4878 C. Li et al.

1 3

Secondly, with the increase in block size, we can see that the average ethash
time has a small increase, although it intuitively feels that the average ethash time is
greatly improved due to the axis setting; in addition, the average ethash time of fair-
ness packing is slightly greater than the Ethereum packing.

6.2.4 Transactions read rate

The impact of transaction read rates on the two packing algorithms is studied in
Fig. 16. Set the transactions incoming rate to 500 t/s, block generation time to 5 s
and block size to 2kt/b. Transactions read rate is set from 0 to 100% in steps of 5%.

The first is the effect of transactions read rate on the average response time.
Because the transactions read rate affects volume of transactions dealt simultane-
ously provided that transactions incoming rate is determined. Therefore, as the
transactions read rate increases and the volume of dealt transactions becomes larger,
the avg.response time gradually decreases; when transactions read rate is close to 0,
the average response time becomes very large, and the result is unacceptable. There-
fore, the transactions read rate is better than 50%; it can be seen that the fairness
packing algorithm outperforms the Ethereum packing algorithm in terms of average
response time, especially when the transactions read rate is in the range of 0 to 50%.
When the transactions read rate is close to 100%, the difference between the perfor-
mance of the two algorithms on average response time gradually decreases, so when
testing the influence of other parameters, the transaction read rate is usually set to
100% to control the impact of the transaction read rate.

The fairness packing algorithm performs better than the Ethereum packing algo-
rithm for the average ethash time. Because the transaction volume does not reach the
upper limit of ethash computation, the increase in transaction read rate also increases
avg.ethash time; after that, the ethash computation capacity is limited and eventually
level off. The fairness packing algorithm performs much better than the Ethereum
packing algorithm in average response time for transactions read rate range 0–70%.
The advantage in average ethash time is not obvious, but the difference in algorithm
performance can still be seen.

7 Conclusion and Future Work

Based on Raft and Jain’s fairness index, an improved PBFT consensus mechanism,
R-PBFT and a two-layer structured fair packing mechanism are proposed in this
paper.

R-PBFT consensus mechanism groups the blockchain network nodes, and the
leaders are elected to form a committee using Raft within each group, and PBFT
is used for consensus within the committee. Because R-PBFT is unable to counter
Byzantine malevolence, supervisory nodes are introduced to improve its security. It
is experimentally demonstrated that R-PBFT outperforms the classic PBFT consen-
sus mechanism in terms of communication overhead, consensus latency, TPS and
fault tolerance.

4879

1 3

Scalable blockchain storage mechanism based on two‑layer…

This paper establishes a transaction fairness model, designs an Ethereum block-
chain packing algorithm, optimizes the Ethereum blockchain transaction process-
ing process and improves the fairness of the system in the process of conducting
storage transactions, to address the performance issues encountered in the use of
Ether as a blockchain technology for data storage. In addition, this paper optimizes
the Ethereum blockchain transaction processing flow and proposes a solution to the
problems encountered in the process of data storage by Ethereum blockchain tech-
nology. The fairness packing algorithm handles transaction priorities with the clas-
sical Ethereum packing algorithm in the case of different GASPrice; in the case of
the same GASPrice, the transaction priorities are handled with the fairness pack-
ing algorithm. The superiority of this algorithm in terms of performance has been
experimentally demonstrated. The fairness packing algorithm experiments with four
parameters, namely transaction incoming rate, transactions read rate, block genera-
tion time, block size. Fairness packing algorithm basically outperforms the classical
Ethereum packing algorithm under different selection conditions of each parameter
through experiment.

R-PBFT gains advantages such as high consensus rate and high throughput
because of the architecture, but also because of the architecture, there may be some
difficulties in application implementation. On the one hand, it requires higher sta-
bility of hardware, and on the other hands, it may cause difficulties in understand-
ing. Therefore, further optimization and simplification are needed to implement it at
the application level. Similarly, the fairness packing algorithm has some limitations
and faces the same problems as the consensus mechanism: The architecture is more
complex and difficult to implement for applications. Therefore, making approach
more lightweight and easier to apply is a problem that should be addressed in the
future work.

Acknowledgements The work was supported by the National Natural Science Foundation (NSF)
under grants (No. 61873341, 62171330), Key Research and Development Plan of Hubei Province (No.
2020BAB102), Open project of CAAC Key Laboratory of Civil Aviation Wide Surveillance and Safety
Operation Management & Control Technology (No.202001), Open Research Fund Program of Data
Recovery Key Laboratory of Sichuan Province (Grant No. DRX2001). Any opinions, findings and con-
clusions are those of the authors and do not necessarily reflect the views of the above agencies.

References

 1. Berdik D, Otoum S, Schmidt N et al (2021) A survey on blockchain for information systems man-
agement and security. Inf Process Manag 58(1):102397

 2. Li Y, Zheng K, Yan Y et al (2017) EtherQL: a query layer for Blockchain System[M]. In: Candan S,
Chen L, Pedersen TB, Chang L, Hua W (eds) Database systems for advanced applications. Springer,
Cham

 3. Brewer EA (2000) Towards robust distributed systems. In: Proceedings of the nineteenth annual
ACM symposium on principles of distributed computing. ACM Press, New York, 343502. https://
doi. org/ 10. 1145/ 343477

 4. Wang WB, Dinh TH, Xiong ZH et al. (2018) A survey on consensus mechanisms and mining man-
agement in blockchain networks. ar-Xiv Preprint, arXiv:1805.02707

 5. Jain RK, Chiu DMW, Hawe WR (1984) A quantitative measure of fairness and discrimination. East-
ern Research Laboratory, Digital Equipment Corporation, Hudson, MA

https://doi.org/10.1145/343477
https://doi.org/10.1145/343477

4880 C. Li et al.

1 3

 6. Yuan Y, Wang FY (2016) Blockchain: the state of the art and future trends. Acta Autom Sin
42(4):481–494

 7. Nakamoto S (2019) Bitcoin: a peer-to-peer electronic cash System. consulted
 8. Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj

yellow Pap 2014 (151):1–32
 9. Dinh TTA, Wang J, Chen G, Liu R, Ooi BC, Tan KL (2017) Blockbench: a framework for ana-

lyzing private blockchains. In: Proceedings of the 2017 ACM international conference on man-
agement of data, pp 1085-1100

 10. Kotewicz M (2021) Parity [EB/OL]. https:// github. com/ opene there um/ parity- ether eum.
Accessed 29 Mar

 11. Thakkar P, Nathan S, Viswanathan B (2018) Performance benchmarking and optimizing
hyperledger fabric blockchain platform. In: IEEE 26th international symposium on modeling,
analysis, and simulation of computer and telecommunication systems (MASCOTS). IEEE 8:
264–276

 12. Gorenflo C, Lee S, Golab L, Keshav S (2020) Fastfabric: scaling hyperledger fabric to 20 000
trans- actions per second. Int J Netw Manag 30(5):e2099

 13. Pongnumkul S, Siripanpornchana C, Thajchayapong S (2017) Performance analysis of private
blockchain platforms in varying workloads. In: 26th International conference on computer com-
munication and networks (ICCCN). IEEE, pp 1–6

 14. Rouhani S, Deters R (2017) Performance analysis of ethereum transactions in private blockchain.
In: 8th IEEE international conference on software engineering and service science (ICSESS).
IEEE, pp 70–74

 15. Li C, Bai J, Yi C et al (2020) Resource and replica management strategy for optimizing financial
cost and user experience in edge cloud computing system. Inf Sci 516:33–55

 16. Li C, Song M, Zhang M, Luo Y (2020) Effective replica management for improving reliability
and availability in edge-cloud computing environment. J Parallel Distrib Comput 143:107–128

 17. Ampel B, Patton M, Chen H (2019) Performance modeling of hyperledger sawtooth blockchain.
In: IEEE international conference on intelligence and security informatics (ISI). IEEE, pp 59–61

 18. Hao Y, Li Y, Dong X, Fang L, Chen P (2018) Performance analysis of consensus algorithm in
private blockchain. In: IEEE intelligent vehicles symposium (IV). IEEE, pp 280–285

 19. Suankaewmanee K, Hoang DT, Niyato D, Sawadsitang S, Wang P, Han Z (2018) Performance
analysis and application of mobile blockchain. In: International conference on computing, net-
working and communications (ICNC). IEEE, pp 642–646

 20. Chen S, Zhang J, Shi R, Yan J, Ke Q (2018) A comparative testing on performance of blockchain
and relational database: Foundation for applying smart technology into current business systems.
In: International conference on distributed, ambient, and pervasive interactions. Springer, pp
21–34

 21. Baliga A, Subhod I, Kamat P, Chatterjee S (2018) Performance evaluation of the quorum block-
chain platform. arXiv preprint arXiv:1809.03421

 22. Huang D, Ma X, Zhang S (2019) Performance analysis of the raft consensus algorithm for pri-
vate blockchains. IEEE Transact Syst Man Cybern Syst 50(1):172–181

 23. Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf H, Capkun S (2016) On the security and
performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC confer-
ence on computer and communications security, pp 3-16

 24. van Moorsel A (2019) Benchmarks and models for blockchain: consensus algorithms. ACM
SIGMETRICS Perform Eval Rev 46(3):113–113

 25. Qashlan A, Nanda P, He X (2020) Automated ethereum smart contract for block chain based
smart home security. In: smart systems and IoT: innovations in computing. Springer, Singapore,
pp 313–326

 26. Li C, Zhang Y, Zhiqiang H et al (2020) An effective scheduling strategy based on hyper-
graph partition in geographically distributed datacenters. Computer Netw 170:107096

 27. Li C, Tang J, Ma T, Yang X, Luo Y (2020) A workflow job scheduling algorithm based on load
balancing in distributed cloud. J Netw Comput Appl 152:102518

 28. Cha SC, Peng WC, Huang ZJ et al (2017) On design and implementation a smart contract-based
investigation report management framework for smartphone applications. In: International con-
ference on intelligent information hiding and multimedia signal processing, Springer, Cham, pp
282–289

https://github.com/openethereum/parity-ethereum

4881

1 3

Scalable blockchain storage mechanism based on two‑layer…

 29. Knecht M, Stiller B (2017) Smartdemap: A smart contract deployment and management platform.
In: IFIP international conference on autonomous infrastructure, management and security. Springer,
Cham 159–164

 30. Li A, Wei X, He Z (2020) Robust proof of stake: a new consensus protocol for sustainable block-
chain systems. Sustainability 12:2824

 31. Karakostas D, Kiayias A (2021) Securing proof-of-work ledgers via checkpointing. In: IEEE inter-
national conference on blockchain and cryptocurrency (ICBC), pp 1-5. https:// doi. org/ 10. 1109/
ICBC5 1069. 2021. 94610 66

 32. Howard H, Mortier R (2020) Paxos vs Raft: Have we reached consensus on distributed consensus?.
In: Proceedings of the 7th workshop on principles and practice of consistency for distributed data,
pp 1–9

 33. Castro M, Liskov B (1999) Practical byzantine fault tolerance. In: Proceedings of the third sympo-
sium on operating systems design and implementation. ACM Press, New York, pp 173–186

 34. Lamport L (1998) The part-time parliament. ACM Trans Comput Syst 16(2):133–169
 35. Ongaro D, Ousterhou TJ (2014) In search of an understandable consensus algorithm. In: Proceed-

ings of USENIX ATC’14: 2014 USENIX annual technical conference. USENIX association, Berke-
ley, pp 305–320

 36. Eyal I, Gencer AE, Sirer EG et al (2016) Bitcoin-ng: A scalable blockchain protocol. In: 13th {USE-
NIX} symposium on networked systems design and implementation ({NSDI} 16), pp 45–59

 37. Kogias EK, Jovanovic P, Gailly N, et al. (2016) Enhancing bitcoin security and performance with
strong consistency via collective signing. In: 25th {usenix} security symposium ({usenix} security
16), pp 279–296

 38. Eyal I, Birman K, Van Renesse R (2015) Cache serializability: reducing inconsistency in edge trans-
actions. In: 2015 IEEE 35th international conference on distributed computing systems. IEEE, pp
686–695

 39. Buterin V (2014) A next-generation smart con-tract and decentralized application platform.
Etherum 1:1–36

 40. Larimer D (2014) Delegated proof of stake consensus[R]. [2020–08–19]
 41. Xu X, Sun G, Luo L et al (2021) Latency performance modeling and analysis for hyperledger fabric

blockchain network. Inf Process Manag 58(1):102436
 42. Castro M, Liskov B (1999) Practical Byzantine fault tolerance. In: Proc Symp Oper Syst Design

Implement, New Orleans, LA, USA, pp 173–186
 43. Lamport L (1998) The part-time parliament. ACM Trans Comput Syst 16(2):133–169
 44. Moraru I, Andersen DG, Kaminsky M (2013) There is more consensus in egalitarian parliaments.

In: Proc ACM Symp Oper Syst Principles (SOSP), Farmington, PA, USA 358–372
 45. Reyna A et al (2018) On blockchain and its integration with IoT. Challenges and opportunities.

Future Gener Comput Syst 88:173–190
 46. Liang W et al (2020) An industrial network intrusion detection algorithm based on multi-feature

data clustering optimization model. IEEE Trans Ind Informat 16(3):2063–2071. https:// doi. org/ 10.
1109/ TII. 2019. 29467 91

 47. Rizun PR (2015) A transaction fee market exists without a block size limit. Block size limit debate
working paper

 48. Li C, Song M, Yu C, Luo Y (2021) Mobility and marginal gain based content caching and place-
ment for cooperative edge-cloud computing. Inf Sci 548:153–176

 49. Möser M, Böhme R (2015) Trends, tips, tolls: a longitudinal study of Bitcoin transaction fees. In:
International conference on financial cryptography and data security. Springer, Berlin, Heidelberg,
pp 19–33

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/ICBC51069.2021.9461066
https://doi.org/10.1109/ICBC51069.2021.9461066
https://doi.org/10.1109/TII.2019.2946791
https://doi.org/10.1109/TII.2019.2946791

	Scalable blockchain storage mechanism based on two-layer structure and improved distributed consensus
	Abstract
	1 Introduction
	2 Related work
	3 An improved PBFT consensus mechanism based on Raft
	3.1 Introduction to R-PBFT consensus mechanism
	3.2 Node grouping strategy
	3.3 Supervision strategy for supervisory nodes
	3.4 R-PBFT consensus algorithm
	3.4.1 Pre-Prepare stage
	3.4.2 Raft consensus stage
	3.4.3 R-PBFT consensus algorithm

	4 Block generation and blockchain storage based on fairness packing
	4.1 Block generation
	4.2 Transaction legitimacy verification
	4.3 Blockchain storage based on transaction packing fairness

	5 Transaction processing in the Ethereum blockchain
	5.1 Transaction fairness model
	5.1.1 Blockchain packing algorithm based on transaction fairness model

	5.2 Block-out method based on node verification

	6 Results of experiments
	6.1 Experimental result of R-PBFT consensus algorithm
	6.1.1 Communication overhead
	6.1.2 Consensus latency
	6.1.3 TPS(transaction per second)
	6.1.4 Fault tolerance

	6.2 Experimental result of fairness packing algorithm
	6.2.1 Transaction incoming rate
	6.2.2 Block generation time
	6.2.3 Block size
	6.2.4 Transactions read rate

	7 Conclusion and Future Work
	Acknowledgements
	References

