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Abstract
The selection of algorithm is the most critical part in the mobile robot path plan‑
ning. At present, the commonly used algorithms for path planning are genetic algo‑
rithm (GA), ant colony algorithm (ACA), and firefly algorithm (FA). Among them, 
FA is more typical. FA has the disadvantage of being easily trapped into a local 
optimal solution. In order to improve this disadvantage, this paper proposes a new 
hybrid algorithm which is based on GA and FA. The core idea of this new algorithm 
is that when the FA falls into the local optimal solution, the local optimal fireflies 
would be regarded as a group, and the group is subjected to the selection, crosso‑
ver and mutation operations in the GA. Finally, the optimal firefly individual can be 
obtained from genetic operations. Theoretical and experimental results have verified 
that the new hybrid algorithm can improve the accuracy and performance of the FA. 
Applying the new hybrid algorithm to path planning can improve the robot’s reac‑
tion ability and computing power in path planning.

Keywords Firefly algorithm · Genetic algorithm · Mobile robot · Path planning

1 Introduction

Path planning has always been a hot topic in the field of robot search and one of the 
key technologies for mobile robot technology research. The path planning of mobile 
robot is actually to select an optimal or suboptimal obstacle avoidance path that can 
be connected from the starting point to the ending point in the task area by refer‑
ring to a certain parameter. The essence is to obtain the optimal or feasible solution 
under several constraints [1].
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Path of the mobile robot can be divided into a path of a static known environ‑
ment and a path of a dynamic unknown environment. The static path planning is 
named as the global path planning, while the dynamic path planning is named as 
the local path planning [2]. Local path planning is a kind of real‑time dynamic 
path planning performed by the robot based on the local environment information 
collected by the sensors carried by the robot during the task execution. It is char‑
acterized by high flexibility and real‑time performance [3].

However, as it relies on local environment characteristics, the path obtained 
may be only local optimal rather than global optimal [4]. For global path plan‑
ning, it is first necessary to establish an abstract all‑region environment map 
model, and then obtain the global optimal or a better path on the all‑region map 
model by using the optimal searching algorithm, and finally guide the mobile 
robot to move safely toward the target point in a real situation. It mainly involves 
two parts: one is the understanding of environmental information and the con‑
struction of map model, and the second is all‑region path search and robot guid‑
ance [5].

Based on above information, this paper studies the path planning problems based 
on the static global path planning. The selection of algorithm is the most critical part 
in the mobile robot path planning. At present, the commonly used algorithms for 
global path planning are GA [6], ACA [7], and PSO [8, 9]. With the development 
of mobile robot technology, path planning technology has achieved some research 
results, but in the path planning algorithm design, each algorithm has its advantages 
and disadvantages [10]. Therefore, more and more intelligent optimization algo‑
rithms are constantly emerging [11].

In 2008, Yang proposed a new swarm intelligence algorithm‑ FA. This algorithm 
which solves the optimal searching problem by simulating the mutual attraction 
behavior of fireflies due to the light intensity is a stochastic optimization algorithm 
based on the intelligence of biota [12].

FA is a genetic calculation method between GA and evolutionary programming 
[13]. Similar to other algorithms, it is also based on groups. However, instead of 
using the evolutionary operators, it treats each individual as a particle without a vol‑
ume in the search space, moving freely in the search space. In the mobile search, the 
mobile distance is determined by the luminous intensity and light intensity absorp‑
tion coefficient of its surrounding companions [14].

FA has the common characteristics of group intelligence algorithms: (1) they all 
have group‑based optimization technology, that is, there are multiple search tracks, 
which have strong ease of implementation and parallelism; (2) they only need to use 
the value of the target itself, which is very versatile [15]. Because of the easy imple‑
mentation and strong versatility of FA, more and more scholars combine it with var‑
ious optimization problems.

FA has a short history of development. Although it has certain advantages over 
other algorithms in terms of optimization speed and accuracy, there are still some 
problems to be solved in the FA [16]. For example, the algorithm is easy to fall into 
the local optimal solution; the performance of the algorithm is too dependent on the 
selection of parameters; the algorithm is prone to premature convergence during the 
implementation process, etc [17, 18].
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Motivated by the above work, this paper studies the optimization of FA to solve 
the problem that the FA is easy to fall into the local optimal solution. In the face 
of problem that the FA is easy to fall into the local optimal solution, some schol‑
ars have proposed different optimization strategies. Among them, dynamic adap‑
tive parameter strategy is more typical [19]. The core idea of this strategy is to use 
dynamic formulas to update the adaptive parameters so that they finally meet the 
condition that all fireflies can converge to one point. However, a large number of 
simulation results show that the dynamic adaptive strategy has some errors in the 
implementation process, and the parameter update speed is slow [20].

This paper proposes a new genetic firefly algorithm (GFA), which is based on 
FA and GA. The core idea of this new algorithm is that when the FA falls into the 
local optimal solution, the local optimal fireflies would be regarded as a group, and 
the group is subjected to the selection, crossover and mutation operations in the 
GA. Finally, the optimal firefly individual can be obtained from genetic operations. 
Experimental results show that the new algorithm has a faster optimization speed 
than dynamic adaptive parameter strategy, and can solve the problem that FA is easy 
to fall into the local optimal solution. The main contributions of this paper are as 
follows: 

(1) We successfully combined the FA with the GA and propose a new hybrid algo‑
rithm based on this model.

(2) The hybrid algorithm can not only solve the problem that the FA is easy to fall 
into the local optimal solution, but also improve the performance of the FA.

(3) Hybrid algorithm can improve the computing power and reaction speed of 
mobile robot in path planning.

(4) Compared with other algorithms, the hybrid algorithm has higher superiority 
and better research significance.

The specific content of this paper is as follows. The FA with its mathematical model 
and GA with its mathematical model are introduced in Sect. 2. The mathematical 
model of GFA and optimization experiment are also described in Sect. 3. Applica‑
tion in path planning and simulation results are reflected in Sect. 4. Finally, some 
concluding remarks and future works are drawn in Conclusions.

2  Mathematical models of algorithms

2.1  Mathematical model of FA

The search process of the FA relies on the attractiveness between individuals to pro‑
duce movement, that is, the brighter fireflies have bigger attractiveness and always 
attract the darker fireflies to move to them. Each firefly in the group will have its 
own luminosity and correspond to a reference solution to the problem. Here, three 
kinds of remarks are required [13].
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Remark 1 Fireflies are gender‑neutral, any fireflies can be attracted by better 
(brighter) fireflies;

Remark 2 The attractiveness of fireflies is directly proportional to their luminosity. 
For any two fireflies, the darker firefly move toward brighter firefly;

Remark 3 If there is no fireflies brighter than the given fireflies, fireflies will move 
randomly;

According to the principle that darker fireflies are attracted to brighter fireflies, 
the position and luminosity of fireflies would be constantly updated, so as to find 
the brightest firefly and complete the optimization process [15].

For any two fireflies Xi and Xj (i ≠ j) , their attractiveness can be expressed as 
follows:

 where A0 is the attractiveness when r = 0.
The parameter � represents light absorption coefficient, which is always set as 

a constant. rij is the distance from Xi and Xj , which is defined by the following:

where d = 1, 2, 3, ...,D, and D is the number of maximum problem dimensions [21].
The luminosity of fireflies is related to the objective function, and its definition 

is as follows:

where Li represents the luminosity of the firefly Xi , and Lij represents the relative 
luminosity between Xi and Xj . L0 is the absolute luminosity at r = 0.

Similarly, for Xi and Xj , the darker firefly always moves to the brighter one, 
assuming that Xi is darker than Xj , then the process that Xi moves to Xj can be 
defined as follows:

where � ∈ [0, 1] represents the step factor. � is a random value uniformly distributed 
in the range [−0.5, 0.5] , and t is the iteration number [21].

Algorithm 1 represents the pseudo code of the FA, where Tmax is the maximum 
number of iterations and N is the maximum number of populations. 

(1)Aij(rij) = A0e
−�r2 ij .

(2)rij =
‖
‖‖
Xi − Xj

‖
‖‖
=

√√√
√

D∑

d=1

(xid − xjd)
2
.

(3)Lij(rij) =L0e
−�r2 ij .

(4)Li(ri) =L0e
−�r2 i .

(5)xid(t + 1) = xid(t) + A(rij) × (xjd(t) − xid(t)) + ��.
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2.2  Mathematical model of GA

GA uses a certain coding method to map the solution space to the coding space. 
Each code corresponds to a solution of the problem, which called an individual or 
chromosome, and then randomly determines the starting group of individuals, which 
can be called a population.

In subsequent iterations, individuals are first selected based on the size of fitness 
value, and then individuals are crossed and mutated according to various genetic 
operators. After these operations, a new population will be generated, which is more 
adaptable to the environment than the previous generation. This continues until the 
optimization criterion is met [22]. Finally, the decoded last‑generation individual 
can be used as the optimal solution to the problem [23].

The three main operations in genetic operations are selection, crossover, and 
mutation. Among them, the selection operation (selection operator) is used to deter‑
mine the crossover individuals, that is, which individual will be copied according to 
the individual’s fitness value; the crossover operation (crossover operator) refers to 
replacing and reorganizing the partial structure of the two parents to generate new 
individuals.

The role of crossover operation is to generate new individuals, which is also a 
genetic operation that plays a central role in GA. Various crossover operators 
include two basic contents: (1) Pair individuals randomly and decide whether each 
pair needs crossover operation according to the preset crossover probability [24]. (2) 
Set the intersection of paired individuals, and exchange part of the structure of these 
paired individuals;

Mutation operation (mutation operator) refers to the inverse change of certain 
gene values of individuals in a group. There are two aims in the mutation operation: 
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(1) Make GA have local random search ability. (2) Maintain the diversity of groups 
[25]. The operation of the mutation operator is generally divided into two steps: (1) 
The loci are randomly determined within the code string range of all individuals 
in the population [26]. (2) The gene values of these loci are mutated with a preset 
mutation probability [27].

The basic process of GA can be summarized as follows: 

(1) A certain number of initial populations are randomly generated, and each indi‑
vidual is expressed as a gene code of a chromosome;

(2) Calculate the fitness of each individual, and judge whether it meets the optimi‑
zation criteria. If it meets, output the best individual and end the calculation, 
otherwise go to step 3;

(3) Select regenerative individuals based on fitness. Individuals with high fitness 
have a high probability of being selected, while individuals with low fitness may 
be eliminated;

(4) Perform crossover and mutation operations to generate new individuals;
(5) Get a new generation of population and return to step 2.

The pseudo code of the GA is shown in Algorithm  2, where N is the maximum 
population and T is the maximum number of iterations. 

2.3  Defect verification

Although the FA has good performance on many optimization problems, it still has 
some shortcomings. For example, the optimization performance depends on the set‑
ting of control parameters, the convergence speed is slow, and it is easy to fall into 
the local optimal solution on complex problems.

This paper will focus on the problem that the FA is easy to fall into the local opti‑
mal solution. First, we will verify the existence of shortcomings of the algorithm. 
Selecting six binary nonlinear functions as the optimization objectives, the objective 
functions are shown in Table 1.
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The reason for choosing these binary functions is that they are multimodal 
functions. As shown in Fig. 1, there are multiple local maxima in the domain of 
these functions. Once FA falls into the local optimum, some fireflies will gather 
near these local maxima.

FA is used to optimize these objective functions. Setting the number of fireflies 
to 20, the step factor � to 0.8, and the light absorption coefficient � to 0.3. The 
performance of the algorithm depends on the choice of parameters, the inspira‑
tion for parameters selection comes from [19].

Figure 1 shows the results of FA to optimize objective functions f5(x, y) and 
f6(x, y) . Among them, Figs. (a) and (b), respectively, represent the three‑dimen‑
sional function graphs of f5(x, y) and f6(x, y).

From the results shown in Fig. 1, it can be found out that the binary nonlin‑
ear functions have some local extreme points in their definition domain, and the 
maximum extreme point of the function is near (0, 0). Besides the above analysis, 
some fireflies are distributed discretely around local extreme points, and most of 
the fireflies are not near the maximum extreme point. Thus, it can be confirmed 
that FA is easy to fall into the local optimal solution.

2.4  The model of AFA

Based on the core idea of FA (dark fireflies will be attracted by bright fireflies), it 
can be deduced that in an ideal situation, all fireflies should be close to the brightest 
firefly, and eventually converge to one point [28]. So for any two fireflies Xi and Xj :

Table 1  Six binary nonlinear functions

Function Search range Global optimum

f1(x, y) =
sin x

x
+

sin y

y
x, y ∈ [−5, 5] 2

f2(x, y) = y sin(2�x) + x cos(2�y) x, y ∈ [−2, 2] 4

f3(x, y) = 0.5 +
sin

2(x2−y2)+0.5

1+0.001(x2+y2)
2

x, y ∈ [−10, 10] 1

f4(x, y) = {
5∑

i=1

i cos[(i + 1)x + i]} × {
5∑

i=1

i cos[(i + 1)y + i]}
x, y ∈ [−10, 10] 190.001

f5(x, y) =
1

[(x+1)2+(y−2)2+1]
+

4

[x2+(y+1)2+1]
+

2

[(x−4)2+(y+1)2+1]
x, y ∈ [−5, 5] 4

f6(x, y) = 1.5e[−(x−3)
2−(y−2)2] + e[−(x+2)

2−(y−4)2] + 3e(−x
2−y2)

+1.2e[−(x+4)
2−(y+1)2] + 1.5e[−x

2−(y+4)2] + 1.6e[−(x−4)
2−(y+3)2]

x, y ∈ [−5, 5] 3

Fig. 1  Simulation results
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 where i, j = 1, 2, 3, ...,N. Eq. (6) shows that all fireflies eventually converge to one 
point. Eq. (7) indicates that the position of the fireflies after convergence will no 
longer change.

According to Eqs. (1), (2), (3), (5), (6) and (7), we can get:

From Eq. (8), we can find that when the fireflies finally converge to one point, the 
step factor � will also approach to zero. Based on this inference, many scholars 
regard whether the step factor � is 0 as a condition to determine whether the FA falls 
into the local optimal solution, and have proposed a variety of adaptive firefly algo‑
rithms (AFA) [29].

The main ideas of these algorithms are to change the dynamic value of the step 
factor � to make it finally approach to 0, so as to solve the problem that the FA is 
easy to fall into the local optimal solution [30].

Some scholars have proposed the following adaptive parameter dynamic strate‑
gies to update the parameter � , and the parameter update formulas are:

It has been confirmed that the parameter update speed of AFA is slow [31]. Even in 
the face of some complicated optimization problems, AFA can not play a very good 
optimization effect [32].

3  A hybrid algorithm based on GA and FA

3.1  The model of GFA

In this section, this paper introduces a new hybrid algorithm – GFA . The core 
idea of the GFA is that when the FA falls into the local optimal solution, the local 

(6)lim
t→∞

Xi(t) = lim
t→∞

Xj(t),∀i ≠ j.

(7)lim
t→∞

Xi(t + 1) = lim
t→∞

Xi(t).

(8)

lim
t→∞

Xi(t + 1) − Xi(t) = 0

⇒ lim
t→∞

Aij(rij) × lim
t→∞

(Xi(t) − Xj(t))

+� × lim
t→∞

� = 0

⇒ A0 × lim
t→∞

e−�r
2
ij × lim

t→∞
(Xi(t) − Xj(t))

+� × lim
t→∞

� = 0

⇒ 0 + � × lim
t→∞

� = 0

⇒ lim
t→∞

� = 0.

(9)�(t + 1) = (1 −
t

Tmax

)�(t).

(10)�(t + 1) = (
1

9000
)
1

t �(t).
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optimal fireflies would be regarded as a group while the luminosity formula would 
be regarded as the fitness function. Then, the group will be genetically operated to 
obtain the brightest firefly [33].

The algorithm model of GFA is as follows: Suppose there are n fireflies trapped 
in local optimal solution, and each firefly has its own luminosity. Considering the 
luminosity expression formula as a fitness function, then each firefly has its own fit‑
ness value corresponding to its luminosity [34].

By regarding n fireflies trapped into the local optimal solution as a parent group, 
selection operation, cross operation and mutation operation are performed to the parent 
group to finally obtain the brightest firefly through continuous genetic iterations [35].

However, according to the algorithm model of FA, all fireflies trapped in the local 
optimal solution will approach the brightest firefly. So, there must be a firefly Xj , 
its fitness value (luminosity) Ij is greater than other fireflies [36]. This phenomenon 
will lead to the highest probability of Xj being selected in selection operation. Based 
on this theory, this paper introduces a selection operation method of roulette wheel 
[37].

Roulette wheel selection method, also known as ratio selection method, its basic 
idea is dividing the ratio on the roulette according to the individual fitness value. 
When rotating the wheel, the number of the pie chart pointed by the pointer changes 
continuously [38].

Finally, roulette wheel would be stationary, and the number which is pointed by 
the pointer will be the number selected by the roulette wheel [39]. The model of 
roulette wheel can be described as follows:

Assuming that there are n individuals in a group, and the fitness value of i is fi , 
then the probability that i will be selected is as follows:

The cumulative probability can be expressed as follows:

It can be drawn from Eqs. (11) and (12) that when the fitness value of i is the largest, 
the corresponding selection probability is also the largest. However, this paper finds 
that if the fitness value of an individual is much larger than the fitness value of other 
individuals, its proportion in the disc pie chart will also be much larger than the pro‑
portion of the pie chart occupied by other individuals [40].

In this case, the roulette wheel selection method will converge prematurely or 
even fail. In order to improve the convergence of roulette wheel selection method 
and prevent its premature convergence, this paper proposes a new selection prob‑
ability formula:

(11)Pi =
fi∑
fi
, i = 1, 2, 3, ..., n.

(12)CPi =

i∑

j=1

Pi.

(13)Pi = Z ×
fi∑
fi
, i = 1, 2, 3, ..., n,
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where Z is the proportional function and its expression is as follows:

If the fitness value of an individual is much larger than the fitness value of other 
individuals. Through Eqs. (12) and (13), the proportion in the disc pie chart can 
be adjusted, and the roulette wheel selection method can be prevented from prema‑
turely converging. The new roulette wheel selection method is applied to the GFA, 
and the pseudo code of the GFA is sorted out as shown in Algorithm 3. 

 The basic process of GFA can be summarized as follows:

(14)Z =
fi − fmin

fmax − fmin

×
1

n − 1
.
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Step 1: Population initialization—generate N fireflies(solutions) Xi , 
i = 1, 2, ...,N , and compute the fitness value of each firefly based on Eqs. (3) and 
(4).

Step 2: Firefly movement—If the fitness value f (Xi) is better than f (Xj) , Xj 
moves toward Xi based on Eq. (5) and compute the new fitness value of Xj.

Step 3: Judgment condition—If �Xj
≠ 0 , Put new f (Xj) obtained in step 2 into 

Set H.
Step 4: Genetic manipulation—Regard luminosity value as fitness value, select 

parents from H to create offspring. Evaluate Pi and CPi of each firefly based on Eqs. 
(12) and (13). Then, simulate the operation of roulette and pick out offspring.

Step 5: Other operations—Perform crossover and mutation operations to gen‑
erate new individual.

Step 6: Termination condition—Get a new generation of population and 
return to step 2.

Figure 2 shows the Schematic flowchart of GFA.
In the previous section, we used some binary nonlinear functions to prove that 

the FA is easy to fall into a local optimal solution. In this section, we will focus 
on using the proposed algorithm to solve this problem. Still choose f5(x, y) and 
f6(x, y) shown in Table 1 as the objective functions. Setting the number of fireflies 
to 20, the step factor � to 0.8, and the light absorption coefficient � to 0.3. Finally, 
simulation results are shown in Fig. 3.

As shown in Fig. 3, GFA can make the fireflies finally approach the maximum 
extreme point of the function. Thus, proposed algorithms can solve the problem 
that the FA is easy to fall into the local optimal solution.

In addition, this paper sorts out the simulation results of two algorithms when 
optimizing the objective functions, as shown in Fig. 4. Table 2 summarizes the 
computational results (Function value and Number of iteration) of these tow 
algorithms.

As shown in Table 2, for these 6 binary nonlinear functions, both algorithms 
have found maximum values of the functions. However, it is worth noting that the 
number of iterations required by the two algorithms for optimization is different.

Specifically, for most functions, GFA requires fewer iterations than AFA. For 
example, for f5 and f6 , GFA only needs 3 or 4 times to calculate the optimal value of 
the function. In a sense, it can be confirmed that GFA has faster calculation speed 
than AFA, and can solve the problem that the FA is easy to fall into the local optimal 
solution faster.

Of course, it is not enough to rely on the computational results shown in Table 2 
to prove the competitiveness of the proposed algorithm. The performance of GFA is 
reflected experimentally.

3.2  Simulation analysis

In this section, we will conduct more experiments to verify the competitiveness 
of the proposed algorithm, we select another nine famous test functions to test the 
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performance of GFA. The expressions of the famous test functions are shown in 
Table 3, the global optimum values of these functions are all 0. At the same time, we 
introduce some other algorithms for comparison. The selected algorithms are listed 
below:

Standard FA (FA)—[13].
Genetic Algorithm (GA)—[22].
Sparrow Algorithm (SSA)—[41].
Adaptive Parameters FA (AFA)—[19].
Particle Swarm Algorithm (PSO)—[42].
Whale Optimize Algorithm (WOA)—[43].

Fig. 2  The schematic flowchart of GFA
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Set the problem dimension D to 50, the maximum population N to 100, the maxi‑
mum iteration number Tmax to 1000, the light absorption coefficient � to 0.8, and the 
step factor � to 0.6. In the experiment, above selected algorithms were all run 100 
times. The inspiration for parameters selection comes from [19].

It is worth noting that a fixed initial population should be used for all experiments 
to ensure the fairness of the experiment. In addition, for any algorithm and its vari‑
ants, we use the same initial parameters.

Finally, simulation results were obtained, as shown in Fig. 5, where the abscissa 
represents the number of iterations, and the ordinate represents the best function 
value.

From the results shown in Fig. 5, it can be found out that for these nine test 
functions, the function values optimized by these algorithms are different, where 
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Fig. 3  Nonlinear optimization results by using GFA, AFA
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the results obtained by GFA and GA are often better than other algorithms. In 
particular, for most test functions, the optimization effect of the FA is not good.

In order to identify the best algorithm, the Friedman test [44] is conducted on 
the data shown in Table 4. The results are listed in Table 5.

According to Table 5, we can found out that GFA, WOA, and GA have lower 
relevance rank than AFA, FA, PSO, although the gap between these three algo‑
rithms is not large. To be specific, their relevance ranks are 1.37, 2.08, 2.29.

Lower rank represents stronger relevance, obviously, GFA achieves the best 
rank. Thus, GFA performs best in optimization for these nine benchmark func‑
tions. As compared with other algorithms, its performance is better so that better 
solutions can be produced of the test functions.

Although the proposed algorithm performs best in optimization for these 9 
benchmark functions, we still find many drawbacks in the experimental process 
for proposed algorithm. First, the proposed algorithm depends on the choice of 
parameters. Then, although proposed algorithm can solve the problem that FA 
is easy to fall into the local optimal solution, it has the problem of slow conver‑
gence. Finally, the proposed algorithm is a hybrid algorithm, on the basis of the 
original algorithm, it only maintains the diversity of the population, but does not 
improve the diversity.

4  Application in mobile robot path planning

4.1  Simulation environment

Abstractly expressing the surrounding environment of a mobile robot with a set of 
data, establishing a two‑dimensional or three‑dimensional environmental model, 
and obtaining environmental data that the mobile robot can understand and analyze 
is the basic premise of robot path planning [45].

In this paper, the grid method is used. The principle is to regard the surrounding 
environment as a two‑dimensional (three‑dimensional) plane and divide the plane 
into grids with two‑value (three‑value) information of equal area.

In each grid, the amount of information about the surrounding environment 
is stored. The grid map designed here is a 10 × 10 ( 10 × 10 × 10 ) terrain matrix, 

Table 2  Computational results 
achieved by GFA and AFA

Function GFA AFA

Value Iterations Value Iterations

f1(x, y) 2 7 2 22
f2(x, y) 3.98 18 3.982 20
f3(x, y) 1 7 1 11
f4(x, y) 190.0004 13 190.0004 21
f5(x, y) 4 3 4 14
f6(x, y) 3 4 3 12
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black areas indicate obstacles, and white areas indicate no obstacles. Path, here 
select the evaluation criteria of the shortest distance path planning, that is, the 
shortest path planning problem [46].

In addition, when using the grid method to build an environmental model, in 
order to convert the environmental information into data that can be recognized 
by the mobile robot, the serial number method is generally used to mark the envi‑
ronmental map information, that is, the grids are sequentially accumulated from 
number 0 to the last grid.

For a grid map with coordinates, each grid point has a unique coordinate. 
Assuming that the grid size is x rows and y columns, the position corresponding 
to the i‑th grid is shown in Eq. (15).

 where a is the side length of each small square pixel.
In this paper, each grid has a side length of 1 cm and its serial number is from 0 

to 99(999). Ceil(n) is the smallest integer greater than or equal to the value n, and 
mod(i, y) is the remainder of i divided by y [47].

Here, some definitions are required.

(15)
{

xi = a × [mod(i, y) − a∕2]

yi = a × [x + a∕2 − ceil(i∕x)]

Table 3  Test functions used in the experiments

Function name Function Search range Global 
opti‑
mum

Sphere
f1(x) =

D∑

i=1

xi
2

[−100, 100] 0

Schwefel 1.2
f2(x) =

D∑

i=1

(
i∑

j=1

xj)
2

[−100, 100] 0

Schwefel 2.21
f3(x) =

D∑

i=1

��xi
�� +

D∏

i=1

xi
[−10, 10] 0

Schwefel 2.22 f4(x) = max{|x|, 1 ≤ i ≤ D} [−50, 50] 0
Schwefel 2.26

f5(x) =
D∑

i=1

−xi sin(

�
��xi

��)
[−500, 500] 0

Step
f6(x) =

D∑

i=1

�
xi + 0.5

� [−100, 100] 0

Quartic with Noise
f7(x) =

D∑

i=1

i × xi
4 + random[0, 1)

[−1.3, 1.3] 0

Rastrigin
f8(x) =

D∑

i=1

�
xi

2 − 10 cos 2�xi + 10
� [−5, 5] 0

Griewank
f9(x) =

1

4000

D∑

i=1

xi
2 −

D∏

i=1

cos(
xi√
i
) + 1

[−600, 600] 0
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Definition 1 Two‑dimensional path planning evaluation function L2D(n):

where (xn, yn) is the coordinate of the center point of the n grid, (xend, yend) is the 
coordinate of the end point of the planned path. L(n) represents the total distance of 
the planned path.

Definition 2 Three‑dimensional path planning evaluation function L3D(n):

(16)L2D(n) =

√
(xn − xend)

2 + (yn − yend)
2
.

(17)L3D(n) =

√
(xn − xe)

2 + (yn − ye)
2 + (zn − ze)

2
.
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Fig. 5  Simulation results of 9 test functions for 7 algorithms under 50 dimensions



4174 T.-W. Zhang et al.

1 3

Definition 3 Robot movement method:
Octree search strategy: the robot can move freely between adjacent grids in eight 

nearby directions during the search process. It is assumed that k is the next grid node 
to be selected, which can be defined as:

(18)k =
8

min
n=1

(L(n)).

Table 4  Computational results achieved by different seven algorithms

Bold values represent the best value for comparison between different algorithms in the experimental 
results

GFA GA AFA FA PSO WOA SSA

f1(x) Mean 2.0E-07 3.1E‑05 1.4E‑03 3.2E‑02 5.2E‑05 7.9E‑05 9.1E‑04
Best 0.0E+00 3.4E‑18 2.4E‑14 7.8E‑09 4.8E‑22 4.1E‑20 5.2E‑18

f2(x) Mean  1.6E-09 2.3E‑04 2.9E‑07 5.2E‑01 3.1E‑05 4.2E‑08 8.3E‑06
Best 0.0E+00 3.7E‑15 7.8E‑28 1.2E‑11 1.7E‑17 4.8E‑29 6.4E‑25

f3(x) Mean  8.6E-07 4.8E‑03 2.2E‑02 8.1E+00 7.3E‑05 6.9E‑03 7.9E‑04
Best 0.0E+00 9.8E‑12 8.4E‑07 7.1E‑04 9.5E‑20 5.4E‑11 3.9E‑16

f4(x) Mean 3.6E-03 5.2E‑03 1.7E‑01 8.7E‑01 1.5E‑02 8.4E‑02 2.9E‑02
Best 4.1E-08 5.8E‑07 4.1E‑06 6.8E‑05 7.7E‑07 1.6E‑06 9.3E‑07

f5(x) Mean 6.9E-08 1.6E‑07 1.8E‑03 2.6E‑01 6.9E‑07 3.7E‑04 5.3E‑07
Best 5.8E-18 9.9E‑15 4.1E‑10 3.9E‑04 4.1E‑14 8.8E‑12 3.5E‑14

f6(x) Mean 4.7E-06 8.8E‑06 4.8E‑05 1.9E‑02 9.3E‑03 8.2E‑05 3.1E‑05
Best 2.1E-11 5.9E‑10 9.3E‑10 3.9E‑03 4.1E‑04 1.2E‑09 7.8E‑10

f7(x) Mean 6.1E‑08 4.2E‑07 1.3E‑05 5.6E‑02 1.9E‑07 5.9E‑07 3.2E-08
Best 5.0E‑14 2.1E‑13 4.6E‑11 5.9E‑04 7.9E‑14 4.9E‑12 4.1E-16

f8(x) Mean 2.0E‑13 7.0E‑13 3.2E‑14 3.5E‑09 3.4E‑12 2.4E-14 4.6E‑13
Best 5.3E‑24 7.8E‑24 3.8E‑24 6.7E‑15 2.7E‑23 0.0E+00 7.1E‑24

f9(x) Mean 8.2E‑02 4.7E‑01 1.2E‑01 8.5E‑01 9.1E‑01 6.8E-02 7.1E‑01
Best 2.9E‑04 6.2E‑04 3.4E‑04 9.2E‑03 9.8E‑03 1.8E-04 6.7E‑03

Table 5  Friedman test results

Bold values represent the best value for comparison between differ‑
ent algorithms in the experimental results

Algorithm Relevance rank

AFA 3.47
GFA 1.37
FA 4.18
GA 2.29
PSO 3.18
WOA 2.08
SSA 2.73
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Definition 4 All environmental boundaries are represented by obstacles.

4.2  Simulation results and analysis

In this section, this paper applies the GFA to the path planning of mobile robot, 
and analyzes simulation results. The performance of GFA for path planning is also 
reflected experimentally, AFA, FA, and GFA are tested in the same grid environ‑
ment for many times.

The specific parameters of GFA, FA, and AFA used in path planning are shown 
in Table 6. The inspiration for parameters selection comes from [46].

In the experiment, the above‑mentioned algorithms were all operated for 200 
times. We have selected nine different grid environments to evaluate the algorithm 
for path planning, most of which are more complicated.

Table 7 shows the constraint conditions of each grid environment in 9 different 
grid environments, where Start represents the starting point number in 2D (3D) 
environments, End represents the ending point number in 2D (3D) environments, 
and Lmin represents the shortest path length in different grid environments.

The simulation results are shown in Fig. 6, where the line marked with some 
circles represents GFA.

From the simulation results, it can be found out that three algorithms have suc‑
cessfully found a path from the starting point to the ending point, and achieved 
completing avoidance of all obstacles. To compare the advantages and disadvan‑
tages of three algorithms more effectively, the minimum path length and the num‑
ber of iterations in the same grid environment are recorded. As shown in Fig. 7.

Figure  7 shows the simulation results of the three algorithms in different 
dimensional grid environments. The blue waveform represents GFA, the orange 
waveform represents AFA and the red waveform represents FA. Similarly, the 
abscissa represents the number of iterations while the ordinate represents the 
minimum path length.

When algorithm finds the optimal path, the waveform will start to stabilize. In 
order to identify the best algorithm, the Friedman test [44] is conducted on the 
data shown in Tables 8 and 9. The results are listed in Table 10.

It is worth noting that in Tables  8 and 9, L(cm) represents the shortest path 
length calculated by the algorithm, T(n) represents the number of iterations 
required for the algorithm to calculate the shortest path length, and t(s) represents 
the time that it takes for the algorithm to calculate the result.

From the data resulting in Table  10, some conclusions can be drawn. As far 
as the algorithm alone is concerned, both L and T achieve better relevance ranks 
than t with this conclusion is valid in both 2D and 3D environments. To be spe‑
cific, the relevance ranks for L are 1.00, 2.92, 2.89, and 1.78, which means that L 
achieves the best rank.

Thus, for these nine different grid environments, L is an important parameter for 
evaluating path planning, while T is ranked behind it.
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In the case of the comparison between the three algorithms, the rank for L cal‑
culated by GFA is lower than the ranks calculated by the other two algorithms in 
different dimensions.

In addition, the Friedman test [44] results of three algorithms (overall) for these 
different 9 grid environments are also recorded in Table 10. In detail, their relevance 
ranks are 1.09, 2.92, 1.95 under 2D environment and 1.10, 2.94, 1.97 under 3D envi‑
ronment, which means that GFA achieves the best rank.

Thus, GFA performs best in path planning for these 9 grid environments. As 
compared with other algorithms, its performance is far better so that better path 
solutions can be produced under different grid environments.

Table 6  Simulation parameters Parameter GFA FA AFA
Value Value Value

Coefficient of disturbance (�) 0.2 0.2 0.2
Firefly induction radius (R) 20 20 20
Number of iterations (T) 100 100 100
Number of firefly (N) 200 200 200
Step factor (�) 0.8 0.8 0.8
Light absorption coefficient(�) 0.3 0.3 0.3
Crossover probability 

(
Pc

)
0.6 − −

Mutation probability 
(
Pm

)
0.2 − −

Induction radius expansion (R) 20 20 20

Table 7  Environmental 
parameters

Environment Start End Lmin(2D) Lmin(3D)

Value Value Value Value

E1 4(4) 86(854) 8.2 25.9
E2 11(11) 87(864) 9.0 27.2
E3 0(0) 88(874) 14.2 26.6
E4 0(0) 88(874) 14.8 25.0
E5 0(0) 88(874) 11.3 25.3
E6 0(0) 99(984) 18.8 26.6
E7 5(5) 85(844) 6.9 26.0
E8 5(5) 85(844) 8.6 24.8
E9 5(5) 85(844) 9.0 25.0
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5  Conclusion

As mentioned above, GFA can solve the problem that the FA is easy to fall into the 
local optimal solution faster, so that fireflies trapped into the local optimal solution 
converge to one point at a faster rate.

As verified by the theoretical and experimental results, GFA outperforms other 
algorithms on most of the test functions, it usually takes less iterations to find the 
optimal value of the function. Moreover, as compared with other algorithms, GFA 

Fig. 6  Path trajectory in different environments
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Table 8  Computational results achieved by three algorithms in different 2D environments

GFA(2D) FA(2D) AFA(2D)

L(cm) T(n) t(s) L(cm) T(n) t(s) L(cm) T(n) t(s)

E1 Mean 10.56 8 3.014 13.87 24 3.036 12.79 15 3.023
Best 8.35 5 3.002 9.57 19 3.016 8.89 12 3.009

E2 Mean 10.16 12 3.086 16.13 23 3.173 14.31 19 3.115
Best 9.52 8 3.035 10.47 16 3.146 9.65 13 3.082

E3 Mean 17.14 11 3.055 19.33 57 3.133 18.76 16 3.094
Best 15.66 7 3.021 16.49 49 3.106 16.49 11 3.051

E4 Mean 19.52 9 3.023 22.57 30 3.092 20.31 21 3.086
Best 16.83 6 3.009 18.79 26 3.077 18.49 14 3.037

E5 Mean 13.85 16 3.481 21.34 41 3.732 19.08 27 3.428
Best 11.42 14 3.343 17.75 36 3.711 16.52 23 3.300

E6 Mean 23.19 17 3.092 23.67 33 3.137 23.72 31 3.081
Best 19.15 12 3.052 21.70 30 3.086 21.66 26 3.068

E7 Mean 9.32 10 3.208 10.23 25 3.214 10.14 18 3.213
Best 7.97 8 3.162 8.66 19 3.193 7.05 12 3.175

E8 Mean 12.24 7 3.081 13.08 18 3.080 12.37 14 3.031
Best 11.78 4 3.013 12.06 14 3.059 8.83 11 3.017

E9 Mean 12.88 9 3.554 18.50 24 3.918 14.60 12 3.652
Best 9.46 6 3.541 15.11 18 3.893 13.39 10 3.606

Table 9  Computational results achieved by 3 algorithms in different 3D environments

GFA(3D) FA(3D) AFA(3D)

L(/cm) T(/n) t(/s) L(/cm) T(/n) t(/s) L(/cm) T(/n) t(/s)

E1 Mean 27.33 14 4.253 37.80 47 4.804 32.34 31 4.211
Best 26.58 9 4.162 35.11 38 4.662 29.10 27 4.177

E2 Mean 27.93 18 3.579 31.82 33 4.280 32.86 26 3.700
Best 27.52 15 3.271 30.69 26 4.156 29.19 18 3.516

E3 Mean 28.02 15 5.082 32.95 58 5.201 30.33 33 5.131
Best 26.87 11 5.078 30.87 45 5.184 28.04 21 5.099

E4 Mean 28.44 13 5.018 33.27 32 5.105 30.53 34 5.069
Best 28.04 12 5.012 31.46 31 5.070 30.08 25 5.027

E5 Mean 26.06 17 3.188 30.14 25 3.411 29.52 23 3.293
Best 25.77 8 3.142 28.82 19 3.310 28.79 19 3.179

E6 Mean 30.46 28 7.433 38.90 51 7.726 36.03 28 7.201
Best 29.72 22 6.612 35.24 48 6.922 35.66 20 6.839

E7 Mean 29.29 16 4.517 30.18 44 6.301 29.34 29 4.713
Best 28.12 12 4.329 28.56 35 5.226 26.83 24 4.479

E8 Mean 27.20 10 3.631 31.25 34 4.037 30.48 19 3.994
Best 25.13 6 3.580 30.50 29 4.006 30.26 18 3.849

E9 Mean 26.44 26 4.334 30.26 49 4.430 27.46 38 4.302
Best 26.18 15 4.318 29.99 42 4.381 25.66 27 4.285
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shows better algorithm performance, which is more suitable for solving practical 
problems.

Applying the GFA to the path planning of mobile robots can improve the comput‑
ing power and reaction speed of mobile robots, which also can make mobile robots 
find a route to avoid obstacles more quickly in different dimensional environment.

The final experiments also show that when GFA optimizes the path planning, 
it can be shown to yield better solutions. As opposed to FA and AFA, GFA tends 
to show better competitiveness which means that it has good research value and 
significance.

There are still many points for improvement in the research work of this paper, 
such as how to apply the GFA in other fields, how to apply the GFA in a dynamic 
grid environment, and how to improve the performance of the GFA from other 
aspects.
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