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Abstract
Cloud computing is a suitable platform for workflows that work with massive data 
and big data. Through virtualization, cloud computing converts physical infrastruc-
tures to virtual machines (VMs). Virtual machines can meet fluctuating and dynamic 
requests through simpler management. Workflow scheduling in cloud computing is 
important, concerning the fact that proper scheduling can enhance the efficiency of 
the cloud and good scheduling can cause energy consumption reduction. As energy 
efficiency is one of the most important issues in cloud computing, in this paper a 
new statistical analysis-based algorithm is suggested for defining similarities of 
input workflows. The proposed algorithm, which is called massive data similarity 
statistics analysis algorithm (MSSA), classifies virtual machines into virtual clusters 
and it executes scheduling by reforming the virtual clusters. Furthermore, MSSA 
investigates the similarities of message passing in two different periods; it decides 
for the next period, and finally, carries out the load balancing by a new method for 
transferring the machines in virtual clusters. The results of simulation with Cloud-
Sim show that the proposed algorithm is more energy efficient in comparison with 
traditional methods, like FIFO, and heuristic methods such as BlindPick, and rela-
tively new method, named eOO as well as makespan. The main parameter for com-
paring is makespan and energy consumption. The results showed that the proposed 
method is more energy efficient compared with similar algorithms and it reduced the 
makespan significantly.

Keywords Big data · Cloud computing · Scheduling

 * Maziyar Grami 
 maziyar.grami@yahoo.com

1 Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

http://orcid.org/0000-0001-9006-2632
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04016-8&domain=pdf


4262 M. Grami 

1 3

1 Introduction

Nowadays, organizations, companies, and social networks store and produce a 
great deal of data [1]. Managing these data requires powerful computational and 
storage systems, one of which is cloud computing. Cloud computing is a grow-
ing paradigm that provides computational and dynamic resources based on a pay-
per-use model for a wide range of usage [2]. Virtualization technology is one of 
the main bases of cloud computing [3]. Virtualization hides the heterogeneity of 
computational resources, and cloud users can meet their fluctuating requests eas-
ily [4]. Cloud computing not only is popular in business but also due to cost-
effectiveness, reliability, fault-tolerant, high ability, and scalability has gained a 
reputation in academic communities. Users in cloud computing do not need to 
possess new infrastructures. These requirements can be best fulfilled based on the 
demands of users anywhere in the world [3, 5].

Workflows are a famed programming method in distributed computational 
infrastructures, like the cloud. Workflows, which are in working with massive 
data and big data, are, like scientific workflows, highly demanded to form vari-
ous infrastructures. Infrastructure provision for massive data is challenging and 
the existing resource management and scheduling methods may not be responsive 
to these requirements [6]. Workflows fall into two categories including computa-
tion intensive and data intensive. The advantages of cloud computing in execut-
ing data-intensive workflows are a virtual execution environment, on-demand 
resource provision, and elasticity [7]. In this paper, both of the mentioned work-
flows are accepted as input.

Scheduling in the cloud, especially when this platform is used for massive data 
analysis and dynamic less predictable workload enter the clouds, has a signifi-
cant role in cloud computing efficiency [8]. Massive data workflow scheduling in 
the existing resources pertains to NP-Hard problems [9]. Big data dynamic task 
scheduling is a big challenge since it requires a great deal of repetition. There-
fore, this real-time scheduling is necessary for enhancing the efficiency of task 
execution. Reaching optimal scheduling contains a lot of difficulties. The issue of 
scheduling becomes more important and more complicated in dynamic scenarios 
for workflows that work with big data and massive data and when jobs are imple-
mented on an elastic cloud, like Amazon EC2 and IBM RC2 [3]. On the other, 
energy consumption is the other important problem in cloud computing. Using 
a better scheduler causes less makespan and better use of resources; as a result, 
it can cause better energy consumption [5]. In these problems, a large space and 
high overhead for the creation of optimal scheduling is regarded as a great chal-
lenge. Finding an optimal solution is most often so costly that a sub-optimal one 
would suffice. Instead of searching in all the possible situations, sub-optimal 
solutions investigate a limited number of them.

So the other part of this paper is focused on the energy consumption of the 
proposed method and comparing it with other methods. Scientific workflows 
and big data need high-performance computing infrastructures. They need large-
scale data centers, consuming a large amount of energy. Because of the growing 
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request for using these large data centers, reducing the energy consumption of the 
hardware was not a responsive method. Moreover, there are worse problems that 
arise from high power consumption; for example, using strong cooling systems 
can overheat other resources and it can cause a reduction in other hardware’s life-
time, or it can cause increasing carbon dioxide emissions and intense greenhouse 
effect.

Likewise, the proposed algorithm firstly offers a sub-optimal solution and during 
job execution, regarding the conditions, attempts to improve the throughput meas-
ure. This algorithm, which is abbreviated as MSSA, makes physical machines and 
servers available in the form of identical virtual machines. Virtual machines (VMs) 
are mount in virtual clusters (VCs). This mounting is done according to the number 
of input workflow types. After the random initial scheduling, the scheduler decides 
on the continuation of the scheduling process at end of time at the same intervals 
based on input workflows similarity. If there is no need to change the strategy of 
scheduling due to similarity, scheduling will continue in the manner of the previous 
period. Otherwise, the schedule will change with clusters reforming considering the 
load of each VC. Throughout the change in the arrangement of clusters, it endeavors 
that the VMs, with regard to message passing among clusters and load balancing, 
migrate from clusters with a low load to ones with a higher load. Considering elas-
ticity in cloud computing, VM migration is executed quite easily, especially in VCs. 
As it was mentioned, the scheduler adapts itself with the conditions and if there is 
a sudden change in the type of input workflows, the selfsame scheduler can han-
dle it. Scheduling and execution phases are carried out in a parallel way. In other 
words, during the execution of the workflows in the ti period, necessary analyses for 
decision making in the ti+1 period can be done in a separate machine. This helps an 
excessive overhead not be imposed on the system. On the other hand, if there is no 
change in the input workflows, the scheduling will not change at all so the MSSA 
overhead dramatically decreases.

The rest of this paper is organized as follows: in Sect. 2, the most recent related 
work in the field of scheduling in cloud computing and its types are surveyed. In 
Sect. 3, the problem and its related parameters are further explained. In Sect. 4, ded-
icated to a discussion of the proposed algorithm. In Sect. 5, the results of algorithm 
evaluation and comparison with other algorithms are put forth. And in Sect. 6, the 
conclusion and future work are mentioned.

2  Related work

Workflows scheduling in cloud computing has changed into an interesting issue 
for researchers. This is probably due to the significance of proper scheduling in 
cloud efficiency and improvement in its function. Various methods with vari-
ous purposes for resource scheduling in cloud computing have been proposed 
by researchers. Madni et  al. [10] have investigated the challenges and resource 
scheduling opportunities for IaaS (infrastructure as a service) in cloud comput-
ing. They classified resource scheduling algorithm as follows: cost-aware, effi-
ciency-aware, energy-aware, load balancing, QoS, and utilization-aware resource 



4264 M. Grami 

1 3

scheduling. Each of these types, in turn, has their parameters. A scheduling 
parameter can be mono- or multi-purpose. In other words, it selects one or more 
parameters for improvement. The present article is in the field of QoS and effi-
ciency-aware including throughput and makespan parameters. Smanchat and 
Viriyapant classified workflow scheduling problems in the cloud. Their concen-
tration was on the scientific workflow scheduling in cloud computing environ-
ments. They categorized the scheduling criteria in time, cost, reliability, energy, 
and security and stated that a workflow is comprised of several tasks with a pri-
ority in their execution which is shown by DAG [11]. Alkhanak et al. suggested 
another classification for workflow scheduling approaches in a cloud comput-
ing environment. This categorization was based on cost-aware challenges. They 
divided cost-aware workflow scheduling approaches into two general groups. The 
first one is related to approaches aiming at users benefits, and the second class 
is approached focusing on cloud providers [12]. In this regard, Mansouri et  al. 
[13] have studied and analyzed some proposed schedulers in cloud computing. 
They presented algorithms in different studies based on the type of scheduling 
and compared their purposes, features, and limitations.

Zhang et al. proposed a method called multi-objective scheduling (MOS). Their 
MOS, which aimed to properly organize VCs to execute big data sets, was based on 
the ordinal optimization (OO) method, which was used to design the optimization 
of dynamic and complex systems. They developed OO in line with cloud platform 
needs. In OO algorithm, the problem is searched in the whole existing space to an 
optimal space to be found. In this algorithm, the whole space is searched just once 
and at the beginning. Their algorithm was such a one that would make the algorithm 
more flexible with respect to VCs on VMs and the creation of periods for work-
flows execution for the cloud environment. In order to measure the desirability of 
the produced scheduling at the beginning of each period, they used a two-objective 
evaluation function to reduce the costs and the time of workflows execution. At the 
end of periods, in case of lack of desirability, the algorithm searches for better VCs 
in a smaller space in comparison with the whole problem. They used their results 
for stimulation with LIGO. Due to the high overhead of their algorithm, real imple-
mentation was not possible. However, in the tests, the efficiency of their algorithm 
and also their selected scheduling for the previous algorithms, i.e., Monte Carlo and 
BlindPick, were compared and some desirable results were achieved [14].

Zhang et  al. [9] presented another method for workload scheduling in a cloud 
computing environment. Their method, which is called iterative ordinal optimiza-
tion (IOO), uses ordinal optimization in each iteration to reach sub-optimal schedul-
ing. Their method was based on elastic cloud computing which supported clustering 
existing VMs in data centers virtually. They divided total time into some periods. 
At the end of each period, the scheduling desirability metric was evaluated thanks 
to a multi-objective function which included minimization of the used memory and 
the time of workflow execution. If workflow execution is not desirable regarding the 
amount of the used memory and the time of workflow execution at the end of each 
period, the arrangement of virtual clusters in an iteration changes, to reach a sub-
optimal solution and schedules the following periods according to it. They carried 
out their tests on the IBM RC2 cloud using real workflow. Results showed that the 
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proposed method in comparison with the previous methods, like Monte Carlo and 
BlindPick, presented a suitable efficiency in terms of memory usage.

The authors of [9] in another paper [7] presented the improved method of eOO 
based on IOO. This method also does the scheduling with the clustering of VMs. 
They offered the concept of similarity to decide on making new scheduling or not. 
Their tests, like the previous paper, showed an increase in the efficiency of algo-
rithm [7].

Hanani et al. the authors did some improvement on eOO. In this paper, consid-
ering more than one parameter, a proper scheduling was created for each period. 
This scheduler was an organization for the number of virtual machines for each vir-
tual cluster, but if there was a desirable similarity between workloads of two conse-
quence periods, this procedure would was ignored. In this way, the time consump-
tion for calculations is reduced. The results showed that a more optimized solution 
is obtained in comparison with the rated methods, such as BlindPick, OO, Monte 
Carlo, and eOO in a reasonable time. The suggested method was flexible and it was 
possible to change the weight ratio of the proposed criteria in different environments 
to be consistent with different environmental conditions. The results showed that 
proposed method achieved up to 28% performance improvement in comparison with 
eOO [15].

In [16], Jafari proposed a new method for task scheduling in a cloud environment 
with the help of bee colonies. In this method, the place of food shows the possi-
ble solution of scheduling, and the makespan of a solution was a measure of qual-
ity or fitness of a solution. Experiments were done by MATLAB and they showed 
that the makespan of their proposed method was better in comparison with the other 
methods.

In [17], authors presented a bandwidth-aware Hadoop scheduling. They used 
Hadoop to apply the programming feature of MapReduce to process data in a paral-
lel way. Their innovation was considering bandwidth as a bottleneck for big data 
transferring. In this scheduling, tasks are firstly dedicated and it is guaranteed that 
each finish time will be optimal. Then, those tasks which have local replication 
will be executed. This is done to prioritize those tasks which are more executable 
without bandwidth usage. Their tests were carried out on Hadoop and their results 
showed that both of their algorithms were more efficient in comparison with the 
default scheduling of Hadoop. In the very same year, Mashayekhy et al. [18] pre-
sented energy-aware scheduling for MapReduce jobs. In that paper, they proposed a 
framework for energy consumption improvement in MapReduce. This, in turn, sup-
ported the service level agreements. They tested their scheduling algorithm on a big 
Hadoop cluster with 224 processors. Results showed that their proposed algorithm 
on average has 40% less energy consumption in comparison with ordinary schedul-
ing. Bodik et al. [19] presented a deadline-aware algorithm for big data jobs process-
ing. Their main purpose was maximizing the accomplished jobs, in which the value 
of each job depended on its finish time.

Abouelela et  al. presented a scheduling algorithm for big data using a reserv-
ing framework in optical grids. In this framework, a multi-domain hierarchically 
scheduling is suggested; because the hierarchical method guarantees that the sched-
uling algorithm would only use the dedicated resources. Their iterative scheduling 
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algorithm showed better efficiency in experiments and results proved that this algo-
rithm will be better when more data is needed and the problem is inclined toward 
big data [20]. Li et al. [21] presented a job management system architecture and a 
scheduling algorithm for big data analysis. Their job management system was a sci-
entific big data-oriented project. Their model had four layers including application, 
service, management, and infrastructure. They generated random jobs and carried 
out simulations using Java. Their proposed algorithm showed 10% more efficiency 
in comparison with other algorithms. Gautam et al. [22] worked on scheduling algo-
rithms in the field of big data processing. In effect, their framework was studying 
different scheduling algorithms that were designed and implemented for Hadoop. 
Moreover, they classified the existing algorithms and investigated their advantages 
and disadvantages in this study. Wang and Raicu [23] presented scheduling for big 
data jobs in the cloud. Their proposed method, MATRIX, was a distributed sched-
uler for big data jobs in the cloud. The main purpose of this scheduling was to reach 
load balancing. This was content-aware scheduling containing distributed queues 
for waiting, ready, running, and terminated jobs. However, they offered their work 
without any testing and it was only as a theory. Bardhan and Menascé presented an 
evaluation method for scheduling big data in computer clusters [24]. They suggested 
a trace-driven analytic model (TDAM) for evaluating different schematic effects on 
the makespan. In TDAM, not only servers are implemented, but also there is an ana-
lytical queuing containing a queue for each machine. Results showed that their algo-
rithm was better in evaluating scheduling algorithms. Zhao et al. [25] presented an 
SLA-based resource scheduling for big data analysis as a service in computational 
environments. For this purpose, they reach three aims, including maximizing the use 
of resources, reducing the cost of resource usage by conducting queries on VMs 
with lower costs, and reducing the execution time of VMs aiming cost reduction.

Dashti and Rahmani presented a method for dynamic VMs replacement with the 
purpose of energy efficiency. They suggested a hierarchical architecture to meet the 
requirements of both provider and consumer. To guarantee QoS and reduction of 
energy consumption, their method used PSO. Results were investigated by Cloud-
Sim [26].

We have witnessed improving dynamic voltage scaling algorithms [27]. The main 
focus of this research has been PACE, an approach to reducing the energy consump-
tion of the DVFS algorithm without affecting its performance. Their results showed 
that PACE can substantially reduce CPU energy consumption without affecting per-
formance. Their algorithm reduced the CPU energy consumption of previously pub-
lished algorithms by 1.4–49.5% with an average of 20.6%.

Lee and Zomaya [28] focused on the energy consumption of high-density com-
puter systems. They focused on the problem of scheduling precedence-constrained 
parallel applications in multiprocessor computer systems and suggested two energy-
aware scheduling algorithms using dynamic voltage scaling (DVS). Their results 
proved that the algorithm is very compelling in terms of both application completion 
time and energy consumption.

Topcuouglu et  al. [29] studied various algorithms for heterogeneous proces-
sors. They focused on good quality schedules and they present two novel schedul-
ing algorithms for a bounded number of heterogeneous processors to achieve high 
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performance and fast scheduling time simultaneously, which is called the hetero-
geneous earliest-finish-time (HEFT) algorithm and the critical-path-on-a-processor 
(CPOP) algorithm. Wang et al. [30] also researched energy consumption and used 
the DVFS technique (dynamic voltage frequency scaling) to present application 
experience for reducing power consumption of parallel tasks in a cluster.

Kimura et  al. [31] researched on DVFS mechanism and proposed a new algo-
rithm that reduced the energy consumption by reclaiming slack time in a parallel 
program executed on a power-scalable cluster using DVFS that can represent DAG 
(directed acyclic task graph). They designed PowerWatch, a toolkit to measure the 
power consumption of the entire cluster in real-time. The result showed that the 
algorithm reduces energy consumption by 25% with only 1% loss performance.

Zhuo Tang et al. [32] focused on reducing energy dissipation, to achieve a DVFS-
enabled energy-efficient workflow task scheduling algorithm, DEWTS. It was an 
algorithm that at first calculated initial scheduling for the entire tasks and obtained 
the makespan and deadline based on HEFT [29]. The experimental results showed 
that DEWTS can reduce the total power consumption up to 46.5% for various paral-
lel applications as well as balance the scheduling performance.

Zhong and Xu [33] studied on conserve energy consumption for battery-powered 
systems. They present an analytical model of general tasks for DVS. It models the 
voltage scaling process as a transfer function-based filtering system, which facili-
tates the design of two efficient scaling algorithms. The model facilitates the deri-
vation of two DVS algorithms, time-invariant and time-variant. The time-invariant 
algorithm is proved to be a generalization of several existing approaches for dif-
ferent task models respecting energy savings. The time-variant algorithm is essen-
tially a water-filling process. It is more efficient and easily integrated into existing 
schedulers.

Bini et al. [34] researched about minimizing energy consumption and they pre-
sent a method for that in periodic/sporadic task system executing in processors with 
a discrete number of operating modes, each characterized by speed, power consump-
tion, and transition delay. They proposed a general framework for analyzing and 
designing embedded systems with energy and timing requirements.

Quan and Hu [35] studied dynamic voltage scaling (DVS), an efficient technique 
in reducing dynamic energy consumption. They present a scheduling technique that 
can effectively reduce the overall energy consumption for hard real-time systems, 
scheduled according to a fixed priority (FP) scheme. Experimental results demon-
strated that a processor using this strategy consumes less than 15% of the idle energy 
of a processor employing the conventional strategy.

Zhuo and Chakrabarti [36] considered the problem of developing dynamic 
task scheduling algorithms that minimize the system-level energy consumption 
(sum of CPU and device energy). They used system-level energy consideration 
to derive the “optimal” scaling factor by which a task should be scaled if there 
are no deadline constraints. Next, they developed dynamic task scheduling algo-
rithms that make use of dynamic processor utilization and optimal scaling factor 
to determine the speed setting of a task. Then, they presented the duEDF algo-
rithm which reduced the CPU energy consumption, and the duSYS algorithm 
and its reduced preemption version, duSYS PC, which reduced the system-level 
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energy. duSYS and duSYS PC achieved large energy savings (up to 25%) com-
pared to the CPU energy-efficient duEDF algorithm and up to 15% energy saving 
over the non-DVS scheduling algorithm.

Juarez et  al. [37] proposed a real-time dynamic scheduling system to execute 
efficiently task-based applications on distributed computing platforms to minimize 
energy consumption. Scheduling tasks on multiprocessors is a well-known NP-hard 
problem and the optimal solution of these problems is not feasible; they present a 
polynomial-time algorithm that combines a set of heuristic rules and a resource allo-
cation technique to get good solutions on an affordable time scale. The proposed 
algorithm minimizes a multi-objective function that combines the energy consump-
tion and execution time according to the energy-performance importance factor pro-
vided by the resource provider or user, also taking into account sequence-dependent 
setup times between tasks, setup times and downtimes for virtual machines (VM), 
and energy profiles for different architectures. They have also evaluated the intro-
duced overhead by measuring the time for getting the scheduling solutions for a dif-
ferent number of tasks, kinds of DAG, and resources, concluding that this method is 
suitable for run-time scheduling.

Duan et  al. [38] reviewed reducing energy consumption as well as maintained 
high computation capacity challenge, and proposed a new scheduling approach 
named PreAntPolicy that consists of a prediction model based on fractal mathemat-
ics and a scheduler based on an improved ant colony algorithm.

Wen et  al. [39] proposed a multi-objective privacy-aware workflow scheduling 
algorithm, named MOPA. Their model can provide cloud customers with a set of 
Pareto trade-off solutions. The problem-specific encoding and population initializa-
tion are proposed in this algorithm. Their work is as follows: Firstly, they demon-
strate the importance of ensuring privacy protection constraints when scheduling 
workflows in the context of cloud computing environments. Second, they formal-
ize the problem of scheduling workflows with privacy protection constraints and 
propose a corresponding algorithm to minimize both monetary cost and execution 
makespan.

Elhoseny et al. [40] proposed a new model to optimize the performance of the 
healthcare systems by reducing the stakeholders’ request execution time. The pro-
posed model consists of four main components: stakeholders’ devices, stakehold-
ers’ requests, cloud broker, and network administrator. To optimize virtual machines 
selection (VMs) in cloud-IoT health services applications to efficiently manage a 
big amount of data which come from different sources such as sensor data, without 
human intervention, they had used three different well-known optimizers: genetic 
algorithm (GA), particle swarm optimizer (PSO), and parallel particle swarm opti-
mization (PPSO). To calculate the execution time of stakeholders’ requests, the pro-
posed function is a composition of three important criteria which are CPU utiliza-
tion, turn-around time, and waiting time.

Alboaneen et  al. [41] have proposed a new metaheuristic method to optimize 
joint task scheduling and VM placement in the cloud data center. Their method has 
two parts, task scheduling and VM placement. Their method aims to schedule task 
into the VM which has the least execution cost within deadline constraint and then 
to place the selected VM on the most utilized physical host. They want to increase 
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the performance in terms of execution cost, makespan, degree of imbalance, and 
resource utilization.

3  Problem definition

To reach a higher throughput in the cloud system scheduling which works on vir-
tualization, the proposed algorithm reforms the cluster in the periods. In Fig. 1, the 
overall schema of the cloud system for solving this problem is shown.

This system is adapted from the proposal of Zhang et  al. [7]. In problem defi-
nition, the elasticity of the cloud has been considered and it is assumed that VCs 
can transfer VMs among themselves. VMs are computing units that are located 
above the physical layer. It is supposed that the VMs are equally defined. VMs are 
mounted in C groups. Each group is called a VC. If there are C types of jobs, there-
fore there will be C virtual clusters. If recognizing job classes is impossible, they are 
classified based on the volume of the file on which workflow processes. A VM with 
a suitable processing capacity, which is not mounted into any cluster, is responsible 
for executing the scheduler. Workflows enter the cloud system and it is assumed that 
each workflow is comprised of several interconnected tasks that have the capabil-
ity of parallelism. The number of VCs is defined according to the workflow types. 
In Fig. 1, it is assumed that there are four workflow types and, therefore, four VCs. 
The �(ti) vector shows the assigning of VMs to each VC. Each element of this vector 
shows the number of VMs assigned to each cluster ti.

Physical Server 1 Physical Server 2 Physical Cluster 1 Physical Cluster 2

VC 1

VC2

VC3

VC4

Workflow DispatcherSimilarity Calcula�on Scheduling Improver

VC1 Coordinator VC3 Coordinator

VC4 CoordinatorVC2 Coordinator

Scheduler

Fig. 1  The proposed cloud model based on [7], in which virtual cluster allocation is customized for the 
proposed algorithm
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In Eq. (1), �c(ti) means the number of VMs in the cth cluster in ti and i is the 
period number. The ID of each cluster is presented as c which c ∈ [1,C] . The aim 
is fining �(ti) which has the highest throughput in each period. Let θ be the num-
ber of all usable VMs, then:

At the beginning of scheduling 
(
t0
)
 , the number of VMs in each cluster is ran-

domly defined. This procedure is used as the initial scheduling. Jobs will be ran-
domly executed for n times to find the best scheduling in terms of throughput 
at the beginning of the intervals, where n is selected as lesser than all possible 
cases. Then, the proposed algorithm decides to change the organization of the 
clusters based on the existing workflows or to continue execution without reform-
ing the clusters. In Fig. 2, the arrangement of workflows in the queue and they are 
entering the system can be seen.

In the input queue, in each period, existing jobs in that period are analyzed. 
At the end of the period, the workflow dispatcher decides for ti+1th period. If it 
is supposed to be no changes, there will be no change in the organization of the 
clusters and the schedule will continue as the previous period. Otherwise, the 
organization of clusters will change as is explained in the following.

(1)�(ti) =
[
�1(ti), �2(ti), ..., �c(ti), ..., �C(ti)

]

(2)
C∑
c=1

�c(ti) = �

Fig. 2  Arrangement of workflows in the queue and they are entering the system
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4  Proposed algorithm

The proposed algorithm (MSSA) is more useful in cloud systems that work to ana-
lyze big data. As a result, a better decision regarding workflows has a considerable 
effect on throughput and performance. Workflow analysis in the proposed algorithm 
is done in a parallel way with job execution and does not interfere with the makes-
pan. It means there is a VM that is responsible for cluster management and task 
transfer to the corresponding clusters. The proposed algorithm has generally three 
phases, which are shown in Fig. 3. These phases include:

– Primary clustering.
– Similarity calculations.
– Load balancing.

4.1  Algorithm phases discussion

The algorithm phases are shown in detail in a flowchart in Fig. 4. In the following, 
each section is totally explained.

Fig. 3  Phases of the proposed algorithm

Fig. 4  MSSA in the form of a flowchart
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4.1.1  Primary clustering phase

At the beginning of scheduling, existing VMs are placed in VCs based on the num-
ber of workflow types present in the cloud system queue. If there are C types of 
workflows, there will be C clusters. The VMs are randomly placed in the clusters; 
then, the throughput is calculated based on this random scheduling. After n times 
calculation, the best distribution, regarding throughput, will be chosen and the work-
flows will be sent to clusters (which n is much smaller than all possible conditions).

Each workflow contains several tasks that can be executed in a parallel way on 
VMs. In Fig. 5, it is assumed that there are 20 VMs. If there are 4 clusters, there will 
be two hypothetical conditions for distributing VMs in virtual clusters.

4.1.2  Similarity calculation phase

This section is related to similarity calculation. Similarity calculation, which was 
first introduced by Zhang et al. [7], is applied more completely. In this section, the 
similarity of workflows that are supposed to enter the system in the next period, 
with the workflows that have already been executed in the previous period is calcu-
lated; besides, the similarity of message passing of VCs between current and previ-
ous period is calculated. If there is an acceptable similarity level, the organization of 
the VMs among the VCs will not change. However, if the similarity is lower than a 
certain level, clustering should be performed. This change in the VMs distribution is 
optimally done to adapt the scheduler with conditions and to have better efficiency.

Fig. 5  Distributing VMs in VCs



4273

1 3

An energy‑aware scheduling of dynamic workflows using big…

4.1.2.1 Similarity using statistic analysis In this phase, the similarity of the existing 
workloads in the queue in the current period is compared with workflows in the pre-
vious periods. This is done by a Chi-squared statistical test. If the scheduler is at the 
beginning of ti+1th period, the existing workflow in the queue in the current period 
should be compared with the workflow in tith period. In Fig. 6, the hypothetical form 
of the queue in tith period is shown.

According to the number of repetitions of jobs in each period, the possibilities 
are calculated in Table 1. To calculate the possibilities of each workflow, the fre-
quency is divided by the number of all workflows [Eq. (3)].

In Table 1, the calculated possibilities for each cluster are shown.
In the ti+1th period, m jobs entered Fig. 7. In this phase, it is tested whether m 

new workflows are similar to previous workflows. First, the expected frequency 
and observed frequency are calculated according to Table 2 and are placed in the 
Chi-square equation.

The Chi-square equation, which is used for testing the data similarity, is calcu-
lated using Eq. (4).

(3)pi =
Number of Workflows Type i

Number of All Workflows

Fig. 6  Hypothetical schema of the queue

Table 1  possibilities of each 
cluster in t

ith
 period

Cluster numbers [1,…,C] 1 2 … c … C

Possibility p1 p2 … pc … pC

Fig. 7  Distribution of new workflows in the queue
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where fc is the observed frequency for cth cluster in tith  period, and foc is the 
expected frequency for the cth cluster in ti+1th period. Then, the �2 calculated is 
compared with �2

�,c−1
 from Chi-square probabilities table. α is the error rate that 

is assumed 0.05 in this research. If 𝜒2 > 𝜒2
𝛼,c−1 , there is a significant difference 

between the types of workflows which is entered in these two consequence times; 
so, H0 and H1 hypotheses are defined as follows:

H0 : entering workflows in the queue is similar to the previous period.
H1 : new input is not similar to the previous period.

If 𝜒2 > 𝜒2
𝛼,c−1 , H0 passes. Thus:

If H0 is confirmed, the similarity is acceptable in this phase and the similarity 
of message passing should also be investigated for the final decision. Otherwise, 
the similarity is not acceptable and load balancing should be executed.

4.1.2.2 Similarity in message passing using Markov chain If queue analysis simi-
larity is at an acceptable level, the similarity in message passing among clusters 
will calculate and the final decision about the similarity in the two following peri-
ods will be made. Figure 8a shows, in a hypothetical condition, the existence of 4 
clusters for message passing among VCs in two periods. It is assumed that there 
is a definite message passing between every two VCs. This assumption is based 
on reality; because it is probable that clusters have message passing between each 
other due to request of replicas which are placed in the VMs of other clusters. This 
request for replica may be because of reforming the clusters in the previous peri-
ods. Even if there may be no replica requests, cluster heads should have messages 
passing among themselves for knowing the condition of the clusters. Each cluster 
head has the existing information of VMs in its VC. The similarity of message 
passing for tith period is calculated through a comparison of the message passing 
graph in the current period ( ti ) and the previous period (ti−1).

For this purpose, firstly vector p
(
ti−1

)
 is formed based on Eq.  (5). Mij is the 

volume of sent messages from VCi to VCj in megabytes.

(4)�2 =

C∑
c=1

(f c − Foc)
2

Foc

Table 2  Expected frequency 
calculation for each cluster

Expected frequency Observed fre-
quency

Type

Fo1 = m·p1 f1 For the first type
Fo2 = m·p2 f2 For the second type
… … …
… … …
FoC = m·pC fC For cth type
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∑
M1j illustrates the total of messages for VC1 in ti−1th period. In Fig. 8b, messages 

for VC1 are shown. In the next step, the transfer matrix is obtained for the message pass-
ing graph related to tith period using Eq. (6).

(5)
p(ti−1) =

� ∑
M1j∑
Mij

∑
M2j∑
Mij

...
∑

MCj∑
Mij

�

i, j = 1,… ,C

(6)
pTran(ti−1) =

⎡
⎢⎢⎢⎢⎢⎣

0
M12∑
M1j

...
M1c∑
M1j

M21∑
M2j

0 ...
M2c∑
M2j

... ... ... ...
Mc1∑
Mcj

Mc2∑
Mcj

... 0

⎤⎥⎥⎥⎥⎥⎦
j = 1,… , c

a

b

Fig. 8  Message passing procedure
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In the transfer matrix pTran(ti−1) , the summation of each row equals 1. Through 
multiplying the possible matrix of  ti−1 period, which is shown by p(ti−1) , by the 
transfer matrix pTran(ti−1) , the expected matrix of probability in tith period is 
obtained. The expected probability matrix is shown as pexp(ti) . The calculation 
method of pexp(ti) is shown in Eq. (7):

If the expected probable vector or pexp
(
ti
)
 compares with p

(
ti
)
 probable vec-

tor, which can be calculated through the message passing graph in  ti−1th period 
and using Eq. (5), it can be seen that whether the message passing in the last two 
periods is similar or not. If similarity reaches a certain level, the organization of 
clusters is allowed not to change in  ti+1th period, considering similar message 
passing in the previous periods, and if there not any noticeable change in simi-
larity, the arrangement of VMs in the clusters can be changed in the following 
periods. Equation  (8) shows how to compare pexp

(
ti
)
 with p

(
ti
)
 . If it is smaller 

than a threshold, the similarity is acceptable and there is no need to execute the 
load-balancing phase and new workflows can be assigned to VCs. In other terms, 
if so, the current scheduling is good and the scheduler continues with the current 
scheduling. Otherwise, the similarity level is not acceptable and the load-balanc-
ing phase should be executed.

The threshold is obtained through trial and error and by repeating the test 
several times for different measures, which is investigated in the further results 
section.

(7)p(ti−1) × pTran(ti−1) = pexp(ti)

(8)pexp(ti) − p(ti) = �

Fig. 9  Workflows arrangement in the VC queue
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4.1.3  Load‑balancing phase

This phase will have done when the similarity calculation phase proves that the similar-
ity level is not acceptable. Initially, it should be noted that each VC has one queue, and 
the workflows assigned to that cluster are placed in the selfsame queue (Fig. 9).

In Table 3, the used signs are explained.
Now, based on �expc (ti+1) and number of VMs in the cth cluster in tith period ( �c(ti) ), 

shortage or excess of VMs can be calculated for each cluster [Eq. (7)].

�extra
c

(ti+1) shows the number of VMs which are expected to be assigned to the cth 
virtual cluster in ti+1th period. This parameter can be positive, negative, or even zero. If 
this is positive, it means that the cth cluster has received more VMs than expected. Oth-
erwise, it has received less, and if zero, the cluster has received as many VMs as it was 
expected. The proposed algorithm transfers the VMs from VCs which have received 
more machines than expected to those clusters that received fewer VMs. This is done 
according to Algorithm 1. In this algorithm, Q+ is the queue in which VCs with a posi-
tive amount �extra

c
(ti+1) is placed and Q− is the queue in which clusters with a positive 

�extra
c

(ti+1) are placed.

(9)∀c ∈ C ⇒ �exp
c

(ti+1) − �c(ti) = �extra
c

(ti+1)

Table 3  Signs and equations used in the load-balancing phase

Symbol Explanation

qc(t) Total volume of workflows in cth queue cluster in tth period in MB
�c(ti) The number of VMs in tith period for cth cluster

�(ti) =
C∑
c=1

�c(ti)
�(ti) is the total active VMs in tith period

⌢

t i The final moment of tith period
fc(ti) The volume of new c-type workflows in tith period calculated in the simi-

larity phase
qc(

⌢

t i) + fc(ti+1) The load volume of cluster c in t
i+1th period

The above amount defines the workload for each cluster in the next period

𝜀 =

∑C

c=1
(qc(

⌢
t i)+fc(ti+1))

𝜃(ti)

The number of workflows for each machine (The existing workflow and 
that one which is supposed to enter the clusters queue in the next period 
is divided by the total number of machines. The workload which is sup-
posed to enter is calculated in the similarity determination phase)

𝜃
exp
c (ti+1) =

[
(qc(

⌢
t i)+fc(ti+1))

𝜀

]
The number of expected machines for cluster c in ti+1 period. This amount 

shows the number of machines, which is assigned to each cluster, 
expected for load balancing considering the present load and that one 
that is supposed to be added to the cluster
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In the above algorithm, each object in the queues is an object in which 
�extra
c

(ti+1) and c are placed. Then, Q+ and Q− are arranged in descending and 
ascending orders, respectively. According to the Δp matrix, the VMs in virtual 
clusters, which are placed in Q+ , are transferred to those which are placed in Q− . 
Δp matrix is calculated based on the message passing graph and using Eq. (10). 
The message passing graph is shown in Fig. 8a.

Mij is the number of sent messages from VCi to VCj in MB. The difference 
between matrixes is that each element Mij is divided by all the sent and received 
messages in the system. In effect, the proportion of the volume of messages in 
each cluster is obtained in relation to the total messages. Δp shows the number 
of changes in the proportion of message passing in the present period in relation 
to the previous one. Based on these changes, a decision will be made for the next 
period.

pi−1 =

⎡⎢⎢⎢⎢⎢⎣

0
M12∑
Mij

...
M1c∑
Mij

M21∑
Mij

0 ...
M2c∑
Mij

... ... ... ...
Mc1∑
Mij

... ... 0

⎤⎥⎥⎥⎥⎥⎦

pi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
M�

12∑
M�

ij

...
M�

1c∑
M�

ij

M�
21∑
M�

ij

0 ...
M�

2c∑
M�

ij

... ... ... ...
M�

c1∑
M�

ij

... ... 0

⎤⎥⎥⎥⎥⎥⎥⎦
Δp = pi − pi−1
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4.1.4  Energy consumption model

Today’s servers consume up to half of their peak power in idle time. The power 
consumption of each server includes static power consumption and dynamic power 
consumption which are called pstatic and pdynamic, respectively. pdynamic can be formu-
lated as Eq. (10) [38].

where Oj is the optimal usage level in terms of performance per watt which is about 
70% server utilization below the optimal usage level, there would be a linear rela-
tionship between utilization ratio and dynamic power consumption; otherwise, the 
extra utilization will cause the exponential rise of dynamic energy consumption 
[42]. �j and �j  are the coefficient of the linear part and the exponential part for the 
jth server. Uj

t is calculated using Eq. (11).

where nj
VMx

 shows the number of VMs allocated on the jth server and VCx
cpu

 shows 
the CPU capacity of the jth server.

5  Results

In this section, we present detailed results for the aforementioned multitasking 
workload scheduling.

Simulations are carried out on a PC with Intel Dual Core CPU with 2 GHz fre-
quency, 3 Gigabyte Ram, and 32-bit Windows 7 operating system. This simulation 
was performed by CloudSim version 3.0 and Java Development Kit 1.8.0 in Net-
beans IDE 8.1.

We utilized seven clusters and seven jobs type. We tested our method in three sce-
narios and with 32, 64, and 128 virtual machines. Also, a data center was utilized, 
which comprised of 4 servers that each of which had 8 CPUs (2.0 GHz), 8 GB Ram, 
and 32-bit Linux system. Each virtual machine had one CPU (1.0 GHz), 512 MB 
Ram, and 32-bit Linux system. These VMs were interconnected by a connection 
with 1000 Mbit bandwidth.

Since we used the simulation method for evaluation, we evaluated our scheduler 
using jobs generated by ourselves. It was aimed to mime the benchmarking work-
flows that were used in [14]. Since there were seven clusters, there were seven types 
of jobs as well. In our simulations, we had one thousand jobs that were randomly 
generated. But, for each simulation, the seed of the random generator was identical 

(10)pdynamic(t) =

⎧
⎪⎨⎪⎩

U
j

t ⋅ �j

Oj ⋅ �j +

�
U

j

t − Oj

�2

⋅ �j

(11)U
j

t =

∑m

x=1
n
j

VMx
⋅ VCx

cpu

SC
j
cpu

× 100
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to others in order to have the same order of jobs to provide a fair simulation. Details 
of jobs are showed in Table  4.

According to Table 4, there are 7 types of jobs (workloads), each of which has a 
special number of tasks (cloudlets), length, and file size. For example, job 2 has 6 
tasks with a total length of 82,000 million instructions and if it needs a file for rep-
lication, the file size will be 300 MB. It must be noted that since CloudSim is not a 
tool for big data, we mime the behavior of the big data by extending the total length 
of jobs. We created jobs with more instructions and, as a result, jobs take more time 
for executing.

We evaluated our method and similar methods under different scenarios; scenario 
1: we used the numbers that are presented in Table 3 and called it “Big Workflow 
Generation” or “BIG.” Scenario 2: we multiplied the total length of each task and 
file size by 10 and named it “Very Big Workflow Generation” or “VERY BIG.” And 
scenario 3: we multiplied the total length of each task and file size by 100 and called 
it “Huge Workflow Generation” or “HUGE.”

The results of each scenario were compared for 32, 64, and 128 nodes. For each 
of them, the simulations were run for the existence possibility of different replicas. 
In effect, the proposed algorithm was tested in situations where possibilities of need-
ing replications were 0.2, 0.4, and 0.8; but in order to abbreviate, we kept the mes-
sage passing ratio fixed. In all scenarios, the message passing ratio is 0.7. We have 
compared our method with eOO, BlindPick, FIFO, and MEOO. BlindPick and eOO 
are introduced in [9]. MEOO method is introduced in our previous paper that is sub-
mitted before publishing this paper [15]. MEOO is multi-parameter scheduling for 
scheduling big data workflows.

Scenario 1 (BIG):
Figure  10 indicates the comparison of scenario 1 for 32, 64, and 128 virtual 

machines.
It was observed that the different replication ratio causes a small impact on 

all of the tested methods. However, the time of processing replications is very 
smaller processing time than these big workloads. As the replication rate raises, 
we can see better improvement in the proposed method. MSSA is not very good 
in scenario 1, especially when the replication ratio is low, but when the rep-
lica ratio raises, our method conquers other methods, but it is not significant. In 
Fig. 10, we can compare the improvement of our method in terms of makespan. 

Table 4  Details of workloads Jobs Number of 
tasks

Total length (no. of 
instructions)

Size of needed 
file (if exist) 
(MB)

Job 1 6 24,000 300
Job 2 6 82,000 300
Job 3 3 360,000 300
Job 4 4 80,000 300
Job 5 2 70,000 300
Job 6 10 38,000 300
Job 7 8 400,000 300
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(b)

(a)

(c)

Fig. 10  the makespan in the 1st scenario
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When the number of VMs is 32, we can see a significant improvement, but when 
the number of VMs is 64 and 128, our method is not worthy. FIFO always had the 
worst and the proposed algorithm (MSSA) always had the best makespan among 
the other algorithms. By increasing the number of VMs, the performance was 
improved in all of them. In Fig. 10, we can see that in terms of makespan, our 
method shows better results in comparison with other methods. In some cases, 
the proposed algorithm and BlindPick had almost similar performance, but as it is 
shown in Fig. 6, the proposed algorithm had much less simulation time and con-
sequently a much less overhead.

For the sake of brevity, energy consumption for the 1st scenario only for 32 
virtual machines is shown in Fig. 11. As we can see, the proposed method uses 
about 3.45 kWh energy for this scenario. There is a significant improvement in 
comparison with other methods. This energy consumption is about 4.2, 6.5, 7.7, 
and 15.6 in comparison with MEOO, BlindPick, eOO, and FIFO.

Scenario 2 (VBWG):
Figure  12 shows the comparison of scenario 2 for 32, 64, and 128 virtual 

machines.
The difference and efficiency will increase as the data grows. In the second 

scenario, there is a significant difference between the proposed method and the 
other methods.

Like scenario 1, the FIFO algorithm always had the worst and the proposed 
algorithm (MSSA) always had the best makespan among the tested ones. By 
increasing the number of VMs, all algorithms worked better. As we can see, our 
method has a very good improvement in this scenario. We can conclude that 
increasing the length of workloads causes our method to show its power better.

Like scenario 2, for the sake of brevity, energy consumption for 32 virtual 
machines is shown in Fig.  13. As we can see, the proposed method uses about 
26.71 kWh energy for this scenario. There is a significant improvement in 

Fig. 11  Energy consumption for the 1st scenario and with 32 virtual machines (kWh)
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(a)

(b)

(c)

Fig. 12  The makespan in the 2nd scenario
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comparison with other methods. This energy consumption is about 32.33, 47.76, 
57.29, and 115.2 in comparison with MEOO, BlindPick, eOO, and FIFO.

Scenario 3 (HUGE):
In the final scenario, with increasing the length of workflows, our method 

shows more improvement in comparison with the others. The execution time and 
the method overhead are considerably less than other methods. In other words, it 
showed about 15, 20, 25, and 30% improvement in comparison with MEOO, eOO, 
BlindPick, and FIFO algorithms. For the sake of brevity, an example of execution 
time comparison is shown in Fig. 14 and their improvements showed in Table 5.

Table 5 shows the improvement of our method in comparison with other methods. 
According to Table  5, our method has less simulation time and overhead compared 
with other methods. According to this table, our method has 20–60% in comparison 
with eOO. Also, it reaches 90% in comparison to BlindPick. It is 7–20% for MEOO 
and as expected, the FIFO algorithm has the least overhead in comparison with other 
methods in comparison with other methods for different replica possibility (Fig. 15).

Like previous scenarios, for the sake of brevity, energy consumption for 32 vir-
tual machines is shown in Fig. 16. As we can see, the proposed method uses about 
30 kWh of energy for this scenario. There is a significant improvement in compari-
son with other methods. This energy consumption is about 35, 63, 52, and 120 in 
comparison with MEOO, BlindPick, eOO, and FIFO.

6  Conclusion

In this paper, we have extended the ordinal optimization (OO) method and evolu-
tionary ordinal optimization (eOO) method from stochastic virtual machine clus-
tering to the intelligent load-balancing method for scheduling many-task work-
flow applications. Also, we added replication and message passing parameters to 

Fig. 13  Energy consumption for the 2nd scenario and with 32 virtual machines (kWh)
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(a)

(b)

(c)

Fig. 14  The makespan in the 3rd scenario
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the similarity measure to be closer to reality. Our main technical contributions are 
summarized below.

(1) We proposed a Chi-square-based method for evaluating the similarity between 
two consecutive periods. This method includes tasks’ similarity, replications’ 
similarity, and message passing similarity. So, it shows a good performance in 
evaluating periods’ similarity.

(2) We achieved scalability on a virtualized platform. The MSSA method reduced 
the makespan significantly: also, MSSA showed less overhead in comparison 
with MEOO, BlindPick, FIFO, and eOO.

Table 5  Improvement 
comparison in scenario 3 (in %)

20% 40% 80%

32 VMs MEOO 0.191 0.165 0.212
eOO 0.398 0.286 0.248
BlindPick 0.295 0.295 0.295
FIFO 0.749 0.75 0.75

64 VMs MEOO 0.108 0.102 0.147
eOO 0.263 0.19 0.153
BlindPick 0.144 0.145 0.145
FIFO 0.074 0.084 0.11

128 VMs MEOO 0.151 0.087 0.062
eOO 0.141 0.141 0.142
BlindPick 0.506 0.511 0.513
FIFO 0.074 0.084 0.117

Fig. 15  Simulation time for 128 virtual machines for different replica possibility (in seconds)
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(3) We achieved significant improvement in terms of energy consumption in com-
parison with eOO, MEOO, BlindPick, and FIFO.

For further research, we suggest extending the work for evaluating this method on 
a real platform with a real data set.
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