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Abstract
The fast JPEG image compression algorithm is a requisite in many applications such 
as high-speed video measurement systems and digital cinema. Many existing meth-
ods have implemented the JPEG compression in parallel based on GPU except for 
entropy coding, which is a variable-length coding method and seems like a better 
fit for sequential implementation. However, entropy coding is an essential part of 
the JPEG compression system and typically takes up a large proportion of the time 
when implemented on the CPU. To tackle this problem, we propose an efficient par-
allel entropy coding (EPEnt) method for parallel JPEG compressing. The proposed 
method conducts entropy coding in three parallel steps: coding, shifting, and stuff-
ing. Specifically, according to the different characteristics of image components, we 
devise thread-based and warp-based functions in the coding stage to further improve 
the efficiency under guaranteeing image quality, respectively. We apply the proposed 
method to the parallel JPEG compression system and evaluate the performance 
based on compute unified device architecture (CUDA). The experimental results 
demonstrate that compared with sequential implementation, the maximum speedup 
ratio of entropy coding can reach 39 times without affecting compressed images 
quality. Meanwhile, the whole JPEG compression process efficiency increases by at 
least 28% compared with state-of-the-art parallel methods in terms of speedup ratio.
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1 Introduction

With the continuous development of high-performance computing (HPC) applica-
tions, real-time image compression has gained considerable attention, such as high-
speed video measurement systems and digital cinema [1–3]. On many occasions, 
numerous large-size images are obtained from these systems rapidly, and these 
source images are required to be quickly stored for further study in real-time. How-
ever, it is difficult to directly transmit and store them, characterized by large amounts 
of data and high redundancy. Therefore, the JPEG compression algorithm [4] plays 
an irreplaceable role in these HPC applications owing to its high compression effi-
ciency. Unfortunately, the sequential implementation, especially for the large-size 
images, is very slow and cannot guarantee the real-time performance of these HPC 
applications [5]. We hope to explore a method that can increase the image compres-
sion speed without affecting the compressed image quality.

GPU can launch thousands of threads simultaneously, and it is eminently suit-
able for parallel computing and significantly speeds up the process than sequential 
algorithms. Many HPC applications have been completed a parallel job to improve 
system efficiencies such as image representation and recognition [6, 7], image 
reconstruction [8], and super image resolution [9]. The parallel computation based 
on GPU has become more extensive, especially when CUDA and Open Comput-
ing Language (OpenCL) technologies are becoming mature. Mainly, CUDA is the 
most popular parallel computational framework owing to its convenient and efficient 
operating platform. Therefore, it is pretty necessary to implement a JPEG parallel 
algorithm based on CUDA to meet the requirements of HPC applications.

As shown in Fig.  1, there are six steps to realize the JPEG compression algo-
rithm: color conversion, down-sampling, forward 2D Discrete Cosine Transform 
(DCT), quantization, zig-zag scan, and entropy coding. Forward 2D DCT and 
entropy coding are the most important and time-consuming parts. They can remove 
spatial redundancy and structural redundancy of image data, respectively.

Fig. 1  The diagram of JPEG image compression algorithm
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Many researchers have concentrated on parallelizing the JPEG algorithm based 
on GPU. Especially in forward 2D DCT, promising results have been achieved in 
acceleration and efficiency [10–17]. Tokdemir et al. [17] proposed a DCT parallel 
algorithm to accelerate data processing and obtained satisfactory results. Liu et al. 
[18] presented a parallel DCT algorithm for the JPEG algorithm. The parallel DCT 
algorithm has achieved up to 20 × speedup compared with the sequential DCT algo-
rithm in their experiment. Alqudami et  al. [10] developed an optimized parallel 
implementation of the forward DCT algorithm based on OpenCL. New parallel data 
transform methods were proposed to replace the parallel DCT algorithm for better 
efficiency and image compression quality [15, 16]. Parallel DCT-like algorithms 
[12] were proposed to substitute for the parallel DCT algorithm to achieve a faster 
speed. However, none of the above approaches has completely realized the parallel 
entropy coding, making it still a bottleneck in parallel JPEG image compression.

Entropy coding plays an indispensable role in JPEG image compression, aiming 
to remove the structural redundancy of image data. In general, when the JPEG algo-
rithm is executed based on CPU, the complex entropy coding is inefficient, and it 
will take a lot of storage and computing resources. Therefore, it is essential to paral-
lelize entropy coding to improve the real-time performance of JPEG compression. 
However, there are still challenges due to the following reasons: (1) Based on 8 × 8 
block, entropy coding is a complicated procedure, and many classic algorithms are 
adopted to generate the coding results of each block. Different from the sequential 
implementation, an optimal parallel entropy coding strategy is required to obtain the 
coding results quickly. (2) The bit length of each 8 × 8 block coding results is vari-
able and always ranges from several to hundreds of bits in length. Therefore, even 
if the entropy coding is performed in parallel, it is still not clear where the result of 
each 8 × 8 block should be written into the output image data. Furthermore, the con-
nection part of neighboring 8 × 8 block coding results may be written to the same 
byte simultaneously, leading to the possibility of access collision and write fault.

Due to the challenges mentioned above, some researchers believe that entropy 
coding should be processed on the CPU when the JPEG parallel algorithm is 
employed [18, 21, 22]. However, many other researchers have focused on solving 
this problem from different aspects [16, 18, 21, 23, 34, 35]. Shan et al. [15, 16, 28] 
proposed a parallel entropy coding method for JPEG image compression based on 
CUDA, but they did not solve how to generate the final image data in parallel by 
utilizing all the 8 × 8 block coding results. Instead of color images, only gray images 
were adopted to verify the performance, limiting the application of their method. 
In [20], Atomic operations were fully used for variable-length encoding, limiting 
GPU’s performance. Rahmani et al. [23, 24] introduced a parallel prefix sum algo-
rithm [25–27] to realize parallel Huffman encoding of strings, and the encoding 
speed was improved significantly compared with the sequential implementation. In 
this algorithm, each character’s coding length must be obtained quickly, and a vast 
amount of temporary memory is consumed. Before calculating each 8 × 8 block’s 
coding bit length, all these blocks should be encoded firstly, which is a complex 
process. Therefore, it is not easy to directly employ the algorithm to JPEG entropy 
coding. Tian et  al. [34] developed an efficient parallel codebook construction and 
a novel reduction-based encoding scheme to implement a multi-thread Huffman 
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encoder. Extensive experiments on six real-world datasets were conducted to evalu-
ate the superior performance of their method. In [35], a new data structure called 
gap array was presented to accelerate the Huffman decoding. Although these algo-
rithms solved the problem of realizing the parallel encoding with variable-length 
codes in some way, the challenges in parallel entropy coding mentioned above are 
not adequately addressed. Recently, CUDA has provided a powerful image paral-
lel processing library named NVIDIA Performance Primitives (NPP) [29]. The lat-
est version (NPP v10.2) already provides a functional interface for parallel entropy 
encoding without open-source codes. Compared with sequential implementation, 
the performance is much improved. However, parallel entropy coding is still a bot-
tleneck in parallel JPEG image compression.

In this paper, we also focus on overcoming the above challenges and develop-
ing an efficient parallel method for entropy coding named EPEnt. The proposed 
method mainly contains three steps: coding, shifting, and stuffing. In the coding 
phase, all the 8 × 8 blocks of an image are encoded to generate their corresponding 
coding results. Moreover, according to the different characteristics of image com-
ponents, warp-based and thread-based strategies are designed to improve the cod-
ing stage’s efficiency. In the shifting phase, appropriate bit shift operations for each 
8 × 8 block coding result ensure that the neighboring block bitstreams can be seam-
lessly stitched together when forming the final image data. Finally, All the shifted 
results of 8 × 8 blocks are stitched together to form the final image data in the stuff-
ing phase. The proposed EPEnt is evaluated with multiple sets of experiments and 
achieves promising speedup and image quality results. Meanwhile, the performance 
of the JPEG image compression also improves significantly when our proposed 
method is employed.

Overall, the contributions of our work are summarized as follows:

• We propose an efficient parallel entropy coding method named EPEnt to improve 
the performance JPEG image compression. The proposed method mainly con-
sists of three phases: coding, shifting, and stuffing.

• According to the different characteristics of image components, we, respectively, 
design warp-based and thread-based strategies to complete the coding stage, 
which can further improve the entropy coding efficiency.

• We apply our proposed method to the parallel JPEG compression algorithm. 
Experimental results demonstrate that our method can achieve competitive 
results in terms of speed ratio and image quality.

The remainder of the paper is organized as below: Section 2 describes the entropy 
coding and CUDA background. Section  3 introduces the proposed methods. The 
experimental results and performance evaluation are presented in Sect.  4. Finally, 
we draw our conclusions and outline future work in Sect. 5.
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2  Background

2.1  JPEG entropy coding

2D DCT transforms an image from the spatial domain to the frequency domain to 
remove spatial redundancy. Entropy coding mainly adjusts the code length of the 
transformed data, which can further improve the compression ratio and generate 
the final image data. The sequential entropy coding algorithm process of each 8 × 8 
block mainly contains three stages: differential pulse code modulation (DPCM), 
run-length encoding (RLE) coding, and Huffman coding, and we will describe the 
details in the following procedure.

The two-dimensional matrix is transformed into a 1 × 64 one-dimensional array 
after the 8 × 8 block is scanned in a zig-zag way. The one-dimensional array is com-
posed of two parts. The first value in the array is direct current (DC) coefficient, 
while the remaining values are alternating current (AC) coefficients. We perform 
DPCM and RLE coding on these two coefficients separately to form the temporary 
codes that require to be continuously processed by the Huffman coder.

The DC coefficient contains the primary information of an 8 × 8 block, and the 
value is generally immense. However, the difference between two adjacent 8 × 8 
blocks is small and ranges in a small region. Therefore, it is fit for DPCM coding. 
The difference value Dk of each 8 × 8 block is consequently defined as:

where N denotes the total number of 8 × 8 blocks in an image component, and k is 
the number of an 8 × 8 block.

Then, Dk can be described by two symbols, as shown in Fig. 2a. S represents the 
size of Dk, and A is the amplitude of Dk. The code of S is obtained through querying 
the DC Huffman table, and the code of A is obtained by a variable-length integer 
(VLI), which can be described as follows:

The code of A is put at the end of the code of S to constitute the Huffman code of 
DC coefficient.

(1)Dk =

{
DCk − DCk−1, if k = 2, 3, ..., N

DCk, if k = 1

(2)Dk =

{
Dk, if Dk ≥ 0

2size − |Dk| − 1, if Dk < 0

Fig. 2  The Huffman code of 
DC/AC coefficients

(a) DC coefficient (b)AC coefficient
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The run-length and the size of non-zero AC coefficients can also be described by 
two symbols, as shown in Fig. 2b. S contains run-length and the size of non-zero 
AC coefficients code. A is the amplitude of AC coefficients. The Huffman code of 
S can be obtained through querying the AC Huffman table, while the code of A is 
obtained by employing VLI.

Consequently, the entropy coding results of each 8 × 8 block are obtained by 
encoding the DC coefficient and AC coefficients using Huffman coding utiliz-
ing Huffman algorithms. All the entropy coding results of 8 × 8 blocks are stitched 
together in sequential to form the final image data.

2.2  CUDA programming model

CUDA is a GPU-based parallel computing architecture. Users can easily program 
with CPU + GPU based on CUDA. CPU acts as the host responsible for the over-
all logic control, task scheduling, and resource management in CUDA architec-
ture. GPU is controlled by the CPU and acts as the device to handle highly paral-
lel computing tasks [29].

When processing tasks in parallel based on GPU, we use a kernel function 
to represent the same subtasks. It will be called in parallel by a large number of 
CUDA threads. As shown in Fig.  3, the threads are equally divided into a cer-
tain amount of blocks, and the threads in a block are processed in groups based 

Fig. 3  The CUDA programming model
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on warps. At present, each warp contains 32 threads, which execute the same 
instructions but process different data. Therefore, the thread-block size is gener-
ally an integral multiple of 32. These blocks are organized into a grid that can 
fully utilize the hardware resources [30]. A complete CUDA program consists of 
multiple kernel functions and CPU sequential code.

3  CUDA‑based parallel entropy coding (EPEnt)

3.1  Algorithmic overview

The procedure of JPEG compression is performed based on 8 × 8 block. Aside 
from entropy coding, each block in other stages can be processed independently 
and is desirable for parallel processing. The main reasons are chiefly as follows: 
(1) There is a lack of efficient strategy to encode all 8 × 8 blocks in parallel. (2) 
Owing to the variable-length coding result of each 8 × 8 block, it is not clear 
where the threads should write the corresponding coding results into the final 
image data. Furthermore, the write operation in the same memory may be per-
formed by two adjacent threads during parallel implementation, which could lead 
to an access violation. Therefore, an excellent parallel strategy is required to put 
all the 8 × 8 blocks’ coding results together to form the final image data.

To address the above issues, we propose an efficient parallel entropy coding 
method called EPEnt for JPEG image compression, which is shown in Fig. 4. The 
fundamental idea of EPEnt is that the whole entropy coding process can be con-
ducted through three parallel steps: coding, shifting, and stuffing, with details as 
follows:

(1) Coding All 8 × 8 blocks in an image are encoded in parallel to form their respec-
tive bitstream. Because of an apparent contrast between the task loads of Y 

Fig. 4  Illustration of the proposed method for parallel entropy coding
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and CbCr components, the thread-based and warp-based kernel functions are, 
respectively, designed for a more efficient coding process.

(2) Shifting According to the result of the prefix sum algorithm (PSA), appropriate 
shift operations for each 8 × 8 block’s coding result will ensure that the adjacent 
block’s bitstream can be seamlessly stitched together when forming the final 
image data.

(3) Stuffing As step 3 described in Fig. 4, all the 8 × 8 blocks’ shifted results are 
stitched together to form the final image data based on start position, which is 
also calculated via PSA.

It is noteworthy that two key parameters (i.e., offset and start position) are 
required to be calculated quickly for the second and third phase of EPEnt. To tackle 
this problem, the PSA plays a crucial role, and we modify it slightly to implement 
our task. Moreover, the detailed implementation will be given in Sect. 3. 2.

3.2  Pipelined execution scheme of EPEnt

3.2.1  Encoding transformed data

As previously stated, a JPEG image contains three components (luminance compo-
nent Y and chrominance components CbCr) which are significantly different. To be 
specific, Y contains the primary information of an image, and the change of pixel 
value evidently affects people’s perception of the image. On the contrary, the chro-
minance components include less image information, and people are less sensitive 
to it than Y.
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Based on the above background, we first attempt to analyze the differences 
between the coding task loads of both components. We observe that the num-
ber of non-zero coefficients directly determines the task loads of an 8 × 8 block 
because they are the main target which needs to be converted to the bitstream. 
Therefore, we choose several typical standard images and analyze their task 
loads. Figure 5 presents the functional relationship between the number of 8 × 8 
blocks and the number of non-zero coefficients in each image component. From 
it, we can summarize that each 8 × 8 block in luminance component Y contains 
a lot of non-zero coefficients, which will lead to a heavy workload if only a sin-
gle thread is performed. Nevertheless, in chrominance components CbCr, there 
are only a few non-zero coefficients in each 8 × 8 block, which can be efficiently 
encoded even by just one thread.

In our proposed EPEnt, two different coding strategies are, respectively, devised 
for Y and CbCr components. The main difference between both strategies is that 
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each 8 × 8 block of the Y component is encoded based on the CUDA warp, while 
only one thread is required to complete the same task CbCr components.

Algorithm  1 presents the details of a warp-based coding strategy, where 32 
threads in a warp are responsible for encoding two adjacent coefficients in an 8 × 8 
block. First, we can observe that the first thread performs a DPCM algorithm on the 
DC coefficient. Then all 32 threads simultaneously carry out RLE algorithm on AC 
coefficients. Notably, the main purpose of RLE coding is to get the run-length by 
counting the zero coefficients before a non-zero coefficient.Instead of counting zeros 
directly, we introduce the warp vote function __ballot() so that 32 threads can work 
in concert to accomplish this task. Afterward, each thread obtains the bitstream and 
its corresponding bit length bits_length by employing the Huffman algorithm on the 
RLE coding results.

At this time, threads cannot determine where their obtained bitstream should be 
written in the final image data owing to the variable length codes. In our EPEnt, 
a 64B of global memory (i.e., TempJPEGdata) is allocated for each 8 × 8 block to 
store the bitstream temporarily, and the memory size can be adjusted if needed. In 
general, the extra storage memory required is very small, which is only equivalent to 
the storage space of source image. To calculate the start position where bitstream is 
written into TempJPEGdata, all threads write their corresponding (i.e., bits_length) 
to allocated shared memory Temp. The prefix sum is adopted to calculate the start 
position where their bitstream should be written into TempJPEGdata. And we use 
the __syncthreads() function to avoid the parallel write-conflict error.

Fig. 5  The distribution of the number of non-zero coefficients of 8 × 8 block in each image component
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As mentioned above, we utilize a thread-based strategy to encode an 8 × 8 block 
of CbCr components, as shown in Algorithm 2. Similar to CPU-based methods, and 
the run length is obtained by just counting zero coefficients. When obtaining the 
bitstream after RLE and Huffman algorithms, threads write the bitstream into the 
corresponding TempJPEGdata in a sequential way.

Therefore, the coding results of all 8 × 8 blocks are written into their correspond-
ing TempJPEGdata after the coding phase. And the bit length of the coding results 
can also be obtained. For example, in Fig. 6, the bit length l of the kth 8 × 8 block is 
17; the bit length l of the k + 1th 8 × 8 block is 4; the bit length l of the k + 2th 8 × 8 
block is 11. The final output result of the coding phase is also described as the cod-
ing result in Fig. 4.

3.2.2  Implementation of shifting

As shown in Fig. 6, all the 8 × 8 block coding results are written into their corre-
sponding TempJPEGdata beginning from the first-bit position for higher parallel 
efficiency. Unfortunately, the bit length of most 8 × 8 block coding results is not an 
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integral multiple of byte, which means that the coding results of adjacent blocks 
cannot be stitched together continuously in the current state, resulting in incorrect 
image data. Therefore, we need to calculate the bit offset for each 8 × 8 block coding 
result and carry out appropriate shift operations to ensure that the neighboring bit-
streams can be stitched without bit separation.

By obtaining the start position of each 8 × 8 block coding results in the final 
image data, the corresponding bit offset is easily computed. First, the start position 
of each 8 × 8 block coding result is calculated by accumulating all bit lengths, which 
are stored precedently in the final output stream. Then the bit offset of each 8 × 8 
block coding result can be calculated through their start position. Inspired by the 
excellent parallel performance of PSA, we introduce and slightly modify it to obtain 
the start position and meet the demands of our proposed EPEnt. Next, we will pro-
vide the detailed implementation process.

As shown in Fig. 7, when the PSA is operated on a bit length array, it could gen-
erate two output arrays by performing inclusive and exclusive scans, respectively. 
Inclusive scan produces a new array where each element in_prek is the sum of all 
elements from l1 to lk,, which can be described as follows:

(3)in_prek =

k∑
i=1

li

64 Bytes

1 10 0 0 1 1 1 1 1 1 11 1 0 1 0

0 0 0 0

10 1 0 1 0 0 1 1 0 0

k 

k+1

k+2

lk = 17

lk+1 = 4

lk+2 = 11

Fig. 6  The visualization result of coding phase. We allocate a 64B of temporary storage TempJPEGdata 
for each 8 × 8 block. And the coding results are written into their corresponding TempJPEGdata from left 
to right

Fig. 7  Parallel prefix sum scan on the bit length array
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Also, exclusive scan is helpful to our proposed method. Each element ex_prek 
computed by exclusive scan contains the sum of all previous elements (l1 → lk-1), but 
not lk itself, and the process is defined as:

The start positions and offsets of 8 × 8 block coding results are calculated based 
on the exclusive scan. Furthermore, the total bit length of the entire image data is 
also a key parameter for generating JPEG files, which can be obtained via inclusive 
scan. Therefore, when calculating these parameters by PSA, we set the first value 
of the output array to 0, and then arrange the result of the inclusive scan into it, as 
shown in Fig.  7. In this way, these required parameters can be calculated merely 
from an output array.

Algorithm 3 presents how to shift each 8 × 8 block coding results by utilizing the 
bit offset s. Firstly, the bit offset s of each 8 × 8 block coding result is calculated 
according to the corresponding start position presum. Afterward, we perform shift 
operation on all 8 × 8 block coding results in byte according to their related offset s. 
Finally, to save the memory source and not affect the shift result, we start shifting 
from the last byte of the coding results. The newly generated byte is written start-
ing from the last byte of each temporary storage TempJPEGdata. Therefore,we will 
implement the phase without any extra storage.

(4)ex_prek =

⎧
⎪⎨⎪⎩

0, if k = 1
k−1∑
i=1

li , if k ≥ 2
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In addition, 0xff byte in JPEG files indicates the identifier that might also be pro-
duced in the image data. Based on JPEG standard, 0×00 byte will be added after the 
0xff byte when it appears in the image data. In the shifting phase, we can directly 
judge whether the newly generated bytes are 0xff or not. And the 0×00 will be put 
behind the 0xff to distinguish between the image data and the identifier. It is note-
worthy that after the operation completes, the shifting results can also guarantee the 
stitching continuously of adjacent block coding results.

Figure  8 provides the bit offset sk of the kth block shown in Fig.  6, all the 17 
bits will be shifted to the right by 2 bits. The bit length will also be changed from 
17 to 25 due to the 0xff byte after shifting. Similarly, the k + 1th and k + 2th 8 × 8 
block coding results will also be shifted according to their respective offset s. We 
can obtain the visualization result of the shifting phase in Fig. 4, described as the 
shifted bitstream.

64 Bytes

0 0 0 0

0 1 0

10 1 0 1 0 0 1 1 0 0

1 1111111 110001 0 0000000k

k+1

k+2

sk = 2, lk = 25

sk+1 = 3, lk+1 = 4

sk+2 = 7, lk+2 = 11

0xff 0x00

Fig. 8  Shift the 8 × 8 block coding results and find 0xff bytes
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3.2.3  Producing image data by stuffing

The bit length of each 8 × 8 block coding results changes uncertainly owing to the 
addition of 0×00 bytes after the shifting phase. Therefore, we conduct the modi-
fied PSA again to compute the start position Sp for each 8 × 8 block to decide where 
to start writing. The total length of the final image data is also obtained during the 
process. According to the Sp, threads can write the 8 × 8 block shifting results to the 
corresponding location accurately in the final image data, which is allocated during 
initialization. However, supposing that adjacent threads write the bitstreams simulta-
neously, they may need to access the same memory location. Thus, it is indisputable 
that access violation and write error will occur, which is shown in Fig. 9.

To solve the above problem, all the 8 × 8 blocks of three image components are 
divided into three parts (Y1, Y2, and Y3), and each part is regarded as a collection Yi 
that can be expressed as follows:

where M is the total of all 8 × 8 blocks in an image. During the stuffing process, the 
parallel stuffing operation is performed three times to generate the final image data. 
Each time the shifting results of a collection Yi will be stuffed into the final output 
stream in parallel, as shown in Fig. 9. Only in this way can we avoid access viola-
tion and write error. The main reason is that in the same parallel stuffing operation, 
neighboring 8 × 8 blocks are separated by two other 8 × 8 blocks, which require to 
be written next time or have already been written into the final output stream. When 
the AC and DC coefficients are all zeros in an 8 × 8 block, we will get the shortest 
shifting results: 4 bits of chrominance component and 6 bits of the luminance com-
ponent. Therefore, the neighboring 8 × 8 block shifting results in the same stuffing 
operation are separated by at least a byte, indicating there is no danger of access 
violation in our proposed method. Eventually, the final image data will be produced 
in parallel after the stuffing phase and transmitted to the host for memory storage. 

(5)Yi =

⎧
⎪⎨⎪⎩

0, 3, ..., int(
M+2

3
) × 3, if i = 1

1, 4, ..., int(
M+2

3
) × 3 + 1, if i = 2

2, 5, ..., int(
M+2

3
) × 3 + 2, ifi = 3

64 Bytes

0 0 0 0

0 1 0

10 1 0 1 0 0 1 1 0 0

1 1111111 110001 0 0000000k

k+1

k+2

0 1 0 0 0 0 01 0 1 0 1 0 0 1 10 00000001111111 1

i = 1 i = 2

i = 3

Sp = m-1 

m m+1 m+2 m+3

Sp = m+2

Sp = m+2

final output 
stream

access violation

Fig. 9  The shifting results 8 × 8 block stitching
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Besides, the total length of the final image data will also be transmitted to the host 
for generating a new JPEG file.

3.3  Optimal strategy

GPU is tailor-made for parallel computing, and proper parallel optimization strate-
gies can help our proposed EPEnt run with higher efficiency. The choice of thread-
block size has a significant impact on the execution time of kernel functions. The 
optimal thread-block size depends on the hardware. Therefore, it always requires to 
specify the thread-block size for better performance. Similarly to previous work [31, 
33], the thread-block in our work is set automatically by using the CUDA API-call, 
cudaOccupancyMaxPotentialBlockSize() function, which heuristically calculates a 
block size that achieves the maximum occupancy. This function is invoked to deter-
mine the thread-block sizes of the coding, shifting and stuffing kernels, respectively. 
Meanwhile, we select images of 2560 × 1600 and encode them on GPU applying our 
method to compress pictures in 4:4:4 formats.

Figure 10 illustrates kernel execution times versus achieved GPU occupancy as 
the thread-block size is varied on the GTX1050Ti platform. The CUDA API-calls 
select the largest possible thread-block size, i.e., 1024 threads. Conversely, we found 
through trial-and-error that block configurations of 64 threads yielded the minimum 
execution time when the luminance component coding and stuffing kernels are exe-
cuted. The other two kernels perform best when the thread-block size is set to 32. 
However, these differences affect overall JPEG image compression performance by 
less than 1% on the GTX1050Ti platform. Furthermore, the overhead of this CUDA 
API-call has no noticeable impact on system performance. We thus employ the 
CUDA API-call because it selects a close-to-optimal solution without the cost of 
trial-and-error.

Our proposed method has basically realized the maximum parallel execution 
of entropy coding. A large number of parallel read and write operations are car-
ried out on the memory, making it easy to cause the bottleneck of the coding sys-
tem. We should pay attention to balance the usage of different types of memory. 
In memory optimization, we make full use of constant memory and shared mem-
ory. Particularly, cache and broadcast are two main characteristics of constant 
memory. In our proposed method, we put the Huffman tables in constant memory 

Fig. 10  Entropy coding kernels execution time versus achieved occupancy as the thread-block size is 
varied



2697

1 3

An efficient parallel entropy coding method for JPEG compression…

to improve the reading speed. The shared memory is located on the chip, and 
accessing shared memory is as fast as that of accessing registers. When the 8 × 8 
block bit length is placed in shared memory, the solution of PSA is very fast.

Data transmission between the CPU and GPU has a more considerable influ-
ence on the performance of the heterogeneous system [19, 31]. It is always the 
bottleneck of the parallel algorithm. In order to achieve higher data transmission 
bandwidth, cudamallochost() can be used to allocate page-lock memory on the 
host. In the meantime, multi-stream technology is utilized to address the trans-
mission delay.

4  Experimental results

4.1  Experimental environment

To evaluate the performance of the proposed method, we conduct several groups 
of experiments to make a comparison with sequential implementations in image 
quality and consuming time. In the sequential version, the latest open-source code 
of libjpeg-turbo’s implementation is adopted and modified for comparison pur-
poses. In the JPEG library, the forward 2D DCT has different implementations. 
We choose the float-type implementation for its accuracy. Also, entropy coding 
is highly optimized for modern computers. Therefore, the whole process of image 
compression can be executed quickly on the CPU. The source code for our paral-
lel implementation is developed based on CUDA, and it mainly consists of two 
parts: the host program and kernel codes. The kernel codes are executed based on 
GPU and contain the whole process of JPEG image compression.

Table 1 lists the test environment of our proposed method, including hardware 
and software configuration. Our experiments are carried out on a heterogeneous 
platform consisting of a multicore CPU and a GPU. Many typical color images 
with different sizes are employed to support the experiments. And they are com-
pressed to JPEG image with full/down-sampled resolution formats (i.e., 4:4:4, 
4:2:2, and 4:2:0). In addition, the standard quantization tables and image quality 
values (e.g., Q = 50) are used to produce the quantization coefficients during the 
experimental process. Furthermore, we employ the standard Huffman tables to 
complete the entropy coding stage.

Table 1  Test platform 
specifications

Hardware platform Software platform

CPU model: i7-4700 HQ
Frequency: 2.4 GHz
CPU memory size: 8 GB

Operating system: Windows 10 64 
bits Professional Edition

GPU model: GTX 1050Ti
GPU memory size: 4 GB
Core frequency: 1290 MHz

Software environment: CUDA 10.2
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4.2  Visual quality of the compressed images of parallel implementation, 
and sequential implementation

We cannot improve the compression efficiency without considering the quality of 
compressed images. Therefore, before evaluating the efficiency of our proposed 
EPEnt, we firstly compare the image quality achieved by parallel entropy coding 
and sequential entropy coding respectively. To be specific, two performance met-
rics, named Peak Signal to Noise Ratio (PSNR) and structural similarity index 
(SSIM) [32], are introduced to complete the evaluation. The metrics are defined 
as follows:

where x and y are the original image and compressed image, respectively, W and H 
are the dimensions of image array, i and j are the pixel locations.

where x and y donate the original image and compressed image, respectively, 
μx and μy are the mean value of both images, δx and δy mean the standard devia-
tion of both image, δxy represents the covariance of both image, C1 and C2 are two 
constants to avoid system errors when the denominator is 0.

The PSNR value range is generally 20–40 dB. The higher the value is, the less 
the compressed image distort. SSIM, ranging from 0 to 1, is a metric to meas-
ure the similarity between two images. Although the calculation is complicated, 
SSIM is more appropriate to evaluate the image’s subjective perception by the 
human eye than PSNR. Similar to PSNR, the larger the SSIM is, the more similar 
the compressed image is to the original image.

Like much previous work [12, 15, 28], we get the test images from typical 
image datasets such as Cablecar, Pepper, and Baboon. These images are resized 
to produce new images with different sizes. Then, we obtain the compressed 
images by applying our proposed method and the sequential algorithm, respec-
tively. The corresponding PSNR and SSIM of these compressed images are com-
puted to evaluate the image quality.

Table 2 presents the experimental results on the test images. When an image is 
compressed by the same entropy coding method, the PSNR values differ signifi-
cantly due to different image formats. The main reason is that there is more infor-
mation loss caused by critical down-sampling operation on chrominance compo-
nents. However, there is little difference between SSIM values, which indicates 
that the compression rate can be further improved without affecting the subjective 
perception of the image by the human eye when the 4:2:0/4:2:2 image format is 

(6)PSNR = 10 × lg
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employed. More importantly, the compressed image quality obtained by paral-
lel and sequential methods is almost the same. The visualization results of some 
samples with different formats shown in Fig. 11 also prove the views expressed 
above. Therefore, we can conclude that the compressed image obtained by our 
proposed method has the same quality as the sequential algorithm.

4.3  Relationship between consuming time and image size

The image size directly affects the number of 8 × 8 blocks that require to be pro-
cessed, and the consuming time of entropy coding will also change. In this subsec-
tion, we keep the other conditions unchanged and merely change the image size to 
explore the relationship between the image size and consuming time. Specifically, 
the source images with different sizes are compressed by four different methods, 
including the sequential algorithm, NPP v10.2 [29], the reproduced Shan’s method 
[28], and our EPEnt. The main characteristics of the previous methods are described 
as follows:

Sequential algorithm All the steps of image compression meet the standard of 
JPEG and are implemented based on CPU.

Shan’s method [28] It is a semi-parallel version for the JPEG image compres-
sion algorithm that has implemented the entropy coding by the coordinated action of 
GPU and CPU.

Table 2  Compressed image quality comparison (Q = 50)

Evaluation 
index

Image 
formats

Coding 
method

Image Dimension(width × height)

768 × 512 1200 × 768 1440 × 900 1760 × 1100 2560 × 1600

PSNR 4:4:4 CPU Serial 30.784 32.389 32.489 33.509 35.108
GPU 

Parallel
30.791 32.397 32.640 33.527 35.220

4:2:2 CPU Serial 29.698 30.914 31.895 32.098 33.825
GPU 

Parallel
29.884 31.281 31.901 32.477 34.096

4:2:0 CPU Serial 29.263 30.378 30.882 31.820 33.443
GPU 

Parallel
29.315 30.466 30.977 31.884 33.529

SSIM 4:4:4 CPU Serial 0.9269 0.9308 0.9325 0.9358 0.9490
GPU 

Parallel
0.9272 0.9309 0.9330 0.9362 0.9499

4:2:2 CPU Serial 0.9270 0.9298 0.9309 0.9349 0.9486
GPU 

Parallel
0.9271 0.9305 0.9312 0.9354 0.9487

4:2:0 CPU Serial 0.9254 0.9301 0.9299 0.9347 0.9482
GPU 

Parallel
0.9256 0.9304 0.9307 0.9349 0.9485
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NPP v10.2 [29] It is the first efficient and classic parallel version for the JPEG 
image compression algorithm, which has implemented the whole procedure based 
on GPU. Although it has achieved a faster processing speed than previous meth-
ods, the entropy coding stage is still a performance bottleneck.

During the compression, the total compression time of an image is measured. 
Precisely, the entire compression time of parallel implementations consists of the 
kernel execution, and data transfer between the host and device. The execution 
time of entropy coding is measured to verify the performance of our proposed 
method.

Through the source images, we obtain the compressed images with three differ-
ent formats (i.e., 4:2:0/4:2:2/4:4:4). Figure  12 summarizes the compression time 
changed with different image sizes and formats. From it we can draw that as the 
image size becomes larger, the compression time of sequential implementation 
increases significantly. Owing to the incomplete parallelization, it is found that the 
execution time of Shan’s method has the same change laws with sequential imple-
mentation. Moreover, the transmission of entropy coding intermediate data between 
the host and device increases the time consumption, which affects the overall per-
formance. Although the consuming time of EPEnt and NPP v10.2 also increases, 
the change is very gentle. It is noteworthy that when the NPP v10.2 is employed to 
complete the image compression, the execution time of entropy coding still accounts 
for a large proportion of the whole process. The results demonstrate that the execu-
tion time will be significantly shortened when our proposed method is adopted. Our 

Fig. 11  Original and compressed images using different methods (Q = 50)
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proposed EPEnt has the lowest time complexity and achieves the best performance 
than other advanced methods.

To further evaluate the performance of EPEnt, the CUDA speedups relative to the 
sequential algorithm based on CPU are calculated, which is described below:

where ts is the sequential consuming time and tp is the parallel consuming time for 
CUDA implementation. Firstly, we calculate the parallel compression speedups, 
where tp is the total compression time, including kernel execution and data transfer. 
Then, parallel entropy coding speedups are calculated where tp merely represents 
the consuming time of entropy coding. The performance improvements over the 

(8)speedup =
ts

tp

Fig. 12  The overall consuming time with different image size in a 4:4:4 formats, b 4:2:2, and c 4:2:0 for-
mats, comparing parallel with sequential consuming time. (Q = 50)
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state-of-the-art parallel method (NPP) are also reported in this paper, which can be 
calculated as follows:

where tpN and tpE denote the execution time of NPP and our method, respectively. 
speeduppE and speeduppN are the speed ratios of the two parallel methods relative to 
sequential implementation.

Figure 13 presents the compression speed gains for CUDA parallel programs over 
the sequential CPU-based program. As the image size increases, the GPU-based 
methods achieve higher speedups apart from Shan’s method due to its incomplete 
parallelization. Particularly, when encoding images in 4:4:4 format, the speedup 
ratio is always higher than that in 4:2:2 format and 4:2:0 format. In EPEnt, the maxi-
mum speedups of entropy coding obtained with a large-size image of 2560 × 1600 
(19.0 in 4:4:4 format, 16.0 in 4:4:4 format, and 16.8 in 4:2:0 format). Even compared 
with start-of-the-art NPP v10.2, the speedup of EPEnt increases by at least 208.4% 

(9)Improvement =

(
tpN

tpE
− 1

)
× 100% =

speeduppE − speeduppN

speeduppN
× 100%

Fig. 13  Speedup of CUDA parallel entropy encoding relative to sequential algorithm at different image 
size (Q = 50). Compared with the state-of-the-art NPP v10.2, the improvement of our method is also 
reported
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in in 4:4:4 format, 220.0% in 4:2:2 format, and 195.1% in 4:2:0 format, respectively. 
Therefore, owing to the limitation of entropy coding, the maximum speedups of the 
two other GPU-based methods can merely achieve up to 8.7 × and 5.3 × speedups 
when performing their JPEG compression algorithms entirely. More importantly, we 
can observe that the JPEG compression process efficiency has increased by at least 
30% compared with the state-of-the-art NPP v10.2 in term of speedup ratio.

4.4  Relationship between consuming time and image quality

The standard quantization tables and image quality value Q (1–100) are introduced 
to produce quantization coefficients, which are the key factors to control the quality 
of compressed image. As the value Q increases, the quantization coefficients will 
be reduced, and the image quality will increase accordingly. To quantitatively ana-
lyze the effect of the value Q, we choose images of size 2560 × 1600 to obtain com-
pressed images using our proposed method and the sequential algorithm, respec-
tively. The images with different qualities can be generated when we change the 
value Q. Afterward, we calculate the PSNR and SSIM of these compressed images. 
Table 3 illustrates that the compressed images obtained by both methods can guar-
antee the same quality and are unaffected by the variation of Q. 

The number of non-zero coefficients in each 8 × 8 block grows as the value Q 
increases, which leads to much more cumbersome coding tasks and prolonged time 
consumption during the entropy coding stage. Similarly to Sect. 4.2, we evaluate the 
results obtained from our proposed method and compare them with the other meth-
ods in term of compression time. The comparison also involves three other methods: 
the sequential algorithm, NPP v10.2, and Shan’s method.

Figure 14 shows our experiments’ execution time and provides a clear compari-
son among those parallel and sequential algorithms. The total execution time is the 

Table 3  The effect of value Q on image quality

Evaluation index Image formats Coding method Image quality value Q

50 60 70 80 90

PSNR 4:4:4 CPU Serial 35.108 35.461 36.338 38.458 40.987
GPU Parallel 35.220 35.542 36.456 38.671 41.060

4:2:2 CPU Serial 33.825 34.836 35.747 36.993 38.845
GPU Parallel 34.096 35.149 35.947 37.012 38.925

4:2:0 CPU Serial 33.443 34.102 34.782 35.976 37.423
GPU Parallel 33.529 34.179 34.941 36.123 37.559

SSIM 4:4:4 CPU Serial 0.9490 0.9536 0.9591 0.9683 0.9815
GPU Parallel 0.9499 0.9543 0.9597 0.9691 0.9823

4:2:2 CPU Serial 0.9486 0.9529 0.9588 0.9671 0.9811
GPU Parallel 0.9487 0.9532 0.959 0.9673 0.9816

4:2:0 CPU Serial 0.9482 0.9525 0.9577 0.9667 0.9809
GPU Parallel 0.9485 0.9531 0.9586 0.9672 0.9812



2704 F. Zhu, H. Yan 

1 3

accumulated execution times of kernels and data transmission between the CPU 
and GPU. As shown in the graph, when the value Q is raised in different formats 
(i.e., 4:4:4/4:2:2/4:2:0), the GPU-based implementations achieve significantly bet-
ter performance than the sequential CPU-based method of total execution time. The 
performance of these GPU-based methods is very promising. Especially when our 
proposed EPEnt is applied to the JPEG compression algorithm, considerable reduc-
tions in execution time will be achieved. It further proves that our proposed method 
has effectively reduced the time complexity.

Similarly, we compute the speedups of three parallel methods by utilizing the for-
mulas defined in (8). The performance boost of our method relative to NPP v10.2 

Fig. 14  The overall consuming time with image quality value Q in a 4:4:4 formats, b 4:2:2, and c 4:2:0 
formats, comparing parallel with sequential consuming time
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is also quantified through formula (9). In Fig. 15, we report the result that summa-
rizes the performance of three parallel methods with regard to the entropy coding 
and the entire process. From the figure, we can conclude that the speedups achieved 
by the three parallel methods are growing with the value Q. To be specific, when 
images are encoded in 4:4:4 format, the speedups are invariably higher than that of 
the 4:2:0 format and 4:2:2 format. Moreover, the maximum speedups of the whole 
compression can be achieved in all formats (e.g., 4:4:4/4:2:2/4:2:0) when our pro-
posed EPEnt is adopted. Even compared with the state-of-the-art NPP v10.2, the 
performance improvement of our method can achieve at least 28% during the JPEG 
compression process. Therefore, our proposed parallel entropy coding method plays 
an influential role in parallel JPEG image compression.

4.5  Impact of coding method on efficiency

In Sect. 3.2.1, the coding kernels functions are, respectively, designed for both the Y 
component and CbCr component. Here, we conduct some experiments to verify our 

Fig. 15  Speedup of CUDA parallel entropy encoding relative to sequential algorithm at different Q. 
Compared with the state-of-the-art NPP v10.2, the improvement of our method is also reported
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method. To be specific, three strategies are designed to encode the same image data 
with 4:4:4 format: the thread-based method (EPEnt-T), the warp-based method (EPEnt-
W), and the combination of thread-based and warp-based methods (EPEnt). Figure 16 
presents the coding results with regard to execution time. From it, we observe that 
our proposed EPEnt obtains the best performance. The main reason is that our EPEnt 
makes full use of the data feature of both luminance component and chrominance com-
ponents and maximizes the resource utilization of GPU.

5  Conclusion

In this paper, an efficient parallel entropy coding method for JPEG image compres-
sion is presented based on CUDA architecture. The proposed method has three phases: 
the coding phase, the shifting phase, and the stuffing phase. In the coding phase, 8 × 8 
blocks are coded in parallel. For the different characteristics of the Y component and 
CbCr component, two different kernel functions are designed to encode them. In the 
shifting phase, the code results of all 8 × 8 are shifted to ensure that the encoding results 
of adjacent blocks can be stitched together continuously. The final output stream can be 
produced in the stuffing phase.

We have tested the proposed method with a large set of typical images with different 
sizes and formats. Experimental results show that our proposed method has achieved 
significantly better performance than the other methods. Consequently, our proposed 
method is readily suitable for real-time and/or near real-time processing applications. 
We will continue to optimize the parallel JPEG image compression algorithm for 
higher speed and better image quality in our future work. Afterward, we will extend our 
work and implement other parallel compression algorithms on CUDA, such as JPEG 
2000 and MPEG.

Acknowledgements The authors would sincerely like to thank the editor and anonymous reviewers for 
their detailed review.

Fig. 16  The comparison of different strategies in the coding phase
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