
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:2724–2743
https://doi.org/10.1007/s11227-021-03952-9

1 3

Floor plan optimization for indoor environment based 
on multimodal data

Shinjin Kang1 · Soo Kyun Kim2 

Accepted: 12 June 2021 / Published online: 6 July 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2021

Abstract
Designing an optimal indoor space is challenging in interior architecture. The opti-
mal space design requires a comprehensive analysis of the living situation of resi-
dents in a space. However, it is extremely difficult to collect data from the space 
where daily life occurs. Many spatial analysis sensors are required because vari-
ous daily life data must be collected precisely. Hence, it is difficult for indoor space 
designers to use the daily-life information of users when managing indoor layouts 
or floor plans. In this paper, we introduce a technique to solve this problem: simple 
mobile application (app) logs are used to identify the daily-life patterns of users in 
an indoor space, and the results are used to create the optimal space layout. We col-
lect and process key information from the mobile app logs and Google app servers 
to generate a high-dimensional dataset required for user behavior analysis. Subse-
quently, we suggest a floor plan that minimizes the living cost using a two-dimen-
sional genetic algorithm. Our method will facilitate the spatial analysis of currently 
inhabited indoor space and reduce the space utilization feedback costs of users.

Keywords Architectural floor plans · Architectural optimization · Behavior 
Analysis · Architectural design · Optimization

1 Introduction

A residential plan is a complex document that shows one aspect of the living cul-
ture to which each resident belongs. In recent years, various resident requirements 
have emerged because of the continuing urbanization worldwide. Residents use 
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various smart devices in indoor spaces to engage in novel indoor activities. An opti-
mized indoor space design requires a residential floor plan that can respond to new 
lifestyle types. Previously, the life patterns of residents were analyzed using many 
sensors [1, 2] or by conducting surveys [3, 4]. However, these methods incurred 
high costs. Recently, spatial information has been integrated with various indus-
tries and technologies, thereby enabling the application areas to expand rapidly 
owing to the extensive use of smartphones with built-in small sensors. In addition, 
researchers have attempted to create a new industry rapidly by combining spatial 
information with machine learning [1]. Herein, a method that uses personal appli-
cation (app) logs of smartphones to analyze the daily-life patterns of residents eas-
ily is introduced, wherein the patterns are used for indoor space design. Because 
our method involves only spatial information from smartphones, separate sensors 
are not required for spatial information acquisition, and a large amount of data 
can be collected. Previously, [2−4] conducted studies pertaining to methods simi-
lar to ours; however, they focused primarily on customer analysis in shopping mall 
spaces. Moreover, the behaviors of residents in a building based on energy optimiza-
tion problems [5] or building structure layout and design problems [7,8] have been 
investigated.

Our study was motivated by the studies of Zawidzki [53]. In this paper, we pro-
pose an optimized design based on multimodal data obtained using a smartphone 
from an indoor space, referred to as an apartment. Our approach differs from con-
ventional methods in that the high-dimensional behavior data of users are created 
from the app usage contents of the residents, and the data are then used for spatial 
optimization. In our study, the spatial analysis domain is automatically expanded in 
proportion to the number of smartphone users and data. Furthermore, our proposed 
design can increase the accuracy of machine learning in proportion to the data size. 
We applied our proposed method for the residential-zone analysis of apartments. 
After obtaining the daily-life patterns from residential environments in apartments 
of two typical sizes, we performed optimized spatial arrangements. Subsequently, 
we investigated the amount of improved spatial efficiency afforded by the rearranged 
spaces based on the test data. Compared with existing studies, the contributions of 
the current study are as follows:

– A low-cost spatial analysis system: Location and high-dimensional multimodal 
data that can be easily used for machine learning are obtained at a low cost using 
spatial data extracted from users’ smartphones.

– Optimization algorithm based on multimodal data: A method for an opti-
mized space layout that satisfies the behavior minimization cost based on the 
multimodal data obtained is proposed.

2  Previous work

The current study is related to the research areas of (1) Spatial analysis platform, 
(2) Behavior analysis using multimodal data, and (3) Floor plan optimization. Some 
previous studies associated with each area are introduced below.
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2.1  Spatial analysis platform

Spatial analysis techniques involving the use of data obtained from various small 
sensors have been proposed. Hannu [13] proposed a framework to perform potential 
mobile customer measurements to obtain data. They proposed a technique that installs 
a separate app in mobile devices, obtains data for each mobile situation, and sends the 
data periodically to a server for synchronization. Kang et al. [14] proposed a method 
where various data on a network are obtained and then analyzed in a mobile environ-
ment. The data obtained comprises GPS, calls, SMS, photo viewing, photographs, 
weather, mp3, battery, and other types of data. Additionally, a method was proposed 
to allow a network business operator to optimize the construction of infrastructure 
and create services based on analyzed data [15]. Harman et al. [16] extracted, com-
bined, and analyzed pricing and customer review information for the technical, cus-
tomer, and business aspects of an app. Chaix et al. [17] proposed the visualization and 
evaluation of trajectory itineraries, travel destinations, and activity spaces (VERITAS) 
system. Their system was an interactive Web mapping application that can identify 
the locations of relevant areas such as trajectories between locations and a person’s 
activity locations. Kelly et  al. [18] proposed a spatial analysis method for analyzing 
demographic characteristics. They investigated relationships among the demograph-
ics, location-based behavior patterns, and social characteristics of individuals. Hamka 
et  al. [19] showed that several service clusters can be defined from the perspectives 
of content service usage and network usage. Subsequently, they proposed a customer 
segmentation method from the perspectives of handset manufacturers, network opera-
tors, and application developers. Mafrur et al. [20] used 19 types of data sensors to pro-
pose methods for constructing behavior models to identify humans based on life-logs. 
The proposed system exceeded 80% in terms of identification accuracy. Jalali et al. [21] 
proposed a lattice-based data fusion technique for recognizing events. They adopted 
a framework that detects co-occurrence patterns from multiple event streams. Subse-
quently, they proposed a data modeling and analysis method for user behavior analysis. 
Yamamoto et al. [23] proposed a technique for utilizing smartphone usage logs using a 
physiologically assessed stress metric. This technique minimizes the effect of partici-
pant subjectivity and increases objectivity. Lee et al. [24] proposed a variant of seq2seq 
architecture by combining an existing neural embedding architecture and an existing 
seq2seq architecture. Subsequently, they proposed a method for classifying smartphone 
users. Fukazawa et al. [25] proposed an experiment using the state-trait anxiety inven-
tory (STAI) to evaluate the anxiety-related stress levels of 20 participants. They showed 
that the anxiety-related stress level can be predicted using smartphone log data. Sarker 
et al. [26] presented a method for mining recency-based personalized behavior, known 
as RecencyMiner. The effectiveness of RecencyMiner was analyzed based on individ-
ual smartphone user’s real-life contextual datasets.

2.2  Behavior analysis using multimodal data

Methods for analyzing various multimodal data and classifying user behaviors have 
been proposed continuously. Chan et  al. [41] proposed solutions that enable the 
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elderly or people with diminished physical functions to live in safe environments, 
i.e., using smart houses or sensor-embedded houses. Casale et  al. [37] attached a 
wearable device to each user to obtain the time-series data of an accelerometer. Sub-
sequently, five basic patterns in daily lives, i.e., “standing,” “walking,” “climbing 
stairs,” “working on a computer,” and “talking with people” were obtained. Fuji-
moto et  al. [38] proposed a user (human) activity estimation method using fuzzy 
decision trees. They measured a user’s activities using a wearable multisensor 
with a built-in three-axis accelerometer and electrocardiogram monitor. Lee et  al. 
[2] proposed a modeling framework for the malling behavior of customers within 
an urban shopping mall using raw sensor data from customers. Based on the stay 
point method proposed by GeoLife [44], they used a technique that extracts cus-
tomer tracking data from raw sensor data. Their method comprises three aspects, 
i.e., stay detection, store recognition, and post-processing. Ke et al. [40] investigated 
human activity recognition using videos and performed a detailed analysis in three 
processing stages, i.e., human object segmentation, feature extraction and represen-
tation, and activity detection and classification algorithms. They used a viewpoint 
decision algorithm based on various view sequences via multiple cameras. Ann 
et al. [39] focused on the use of images and videos from RGB cameras to classify 
human behavior. They used depth maps of RGB frames obtained from depth cam-
eras to increase behavior classification accuracy. Fallmann et  al. [43] introduced 
human activity recognition in ambient assisted living based on a three-axis accel-
erometer and a three-axis gyrometer. In their study, accelerometer and gyrometer 
data collected from wearable sensors were analyzed using a continuous-time hid-
den Markov model. Singh et al. [42] proposed a deep learning model that learns to 
classify human activities in situations where no prior knowledge is available. Their 
study was conducted in a situation where data were delivered through smart home 
sensors. Zhang et al. [3] introduced unmanned store technologies, which are based 
on Wi-Fi technology, mobile and wearable sensing, and radio-frequency identifi-
cation (RFID). They introduced three technologies necessitated by DeepStore; in 
particular, they demonstrated that customer behavior can be understood using five 
technologies: Kinect-based, RFID-based, smartphone, wearable-based, and Wi-Fi-
based sensing. Chen et  al. [4] the effect of members in a group on the purchase 
decisions of each member. They used mobile device movements and acoustic sen-
sors to identify potential customers in a store. Clustering-based behavior analysis 
methods are relatively favorable because data annotation is not required. The fol-
lowing cluster-based algorithms have been proposed. Yang et al. [27] suggested the 
extraction of three features from a network environment comprising customers, and 
they can be classified into different categories, e.g., real-time communications, news 
browsing, and shared-resource downloading. They used a support vector machine 
to perform clustering. Perdisci et al. [28] introduced a new scalable system to per-
form the network-level behavioral clustering of HTTP-based malware. The ultimate 
objective was to efficiently assemble newly collected malware samples into mal-
ware family clusters. Bauckhage et al. [29] introduced a player behavior evaluation 
method using advanced spatial clustering techniques. They proposed two methods 
operating on asymmetric spatial similarity matrices to investigate likely transi-
tions between preferred spaces. Drachen et al. [30] used unsupervised methods to 
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develop a behavioral clustering technique using the playtime data of 70,014 World 
of Warcraft players. Leoni et al. [33] introduced a case study of UWV (employee 
insurance agency), one of the largest administrative factories in the Netherlands. 
Their framework unified various approaches proposed in the literature for correla-
tion analysis, and a general solution that can perform those analyses was proposed. 
Farhan et al. [32] proposed a method for detecting depression using a multiview bi-
clustering algorithm. They detected depression by analyzing smartphone detection 
data and identifying certain behavioral features correlated with depression measures 
using a patient health questionnaire (PHQ-9). Wang et al. [31] suggested an unsu-
pervised system that can capture dominating user behaviors from clickstream data 
(traces of users’ click events). They identified clusters of similar users by partition-
ing a similarity graph. Peach et  al. [34] presented a mathematical framework for 
analyzing time-series online learner engagement, which enables the identification 
of clusters of learners with similar online temporal behaviors directly from raw data 
without prescribing subjective reference behaviors a priori.

2.3  Floor plan optimization

Wang et  al. [47] pioneered the use of optimal algorithms for floor plans to solve 
the floor plan area optimization problem. Rebaudengo et  al. [48] suggested using 
a genetic algorithm (GA) to solve the floor plan area optimization problem. Their 
method involve the use of two ad hoc defined heuristic operators to improve perfor-
mance. Their proposed system is insensitive to the internal structure of the build-
ing, and the memory requirement is low because intermediate results need not be 
stored during optimization. By expanding conventional methods, Wang et  al. [49] 
introduced a method that can process large floor plans successfully. Michalek et al. 
[50] used two automated optimization algorithms, i.e., geometry and topology algo-
rithms, to automate the generation of design layouts. They developed an optimiza-
tion model that can quantify the layout design of building floor plans and introduced 
a method that integrates mathematical optimization with subjective decision-mak-
ing. Rodrigues [51] focused on the increasing demand for designing energy-efficient 
buildings and proposed a solution. The aim of his study was to support architects 
in the spatial planning stage, in which floor plans reflecting users’ preferences and 
requirements are automatically generated, evaluated, and optimized. Dogan et  al. 
[52] compared the energy use intensity levels between an American society of heat-
ing, refrigerating, and air-conditioning engineers-prescribed zoning scheme and a 
representative set of floor plans; subsequently, they demonstrated the importance 
of optimization based on simulation results. Zawidzki et al. [53] proposed a layout 
optimization framework that can maximize functionality and aesthetics while mini-
mizing external noise. The proposed framework was applied to an actual case of a 
14-room detached house located on an existing building site, and practical results 
in terms of architectural design were obtained. In this paper, we propose a low-cost 
behavior acquisition system that facilitates large data acquisition using the most 
easily accessible smartphone app logs among existing spatial analysis techniques. 
Using the data obtained, we applied a GA to optimize the room layout.



2729

1 3

Floor plan optimization for indoor environment based on…

3  Floor plan optimization system

Our platform analyzes GPS data and app data from a smartphone to optimize the 
space layout. Our system primarily comprises two systems: (1) a data acquisition 
and app data integration system and (2) an optimization system. Figure 1 shows the 
process flowchart of our system. Our system collects the user’s log data and then 
associates it with the Google app server to label the log. By linking the generated 
labeling data with the space editor data input by the user, a 2D dataset required for 
the evolutionary algorithm is constructed. Subsequently, the optimized layout is 
searched by applying a 2D genetic algorithm.

3.1  Data acquisition and app data linking system

The data acquisition and app data linking system was developed by applying a spa-
tial analysis system developed by us previously [45, 46]. This system is designed 
to obtain location information from a GPS when an app is used on the smartphone; 
it records the location values and app category used from the time when the app is 
launched.

The aim of this study is to generate a layout that is optimized for the move-
ment trajectories and behavior costs of users in an indoor environment. In previous 

Fig. 1  Process flowchart of 
system
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studies pertaining to indoor trajectories, only the movement trajectories of users 
were regarded as the optimization target. By contrast, the optimization targets in our 
study include the costs for various daily-life behaviors in an indoor environment. 
Typical behaviors (e.g., washing dishes and cleaning rooms) in indoor environments 
are extremely difficult to measure accurately. To detect them automatically, a system 
comprising cameras and behavior recognition algorithms is required to detect each 
behavior. This is disadvantageous as it necessitates separate sensors to be installed 
in personal spaces, and a behavior recognition module specialized for each individ-
ual must be developed using information obtained from the sensors.

In recent years, the utilization of terminal devices using the smartphones of users 
at home has increased significantly. If a spatial analysis system uses smartphone app 
usage information in addition to the movement trajectory data of the user, then the 
optimization process will become easier because more accurate behavior informa-
tion can be obtained at a relatively low cost.

We calculated the objective of optimization based on an approximate behavior 
cost T

t
 instead of using a simple moving distance. We set the following equation as 

the optimization objective. If T
t
 is the total time to complete the task, then it can be 

calculated as

Where T
a
 is the trajectory cost (time) required to complete the task. It can be 

obtained by summing the cumulative length of the sampled points. T
e
 is the time 

required to perform a certain operation using an app. T
e
 is calculated as the sum of 

the basic behavior costs incurred by the smartphone behaviors.

For these smartphone behaviors, representative app categories were summarized. By 
2020, the app categories in the Google Play Store comprised 32 subcategories, and 
the game category comprised 17 genres. We regrouped the 17 genres to construct 
eight app categories (information, communication, entertainment, news, education, 
shopping, finance, and telephone), which we believe are significantly related to real 
daily life, and recorded the app usage logs at the pertinent time. The GPS location 
information was sampled every 30 s. An app was recorded as being used only when 
the app was activated on the full screen, beginning from the launch of the app. Each 
space index (room number) was generated by space editor. They were entered by 
the user as input values of a 2D array through a 2D drawing interface on the space 
layout at a separate top-view point. Subsequently, the location (space) in which a 
movement trajectory occurred indoors was identified. This editor is developed as a 
Windows-based application.

Various modeling methods of behavior cost exist in behavior analysis fields 
[54]. However, an accurate method to model the cost of smartphone behavior does 
not exist, to our best knowledge. Hence, the cost was defined empirically for each 
behavior. We assigned a behavior cost with 1 point to each sampling point where no 
app was used, and 2 points to each sampling point where a certain app belonging to 
any of the eight app categories was used. The rationale was that the cost would be 

T
t
= T

a
+ T

e
,

T
e
=
∑

Time to execute primitive operations
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higher when the smartphone was used regardless of the usage type, compared with 
when simply moving. We allowed the user to assign a weight to the behavior to be 
optimized. If the user regards a particular behavior as important, then he/she must 
increase the weight for that behavior. For example, if a user thinks that the educa-
tion environment is important and assigns a higher weight to the educational behav-
ior, then a greater cost weight is assigned to the sampling points where educational 
apps are used. In this situation, the adjustment of the trajectories, on which the edu-
cational apps have been used, will exert a more significant effect on the optimiza-
tion of the system for minimizing the total cost. An example of a simple behavior 
cost method and its estimated execution time is shown next. In the log example in 
Table. 1, when T

t
 is substituted into Eq. (1), the total cost is calculated as T

a
 (2 logs 

*1 behavior value) + T
e
 (1.8 Behavior Cost +1.8 Behavior Cost +1.6 Behavior Cost) 

= 7.2 Behavior Cost.

3.2  Evolutionary optimization method

3.2.1  2D Optimization modeling

The goal of the proposed system is to identify a furniture/room layout that mini-
mizes the behavior cost of the user in an indoor environment. It is extremely simi-
lar to the traveling salesman problem (TSP) in the artificial intelligence domain. 
The TSP [55] involves identifying the shortest path connecting all N cities, and it 
is an NP-hard problem, in which the calculation time increases as an exponential 
function of N. Methods for solving the TSP include neural networks, simulated 
annealing, and GAs. Among them, the GA is a meta-heuristic algorithm influ-
enced by nature’s evolutionary process and the laws of genetics. In general, GAs 
identify an optimal solution by (1) defining the population of entities, (2) select-
ing a process based on fitness, (3) performing crossover for generating offspring, 
and (4) performing mutation for inducing the generation of new offspring. Tabu 
search has been applied since the early research stage of GAs, and to date, many 
solutions have been presented. Among them, GA methods for satisfying the city-
visiting-order condition include order crossover [56], cycle crossover [56], par-
tially matched crossover [57], edge recombination [58], the precedence matrix 
[59], the union operator [60], and Voronoi quantized crossover [61].

Table 1  Behaviors and cost 
example

Log # Behaviors Behavior Cost

1 Move 1
2 Move 1
3 Entertainment 2 * weight1 (0.9) = 1.8
4 Entertainment 2 * weight1 (0.9) = 1.8
5 Education 2 * weight2 (0.8) = 1.6
Total cost 7.2
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Our system uses a 2D genetic algorithm [62] to minimize the trajectories and 
app usage cost obtained from the user. The 2D genetic algorithm enables the opti-
mal layout to be identified for the optimization goal on a 2D space. First, we cre-
ated a behavior graph by sampling the app usages and the trajectories obtained 
from the 3D real-world. Figure 2 shows a behavior graph used in our study. The 
behavior graph exhibits a data structure that abstracts the complex trajectories of 
the real world based on the costs of connecting the rooms. In the behavior graph, 
the behavior cost of each visit based on each room is represented by the value 
of an edge, and the trajectory records the sequential order of visiting the rooms. 
As the distance between each room increases, the value of the edge increases 
because of the difference in the distance. Using our system, we aimed to identify 
room locations where the total sum of the edges on the behavior graph would be 
minimized on a 2D space. In general, if the distance between the rooms increases, 
then the values of T

a
 and T

e
 increase simultaneously. In particular, because the 

weight is assigned by app usage for T
e
 , its value is reflected clearly in the result 

when the edge includes various smartphone behaviors.

3.2.2  Chromosome expression

In this study, we discretized a 3D residential space into a 2D grid shape. In the 
discretized 2D map, each room number is shown as an integer. Each cell can have 
a maximum value of n depending on the number of rooms. A value of 0 indicates 
that the point of the layout zone is empty, whereas a different number indicates 
that a certain object is occupying that space. For a zone in which the user does 
not intend to place a room, -1 is recorded in the corresponding cells. If the user 
intends to place a certain room, then an integer of 100 or higher is denoted. The 
2D design space is mapped to the parent chromosomes, which are located in a 2D 
array. Figure 3 shows the chromosome representations used in this study.

Fig. 2  Generation process of behavior graph from trajectories



2733

1 3

Floor plan optimization for indoor environment based on…

3.2.3  Mutation

We applied the mutation operator in three methods. In the first method, an arbitrary 
continuous integer cluster (e.g., room/furniture) entity is selected arbitrarily from 
the parent. The room/furniture entity is removed from its current location, which is 
then filled with 0. The selected room entity is shifted to an arbitrary location within 
the empty space. If it overlaps with another room/furniture after it is shifted, then 
it is relocated for more than a certain number of times. If it continues to overlap 
with another room even after multiple times of relocation, then that room/furniture 
is no longer relocated; instead, another room/furniture is selected to perform the 
relocation. In the second method, two room/furniture entities are selected randomly 
and their locations are changed. If a room/furniture entity does not fit in the empty 
location because of other entities, then it is rearranged by changing the direction. If 
another entity exists that does not fit in the empty space because of size difference, 
then a new replaceable location is selected. Third, all room/furniture entities are 
selected randomly from the parent, and the direction is rotated. The direction can be 
changed by rotating the entity 90◦ against one of the edges. The purpose of utilizing 
this type of mutation operator is to attain the global optimal solution rapidly.

3.2.4  Crossover

Two children are generated by mating a randomly selected parent pair with a crosso-
ver operator. This operator combines a certain characteristic of Parent 1 and a differ-
ent characteristic of Parent 2, thereby producing offspring from the parents. When 
offspring are generated, two parents are randomly selected. Subsequently, the cur-
rently placed room/furniture is selected from each parent, and they are combined to 
generate offspring. If an overlapping area exists when the selected rooms/furniture 
are combined, then a different combination that does not overlap is selected. If an 
overlapping area exists after all combinations are selected, then one of the layout 
plans is selected from the parents. The advantages of using this type of operator for 

Fig. 3  Two-dimensional chromosome representation
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crossover are as follows: first, the efficiency of the algorithm is increased, whereas 
offspring without defects are not generated; second, the maximum value is inherited 
from one of the parents. Figure 4 shows the crossover process used in this study.

3.2.5  Fitness evaluation

The main purpose of the optimization module is to minimize the total time for all 
behavior costs by adjusting the position of the sample points (Eq. 1). We used D

t
 as 

the objective function for the GA optimization.

Here, D
m
 is the sum of all behavior costs, and D

c
 is the sum of constraint costs. D

c
 

refers to the condition that must be satisfied in addition to the room layout condi-
tion to minimize the behavior cost. It is the satisfaction of various constraints for 
the room arrangement in an indoor environment. We added the following two con-
straints. Without these constraints, the optimization may be achieved in a layout 
form that is difficult to apply in the real world (Fig. 5).

1. Placement constraints: When a room is placed, a zone that the user prefers and 
one that the user wishes to avoid exist. These zone constraints are added to reduce 
the size of the search space and increase the efficiency of the GA. The user enters 
these zones as inputs through a separate painting tool.

D
t
= D

m
+ D

c
,

Fig. 4  Example of crossover
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2. Adjacent sides: The edges of the rooms placed can be adjacent to each other, 
and the possible adjacent edges can be attached to each other. This constraint is 
intended to reflect the fact that rooms are arranged based on walls in most houses. 
The adjacency information is entered through a separate edge selection tool.

4  Experimental results

We conducted behavior clustering experiments using mobile phones in two indoor 
buildings, which comprised one-room and three-bedroom structures, separately. 
These experimental environments were selected to observe the difference in the 
users’ behavior patterns in indoor environments based on the indoor space size.

Ten participants were recruited for the experiment (one-room apartments: six 
participants; three-bedroom apartments: four participants). After installing the apps 
for facilitating data acquisition, the participants performed daily activities for one 
day. Data were acquired every 30 min. Furthermore, data were collected when the 
residents were inside the designated indoor spaces. The movement trajectories were 
classified into two categories: trajectories collected while the apps were not operat-
ing, and trajectories collected while an app was operating. After operating an app, 
data were obtained by defining a transaction as a duration until the app was termi-
nated, or until it shifted to the background.

According to the overall log results, the residents who participated in the experi-
ments used the phone app frequently in their daily life; nevertheless, they also used 
various apps in extremely short time intervals. The logs that showed app usages 
constituted approximately 20% of the entire position log. The app usage intervals 
showed that the users used their smartphones once every 10–15 min, indicating that 
they used the smart devices actively indoors. The logs of one-person room users 
showed that entertainment, information, and communication apps were used fre-
quently. Meanwhile, the three-bedroom logs showed that shopping, finance, and 
education apps were used frequently. The difference appeared to be caused by 

Fig. 5  Example of optimization result when constraints are/are not applied
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differences in daily-life patterns between single residents and family residents com-
prising three to four people.

We performed spatial optimization for the single rooms first. Because a single 
room unit (i.e., a studio apartment) contains no separate room except for a bath-
room, the optimization target was the space where the furniture layout was empha-
sized. The experiment participants specified the locations of certain spaces that were 
dependent on the furniture (e.g., desk, table, and sofa) and determined the space 
layout that minimized the behavior cost in the indoor environment. Because the sin-
gle rooms had no spatial constraint based on walls, the users were able to specify the 
spaces unrestrictedly.

Figure 6 shows the behavior clustering result for 3 h beginning from 7:00 p.m. for 
a single room. In this study, the one-room apartment houses a one-person user who 
lives alone. During the three hours, clustering occurred primarily at the bed (blue), 
table (cyan), and sofa (pink). These log records appeared to correspond to dinner 
or resting activities after work. The logs obtained indicate that the user frequently 
used entertainment apps in bed or at the table, and communication apps on the sofa. 
Overall, the behavior analysis results showed that the frequency of using entertain-
ment apps in bed was the highest, followed by on the sofa. When the optimization 
algorithm was applied to these three pieces of furniture, the sofa was placed between 
the bed and table in the result. For the result, an adjacency constraint was assigned 
at four directions for each piece of furniture. The optimization result was a layout 
that aimed to minimize the sofa–table and sofa–bed distances such that the cost at 
the latter, where most activities occurred, would be reduced. The experimental result 
shows that the proposed system can be applied effectively for furniture layouts in 
indoor spaces.

Figure 7 shows the spatial optimization result for the single-room apartment of 
another participant. Similar to the first single-room apartment, because no separate 
room existed except for the bathroom, the space designated arbitrarily by the par-
ticipant was assumed to be a virtual independent space. The behavioral data of this 
particular participant were collected for 6 h on a weekend afternoon.

During the period, clustering occurred primarily at the study desk (blue), sofa 
(green), and hobby table (red). The participant used education-related apps primar-
ily at the study desk and entertainment apps on the sofa; meanwhile, activities per-
taining to phone calls were performed at the hobby table. In addition to the above-
mentioned pieces of furniture, clustering based on phone calls was observed at the 
upper left corner and suggested that the related activities were performed in a sitting 
or lying posture on the floor instead of on a furniture. Overall, the highest behavior 
cost was incurred at the table.

When the optimization algorithm was applied to these three pieces of furniture, 
the hobby table and the study desk were placed adjacent to each other in the result. 
For the result, adjacency constraints were assigned to the study desk and hobby 
table for the four sides inside the room. Consequently, the locations were searched 
to minimize the distance between these two pieces of furniture while placing them 
adjacent to the exterior of the house. Additionally, we specified the user’s preferred 
sofa location at the center of the room; consequently, the sofa was relocated to a 
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location close to the center zone. The experimental result shows that the proposed 
system can identify the optimal location while satisfying the user’s preference.

Figure 8 shows the optimization result for four spaces in a three-bedroom apart-
ment. The data obtained were a set of behavioral data of four persons for 3 h begin-
ning from 7:00 p.m. The three-bedroom apartment comprised users of a four-per-
son household. The optimization targets were the following four spaces: (1) a large 
room for the parents (Room #1 : blue), (2) a bathroom (green), (3) a room for child 
1 (Room #2 : red), and (4) a room for child 2 (Room #3 : dark green). Based on these 
rooms, the movement trajectories were classified. The living room space was not 
specified as a separate room to avail the spaces that can be assigned to the four 
spaces. Unlike the single-room apartment, the three-bedroom apartment indicated 
more distinct space characteristics since the spaces were partitioned.

Fig. 6  Space layout of single-room apartment based on clustering results in indoor space of single-room. 
Movement trajectories classified by app category (color): none, i.e., no app was used (blue); information 
(pink); communication (cyan); entertainment (yellow); news (red); education (green); shopping (purple); 
finance (gold); and telephone (white) (color figure online)
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The logs of the movement trajectory showed that the experiment participants 
performed activities in and around their respective rooms. The occupants of Room 
1 primarily used finance apps, whereas the occupants of Rooms 2 and 3 primarily 
used entertainment and news apps. Various apps were used in the living room space, 
and they were primarily used on the sofa in the living room. The overall behavior 
patterns showed that the participants performed their objective behaviors in their 
respective rooms preferentially and engaged in activities in the living room at other 
times. It was peculiar that the bathroom at the bottom included lines connected to all 
other rooms, and it was marked as the most frequently visited space.

Figure  8d shows the result of applying the optimization algorithm to the four 
spaces. Whereas the remaining three rooms maintained their current positions, 
Room 3 (dark green), which was detached, moved to a position adjacent to Room 2 
(red). Here, the room was rotated by 90◦ . It appeared that the system has suggested a 
layout in which all living spaces are concentrated around the bathroom, which is the 

Fig. 7  Space layout in single-room apartment based on clustering result in indoor space of single room
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most frequently visited space in general. In particular, by rotating the most distant 
room, i.e., Room 3, the rooms were concentrated to the maximum to minimize the 
total behavior costs of four persons living in the apartment. The experimental result 
shows that the proposed system can be applied effectively for room layouts as well.

Table.  2 shows the behavior cost reduction effect after optimization was per-
formed in each experiment. The overall behavior cost reduction was 20–30% when 
the proposed optimization was applied. The overall optimization results showed 
layouts in which spatial components with many back-and-forth movements of the 
users were concentrated. These layouts may differ from the intention of the building 
designer who wishes to protect the independence of the spaces; however, they are 
the most effective layouts in terms of the total behavior cost. Our system shows that 
realistically applicable floor plans can be created by adding adjacency constraints 
and conditions for the preferred and/or to-be-avoided spatial arrangements, which 
reflect the design intention of the user partially.

Fig. 8  Space layout in three-bedroom apartment based on clustering result in indoor space
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5  Conclusion

We proposed an optimization method for indoor element layouts using smartphone 
multimodal data and a 2D GA. The proposed method differs from conventional 
methods in that the usage data of smartphones, which are increasingly used indoors 
recently, were added to the behavior cost minimization factors in addition to the tra-
ditional movement trajectory analysis. Using our method, the details of spatial usage 
can be analyzed easily because the users participated in the experiment by carry-
ing their mobile phones in the typical manner in indoor environments. Furthermore, 
our method can suggest the optimal layout for furniture, rooms, and interior ele-
ments that are placed indoors. Our methodology satisfies the necessary constraints 
in room layout but does not reflect various situations that must be considered in the 
actual design (e.g., privacy independence between rooms and perspective issues). 
In future research, we would like to add more such detailed conditions. Our results 
provide designers with semantic information necessitated for currently used spaces 
when they design an interior space or reconstruct a building, thereby facilitating the 
design of spaces that are more specific to the behavior patterns of users.
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