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Abstract
Due to the increasing size of HPC machines, dealing with faults is becoming manda-
tory due to their high frequency. Natively, MPI cannot handle faults and it stops the 
execution prematurely when it finds one. With the introduction of ULFM, it is pos-
sible to continue the execution, but it requires complex integration with the applica-
tion. In this paper we propose Legio, a framework that introduces fault resiliency in 
embarrassingly parallel MPI applications. Legio exposes its features to the applica-
tion transparently, removing any integration difficulty. After a fault, the execution 
continues only with the non-failed processes. We also propose a hierarchical alterna-
tive, which features lower repair costs on large communicators. We evaluated our 
solutions on the Marconi100 cluster at CINECA with benchmarks and real-world 
applications, showing that the overhead introduced by the library is negligible and it 
does not limit the scalability properties of MPI.

Keywords  MPI · ULFM · Fault tolerance · HPC

1  Introduction

The high demands of computational science applications are leading the evolution of 
the current high-performance systems, increasing the complexity of HPC systems to 
satisfy the need for more performance. As a result, the computation capabilities are 
growing and will reach the exascale performances (1018 FLOPS) in the next years 
[1, 2]. This evolution introduces new challenges in the field since problems that 
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were overlooked before are now limiting the performance of the systems. Among 
these problems, there is system reliability.

Modern HPC architectures are featuring millions of cores and components, and 
the probability that at least one of them is the victim of a fault rises with these num-
bers. The mean time between failures of current systems is measured in days [3], 
and probably in the future systems will be measured in minutes [4]. With this high 
frequency of faults, the MTBF of the system can be lower than the application run-
time. Without any explicit management, an application would have to be restarted 
several times up to when it is capable to reach the end of the computation without 
any problem. Most applications based on MPI [5], the de-facto standard for inter-
process communication, lack reliability management since the standard assumes 
that the application executes in a controlled environment, where all the system com-
ponents work properly. This implies that applications must feature some sort of reli-
ability management to reach the end of the execution.

This problem has been solved mainly by leveraging Checkpoint-and-Restart 
(C/R) techniques, but with the reduction of the MTBF new solutions are needed, 
because the time needed for the checkpoint can easily exceed the MTBF value [6]. 
To avoid relying purely on C/R, during the years several MPI implementations fea-
turing reliability methodologies have been developed, such as MPICH-V [7], rMPI 
[8], or FT-MPI [9]. These efforts try to introduce reliability methodologies directly 
in MPI, creating new functionalities in the existing standard. While remarkable, they 
received only limited support and did not solve entirely and efficiently the problem. 
The last effort among those is the User-Level Fault Mitigation (ULFM) [10] MPI 
extension: it’s a collection of functions that allow the user to repair and continue its 
MPI execution. This work is receiving a lot of attention, mainly due to the focus on 
the integration in the MPI standard: the next version of MPI (4.0) will focus on reli-
ability, and ULFM is one of the candidates to be introduced in the standard.

Various efforts (such as Fenix [11], CPPC [12], LFLR [13]) have been developed 
on top of ULFM since it provides an interface to handle a fault and to repair the 
related data structures. These frameworks couple ULFM with a method to restore 
the execution (typically C/R based) and create an all-in-one tool improving the reli-
ability of an MPI application. While these frameworks enhanced the reliability of 
an MPI application, their usage is not transparent and the application code has to be 
adapted accordingly. This solution is acceptable when designing a new application, 
but it becomes problematic when targeting an already developed one. This aspect 
is limiting the impact of those frameworks and led us towards the development of a 
solution that does not need changes in the application code.

In this work, we present Legio,1 a framework that introduces fault resiliency in MPI 
applications without requiring any integration effort from the application developers, 
in terms of lines of code to be changed. The main difference between fault resiliency 

1  The name Legio comes from the Latin word that represents a military unit of the Roman army. The 
name was inspired by the fact that soldiers will keep fighting even after some of their fellows perish: 
analogously, the library aims to make MPI processes continue their execution, despite the failures of 
some of them.
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and C/R solutions provided in other efforts (called fault tolerance) is that in the former 
there is no focus toward the recovery of a consistent state, but the application continues 
without recovering. This means that, upon noticing an error, the failed processes are 
discarded and the execution continues only with the non-failed ones. This approach is 
faster compared to the standard C/R proposed in the other frameworks, but impacts the 
correctness of the application result: an acceptable trade-off for applications producing 
an approximate result, like for example Monte Carlo solvers [14], or high-throughput 
in-silico virtual screening applications [15].

We can achieve this goal since we target embarrassingly parallel MPI applications, 
a very common and scalable type of parallel program that reduces to the minimum the 
interactions between the processes. Embarrassingly parallel applications are also envi-
sioned to be among the first ones capable to fully exploit an exascale system. Typically, 
they use MPI I/O to maximize the data transfer between computation nodes and the 
file-system, while avoiding as much as possible explicit synchronization between them.

Legio supports most used MPI calls in embarrassingly parallel applications 
together with one-sided communication and file support, features not yet included in 
ULFM. We also provide an alternative solution, capable of constructing a network-
ing layer transparent to the application to reduce the impact of a fault to a few pro-
cesses, reducing the time to repair in larger communicators. We evaluate Legio on 
the Marconi100 cluster at CINECA [16] to measure the introduced overhead. Those 
analyses demonstrated that the proposed framework introduces fault resiliency with 
only a very limited impact on the performance of the application.

To summarize, the contributions of this paper are the following:

•	 We propose the Legio framework able to transparently introduce fault resiliency 
in embarrassingly parallel applications;

•	 We implemented an alternative organization of MPI communicators to improve 
scalability;

•	 We experimentally evaluate the overheads and performance impact of the pro-
posed solutions considering both the single MPI calls and full applications;

The remainder of the paper is organized as follows. Section 2 analyzes the previous 
works that tried to solve the problem and introduces some definitions and knowl-
edge useful for the following sections. Section  3 covers the initial exploration of 
the ULFM behaviour in presence of faults. Section 4 exposes the design process of 
the Legio framework. Section 5 analyzes the hierarchical alternative of the frame-
work. Section 6 goes through the experimental evaluation of our work by showing 
the overhead at the MPI call and application-level. Section 7 discuses some potential 
improvements of the produced implementations. Lastly, Sect. 8 concludes the paper.

2 � Background and related work

When an MPI process detects a failure in another process, e.g. a segmentation fault, 
the default behaviour is to propagate this information and to stop all the processes 
that compose the application. However, if we are willing to react to a failure, we 
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can proceed in two main directions. On the main hand, we can adapt and continue 
to execute with fewer processes, i.e. fault resiliency. On the other hand, we can try 
to replace the faulty process with a new one and continue the elaboration, i.e. fault 
recovery.

ULFM [10] is one of the most relevant efforts in the field since it allows to con-
tinue the execution past the detection of a fault. Indeed, it specifies a set of functions 
to enable fault tolerance in MPI applications. The main ULFM features that we use 
in our approach are the following: (a) the possibility to set a communicator as out of 
order (revoked), (b) the possibility to remove failed processes from a communicator 
and obtaining a working one, (c) the possibility to agree on a result even in presence 
of faults, and (d) the possibility to identify failed processes.

Many frameworks have been built on top of ULFM functionalities by adding dif-
ferent recovery strategies. In particular, the integration of a C/R framework with 
ULFM provides an all-in-one framework to manage the insurgence of faults in a 
generic MPI application [11, 13, 17, 18]. These solutions opted for the recovery of 
a consistent state: by loading a previous checkpoint, the execution restarts from a 
valid point. They usually provide a simple interface to the user but require changes 
in the application code. While obtaining a similar result to our proposed solutions, 
these frameworks usually do not pursue transparency and, rather than opting for 
fault resiliency, they recreate the failed processes. Among those efforts, the ones 
presented in [12, 19] do not need code changes in the application: those adaptations 
are made automatically by the framework using a heuristic analysis. While their 
solution achieves transparency, they are different from the proposed approach since 
they do not opt for fault resiliency. All these frameworks achieve a solution that can 
work with any MPI application, but our proposed approach can obtain better results 
in terms of performance overhead for embarrassingly parallel applications.

A completely different perspective is the one presented when applying algorithm-
based fault tolerance (ABFT) [20], which exploits the possibility to obtain the data 
of a failed process using the information of the others. This solution is very applica-
tion-specific since it leverages data redundancy to implement a resilient method with 
reduced overhead. Examples are shown in the context of matrix-multiplication and 
LU factorization kernels, but cannot be taken into consideration for a generic MPI 
program. In particular, ABFT should not be exploitable in embarrassingly parallel 
applications, like the one we are targeting with Legio, due to the high data inde-
pendence across the processes.

A method tackling transient fault has been presented in SLIM (session layer inter-
mediary) [21]. The solution reduces the impact of transient faults by repeating the 
operations. Despite SLIM works for any MPI application, it cannot be considered a 
valid solution in case of permanent faults.

An approach that does not involve the recreation of the failed processes has been 
explored in two previous work [22, 23] that propose a solution similar to Legio. 
For example, [22] discussed in detail the need for rank mapping between the com-
municators pre- and post-failure, while [23] adopted a network topology that is very 
similar to the one discussed in Sect. 5, with the only difference being the presence 
of reliable nodes. However, both of them tackle a very specific problem and it is not 
trivial to generalize their approach.
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An effort that shares many concepts with the approach we are proposing has been 
presented in [14]. It uses the functionalities introduced by ULFM to manage the 
presence of faults in a Monte Carlo application, a typical embarrassingly parallel 
MPI application. The authors implemented resiliency by removing the faulty pro-
cesses from the execution and continuing only with the non-failed ones. The con-
cept behind this solution is similar to the one proposed in this paper. However, it 
has been achieved by directly modifying the application code since the focus of the 
authors was on a specific application. With Legio, we are proposing to generalize 
this approach by implementing a transparent framework capable to tackle all the 
embarrassingly parallel applications. A more in-depth analysis of the current state-
of-the-art solutions leveraging ULFM can be found in [24].

3 � Preliminary analyses

In this section, we will discuss some issues of the ULFM implementation of the MPI 
standard in the presence of faults [18, 25]. Before proceeding with the analysis, we 
want to provide some definitions of key terms for the remaining part of the paper:

•	 A process notices a fault when it receives the error code MPIX_ERR_PROC_
FAILED after an MPI call;

•	 A faulty communicator is a communicator in which at least a participating pro-
cess is failed, but no process noticed it yet;

•	 A failed communicator is a communicator in which (at least) a participating pro-
cess noticed the presence of a fault;

Using these definitions, we sum up our considerations on the MPI standard in points 
to better refer to them in the next sections. 

P.1	� Some MPI functions work in faulty and failed communicators. Some remark-
able functions that expose this behaviour are MPI_Comm_rank and MPI_
Comm_size, but also many operations that deal with MPI_Groups. These 
operations are labelled as local in the MPI standard and do not require com-
munication to complete successfully.

P.2	� Point-to-point communication works in a faulty communicator, as long 
as the processes involved in it are not failed. They do not work in a failed 
communicator.

P.3	� Collective communications will not work in a failed communicator but may 
partially work in a faulty communicator. This behaviour comes from the fact 
that only some of the processes may notice the fault, while the others can com-
plete without problems. In particular, the MPI_Bcast operation exposes this 
behaviour, unlike MPI_Reduce, MPI_Barrier, and MPI_AllReduce, 
since those may need a feedback from the receiver on the correct reception of 
the message. This behaviour will be called the ”Broadcast Notification Prob-
lem” (BNP) from now on.
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P.4	� File and remote memory access operations are not supported by ULFM and 
are likely to fail in a faulty environment (rather than raising an error, they 
throw a segmentation fault making the execution impossible to recover).

P.5	� Communicator management functions like MPI_Comm_dup or MPI_Comm_
split will not work in a faulty communicator. This includes also all the 
inter-communicator related ones.

These points are used in the next sections to justify some of the choices done 
while designing the proposed framework.

4 � The Legio framework design and architecture

The basic idea behind the Legio framework is that it has to provide fault resiliency 
functionalities in embarrassing parallel applications without code intrusiveness. 
To achieve our purpose, we designed a library that behaves like an intermediary 
between the application and the MPI implementation by exploiting the MPI profil-
ing interface (PMPI), which is in the standard and it allows us to intercept every 
MPI call made in the parallel program. Originally thought for profiling, it can be 
used to inject code of different types around the target MPI call. In our work, we 
used PMPI to introduce fault resiliency using ad-hoc code and ULFM methods.

The proposed solution consists of the substitution of the MPI structures used 
(and created) by the application with others managed by Legio. In this way, when a 
fault happens, it affects only the Legio structures, making the repair process easier 
and controllable by the framework. The MPI operations performed by Legio are the 
ones called by the applications, but with different MPI structures and ranks of the 
involved processes. In particular, the MPI structures that are involved in the Legio 
repair process are communicators, windows, and files. The structure substitution 
introduces many problems that must be addressed, all referring to the possible dif-
ferences between the original and the substitute. For what concerns communicator 
substitution, the ranks of the processes may raise some problems: the application is 
expecting its rank not to change during the execution, but we may have to change the 
communicator due to faults and, as a consequence, ranks. Our solution must be able 
to transparently map ranks from the original structure to the substitute one.

Another problem that arises in this situation is the fact that faults may heavily 
affect the correctness of the application result. While we expect an accuracy loss 
as a consequence of a fault, the impact of such a loss depends on the role of the 
failed process within the application. Working transparently at the application level 
implies that Legio has no way to know the importance of a process within the appli-
cation, and neither the application has any way to tell Legio that information. Legio 
infers the importance of a process from the communication patterns observed and 
adapts its behaviour based on these considerations. In particular, processes that are 
not the root of a collective call are assumed less important than the root and their 
fault does not alter the completion of the operation: after repairing the communica-
tors, the calls are repeated. On the other side, when a failed process is involved in 
the communication, either by being the root of a collective call or by participating 
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in a point-to-point operation, there are two possible courses of action. Legio can 
ignore the failure, for example when the failed process was gathering data from the 
others, or it can stop the application execution, for example when the failed process 
is spreading important data. The choice is done at Legio compile-time and we pro-
vided ways to the user to configure this behaviour to better fit the application.

The presence of a fault is checked after the execution of the operation with the 
substitute structures: if it is confirmed, then the structures must be repaired and 
the operation must be repeated. Since ULFM supports communicator repair only 
if all the processes participate in the procedure, the error checking routine is not 
performed in non-collective calls. The error checking routine suffers from the BNP 
(property P.3): since all the processes need to participate, the fact that only some 
processes notice the fault can block the repair process, resulting in a deadlock. To 
avoid this problem, we perform an agreement operation that combines the results 
obtained by all the processes into a single one equal for all, so that either all the pro-
cesses notice the fault (and can proceed with the repair procedure) or none, avoiding 
deadlocks.

While communicators management is enough to support many MPI functions, 
there are many more that do not base on them. All the operations referred to in prop-
erty P.1 are left unchanged, while others need some additional structures. File oper-
ations and one-sided communication ones, in particular, leverage other structures 
not yet supported by ULFM so any fault may cause the program to behave indefi-
nitely (property P.4). Any operation that uses one of these structures must be sure 
of the absence of faults because we cannot repair those structures and the execution 
would stop. The solution adopted up to now faces the problem of having to ensure 
that the substitute structure is fault-free before executing the operation. To achieve 
this requirement, we added a call to a barrier operation before the actual function: in 
this way, the eventual presence of a fault will be recognised by the barrier and it will 
be possible to proceed with the repair.

These solutions allow us to support most of the MPI calls, but other functions 
like the gather and scatter operations rely on the value of the rank to provide correct 
behaviour, and simply running them on a substitute communicator would produce a 
wrong result. We decided to implement those functions as a combination of others 
that do not suffer from the same problem.

By following these concepts, we managed to create an implementation of our 
library that features support for many MPI operations2. This solution is transpar-
ent: the application needs no strict code change to support the library because it is 
integrated only in the linking phase. However, the application developers must be 
aware that an MPI operation may be skipped, due to the rank translation problem. 
Therefore, they must perform all the operations required to avoid undefined behav-
iour, such as buffer initialization. We evaluated our solution to measure the overhead 
it introduces and its ability to handle faults: we will present the results in a later 
section.

2  The source code of the Legio framework can be found here, together with a list of all the MPI calls 
currently supported: https://​github.​com/​Robyr​oc/​Legio.

https://github.com/Robyroc/Legio
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5 � The hierarchical extension

The ULFM standard requires that all the repair procedures involve all the processes, 
limiting the development of local recovery solutions where each process could 
repair itself independently [11, 18]. This is a well-known issue, analyzed by the 
same authors, that leads to worse than linear scaling when we increase the number 
of nodes involved in the computation. Given the modern trend to increase the exper-
iment size, the impact of this limit increases as well.

To solve this issue, we propose an alternative and novel solution that avoids the 
MPIX_Comm_shrink usage on the entire communicator. In particular, we devel-
oped a hierarchical approach. At first, we split the target communicator into a set 
of disjoint sub-communicators (local_comms). Then, we create a new communica-
tor (global_comm) that contains one process (named master) per sub-communicator. 
The master process of a sub-communicator is the one with the lowest rank. Figure 1 
shows the topology of the hierarchical approach.

This solution has some major properties: (a) the number of communicators cre-
ated scales linearly with the number of processes; (b) each process can reach anyone 
else in the network (if not directly, via forwarding), and (c) there is only one path 
from a process to another one that crosses the minimum amount of nodes. The new 
communicator resembles a star topology, avoiding any communication across differ-
ent local_comms outside the global_comm. On the main hand, this feature reduces 
the impact of a fault: only the processes directly communicating with the failed one 
will have to participate in the recovery, while the others can continue their execution 
seamlessly. On the other hand, it complicates the repair procedure which depends on 
the role of the process.

Fig. 1   An abstraction of a MPI application. Processes are depicted as small circles containing their rank 
in the target communicator. Each rounded square represents a communicator. The black one is the target 
communicator. The orange ones are the local_comms, while the green one is the global_comm (color 
figure online)
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When the faulty node is not a master, then the repair procedure is bounded within 
the local_comm. Otherwise, the framework needs to assign the master role to a 
new process and include it in the global_comm. In particular, every time the user 
creates a communicator (of size s ), Legio creates local_comms of max size k . The 
framework assigns each process to a local_comm according to its rank r , i.e. a pro-
cess will be assigned to the i-th local_comm (local_comm_i) if i = r∕k . Moreover, 
we define local_comm_(i+1) as the successor of local_comm_(i), while we define 
local_comm_(i-1) as its predecessor. We consider the last local_comm the predeces-
sor of the first local_comm. The assignment of a process to a local_comm is final.

Due to property P.5, when Legio manipulates a communicator, it must be fault-
free. Therefore, the framework needs to create additional communicators to com-
plete the repair procedure, named POVs (short for Partially OVerlapped). Each POV 
includes all the processes of a local_comm and the master of the successor. Thus, 
Legio creates a POV for each local_comm. Legio uses these communicators only for 
the repairing procedure. Figure 2 highlights two POV communicators in the example 
depicted in Fig. 1.

Figure  3 summarizes the required steps when we repair a failure on a master. 
The failure is noticed only by the processes in its local_comm and by the ones in 
the global_comm (Fig.  3a). However, the failed process belongs to four different 
communicators and all of them must exclude the failed process to proceed. The 
local_comm, its POV, and the global_comm can shrink to exclude the failed master 
process. However, the master of the predecessor needs to notify the processes in its 
POV before shrinking, since they were unable to notice it directly. In this phase of 
the repair procedure, the processes in the local_comm of the failed master can com-
municate with the other processes only by using their POV through the master of 
the successor. Legio uses this connection to include the new master node, i.e. the 
process with lower rank among the ones in the local_comm of the failed master, to 

Fig. 2   Example of POVs communicators in the MPI application depicted in Figure 1. Each POV is rep-
resented as a dashed exagon. For simplicity, we depict only the POV of which the process with rank 3 is 
part
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the global_comm (Fig. 3b). Then, it can use the global_comm to update also the pre-
decessor POV (Fig. 3c) and complete the repair procedure (Fig. 3d).

Even if this procedure is composed of several steps, it reduces the cost of the repair 
operations because it lowers its complexity. If we refer to S(x) as the computational cost 
of the shrinking operation over x processes, we can define the shrink complexity as 
follows:

where s is the size of the entire communicator and we assume for simplicity that it 
is multiple of the maximum size of the local_comms k . For the master fault case, 
the three terms refer to the shrinking of the local_comm ( S(k) ), the two POVs 
( 2S(k + 1) ), and the global_comm ( S(s∕k) ). The complexity depends on the role of 
the process, as described previously, and on the value s . When s increases, the com-
plexity of the hierarchical approach improves with respect to S(s) , i.e. shrinking the 
entire communicator. In particular, there might be a minimum value of s such that 

(1)RH(s, k) =

{
S(k) + 2S(k + 1) + S(s∕k) if failed master

S(k) otherwise

Fig. 3   Overview of the repair procedure when a master fails. The communicators and processes fol-
low the notation rules of the previous images. The red cross highlights the failed node. The exclamation 
marks highlight the nodes that notice the failure. The arrows that originate from a process represent the 
inclusion of the process in a communicator. The arrow color represents the target communicator. The 
arrow border color represents the communicator used to perform the operation (color figure online)
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the hierarchical approach will be less expensive than the normal one (for some value 
of k ). Formally:

To answer this question, we need the complexity of S . Even if we do not have a for-
mal definition, the authors of Fenix [11, 18] have empirically estimated a more than 
linear complexity. Under the assumption that all the processes have an equal prob-
ability of failure, it is possible to continue the analysis by combining the two parts of 
the Equation 1. In particular, given s as the size of the entire communicator and k as 
the size of the local communicators, we can state that the probability of a process to 
be master is 1

k
 (one process per local) and, as a consequence, the probability of being 

non-master is k−1
k

 . From this, we can obtain:

Equations 4 and  5 provide the relationship between the communicator size and the 
value of k that minimizes the overall repair complexity for the linear ( S(x) = cx ) 
and quadratic ( S(x) = cx2 ) case, respectively. The two equations can be obtained by 
deriving Equation 3 with respect to k, putting the result equal to 0 and by substitut-
ing S(x) with the chosen hypothesis. The actual relationship lies between the bound 
highlighted by the two equations.

Even if we consider the linear case when s > 11 the hierarchical approach has a 
lower complexity. However, the split nature of the network introduces communi-
cation overheads since not all the processes are directly connected. This forced us 
to rethink the way each operation is performed, eventually splitting the execution 
across the smaller communicators. In particular, we divided the supported opera-
tions into various classes, that share the same data movement characteristics:

•	 One-to-one operations are the simplest ones since they involve only two pro-
cesses. Following property  P.2 and the fact that they do not need the error-
checking part, we decided to run them on the entire communicator.

•	 One-to-all operations (like MPI_Bcast) involve all the processes and may 
cause repair. The data must go from a process to all the others, needing some 
sort of propagation. To execute the operation, we run it on the different parts 
in sequence: firstly in the local_comm of the root, then in the global_comm, 

(2)∃s0(∀s > s0(∃k|RH(s, k) < S(s)))

(3)
RH(s, k) =

1

k

(
S(k) + 2S(k + 1) + S

(
n

k

))
+

k − 1

k
S(k)

= S(k) +
2

k
S(k + 1) +

S(s∕k)

k

(4)s =
k(k2 − 2)

2

(5)s =

√
2k2(2k2 − 1)

3
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and lastly in all the other local_comms in parallel. Figure 4 shows the direc-
tion of the information within the network.

•	 All-to-one operations (like MPI_Reduce) are similar to one-to-all but the data 
travel in the opposite direction. We followed the same propagation plan as in 
one-to-all but in reverse order, as shown in Fig. 4.

•	 All-to-all operations (like MPI_Allreduce) move data from and to all the 
processes within the network. We decided to represent them as a combination of 
an all-to-one and a one-to-all operation executed sequentially.

•	 Comm-creator operations generate new communicators. We cannot execute the 
operation on a local_comm or global_comm since there is the need for a unique 
communicator. These operations are executed on the entire communicator and 
may cause inefficient repairs. Nonetheless, the trade-off may be acceptable since 
their frequency is usually lower than the other operations.

•	 File operations do not involve data movement between processes directly: we 
can use this property to make each process execute the operation on their local_
comm without the need for any propagation mechanism.

•	 Local_only operations are executed by a process on its structures: no data move-
ment is needed, so it is possible to execute the operation on the local_comm as 
done in file operations.

•	 Windows operations involve data movement and all the windows must be 
accessible from all the processes within a communicator. These operations are 
executed on the entire communicator.

The implementation of this solution exposes to the user two knobs: the maximum 
size of the local_comms and a threshold value for using the hierarchical communi-
cator. Since this solution is an alternative to shrinking the entire communicator, we 
evaluated both solutions in the experimental campaign.

Fig. 4   The propagation steps in one-to-all and all-to-one operations. In both cases, the root process is the 
one with rank 2
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6 � Experimental evaluation

To prove the validity of our solutions, we conducted some experiments using dif-
ferent benchmarks. The purpose of these experiments was to quantify and evaluate 
the impact of the Legio library usage on various applications. We conducted these 
experiments on the Marconi100 cluster at CINECA, featuring nodes with 2 x IBM 
POWER9 AC922 16 cores 3.1 GHz processors and 256 GB of RAM. In all the 
experiments done, we adopted an MPI configuration featuring 32 processes per node 
and 1 process per physical core. The Legio library has been configured considering 
the maximum size of the local_comms set to the closest optimal value following the 
relation obtained with the linear complexity hypothesis (Eq. 4).

The experimental campaign aims to evaluate the execution overhead of an appli-
cation using Legio in a fault-free scenario. This choice has been done since the prob-
lem solved by the application after a fault is different because it does not include 
the part handled by the failed process. Moreover, the survivor processes can com-
plete their execution usually faster than before since there will be one less process 
competing for the resources. This means that computing the overhead in a faulty 
environment is not trivial, but can be simplified by considering that the operations 
performed in the presence of a fault are almost the same done before its occurrence, 
the only difference is the repair procedure.

Our experiments evaluate the temporal overhead of the Legio introduction since 
the cost in terms of accuracy depends on the application, the problem and the rank 
of the failed process. The experiments can be divided into two groups, different for 
their purpose and the information they produce: the first ones involve the per-oper-
ation measurement of the overhead introduced, while the second group consists of 
more general applications in which we will analyze the overall impact of the library. 
For the first group, we used mpiBench [26] to measure the overhead of the library 
when increasing the communication load and we used an ad-hoc code to evalu-
ate the same parameters when increasing the network size and to measure the time 
needed to repair the execution.

The experiments involving mpiBench were run on a 32 processes network and 
we analyzed the time needed to complete broadcast and reduce operations under 
increasing message sizes. The mpiBench application will repeat the calls 1000 times 
for each message size and for each of the three versions: at first, we linked the initial 
Legio implementation, then the hierarchical solution, and lastly we just compiled 
the application with ULFM without additional libraries. Figures 5,  6 and  7 show 
the average values of the execution times for each call. The overhead can be seen in 
the difference between the last configuration (an execution without fault manage-
ment techniques) and the other two. This will also apply to all the tests featuring the 
"ULFM only" dataset.

It is possible to see how the three values share similar behaviours in terms of 
growths: this implies that our solutions do not damage the scalability of the MPI 
library with the increase of the message size.

The experiments involving the ad-hoc code have a different structure: we time 
each call and we compare it with the same call without the use of any Legio 
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feature. The calls have been done using small messages (1 char) to show the over-
head in the worst case when the time needed to complete the operation is the low-
est. Each call is repeated 100 times, to reduce the impact of measurement noise. 
Figures  8,  9, and 10 show the results obtained. We also evaluated the cost of 
the repair procedure by injecting a fault and completing an operation. Figure 11 
shows the results of this latter analysis: from that, it’s possible to see that the 
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Fig. 5   Execution time to complete a MPI_Bcast by varying the message size. Each line represents a 
different MPI implementation
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Fig. 6   Execution time to complete a MPI_Reduce by varying the message size. Each line represents a 
different MPI implementation
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nonlinearity of the shrink theorized by [18] is not present in our tests. Despite 
this fact, the average time to repair on a 256 core machine is lower in the hier-
archical case, since the probability for a master node to fail is contained ( 1∕8 ). 
Using the ad-hoc code we checked also the overhead for file operations: running 
those tests in the same configurations as the previous ones, we noticed that the 
execution time of a single call is heavily influenced by the load of the file-system 
rather than from other aspects. The overhead measured was affected by the load 
too and, despite being contained, it cannot be considered meaningful.

The second group contains experiments run on two embarrassingly paral-
lel applications. The first application is part of the NAS parallel benchmark [27] 
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Fig. 7   Execution time to complete a MPI_Allreduce by varying the message size. Each line repre-
sents a different MPI implementation
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the operation
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Fig. 9   MPI_Reduce overhead by varying the network size. Each measure accumulates 100 repetitions 
of the operation
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Fig. 10   MPI_Barrier overhead by varying the network size. Each measure accumulates 100 repeti-
tions of the operation
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Fig. 11   Communicator repair time by varying the number of processes involved in the operation. The 
combined value summarizes both the values of the Hierarchical approach by assuming equal probability 
of faults across all nodes
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and it generates independent Gaussian random variates using the Marsaglia polar 
method. The MPI calls performed by the applications are mainly MPI_All-
reduce operations. We use the “C” size workload and the measurements refer to 
the successive execution of 7 runs. We ran the tests in various configurations in 
terms of the number of MPI processes and MPI implementation. In particular, we 
use 32, 64, 128, and 256 processes and choose between one of our implementa-
tions or only ULFM. For each configuration, we repeat the experiment 10 times, 
extracting all the execution times. The results can be seen in Fig. 12.

The second experiment uses the skeleton of a molecular docking application, 
which estimates the strength of the interaction between two molecules. In this con-
text, we have a target molecule and a database of smaller molecules that we need 
to evaluate to find the most promising ones. The application uses a wide range of 
MPI calls, from file operations to point-to-point and collective functions. As a work-
load, we use a database with 113K molecules. We ran the executions using the same 
configurations used in the previous experiment, repeating each one 10 times and 
extracting the execution times. The results can be seen in Fig. 13.
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Fig. 12   Execution time distribution of the EP benchmark by varying the number of processes involved 
and the MPI implementation
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Fig. 13   Execution time distribution of the molecular docking application by varying the number of pro-
cesses involved and the MPI implementation
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From the experimental results, it is easy to notice how the overhead is negli-
gible and the usage of Legio does not impact heavily the execution times in both 
cases. This is also related to the reduced use of communication in embarrassingly 
parallel applications. Nevertheless, those experiments validate our approach since 
they respect the requirements of low overhead introduction and transparency. 
Moreover, both the prototypes proved effective for the embarrassingly parallel 
applications tested and can continue the execution in the presence of faults in a 
manner of seconds. Despite the plots being limited to 256 processes, we do not 
expect that the trends shown in Figs. 12 and  13 to change significantly, except for 
an increment of the overhead following the trend shown in Figs. 8, 9 and 10 .

In both cases, the functional effect of a fault leads to an accuracy loss in the 
result computation. In particular, the accuracy loss can be estimated a-priori 
given the uniform data split across the n processes: if the system suffers from 
faults of f processes, the application will base its evaluation only on n−f

n
 times the 

problem data. For the EP benchmark, this fraction represents the number of pro-
cesses contributing to the final reduction, while in the molecular docking applica-
tion, it represents the lower bound of the overall molecules that will be screened.

7 � Ongoing work on introducing the C/R feature

Not all embarrassing parallel applications relies on the fact that they can produce 
useful results even in the presence of a failed process. In these cases, the current 
version of Legio cannot be employed. However, we already evaluated the pos-
sibility to introduce a C/R feature in the library thus obtaining the possibility to 
recover failed processes transparently.

As discussed in Sect.  2, many other efforts combined C/R frameworks with 
ULFM [11–13, 17, 18]. Most of them do not focus on transparency, asking for 
explicit application-level intrusiveness. Since Legio has in transparency one of 
its key features, we moved towards system-level C/R frameworks that guarantee 
a transparent approach at the cost of a large overhead for both check-pointing (all 
the system status has to be saved) and restart phase.

Considering the type of application we are targeting, the characteristic that we 
want to take out from a C/R framework is not to restart the entire application, 
but only the failed processes. The possibility to restart only a part of the net-
work is not a common feature in system-level C/R frameworks. Usually, these 
frameworks are designed to consider the absence of fault mitigation mechanisms 
inside the application, so they assume that in case of fault all the processes must 
be restarted. Moreover, they tend not to split the checkpoint information of the 
various processes because they would lose significance without all the others. 
The restart part may also lead to problems: without knowing the details about the 
application, it may be difficult to load a system-level checkpoint on a process cre-
ated by the application.

Among all the efforts produced in literature, recently we found in MANA [28] 
support in that direction. It provides system-level checkpointing (no application 
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intrusiveness), the possibility to migrate processes (implying the division of 
the data per process), and flexibility on MPI versions upon restart. Our idea is 
to exploit the per-process data checkpointing offered by MANA to restore only 
the failed process. While everything seems ready for integration, MANA is still 
designed for global recovery and the steps towards local recovery are part of our 
ongoing work.

8 � Conclusion

This paper presents Legio, a framework designed to offer resiliency to embarrassing 
parallel MPI applications. The work makes the absence of intrusiveness in the target 
application one of the key elements. Indeed, the library makes use of ULFM and 
the PMPI interface to wrap the MPI call and to implement all the required actions 
to manage failed processes. In the paper, an extension towards a hierarchical imple-
mentation has been also presented to reduce the overhead of the repair process in 
case of a large number of nodes involved. The experimental evaluations consider-
ing both per-MPI-call and application-level evaluations demonstrate the efficiency 
of the implemented framework, proving how the solution can be used in embarrass-
ingly parallel applications without affecting the overall performance.
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