
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:1983–2014
https://doi.org/10.1007/s11227-021-03941-y

1 3

A survey on computation offloading and service placement
in fog computing‑based IoT

Kaouther Gasmi1 · Selma Dilek2 · Suleyman Tosun3  · Suat Ozdemir3

Accepted: 8 June 2021 / Published online: 24 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
In recent years, fog computing has emerged as a computing paradigm to support
the computationally intensive and latency-critical applications for resource limited
Internet of Things (IoT) devices. The main feature of fog computing is to push com-
putation, networking, and storage facilities closer to the network edge. This enables
IoT user equipment (UE) to profit from the fog computing paradigm by mainly off-
loading their intensive computation tasks to fog resources. Thus, computation off-
loading and service placement mechanisms can overcome the resource constraints of
IoT devices, and improve the system performance in terms of increasing battery life-
time of UE and reducing the total delay. In this paper, we survey the current research
conducted on computation offloading and service placement in fog computing-based
IoT in a comparative manner.

Keywords  Fog computing · Computation offloading · Internet of Things (IoT) ·
Service placement · Optimization algorithms

 *	 Suleyman Tosun
	 stosun@cs.hacettepe.edu.tr

	 Kaouther Gasmi
	 kaouther.gasmi@enit.rnu.tn

	 Selma Dilek
	 selmadilek@hacettepe.edu.tr

	 Suat Ozdemir
	 ozdemir@cs.hacettepe.edu.tr

1	 Higher Institute of Applied Languages and Computer Sciences in Beja, Tunis, Tunisia
2	 Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey
3	 Department of Computer Engineering, Hacettepe University, Ankara, Turkey

http://orcid.org/0000-0002-3708-2009
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03941-y&domain=pdf

1984	 K. Gasmi et al.

1 3

1  Introduction

It has been estimated that the number of deployed smart devices connected through
the Internet of Things (IoT) will be around 75 billion by 2025 [1], while the amount
of data generated by these devices is expected to be 73.1 zettabytes per year [2],
as opposed to 1.1 zettabytes of data per year estimated in 2016 [3]. Most of this
massive amount of data requires real-time processing to make efficient decisions
[4]. However, the majority of the end devices in IoT are battery powered and have
limited processing and storage capabilities. Therefore, they are unable to satisfy the
requirements of the applications that need massive data processing. Hence, it is nec-
essary to utilize a resourceful computing paradigm that enables processing the data
generated from the end IoT devices. This paradigm is often called cloud comput-
ing [5]. The cloud computing paradigm provides extensive processing power and
unlimited storage through powerful virtual servers, which enables fast processing
and unbounded storage. It can be useful for applications that are not delay sensi-
tive and do not require higher responsiveness. However, it may not be an attractive
solution for applications that require real-time processing and high responsiveness,
due to the high network bandwidth usage and large end-to-end delay for continu-
ously pushing large bulks of raw data. For this purpose, fog computing [6] has been
designed as a promising computing paradigm for tackling the aforementioned issues
related to limited device resources, limited bandwidth, and large end-to-end latency,
by bringing computation, storage, and networking services directly to the network
edge. Here, we describe “Edge” as any intelligent computing resources along the
path between data sources and cloud data centers. These computing resources
are referred to as edge devices. Some examples of edge devices include routers,
switches, and smart gateways.

As fog-based systems ensure additional computing capabilities at the edge of a
network, users can profit from the advantages of fog computing mainly by means of
computation offloading1, which is a mechanism that can overcome the problem of
resource constraints at the edge devices. Edge devices are connected to devices that
have computation, storage, and networking capabilities such as routers and switches.
Specifically, it can help to improve the performance of computation-intensive appli-
cations and battery life. However, selection of the tasks to be offloaded is a chal-
lenging problem. Generally, the purpose of decision making on task offloading is to
ascertain whether the offloading is cost-effective for the user equipment in respect of
energy consumption and execution delay [7].

Another challenge in computation offloading is making a decision about which
node to assign to the offloaded task (i.e., service placement2 problem), while con-
sidering the selected metrics such as energy consumption and/or latency. Since the
fog nodes are geographically distributed, resource-constrained, and highly dynamic,

1  We use computation offloading and task offloading interchangeably throughout this paper, since both
terms are used by different studies.
2  We use service placement, application placement, and task placement interchangeably throughout this
paper, since all expressions are used by the previous studies with the same meaning.

1985

1 3

A survey on computation offloading and service placement in…

service placement problem becomes extremely difficult to solve. Several studies
have addressed the aforementioned problem. Different strategies and techniques
have been considered with a goal of designing efficient computing offloading and
service placement schemes in fog environment. In this survey, we review a broad
range of the recent existing studies that focus on these issues, and explore the strate-
gies and techniques proposed in the literature. First, we present the concept of fog
computing and application domains. Second, we consider application models for
offloading, computation offloading decisions, and provide a classification of the var-
ious algorithms proposed for computation offloading. Finally, we discuss optimiza-
tion methodologies and performance metrics for service placement, and present a
classification scheme for service placement methodologies and techniques.

We can list the main contributions of this survey as follows:

1.	 We provide an exhaustive overview of the computing offloading problem, by
identifying several factors that can affect the offloading decision, presenting the
key application models for offloading to fog environment, and classifying the
algorithms and techniques that have been proposed recently for the computing
offloading problem. The proposed classification is based on the offloading type
and objective parameters.

2.	 We propose a novel classification for the optimization strategies that have been
proposed to solve the service placement problem for IoT applications over fog
nodes. This classification is based on the used methods and the optimization
objectives.

3.	 Finally, we highlight the open challenges and discuss the future research direc-
tions in fog-based systems.

The rest of the paper is organized as follows. Section 2 summarizes existing surveys
on fog computing. Section 3 presents an overview of fog computing paradigm: defi-
nition, architecture, main characteristics, advantages, application domains, as well as
the differences and similarities with related computing paradigms. Section 4 intro-
duces the concepts of computation offloading: application models and the proposed
methodologies for designing computation offloading schemes. Section 5 introduces
the service placement problem, performance metrics, and proposed optimization
methods. Finally, Sect. 7 concludes the paper.

2 � Related work

Different aspects and challenges of fog computing have been addressed by several
surveys. Mahmud et al. [8] focus on key services that fog computing provide.
Further, they present the major factors that have been considered for efficient
resource and service provisioning in fog. Varshney and Simmhan [9] state the
characteristics and requirements of applications that push the need for using the
fog environment. Hong and Varghese [10] classify the architectures, infrastruc-
ture, and underlying algorithms for managing resources in fog/edge computing.

1986	 K. Gasmi et al.

1 3

Ren et al. [11] discuss the state-of-the-art research in terms of computation off-
loading, caching, security, and privacy in edge computing and related comput-
ing technologies. Yi et al. [12] mainly discuss the issues related to fog network-
ing. Mouradian et al. [13] review the proposed architectures and algorithms for
building fog. The authors in [14, 15] summarize the proposed approaches for
resource management such as resource allocation, task scheduling, resource pro-
visioning, task offloading, and application placement, with a focus on the relevant
resource management issues. In [16], the authors provide a comprehensive review
of existing literature that use stochastic offloading mechanisms in computation
paradigms. Furthermore, they provide a comprehensive comparison of offloading
mechanisms based on Markov chain. The authors of [17] present an exhaustive
overview of IoT–Fog–Cloud ecosystems and mainly discuss the standards, tools,
and applications that have been used. In [18], the authors provide a comprehen-
sive overview of various aspects of application management. They present an
extensive exploration in IoT applications architecture distributed over fog nodes.
They discuss programming models, service types, workload types, interaction
methods, and functional layouts. Moreover, they overview the relevant elements
associated with application placement such as mapping techniques and place-
ment strategies. Ranesh Kumarnaha et al. [19] present a comprehensive review
of existing literature with a focus on the requirements perspective related to infra-
structure, platform, and application in fog computing. They further summarize
some existing research studies in resource allocation, scheduling, and fault toler-
ance in fog with some application examples. The survey in [20] summarizes the
characteristics of fog architecture and presents the main similarities with and dif-
ferences from cloud. The paper also presents the key technologies applied in fog.
In [21], the authors give a comparative discussion about fog computing and its
related computing paradigms. Moreover, they summarize the software and tools
for fog computing, as well as the applications that are exploited for the fog tech-
nology. Additionally, they investigate the problem of resource management, secu-
rity, and privacy. The authors of [22] take a closer look at networking, latency,
and energy consumption models in fog computing, and discuss the issues related
to service allocation and resource management in a fog infrastructure. Several
others surveys discussed similarities and differences of fog computing compared
to the related computing paradigms, fog architectures, application domains, as
well as the challenges and open issues [22–25].

Although some of the mentioned surveys explore the computation offloading and
service placement problem in fog computing, we notice that these studies are limited
in the following perspectives:

•	 They omit the comprehensive summary of the relevant elements of the offload-
ing operation such as application model definitions, resolution strategies, off-
loading decision, and offloading type.

•	 Additionally, the aforementioned surveys do not provide an exhaustive review
regarding the optimization strategies and their technical formulations for appli-
cation placement. In particular, the machine learning-based intelligent solution
strategies are neglected.

1987

1 3

A survey on computation offloading and service placement in…

•	 They do not provide an insight into how to choose the best optimization strat-
egy for the application placement under different objectives, as one optimization
method may be better than the other for certain types of applications/scenarios.

The aforementioned limitations of the existing surveys motivated us to initiate this
survey which is mainly dedicated to achieving an exhaustive and comprehensible
overview of relevant computing offloading aspects and the service placement prob-
lem in fog computing.

3 � Overview of fog computing

Fog computing, proposed first by Cisco in 2012 [26], is defined as a distributed
computing infrastructure that extends cloud-like services to the network edge by
delivering computation and storage resources closer to users [27]. According to the
OpenFog Consortium [28],

Fog Computing is a horizontal, system-level architecture that distributes com-
puting, storage, control, and networking functions closer to the users along a
Cloud-to-Thing continuum.

As opposed to cloud computing, fog computing introduces fog servers and fog
nodes, which are devices physically closer to the users than their cloud counterparts,
with a goal of handling some of the application workload closer to the network
edge. Any device such as a controller, smart gateway, switch, router, or embedded
server, which possesses capabilities for processing, networking and storage, may be
employed as a fog node. The advantage of these devices is wider deployment oppor-
tunities, as they can be placed at any location where network connection is available,
such as inside factory buildings, alongside railways, inside of vehicles, and even on
power poles. The main idea behind this approach is to optimize the transmission
time it takes for data to reach the intended processing nodes, since deploying nodes
closer to the edge of a network shortens the data transmission time to a negligible
delay [27]. According to OpenFog, fog nodes are equipped with intelligent algo-
rithms that facilitate processing and storing data, as well as forwarding data from
edge devices to fog, and from fog to cloud via smart networking.

3.1 � Fog architecture

A number of architectures for fog computing have been proposed, most of which
have a three-layer structure as illustrated in Fig. 1. A typical fog architecture com-
prises an IoT layer (also known as end layer) that consists of IoT devices, a fog layer
that consists of fog nodes, and a cloud layer with a cloud data center and services
[29], which are discussed in more detail below.

•	 IoT layer It is the lowest layer located at the nearest proximity to the end users.
It incorporates various sensor nodes (temperature and humidity sensors, cam-

1988	 K. Gasmi et al.

1 3

eras, etc.) and actuators that may be distributed over a wide geographical area.
Devices placed at this layer are responsible for collecting data about their envi-
ronment, and dispatching the gathered data to the upper layer for further process-
ing and/or storage.

•	 Fog layer It is an intermediary layer between a cloud and end devices, which
consists of heterogeneous fog devices (e.g., access points, switches, routers,
gateways, base stations, fog servers, etc.) that have relatively limited processing,
storage, and communication capabilities. These fog nodes maintain a connection
to cloud servers and can forward requests to cloud data centers. Fog nodes that
have very limited processing, storage, and other capabilities are considered to
be low-level nodes, while nodes with more abundant resources are classified as
high-level nodes. Fog nodes may also be categorized as either stationary (if fixed
at a certain location), or mobile, such as smartphones, vehicles, and drones [29,
30].

•	 Cloud layer It is the top layer in a fog computing architecture. Cloud layer incor-
porates a number of servers and data centers, which are capable of executing
complex processing and analysis, storing huge amounts of data, and providing
feedback and results back to fog nodes [29, 30].

Considering this layered fog architecture, it is evident that fog services are located
in a much closer proximity to the end users, allowing a denser geographical distribu-
tion, and offering a better mobility support, as opposed to a cloud environment in
which services may reside in much farther locations necessitating wider bandwidths.
Furthermore, a fog ecosystem also contributes to reduced latency and provides con-
text awareness due to fog node localization, resulting in pervasive, scalable, and
united network connectivity [3].

3.2 � Key characteristics and advantages of fog computing

The distinct characteristics and advantages of fog computing can be listed as follows.

•	 Low latency: The key motivation behind this emerging paradigm is to decrease
the data transmission latency while increasing the data transmission rate [31].

Fig. 1   Illustration of a fog computing architecture

1989

1 3

A survey on computation offloading and service placement in…

Some novel applications such as intelligent vehicle-to-vehicle communication
networks, virtual reality, and online gaming have an extremely high requirement
for low delay. For instance, in a virtual reality application, a small delay in range
of milliseconds can damage the user experience [23]. Due to the close proximity
of fog nodes to end users, fog computing is capable of providing support for low
latency and time-sensitive applications [11].

•	 Support for mobility: In applications such as vehicular networks the movement
of the nodes can considerably affect the system performance, especially in sce-
narios that require handling fast channel changes [11]. Fog computing can facili-
tate the mobility of the end users through providing computational and storage
resources over the entire network, as opposed to a traditional centralized cloud
ecosystem [29].

•	 Bandwidth: Preprocessing of data before transferring it to a cloud for further
analysis or storage plays an important role in reducing the network traffic. Fog
computing enables data filtering and aggregation to be performed locally in
order to speed up the execution of certain tasks that would otherwise take too
long under a limited network bandwidth [29].

•	 Scalability: There are IoT scenarios in which a huge number of end users needs
to be managed along with enormous amounts of data produced by billions of het-
erogeneous IoT objects with different performances and costs. In such scenarios,
having fog nodes widely distributed and deployed in close proximity to the users
plays an important role in making IoT applications scalable and adaptable to the
network changes [11].

3.3 � Fog computing issues

Fog computing paradigm promises to offer effective solutions for a number of prob-
lems that afflict IoT and cloud computing applications. Nevertheless, it also comes
with its own challenges that need to be grasped and tackled in order for it to become
an effective computing solution. Some of the fog-specific issues are discussed below.

•	 Resource management Fog environment contains heterogeneous fog nodes with
limited computing and storage performance capabilities, which makes it harder
to manage resource allocation, scheduling, and sharing. Efficient management
solutions are needed for determining appropriate task placement strategies that
satisfy applications’ requirements (e.g., solutions based on priority and migra-
tion) [32]. Furthermore, in order to provide mobility support, particularly in the
case of connected objects, resources may need to be pre-allocated using effec-
tive methods such as probabilistic ones based on user history [33]. Therefore,
a framework that enables the performance evaluation of resource management
policies in IoT or fog computing infrastructures is a necessity [3].

•	 Privacy and security Some of the proposed solutions for security issues in
fog computing focus on intrusion detection, access control, authentication,
and detection of various other malicious activities including denial of ser-

1990	 K. Gasmi et al.

1 3

vice (DoS) attacks and port scanning. Introducing security mechanisms in fog
computing is necessary for each level of the fog architecture [12].

•	 Energy management A fog infrastructure incorporates a large number of
geographically distributed nodes. As a result, energy consumption in a fog
ecosystem is higher in comparison with that of a cloud [23, 33]. Significant
research efforts are needed to develop effective solutions for energy manage-
ment. For example, data processing and communication protocols that are less
costly in terms of energy consumption need to be developed [33].

•	 Quality of service (QoS) One of the most important measures of network
service quality in general is QoS, and this holds for fog computing as well.
In [34], the authors consider QoS in fog computing based on four metrics:
connectivity, reliability, capacity, and latency. Other metrics such as energy
efficiency, bandwidth, and security may be taken into consideration as well,
depending on the application requirements. The challenge with QoS provi-
sioning often entails making trade-offs between different QoS metrics, which
is further complicated by a varying and often dynamic nature of different
applications.

3.4 � Applications benefiting from fog computing

Figure 2 illustrates a scope of applications that stand to gain from the fog com-
puting paradigm. In this subsection, we discuss some of those applications that
can benefit from fog computing to a great extent.

Fig. 2   Applications benefiting from fog computing paradigm

1991

1 3

A survey on computation offloading and service placement in…

3.4.1 � Healthcare

Healthcare applications and services, especially applications for remote monitoring
of critical patients whose physiological states may rapidly deteriorate necessitating
agile response and decision making, are time-critical applications that demand real-
time processing. In unpredictable network conditions, delivery of health data may
become subject to high latency, making the data deficient, unreliable, and in some
cases even useless. This issue may incur even worse outcomes for data that requires
cascade-based analysis such as electrocardiogram (ECG) or electroencephalo-
gram (EEG) signals [35, 36]. This type of problematic scenarios may be prevented
through employing solutions based on fog computing.

Cao et al. [37] proposed a fog-based system called FAST, which enables detec-
tion, prediction, and avoidance of falls for patients who suffered a stroke. Their fall
detection learning algorithm was distributed across both edge and cloud resources,
enabling a shorter response time in comparison with other proposed solutions that
are solely based on cloud implementation.

3.4.2 � Augmented reality

Fog computing may also play a major role in enhancing the performance of aug-
mented reality applications, which are highly delay-sensitive, as the user experience
depends mainly on real-time response [33]

An example is the Augmented Brain Computer Interface developed by Zao et al.
[38], which is capable of detecting the states of a user’s brain in real-life situations
using data collected through EEG headsets. Since both fog and cloud servers are
utilized, the system is capable of perpetual real-time classification of a user’s brain
state performed at the fog layer, while employing cloud servers for regular tuning of
classification models.

3.4.3 � Traffic management system

The efficiency of a traffic signaling management system relies heavily on achieving
real-time and location-aware system response. Fog computing can improve inter-
communication between vehicles, access points, and traffic signals for the overall
enhancement of such systems [39].

3.4.4 � Caching and processing for improved networking

Fog computing may also facilitate caching and processing operations for websites
that work with large databases and huge amounts of data that needs to be processed,
such as social networking, library, or online shopping websites, with the goal of
improving their performance by reducing overall time and space complexity [40].
Zhu et al. [41] proposed one such solution in which users connect to the Internet
through devices placed in the fog layer, which act as relays for all HTTP requests.
The fog devices improve the response time through employing various optimization
tasks depending on the scenarios and network conditions. For instance, if congestion

1992	 K. Gasmi et al.

1 3

occurs in the network, users may be provided lower-resolution graphics by a fog
device in order to maintain acceptable response time. Another example of optimiza-
tion would be choosing appropriate resolution for graphics based on the browser’s
rendering capabilities on a client machine [33].

3.5 � Related technologies

Other middleware technologies such as mobile edge computing (MEC) and Cloud-
lets that have been proposed in the literature also fall within the scope of fog com-
puting [3]:

•	 Cloudlets refer to servers or clusters of servers that have plenty of resources and
are deployed in a single-hop proximity of mobiles users. They employ virtual
machines (VMs) for enabling mobile devices to offload tasks in applications that
require intensive computation [42]. The key motivation for employing cloudlets
is to enable mobile devices that have scarce computational and storage resources
to offload their intensive computation to the cloudlets, especially in applications
that have stringent end-to-end latency requirements, with the goal of guarantee-
ing real-time interactive responses, which is something a distant cloud environ-
ment cannot guarantee. Another advantage of cloudlets is the fact that they can
exist as a standalone environment acting as a full cloud at the edge of a network
without cloud interaction, even though they actually reside in the middle of a
three-tier hierarchy (mobile device - cloudlet - cloud) [13].

•	 Mobile edge computing (MEC) was put forward by the European Telecommu-
nication Standards Institute (ETSI) with the goal of enabling cloud computing
capabilities closer to the mobile subscribers and within the radio access network
(RAN) [13]. MEC services can be set up at different platforms such as LTE base
stations (eNodeB) and 3G radio network controllers (RNC) [13]. The main goal
of MEC is to improve application performance and consequently user experience
by enabling the processing of user requests at the network edge, and as a result,
reducing network congestion [3]. Some of the target applications include aug-
mented reality and video processing.

Table 1   Comparison of fog, MEC, and cloudlet [13]

Paradigm Location for computing Virtualization Operation mode Target applications

Fog Devices along the routing
path

VM, container Connected to cloud Mobile offloading appli-
cations, any application
better provisioned at
the edge

MEC Base stations and nearby
devices

VM, container Standalone Mobile offloading appli-
cations, any application
better provisioned at
the edge

Cloudlet Nearby devices VM Standalone or con-
nected to cloud

Mobile offloading appli-
cations

1993

1 3

A survey on computation offloading and service placement in…

A brief comparison between Cloudlets, MEC, and fog computing is given in Table 1.

4 � Computation offloading for fog computing paradigm

With the emergence and rapid proliferation of IoT applications, the necessity to
efficiently manage the execution of increasingly complex tasks based on the vary-
ing requirements of different applications has also risen. Some of these differences
stem from the varying capabilities of user devices. For instance, some devices such
as smartphones may require faster response necessitating additional computational
resources, whereas some devices may need to be able to accumulate and process
data before dispatching it to the cloud, thus, requiring creation of local services [43].
In order to free mobile devices with limited resources from performing complex
tasks, computation offloading has been proposed by both industry and academia as
a promising solution for effective integration of resources in computing ecosystems
that are designed based on edge-fog-cloud paradigm. Offloading of computation-
intensive tasks from constrained end devices to fog or cloud servers can significantly
save energy and reduce response time [11].

4.1 � Computing offloading decision

Offloading decision could be affected by several factors. This subsection discusses
principal determinants and criteria used in making decisions whether proceeding
with offloading or avoiding it would be more cost-effective.

4.1.1 � Latency requirements

IoT applications that have strict latency requirements in the order of milliseconds
can be considerably affected by the distance between nodes. In order to reduce end-
to-end latency in such applications, offloading tasks such as data analytics at the
network edge can prove to be very effective and lead to much faster response [44].
An example would be offloading a part of or the entire content from a multimedia
services cloud to be cached at an edge or fog node in order to bring the content to a
closer proximity to users for faster access [45].

4.1.2 � Load balancing

Load balancing within a service provider’s ecosystem plays an important role with
regards to optimizing processor throughput, response time, and resource utilization,
as well as prevention of node overload, since a device that has reached its processing
capacity is not capable of performing any additional tasks. In such scenarios, tasks
could be appropriately distributed among multiple nodes/servers in a fog data center
with the goal of balancing the load of incoming requests [45].

1994	 K. Gasmi et al.

1 3

4.1.3 � Intensive computation and other resource constraints

With the resource-constrained IoT devices, it is often the case that computation or
storage requirements of an application exceed the capabilities of the device. In such
cases, it is necessary to offload demanding tasks to other nodes that have more avail-
able resources (e.g., utilizing a cloud for updating map according to satellite data in
a geographical map service application on a smartphone) [44, 45].

4.1.4 � Privacy and security

In scenarios in which privacy and security concerns are raised, offloading may be
preferred based on the susceptibility and privacy of data or tasks. For instance, data
handled in a hospital or company may be transferred from a local storage to a pri-
vate cloud. Likewise, a user may prefer to store private data in a personal mobile
edge cloud instead of a smartphone [46].

4.1.5 � Long‑term storage

Depending upon the service type, long-term storage may take a lot of space. Thus,
it may not be practical or sometimes even possible to satisfy storage requirements
on small end devices such as smartphones. Offloading storage tasks in such cases to
a cloud server that has abundant storage space for allocation is a practical solution
[45].

4.1.6 � Network bandwidth

In IoT applications, end users generate enormous amounts of data; however, these
systems usually have limited bandwidth. Therefore, enabling data preprocessing and
analytics at the network edge/fog layers can considerably minimize the network traf-
fic load, and improve the overall network performance [44].

4.1.7 � Energy efficiency

Energy is another important indicator that must be considered when making off-
loading decisions. The existing studies show that users usually prefer longer battery
life over other features. A distributed nature of a fog environment that integrates
many fog nodes enables distributed and more energy-efficient computation models
as opposed to a centralized cloud-based model of computation [33]. Figure 3 illus-
trates how energy consumption affects decision making in fog. In this figure, we
assume that the tasks of IoT devices (i.e., tablet, smart phone, and VR glasses) are
partitioned into six sub computations (C1-C6). Then, it is decided which sub-com-
putations will be offloaded based on the energy concern. Basically, a computation
offloading decision may prevail on the following:

•	 Local execution The entire computation is executed on a local device instead
of performing offloading to fog servers. This situation occurs either when off-

1995

1 3

A survey on computation offloading and service placement in…

loading is not cost-effective or when fog resources are unavailable. The tablet in
Fig. 3 executes all computations locally.

•	 Partial offloading Offloading only a part of the whole computation to fog nodes,
while having the rest of the computation tasks executed locally. The VR glasses
in Fig. 3 execute four computations locally and offload the remaining two to the
fog server.

•	 Full offloading Offloading the entire computation to be processed by fog nodes.
The smart phone in Fig. 3 offloads all computations to the fog server.

4.2 � Application models for computation offloading

Generally, mobile applications can be divided into N components, which makes
it possible to implement partial/full offloading. Each component may differ in the
amount of computation and latency requirements. Therefore, it is necessary to
determine which components should be offloaded. As illustrated in Fig. 3, the first,
second, third, and fourth components of the application at VR glasses are locally
executed, while the fifth and sixth components are offloaded to the fog network.
Likewise, all components can be fully offloaded in case of insufficient resources
on mobile devices. In many applications, there are also some components that can-
not be offloaded in any case (e.g., data I/O, camera, etc., which must be processed
locally). Furthermore, some components are dependent on each other, and this
dependency cannot be neglected in the offloading process, especially in cases when
the outputs of some components act as inputs to other components, otherwise the
execution performance could suffer greatly. Three prominent models for partitioning
of applications in the process of offloading are task graph, inter-dependent modules,
and deep neural network [10].

Fig. 3   Possible outputs of computing offloading decision for different application components at mobile
devices

1996	 K. Gasmi et al.

1 3

Task graph The simplest model for application partitioning is the task graph,
usually represented as a directed acyclic graph (DAG), which is a widely used
construction in cloud and fog computing for describing dependencies between
components in complex distributed applications. In [47–50], the task-graph-
based models were applied to model applications, which denote the dependency
between different sub-tasks and the automated partitioning strategies for generat-
ing an optimal offloading. Furthermore, DAG can contain other relevant informa-
tion in its vertices such as the number of necessary CPU cycles and the amount of
required memory, as well as in its edges such as representing the amount of I/O
data as edge weights [51].

Inter-dependent modules In this model, a large-scale application is partitioned
into a set of modules that are deployed over the distributed nodes. Each component
has different size and computation complexity. The dependencies between modules
can be expressed as a unidirectional data flow. After the deployment of all modules,
each module is expected to finish its computation within a fixed time. For example,
[52] employs an inter-dependent module-based model to deploy a set of applications
over fog nodes. The set of components represents the functionalities of applications,
and each output of a module is served as an input to another module. The module
management problem is tackled using linear programming and a heuristic approach,
while considering both strict deadline and resource optimization.

Deep neural network (DNN) model DNN model has become increasingly popular
as the core machine learning technique. It can be deployed as multilayers, distrib-
uted over different nodes, where each node is a processing element called neuron
that applies a function to its inputs and generates an output. Different neurons are
directly connected, and each connection defines a flow of data between two neu-
rons. The output of a layer serves as an input to the next layer. The depth of a DNN
is determined by the number of layers. An example application is a fog computing
based industrial manufacture inspection application, which detects possible defects
regarding the product, and sends back recommendations and production status [53].
This application is implemented as a 6-layer DNN model. The application compu-
tations are distributed among mobile devices, fog nodes, and a cloud server based
on the computation costs. The main idea is to enable processing immensely large
amount of data in real-time, which is achieved through adapting a deep learning-
based classification model the fog computing paradigm with the goal of alleviating
the computational burden of the central servers with the help of fog nodes.

Likewise, another research works focus on the distribution of the DNN across
user devices, fog and cloud nodes, particularly to achieve low end-to-end latency
and high energy efficiency [54, 55]. In [54], the authors designed a DNN-based Neu-
rosurgeon framework to automatically partition the computation between mobile
devices and fog nodes. The proposed Neurosurgeon framework models the partition-
ing between layers in order to achieve low end-to-end latency and energy efficiency.
Their idea was to consider different partitioning points in the network and predict
the energy consumption at each of those points, so that a partitioning which opti-
mizes data transfer delay and minimizes energy consumption can be chosen. Simi-
larly, their study was extended by employing distributed DNN across hierarchical
fog nodes in [55].

1997

1 3

A survey on computation offloading and service placement in…

A mobile application can be considered as a sequence of tasks. A task can be repre-
sented as T⟨I,D,W⟩ where I stands for the size of the input in bits, D for the completion
deadline of the task in seconds, and W for the computation workload expressed in CPU
cycles per bit. Tools such as task profilers can be used to estimate these parameters,
which are essential parts of applications in terms of capturing the fundamental proper-
ties of mobile applications including computation and communication requirements.
Furthermore, they can also assist with estimation of execution latency and energy con-
sumption [51].

4.3 � Proposed offloading algorithms and techniques

In this subsection, we present several offloading algorithms and techniques for fog
computing recently proposed in the literature. Similar to [11], we classify the exist-
ing studies into three categories according to their optimization objectives: (1) studies
that focus solely on minimizing energy consumption; (2) studies whose primary aim is
to minimize delay; and (iii) studies that consider both energy and delay as metrics for
optimization. Table 2 summarizes the surveyed studies.

4.3.1 � Minimizing energy consumption

Minimizing the energy consumption in the computation offloading process is an opti-
mization problem that has caught a lot of attention in research. Zhao et al. [56] pro-
posed a full offloading algorithm that minimizes the energy consumption of mobile
devices in a fog/cloud system while meeting the application’s latency and maximum
transmission power requirements. The offloading decision to either fog or cloud is
made dynamically based on the computed energy consumption of both models. Off-
loading to fog entails data transfer from the device to a fog node, the device idle time
energy consumption, and the energy consumption that results from the actual compu-
tation at the fog node. Offloading to a cloud node, on the other hand, involves addi-
tional data transfer from the fog node to the cloud, idle time energy consumption of
both device and fog node, as well as the energy consumed during the execution of the
computation at the cloud. The experimental testing done through simulation showed
that the proposed algorithm improves energy consumption of the system over a model
solely based on cloud computing.

Chang et al. [57] designed a distributed algorithm based on the alternating direction
method of multipliers (ADMM) technique to offload tasks in multi-user fog systems
with the main purpose of minimizing energy consumption while satisfying the latency
constraint. A queuing model is used to efficiently model the energy consumption at a
mobile device and fog nodes. The simulation results have shown that the energy con-
sumption is decreased when the offloading probability is increased while using a lower
transmission power.

1998	 K. Gasmi et al.

1 3

Ta
bl

e 
2  

O
ve

rv
ie

w
 o

f t
he

 p
ap

er
s t

ha
t f

oc
us

 o
n

fo
g-

ba
se

d
co

m
pu

ta
tio

n
offl

oa
di

ng

D
es

ig
n

ob
je

ct
iv

e
O

ffl
oa

di
ng

 ty
pe

Re
f.

Pr
op

os
ed

 a
lg

or
ith

m

En
er

gy
Fu

ll
[5

6]
A

 m
in

im
um

 e
ne

rg
y

co
ns

um
pt

io
n

or
ie

nt
ed

 a
lg

or
ith

m
 th

at
 e

na
bl

es
 m

ak
in

g
offl

oa
di

ng
de

ci
si

on
s i

n
fo

g-
cl

ou
d

or
 o

nl
y

in
 c

lo
ud

[5
7]

A
 d

ist
rib

ut
ed

 a
lg

or
ith

m
 b

as
ed

 o
n

al
te

rn
at

in
g

di
re

ct
io

n
m

et
ho

d
of

 m
ul

tip
lie

rs
 (A

D
M

M
)

te
ch

ni
qu

e,
 w

hi
ch

 d
ec

id
es

 o
n

fo
g

offl
oa

di
ng

 w
hi

le
 sa

tis
fy

in
g

th
e

de
la

y
co

ns
tra

in
t

D
el

ay
Fu

ll
[5

8]
A

 re
al

-ti
m

e
si

gn
al

 p
ro

ce
ss

in
g

al
go

rit
hm

 fo
r f

og
 o

ffl
oa

di
ng

[5
9]

A
 L

at
en

cy
 A

w
ar

e
W

or
kl

oa
d

O
ffl

oa
di

ng
 a

lg
or

ith
m

 in
 th

e
C

lo
ud

le
t N

et
w

or
k

En
er

gy
 a

nd
 d

el
ay

Fu
ll

[6
0]

A
 m

ac
hi

ne
 le

ar
ni

ng
-b

as
ed

 a
lg

or
ith

m
 fo

r s
ec

ur
e

offl
oa

di
ng

 in
 fo

g/
cl

ou
d

sy
ste

m
s

[6
1]

A
 g

am
e

th
eo

ry
-b

as
ed

 d
ist

rib
ut

ed
 a

lg
or

ith
m

 a
dm

itt
in

g
N

as
h

eq
ui

lib
riu

m
 fo

r o
ffl

oa
di

ng
in

 fo
g

sy
ste

m
s

[6
2]

A
 n

on
lin

ea
r p

ro
gr

am
m

in
g

m
et

ho
d

fo
r j

oi
nt

 o
pt

im
iz

at
io

n
of

 e
ne

rg
y,

 d
el

ay
, a

nd
 th

e
offl

oa
di

ng
 c

os
t

[6
3]

A
 g

am
e

th
eo

ry
-b

as
ed

 o
ffl

oa
di

ng
 a

lg
or

ith
m

 a
nd

 th
e

pr
ic

e
of

 a
na

rc
hy

 te
ch

ni
qu

e
to

qu
an

tif
y

th
e

di
st

an
ce

 b
et

w
ee

n
th

e
pr

op
os

ed
 sc

he
m

e
an

d
th

e
op

tim
al

 p
er

fo
rm

an
ce

Pa
rti

al
[6

4]
A

n
al

go
rit

hm
 fo

r p
ar

tia
l t

as
k

offl
oa

di
ng

 b
as

ed
 o

n
D

V
S

te
ch

ni
qu

e
[6

5]
A

 m
ix

ed
-in

te
ge

r n
on

lin
ea

r p
ro

gr
am

m
in

g-
ba

se
d

al
go

rit
hm

 fo
r t

as
k

offl
oa

di
ng

[6
6]

A
 g

am
e

th
eo

ry
-b

as
ed

 d
ist

rib
ut

ed
 o

ffl
oa

di
ng

 a
lg

or
ith

m
 in

 fo
g

1999

1 3

A survey on computation offloading and service placement in…

4.3.2 � Minimizing delay

Minimizing the latency in healthcare applications is of a crucial importance, espe-
cially in emergency response scenarios. Craciunescu et al. [58] investigated offload-
ing cloud tasks such as storage and processing of healthcare data closer to the net-
work edge (to fog nodes) in order to decrease the application latency and guarantee
a quick response for patients in case of an emergency. They tested the proposed
method in an e-Health laboratory and achieved a decrease in latency of two to four
seconds in comparison with the cloud-only implementation.

Another challenging problem associated with making offloading decision for end-
to-end latency optimization is selection of optimal fog site that will take the work-
load. If a number of users aggregate at a single fog node (e.g., a cloudlet), while
leaving other nodes unused, this may lead to overloading some nodes while wast-
ing the capacity of the others [11]. Sun and Ansari [59] investigated this problem
and employed software defined networking (SDN) technology to propose a latency-
aware offloading solution for mobile devices in an ecosystem of geographically dis-
tributed cloudlets. Their objective was to minimize the average response time which
entails both network and cloudlet delays by selecting optimal cloudlets to be allo-
cated for computational workload.

Harvesting renewable energy was explored by Mao et al. [67]. They developed a
low-complexity dynamic computation offloading algorithm based on Lyapunov opti-
mization, designed for mobile devices that are powered with renewable energy. The
algorithm adjusts the CPU clock frequency, transmission power, and computation
offloading decision with the goal of minimizing energy cost, execution delay, and
task failure. They showed that the proposed algorithm is asymptotically optimal and
provides improved performance in regard to energy conservation and decreasing off-
loading failure.

4.3.3 � Jointly minimizing energy consumption and delay

A number of studies have investigated fog-based computation offloading taking
both energy consumption and delay into account. Machine learning techniques
have been employed in studies that propose offloading solutions that minimize
delay and energy consumption in fog environments. In [60], Alli and Alam
(2019) proposed a secure offloading solution for a fog-cloud environment. A
machine learning-based particle swarm optimization (PSO) algorithm is designed
to choose an optimal fog node to which offloading will incur the minimum pro-
cessing delay between a mobile device and the fog. A fog node which has a high
available computing capacity and maintaining energy is selected as an optimal
fog node. In case the selected fog node is not capable of handling the incom-
ing workload, a dynamic offloading to cloud servers based on Q-learning mecha-
nism comes into play. During the offloading process, first a classification of the
task is employed based on the task size, complexity, and latency. Then, the tasks
are offloaded to either a private or public cloud accordingly. Finally, the authors
applied a neural-fuzzy model to evaluate the security of the incoming tasks before

2000	 K. Gasmi et al.

1 3

offloading. The simulation results confirmed that the proposed approach reduces
the delay and energy consumption compared to other existing solutions.

The joint minimization of energy consumption and delay in fog environment
is also investigated in [62], where the authors formulated a multi-objective opti-
mization problem using the nonlinear programming method to simultaneously
optimize the energy consumption, latency, and the offloading cost. They applied
queuing models to different elements of the fog network in order to deeply study
the system cost. The simulation results showed that by adjusting the offloading
probability and transmission power, the trade-off between energy, delay, and cost
can be optimized.

Ma et al. [66] proposed a computing offloading strategy that enables multiple
homogeneous and heterogeneous mobile devices to offload their computation to
multiple wireless access points (APs) with the main purpose of minimizing energy
consumption and delay. The total energy consumed during the offloading process
consists of the transmission energy, the scanning energy of the APs, and the main-
taining energy consumed to uphold the interface during transmission. They designed
distributed offloading algorithms based on game theory in the context of homogene-
ous and heterogeneous mobile devices. The performance of the proposed algorithms
is compared with local computation algorithm and random selection (the mobile
user chooses one AP). The simulation results revealed that in the context of hetero-
geneous devices the proposed offloading policy can optimize the energy and delay
compared to other algorithms, while increasing the number of mobile devices; how-
ever, in the context of homogeneous devices, it can improve the system cost for only
up to ten mobile devices by 20% compared to others algorithms.

With the same goal of the aforementioned study, the problem of minimiz-
ing energy consumption and performance delay was similarly formulated using
the game theory approach in [61, 63]. In [63], the authors designed an offloading
scheme to optimize the system cost in terms of energy consumption and delay of the
offloading process. Furthermore, the authors used the price of anarchy of the pro-
posed scheme to quantify the distance between the proposed scheme and the optimal
performance. In [61], the authors designed a dynamic offloading computation algo-
rithm for a fog system with energy harvesting mobiles devices. They used queuing
theory in their formalization to deeply derive the uplink-transmission energy con-
sumption and response time models during the offloading process. Compared to the
other existing algorithms, their proposed algorithm can achieve better results when
the requests arrival rate is minimal.

Another idea that targets minimizing both energy consumption and delay was
presented in [65]. Du et al. [65] formulated an optimization problem using mixed-
integer nonlinear programming with the main goal to minimize the maximal cost in
terms of energy consumption and delay for each offloading decision: local execu-
tion, fog processing, and cloud computing in multi-user fog/cloud computing sys-
tems. Furthermore, they designed an algorithm that makes an offloading decision
with the minimum cost value of latency and energy, which performs computation
resource allocation based on the final solution. The simulation results showed that
the number of beneficial UE from the computation offloading is close to the total
number of UEs compared to the method based only on local execution.

2001

1 3

A survey on computation offloading and service placement in…

Furthermore, apart from exploitation of renewable energy, a technique known
as dynamic voltage scaling (DVS) has also been utilized as an energy conservation
method. Wang et al. [64] proposed an algorithm for partial task offloading in mobile
edge computing based on DVS technique, which has bi-objective optimization func-
tion of minimizing both energy consumption and latency. The DVS is employed on
mobile devices for the purpose of adjusting the processing speed in order to con-
serve energy.

5 � Service placement in fog computing

Fog computing is usually deployed in a heterogeneous and constrained environ-
ment, which leads to a complex and sophisticated resource management. Thereby,
enabling an efficient deployment for offloaded applications is a critical challenge. A
major question that arises is how to manage task execution. More precisely, to which
nodes a particular task should be assigned, and what metrics should be considered
to evaluate deployment performance. Several studies have addressed these questions
and many strategies have been proposed accordingly. We review these proposed
strategies in the following subsections. First, we present the existing challenges
according the application placement. Then, we discuss the optimization metrics that
have been considered. Finally, we cover application placement algorithms that have
been proposed so far.

Before reviewing the recent studies that focus on service placement, let us define
this problem formally. Let A be a multi-service (multi-component) application with
a set of requirements R, and let I be a distributed fog infrastructure. Service place-
ment into fog infrastructure is a mapping of each service in A to a computation fog/
cloud node in I, while meeting all requirements in R, and optimizing a set of objec-
tives metrics O used to evaluate the placement performance.

5.1 � Service placement challenges

A number of challenges regarding the problem of service placement in fog comput-
ing arise [49]:

1.	 Device heterogeneity: A suitable placement of services in a fog environment is
impeded by heterogeneity of devices that are present at any of the network layers
and locations.

2.	 Constraint diversity: Different IoT applications have diverse constraints and
requirements that need to be satisfied in order for proper performance to be pro-
vided. These constraints/requirements may involve either consumable or non-
consumable properties such as computing and bandwidth resources as the former,
and latency or privacy as the latter. Meeting the diverse application requirements
necessitates an intelligent approach in service selection.

3.	 Multi-tenancy: A fog infrastructure needs to be able to support the placement of
multiple applications that require simultaneous management.

2002	 K. Gasmi et al.

1 3

4.	 Scalability: The complexity of placement problem dramatically increases with a
growing infrastructure size (number of devices) and application size (number of
components), which makes it even harder to deal with this large-scale problem.

5.2 � Optimization metrics

The problem of resource allocation and service placement in a fog system entails
optimization of one or more specified metrics, the values of which need to be either
minimized or maximized depending on a metric’s contribution to the system per-
formance [49]. This subsection discusses the most widely considered optimization
metrics in fog systems.

Latency: Reducing end-to-end latency of cloud-based delay-sensitive applica-
tions is one of the most important goals of fog computing, since it allows efficient
monitoring and faster response of applications to their environment. There has been
a lot of research that focuses on minimizing the latency of services placed on fog
resources while meeting a number of constraints [62, 68, 69].

Energy consumption: Minimizing energy consumption in IoT in general and fog
computing in particular is yet another crucial issue, especially due to the fact that
IoT and fog devices have limited resources; hence, making energy consumption one
of the most important metrics for performance optimization. It involves minimizing
energy needed for transferring services from end users to fog nodes, energy con-
sumed by the nodes for processing, and energy needed to transfer a service from a
fog node to a cloud if necessary, all of which reduces the lifespan of a fog network.

Resource utilization: Optimizing resource utilization is another important metric
in fog computing with a goal to maximize the number of services deployed over
suitable fog nodes. The proposed approaches generally make deployment decisions
that maximize the number of satisfied application requests (e.g., via prioritization of
applications that have the closest deadline) [70, 71].

Cost: There are two main types of costs depending on the viewpoint (providers
vs. users): data transmission cost (i.e., networking cost) and service execution cost.
Other types of costs include expenses related to storage, deployment, etc.

QoS assurance: QoS provisioning may be associated with minimizing delays, but
also many other metrics as well, some of which may not result in delay reduction.
For example, if QoS is measured as the percentage of requests executed before a
deadline, then guaranteeing QoS would involve keeping the execution times below a
threshold, not necessarily resulting in delay minimization.

5.3 � Proposed service placement strategies

In the literature, several studies have addressed the service placement problem in
the fog environment. These studies were motivated by optimization objectives such
as minimizing latency, reducing energy consumption, or improving the quality of
service. In Table 3, we give a classification of the state-of-the-art studies according
to the employed optimization strategies: (i) machine learning (ii) mathematical pro-
gramming, (iii) heuristics, (iv) meta-heuristics, and (v) other methods. In the second

2003

1 3

A survey on computation offloading and service placement in…

Ta
bl

e 
3  

S
um

m
ar

y
of

 th
e

ca
se

 st
ud

ie
s

Re
fe

re
nc

es
A

pp
lic

at
io

n
O

pt
im

iz
at

io
n

m
et

ho
d

O
bj

ec
tiv

e
m

et
ric

s
A

dv
an

ta
ge

s
Li

m
ita

tio
ns

[7
2]

G
en

er
al

IL
P

La
te

nc
y

C
on

si
de

rin
g

th
e

pr
oc

es
si

ng
 c

os
t

H
ig

h
sy

ste
m

 m
od

el
 c

om
pl

ex
ity

[7
3]

G
en

er
al

IL
P

D
ep

lo
ym

en
t c

os
t

Lo
w

 c
om

pu
ta

tio
na

l c
om

pl
ex

ity
 a

nd
 c

on
-

si
de

rin
g

th
e

m
ob

ili
ty

 o
f t

he
 fo

g
no

de
s

O
m

itt
in

g
im

po
rta

nt
 p

ar
am

et
er

s (
e.

g.
,

de
la

y)
 in

 th
e

pr
ob

le
m

 fo
rm

ul
at

io
n

[7
4]

Im
ag

e
pr

oc
es

si
ng

IL
P

La
te

nc
y

C
on

si
de

rin
g

th
e

co
m

pl
ex

ity
 in

cr
ea

se

an
d

th
e

m
ob

ili
ty

 o
f f

og
 n

od
es

U
nr

ea
lis

tic
 a

ss
um

pt
io

ns
 o

f s
er

vi
ce

 ra
te

m

od
el

[7
5]

Sm
ar

t c
ity

IL
P

La
te

nc
y

Im
pr

ov
em

en
t o

f s
er

vi
ce

 p
la

ce
m

en
t

ar
ch

ite
ct

ur
e

H
ig

h
co

m
pu

ta
tio

na
l t

im
e

du
e

to
 la

rg
e

sp
ac

e
ex

pl
or

at
io

n
[4

9]
Sm

ar
t h

om
e

H
eu

ris
tic

La
te

nc
y

Re
du

ci
ng

 e
xe

cu
tio

n
tim

es
 a

nd
 sc

al
ab

le
D

at
a

pr
iv

ac
y

is
 n

ot
 c

on
si

de
re

d
[7

6]
G

en
er

al
H

eu
ris

tic
En

er
gy

C
on

si
de

rin
g

th
e

w
ire

le
ss

 c
ha

nn
el

 c
on

di
-

tio
ns

It
is

 n
ot

 e
va

lu
at

ed
 in

 re
al

 c
as

e
sc

en
ar

io
s

[7
7]

G
en

er
al

H
eu

ris
tic

D
el

ay
Im

pr
ov

em
en

t o
f s

er
vi

ce
 d

el
ay

Re
so

ur
ce

 m
ob

ili
ty

 is
 n

ot
 c

on
si

de
re

d
[3

4]
H

ea
lth

ca
re

H
eu

ris
tic

La
te

nc
y

C
on

si
de

rin
g

di
ffe

re
nt

 n
et

w
or

k
to

po
lo

-
gi

es
En

er
gy

 is
 n

ot
 e

va
lu

at
ed

[4
7]

Pa
tie

nt
 m

on
ito

rin
g

H
eu

ris
tic

En
er

gy
Po

si
tiv

e
im

pa
ct

 o
n

ne
tw

or
k

us
ag

e
Pa

tie
nt

’s
 m

ob
ili

ty
 is

 n
ot

 c
on

si
de

re
d

[4
8]

R
an

do
m

 sc
en

ar
io

H
eu

ris
tic

Q
oS

Im
pr

ov
in

g
Io

T
se

rv
ic

es
 av

ai
la

bi
lit

y
It

is
 n

ot
 e

va
lu

at
ed

 in
 a

 re
al

 c
as

e
sc

en
ar

io
[6

8]
G

en
er

al
M

et
a-

he
ur

ist
ic

En
er

gy
, Q

oS
M

ul
ti-

ob
je

ct
iv

e
op

tim
iz

at
io

n
It

is
 n

ot
 e

va
lu

at
ed

 in
 a

 re
al

 c
as

e
sc

en
ar

io
[7

8]
R

an
do

m
M

et
a-

he
ur

ist
ic

U
se

r e
xp

er
ie

nc
e

Im
pr

ov
in

g
us

er
 sa

tis
fa

ct
io

n
Re

so
ur

ce
 m

ob
ili

ty
 is

 n
ot

 c
on

si
de

re
d

[6
9]

G
en

er
al

M
et

a-
he

ur
ist

ic
La

te
nc

y
M

in
im

iz
in

g
th

e
C

PU
 e

xe
cu

tio
n

tim
e

Tr
an

sm
is

si
on

 d
el

ay
 is

 n
ot

 e
va

lu
at

ed
[5

2]
H

ea
lth

ca
re

, S
m

ar
t h

om
e

H
eu

ris
tic

La
te

nc
y

Sc
al

ab
le

It
is

 n
ot

 e
va

lu
at

ed
 in

 a
 re

al
 c

as
e

sc
en

ar
io

[7
9]

Tr
ac

ki
ng

D
ee

p
le

ar
ni

ng
La

te
nc

y,
 E

ne
rg

y,
 C

os
t

U
se

r m
ob

ili
ty

 is
 c

on
si

de
re

d,
 m

ul
ti-

ob
je

ct
iv

e
op

tim
iz

at
io

n,
 a

nd
 sc

al
ab

le
H

ig
h

co
m

pu
ta

tio
na

l c
om

pl
ex

ity

[8
0]

M
ob

ile
 c

ro
w

d
se

ns
in

g
D

ee
p

le
ar

ni
ng

Q
oS

M
in

im
um

 c
om

pu
tin

g
is

 p
us

he
d

to
 th

e
cl

ou
d

H
ig

h
co

m
pu

ta
tio

na
l c

om
pl

ex
ity

[8
1]

G
en

er
al

D
ee

p
le

ar
ni

ng
Q

oS
Im

pr
ov

in
g

Q
oS

H
ig

h
co

m
pu

ta
tio

na
l c

om
pl

ex
ity

2004	 K. Gasmi et al.

1 3

column of this table, we list the application types each method focuses on. We give
the objective metrics in column three. In the last two columns of this table, we note
the advantages and limitations of each method.

5.3.1 � Mathematical programming

Mathematical programming is often used to solve optimization problems by for-
mulating them as a mathematical model with constraints and an objective function.
Then, the solution domain of the objective function is explored with the main pur-
pose to either maximize or minimize its value, while guaranteeing to return the opti-
mum solution. However, it is important to note that checking the whole solution
space suffers from extremely high execution time, and is only feasible for smaller
problems, unlike the complex service placement problem in a fog environment [29].
Different types of mathematical programming models such linear, nonlinear, and
mixed-linear are studied in fog computing.

In [72], the authors proposed a framework for resource allocation in a fog com-
puting environment. They defined a model based on integer linear programming
(ILP) to optimize the placement of tasks in clusters of fog nodes. Each cluster is
controlled by an efficient fog node, which plays the role of a broker and task orches-
trator: it receives tasks to be executed from different IoT devices and places them
in the cluster. Tasks that cannot be placed (e.g., due to a lack of resources) are redi-
rected to the cloud. The objective function of their task placement model is to (i)
maximize the number of tasks executed within each cluster, and therefore reduce the
response time, and (ii) choose for each task a fog node that conforms to the process-
ing resource requirements (i.e., CPU, RAM, storage, and bandwidth), and the node
closest to the controller in terms of latency.

Furthermore, Daneshfar et al. [73], in addition to proposing a fog infrastructure,
formulated the service placement problem as an ILP model with the goal to mini-
mize the total cost of providing services when services are deployed onto fog nodes.
Their formulation allows for a user to multi-cast their tasks to multiple fog servers
in order to guarantee resource availability. They associated an availability value for
each fog node, a cost of execution for each task (identical for all fog nodes), a maxi-
mum budget of time for each user to perform their tasks, and a maximum server
number for each user to submit their tasks. The objective function of their model
makes it possible to find a placement solution and multi-cast all tasks at a lower cost
while respecting the desired availability for each user.

Similarly, Velasquez et al. [75] proposed an ILP-based approach for optimizing
the placement of IoT services in fog with the following objectives: (i) minimize the
number of jumps between the user and the requested service location in fog to mini-
mize the latency, (ii) minimize the number of existing jumps between cooperative
services, and (iii) minimize the total number of offloaded services compared to the
previous offloading to improve the system stability.

Zeng et al. [74] considered service placement problem with task scheduling and
workload balancing in software-defined embedded systems with a support of fog
computing. They formulated the problem as a mixed-integer nonlinear programming
(MINLP) problem and reduced it to a mixed-integer linear programming (MILP)

2005

1 3

A survey on computation offloading and service placement in…

problem to solve it with a commercial tool Gurobi. They compared the proposed
method to server-greedy (i.e., cloud-ward) and client-greedy (i.e., edge-ward) place-
ment strategies, and demonstrated through extensive simulations that their solution
is computationally efficient even for such a high-complexity problem, while achiev-
ing improvements in performance and response time.

5.3.2 � Heuristics

A dynamic and mobile nature of a fog infrastructure makes the service placement
problem extremely complex in terms of computation, and an exact analysis of the
entire solution space is practically inapplicable. Hence, heuristic approaches are
often explored as they provide means to obtain solutions in a reasonable amount of
time. Heuristics are a set of rules and techniques that facilitate getting feasible solu-
tions for computationally complex problems. Nevertheless, they do not provide any
performance guarantees [29].

Here, we present some of the most recent studies that employ heuristics for this
problem. Xia et al. [49] proposed an objective function, which aims to minimize
average response time of an application deployed onto a set of fog nodes. They
developed two backtrack search-based algorithms, namely exhaustive search and
native search, to find placement solutions. Exhaustive search tries to visit all exist-
ing solutions and returns the optimal one that minimizes the average response time,
whereas native search returns the first found solution. Based on native search, they
proposed two heuristics: the first one aims at minimizing the response time returned
by the naive search and the second one accelerates the search process. The simu-
lation results showed that the combination of both heuristics makes the placement
decision-making process more scalable, which leads to a lower average response
time.

Gu et al. [76] proposed a binary linear programming-based model and heuristics
for task assignment in a MEC environment. Their model optimizes overall energy
consumption induced by the execution and transmission of tasks, while ensuring
that the delay constraint required by all tasks is satisfied. In their heuristics, server
nodes (which process tasks) publish their performance among themselves (the fre-
quency of the CPU). Then, each task is sent (from its source) to a potential server
node for execution. The choice of a node is made by a function based on energy con-
sumption. Upon receiving tasks, there are two possible cases: (i) the receiving node
meets the required delay, and as a result, the task is handled by that node; and (ii) the
node does not meet the required delay, in which case the task is forwarded to one of
the nodes based on shared information about the nodes’ performance. This is done
without any task administrators.

In [77], Yousefpour et al. proposed an algorithm that adopts the concept of load
sharing to place tasks in a fog infrastructure, in which fog nodes collaborate with
each other to execute the received request. Their algorithm aims to optimize the end-
to-end service delay. A fog node accepts to execute the received request based on its
estimated waiting time; otherwise, it forwards the request to one of its neighbors or
to the cloud. In addition, probabilistic models are built to estimate the time it takes
to complete a task in a fog node.

2006	 K. Gasmi et al.

1 3

In [34], Taneja et al. proposed heuristics to place IoT service requests in a fog
infrastructure. Their idea is to sort in ascending order: (i) fog nodes according to
their processing performance, and (ii) service requests according to the amount of
resources required. Then, for each service request, their heuristics search for a fog
node that meets the processing performance required by that request. Unplaced ser-
vice requests are redirected to the cloud. Although the proposed approach is simple
and easy to deploy, it has several drawbacks: it does not consider constraints on the
execution time of services, nor the balancing of the workload between fog nodes.

In [47], Mahmoud et al. proposed an energy-aware allocation heuristic for placing
application tasks on fog devices with objective to minimize energy consumption.
Their idea is to use the dynamic voltage and frequency scaling technology to adjust
the CPU frequency of fog devices in a way to ensure a minimum increment of the
energy consumption.

In [48], Lera et al. proposed a heuristic based method which aims to minimize
the fog network delays that occur between interlinked services, while optimizing the
QoS and the service availability for the users. Their heuristic involves prioritizing
the applications with the shortest deadlines in the application placement process.

Furthermore, Mahmud et al. [52] proposed a first -fit-based service placement
approach that aims at (i) minimizing the total service delay. They aim to guarantee
applications’ QoS in satisfying service delivery deadlines.

5.3.3 � Metaheuristics

Metaheuristic methods are generally inspired by nature. The main idea of these
approaches is to try and improve the result in a reasonable time through an iterative
process of searching for better solutions while trying to avoid getting stuck in local
optima, unlike heuristic approaches that are prone to this problem. A number of
metaheuristic techniques have been proposed in the literature, such as genetic algo-
rithms (GAs) [82], ant colony optimization (ACO) [83], and particle swarm optimi-
zation (PSO) [84]. These algorithms are typically based on the idea of population
(solution) evolution, in which the best solutions for a given objective are usually
preserved for the next evolutionary step of obtaining a new generation of solutions
with a hope of getting a fitter population [29].

Mebrek et al. [68] proposed a GA for optimizing task placement in a fog infra-
structure. Their algorithm optimizes energy consumption incurred by the trans-
fer and execution of tasks, while satisfying the delay constraints required for each
task. In their optimization model, a task’s response time includes the time it takes
to deliver the task, the time it takes to complete it, and possibly the time it takes to
redirect the query to the cloud (in the case of insufficient resources).

Li et al. [78] combined the fuzzy clustering algorithm with PSO to propose a
resource scheduling method for fog computing. Their algorithm divides users’
requirements into different classes: computing requirements, bandwidth require-
ments, and storage requirements. In addition, fog resources are classified according
to their capabilities: storage, computing, and bandwidth resources, in order to match
them to tasks.

2007

1 3

A survey on computation offloading and service placement in…

In [69], Bitam et al. (2018) proposed a novel bio-inspired method, namely bees
life algorithm (BLA), to address the task allocation problem in a fog computing
environment. The aim of the study is to optimize the distribution of tasks among fog
nodes by achieving optimal trade-off between CPU execution time and the memory
used by fog nodes. The empirical evaluation of the performance in terms of response
time and memory cost of the proposed method showed that it outperformed the
existing PSO and GA approaches.

5.3.4 � Machine learning

Machine learning techniques have also been employed by researchers to solve the
service placement problem in fog systems. Deep reinforcement learning is the
most used technique for service placement in fog computing. This technique ena-
bles learning policy in unknown environment through a trade-off between explo-
ration and exploitation. In [79], Tang et al. exploited deep reinforcement learning
technique to solve the service placement problem in fog computing. After modeling
the problem as a multidimensional Markov decision process that aims to minimize
communication delay, power consumption, and migration costs, they proposed a
Q-learning algorithm to determine the optimal learning policy for placement deci-
sion making. The proposal took into account user mobility and was evaluated over a
medium-sized infrastructure using real data.

In addition, Li at al. [80] proposed a deep reinforcement learning–based frame-
work to decide the task scheduling strategy in hierarchical fog computing. They
developed a four-layer neural network that incorporates two convolution layers
and two fully connected layers, used to solve the scheduling problem after exten-
sive training. Their main objective is guarantying QoS to the user by providing a
minimum computing in cloud and bandwidth cost. The proposed framework is com-
posed of a task scheduler and a fog node manager, and it operates as follows. The
task scheduler collects the state information about all fog nodes and task requests,
and forwards it to a learning network to generate several scheduling decisions.
After that, the task scheduler chooses and forwards the best-valued decision to the
fog node manager who allocates the fog nodes to the task requests based on that
decision. Finally, a mobile device dispatches its data to the assigned fog node for
processing.

5.3.5 � Other strategies

A number of other strategies have also been investigated in the literature. In [62],
Liu et al. formulated a multi-objective convex optimization problem with a set of
constraints, which involves minimizing energy consumption, performance delay,
and payment cost in fog-based mobile cloud computing (MCC) systems. First, they
transformed the formulated multi-objective problem into a single objective prob-
lem using the scalarization method by applying a set of weight factors to reflect the
importance of each objective including energy cost, execution time, and payment
cost. Then, they addressed the problem by proposing an Interior point method-based
algorithm, in which they focus on increasing the offloading probability for each

2008	 K. Gasmi et al.

1 3

service request in order to optimize the energy consumed by the mobile device, and
strengthening the mobile device’s transmission power in order to reduce the execu-
tion time for request processing.

In [85], Wang et al. proposed a Hungarian algorithm based approach to task
assignment in a mobile edge infrastructure, in which user tasks are divided into
sub-tasks and assigned to effectively selected neighboring edge servers considering
their characteristics including location, computing capacity, and the estimated wait-
ing time. Their main purpose is to reduce the energy consumption with respect to a
task’s delay constraint. The proposed approach is compared with greedy assignment
and non-assignment methods.

5.4 � Discussions

Based on our extensive review, we identified four main classes of commonly used
approaches to deal with IoT application placement problem in fog computing: (1)
mathematical programming such as integer linear programming (ILP), (2) heuris-
tics such as best-fit, worst-fit, and backtracking search strategies, (3) meta-heuristics
such as GA and PSO algorithms, and 4) machine learning-based approaches such as
deep reinforcement learning.

From the scalability perspective, ILP-based service placement approaches suffer
from a high computational CPU times as the problem size increases. The ILP solv-
ers cannot handle the large number of variables in a reasonable time frame. ILP-
based methods are not an efficient choice for a fog environment with a large number
of resources and optimization parameters. On the other hand, heuristic and meta-
heuristic approaches have much shorter execution times when compared to ILP-
based methods; however, they do not guarantee the optimal solutions. Therefore,
ILP-based methods are good candidates for small-sized problems, while heuristic
and meta-heuristic methods can be preferred for large-sized problems. Furthermore,
solutions returned by ILP-based methods can be used for evaluating heuristics and
meta-heuristics. Finally, machine learning-based approaches such as deep reinforce-
ment learning strategies suffer from a long training time in problems with large solu-
tion space for decision making.

When we consider the capabilities of aforementioned methods for the service
placement problem, ILP is used to express the problem with mathematical for-
mulations under the given constrains and objective function for systematically
identifying the best candidate solution, with the aim of maximizing/minimizing
the objective function. Meta-heuristic approaches like GA algorithms start by
improving an initial valid placement iteratively. However, determining an initial
valid placement is not an easy task due to the heterogeneous fog nodes and strict
constraints of emergent IoT services. Heuristic approaches try to find a global
optimal placement through an iterative optimization process; however, the initial
solution may force the final solution to be a local optimal one. Therefore, both
heuristics and meta-heuristics need good design decisions in terms of finding the
global optimum. Deep reinforcement learning enables learning policy through
an online approach under certain criteria. It can converge to the optimal decision

2009

1 3

A survey on computation offloading and service placement in…

for service placement problem. Nevertheless, the large solution space leads to
long training times. Machine learning-based approaches are also suitable for fast
changing environments of the fog systems. Most of the reviewed studies in this
work apply Q-learning algorithm to search for optimal learning policy based on
a trade-off between exploration and exploitation without any prior environment
knowledge. Hence, Q-learning may be a suitable reinforcement learning method
for decision making with limited information and a dynamic environment like
the fog problems discussed in this survey.

6 � Future research directions

After rigorously reviewing the previous studies, we observed some open issues
in fog computing that can lead the future research on this topic to excel. We can
list them as follows:

1.	 As we presented in Table 3, one of the most common disadvantages of the pre-
vious studies is not considering the mobility of the edge devices. They also do
not take the user mobility into account. Therefore, a future work can focus on
optimization methods that consider QoS along with the user mobility [86].

2.	 Most of the previous studies do not focus on handling multiple applications from
numerous users. In such cases, real-time processing and online scheduling can
be difficult problems to solve. Therefore, the new real-time and online scheduling
methods for multiple applications coming from a number of different users can
be an interesting problem to tackle [87].

3.	 Most of the existing service placement methods focus on energy, performance,
cost, and QoS metrics. However, meeting QoS is very difficult in the presence of
faulty fog nodes. Therefore, incorporating fault tolerance in service placement
and computation offloading is a crucial issue. Thus, a new fault-tolerant offloading
algorithms can be a good addition to the literature [87].

4.	 The prior work generally does not consider straggler nodes. However, a straggler
can be present at any time in a network. This may pose a risk for the operation and
QoS of the overall system. Therefore, identifying the straggler nodes in a network
and mitigating their danger to the system are also very important problems to
study [88].

5.	 Most of the previous task scheduling and offloading methods assume independ-
ent tasks. Therefore, there is still a huge need for considering dependent task
scheduling under several factors such as communication overhead among edge
devices and also fog devices. This problem becomes a very difficult optimization
problem to solve when the number of metrics is increased [88].

6.	 Finally, applying machine learning algorithms on different network problems
is still an open research area. Particularly, using these algorithms to predict the
future network behavior is a very interesting research topic.

2010	 K. Gasmi et al.

1 3

7 � Conclusion

The fog computing concept brings computation resources closer to the network
edge. This development has paved the way for the end users to offload their com-
putation-intensive and delay-sensitive applications to fog nodes, in order to meet
the strict application requirements of latency and to reduce energy consumption
at end users. In this paper, we surveyed recent research related to computation
offloading and service placement in fog. In particular, we have identified and clas-
sified the different approaches and strategies that have been developed according
to their objectives. In this regard, the fog paradigm incurs critical challenges that
need to be addressed to satisfy both users and service providers. Moreover, recent
research validates the results of the proposed methods mostly in simplistic sce-
narios, while the tests under real assumptions have not been taken into account.

As the second contribution of this work, we reviewed the existing application
placement strategies in fog computing from the perspectives of mapping tech-
niques and placement objectives. We proposed separate taxonomies for each
of the aspects of application placement and discussed their associated research
issues. We also highlighted a perspective model for offloading applications in fog
environments and presented several research directions for further exploration of
the fog computing-related problems.

References

	 1.	 Statista: Internet of things (IoT) connected devices installed base worldwide from 2015 to 2025
(2016). https://​www.​stati​sta.​com/​stati​stics/​471264/​iot-​number-​of-​conne​cted-​devic​es-​world​wide/

	 2.	 IDC: Iot growth demands rethink of long-term storage strategies (2020). https://​www.​idc.​com/​
getdoc.​jsp?​conta​inerId=​prAP4​67372​20

	 3.	 Mahmood Z, Ramachandran M (2018) Fog computing: concepts, principles and related para-
digms. In: Mahmood Z (ed.) Fog computing: concepts, frameworks and technologies, chap. 1.
Springer, Berlin, pp. 3–21

	 4.	 Daniel A, Subburathinam K, Paul A, Rajkumar N, Rho S (2017) Big autonomous vehicular data
classifications: towards procuring intelligence. Veh Commun 9:306–312

	 5.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin
A, Stoica I et al. (2010) A view of cloud computing. Commun ACM 53(4), 50–58

	 6.	 Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of
things. In: Proceedings of the first edition of the MCC workshop on mobile cloud computing, pp
13–16

	 7.	 Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation off-
loading. IEEE Commun Surv Tutor 19(3):1628–1656

	 8.	 Mahmud R, Kotagiri R, Buyya R (2018) Fog computing: a taxonomy, survey and future directions.
In: Internet of everything. Springer, pp 103–130

	 9.	 Varshney P, Simmhan Y (2017) Demystifying fog computing: characterizing architectures, applica-
tions and abstractions. In: 2017 IEEE 1st International Conference on Fog and Edge Computing
(ICFEC). IEEE, pp 115–124

	10.	 Hong CH, Varghese B (2019) Resource management in fog/edge computing: a survey on architec-
tures, infrastructure, and algorithms. ACM Comput Surv. https://​doi.​org/​10.​1145/​33260​66

	11.	 Ren J, Zhang D, He S, Zhang Y, Li T (2019) A survey on end-edge-cloud orchestrated network
computing paradigms: transparent computing, mobile edge computing, fog computing, and cloudlet.
ACM Comput Surv. https://​doi.​org/​10.​1145/​33620​31

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.idc.com/getdoc.jsp?containerId=prAP46737220
https://www.idc.com/getdoc.jsp?containerId=prAP46737220
https://doi.org/10.1145/3326066
https://doi.org/10.1145/3362031

2011

1 3

A survey on computation offloading and service placement in…

	12.	 Yi S, Li C, Li Q (2015) A survey of fog computing: concepts, applications and issues. In: Proceed-
ings of the 2015 Workshop on Mobile Big Data, pp 37–42

	13.	 Mouradian C, Naboulsi D, Yangui S, Glitho RH, Morrow MJ, Polakos PA (2018) A comprehen-
sive survey on fog computing: state-of-the-art and research challenges. IEEE Commun Surv Tutor
20(1):416–464. https://​doi.​org/​10.​1109/​COMST.​2017.​27711​53

	14.	 Ghobaei-Arani M, Souri A, Rahmanian A (2019) Resource management approaches in fog comput-
ing: a comprehensive review. J Grid Comput 18:1–42

	15.	 Phan LA, Nguyen DT, Lee M, Park DH, Kim T (2021) Dynamic fog-to-fog offloading in sdn-based
fog computing systems. Futur Gener Comput Syst 117:486–497

	16.	 Shakarami A, Ghobaei-Arani M, Shahidinejad A (2020) A survey on the computation offload-
ing approaches in mobile edge computing: a machine learning-based perspective. Comput Netw
182:107496

	17.	 Alli AA, Alam MM (2020) The fog cloud of things: a survey on concepts, architecture, standards,
tools, and applications. Internet Things 9:100177

	18.	 Mahmud R, Ramamohanarao K, Buyya R (2020) Application management in fog computing envi-
ronments: a taxonomy, review and future directions. ACM Comput Surv. https://​doi.​org/​10.​1145/​
34039​55

	19.	 Naha RK, Garg S, Georgakopoulos D, Jayaraman PP, Gao L, Xiang Y, Ranjan R (2018) Fog
computing: survey of trends, architectures, requirements, and research directions. IEEE Access
6:47980–48009. https://​doi.​org/​10.​1109/​ACCESS.​2018.​28664​91

	20.	 Hu P, Dhelim S, Ning H, Qiu T (2017) Survey on fog computing: architecture, key technologies,
applications and open issues. J Netw Comput Appl 98:27–42. https://​doi.​org/​10.​1016/j.​jnca.​2017.​
09.​002

	21.	 Yousefpour A, Fung C, Nguyen T, Kadiyala K, Jalali F, Niakanlahiji A, Kong J, Jue JP (2019) All
one needs to know about fog computing and related edge computing paradigms: a complete survey.
J Syst Architect 98:289–330

	22.	 Mukherjee M, Shu L, Wang D (2018) Survey of fog computing: fundamental, network applications,
and research challenges. IEEE Commun Surv Tutor 20(3):1826–1857. https://​doi.​org/​10.​1109/​
COMST.​2018.​28145​71

	23.	 Hu P, Dhelim S, Ning H, Qiu T (2017) Survey on fog computing: architecture, key technologies,
applications and open issues. J Netw Comput Appl. https://​doi.​org/​10.​1016/j.​jnca.​2017.​09.​002

	24.	 Bellavista P, Berrocal J, Corradi A, Das SK, Foschini L, Zanni A (2019) A survey on fog computing
for the internet of things. Pervasive Mobile Comput 52:71–99

	25.	 Nath SB, Gupta H, Chakraborty S, Ghosh SK (2018) A survey of fog computing and communica-
tion: current researches and future directions. arXiv preprint arXiv:​1804.​04365

	26.	 Nisha P (2015) Fog computing and its real time applications. Int J Emerg Technol Adv Eng
5(6):266–269

	27.	 Binh HTT, Anh TT, Son DB, Duc PA, Nguyen BM (2018) An evolutionary algorithm for solving
task scheduling problem in cloud-fog computing environment. In: Proceedings of the Ninth Interna-
tional Symposium on Information and Communication Technology, SoICT 2018, p 397–404. Asso-
ciation for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​32879​21.​32879​84

	28.	 Hardesty L (2017) Fog computing group publishes reference architecture. https://​www.​sdxce​ntral.​
com/​artic​les/​news/​Fog-​compu​ting-​group-​publi​shes-​refer​ence-​archi​tectu​re/​2017/​02/. Accessed 20
April 2020

	29.	 Salaht FA, Desprez F, Lebre A (2020) An overview of service placement problem in fog and edge
computing. ACM Comput Surv (CSUR) 53(3):1–35

	30.	 Jamil B, Shojafar M, Ahmed I, Ullah A, Munir K, Ijaz H (2020) A job scheduling algorithm for
delay and performance optimization in fog computing. Concurr Comput Pract Exp 32(7). https://​doi.​
org/​10.​1002/​cpe.​5581. https://​onlin​elibr​ary.​wiley.​com/​doi/​abs/​10.​1002/​cpe.​5581. E5581 cpe.5581

	31.	 Ding H, Fang Y (2018) Virtual infrastructure at traffic lights: vehicular temporary storage assisted
data transportation at signalized intersections. IEEE Trans Veh Technol 67(12):12452–12456.
https://​doi.​org/​10.​1109/​TVT.​2018.​28714​14

	32.	 Yi S, Hao Z, Qin Z, Li Q (2015) Fog computing: platform and applications. In: 2015 third IEEE
Workshop on Hot Topics in Web Systems and Technologies (HotWeb). IEEE, pp 73–78

	33.	 Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R (2016) Fog computing: principles,
architectures, and applications. In: Internet of things. Elsevier, pp 61–75

https://doi.org/10.1109/COMST.2017.2771153
https://doi.org/10.1145/3403955
https://doi.org/10.1145/3403955
https://doi.org/10.1109/ACCESS.2018.2866491
https://doi.org/10.1016/j.jnca.2017.09.002
https://doi.org/10.1016/j.jnca.2017.09.002
https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1016/j.jnca.2017.09.002
http://arxiv.org/abs/1804.04365
https://doi.org/10.1145/3287921.3287984
https://www.sdxcentral.com/articles/news/Fog-computing-group-publishes-reference-architecture/2017/02/
https://www.sdxcentral.com/articles/news/Fog-computing-group-publishes-reference-architecture/2017/02/
https://doi.org/10.1002/cpe.5581
https://doi.org/10.1002/cpe.5581
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5581
https://doi.org/10.1109/TVT.2018.2871414

2012	 K. Gasmi et al.

1 3

	34.	 Taneja M, Davy A (2017) Resource aware placement of IoT application modules in fog-cloud
computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM). IEEE, pp 1222–1228

	35.	 Gia TN, Jiang M, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2015) Fog computing
in healthcare internet of things: a case study on ECG feature extraction. In: 2015 IEEE Interna-
tional Conference on Computer and Information Technology. IEEE, pp 356–363

	36.	 Shukla S, Hassan MF, Khan MK, Jung LT, Awang A (2019) An analytical model to mini-
mize the latency in healthcare internet-of-things in fog computing environment. PLoS ONE
14(11):e0224934

	37.	 Cao Yu, Chen Songqing, Hou Peng, Brown D (2015) Fast: a fog computing assisted distributed
analytics system to monitor fall for stroke mitigation. In: 2015 IEEE International Conference on
Networking, Architecture and Storage (NAS), pp 2–11. https://​doi.​org/​10.​1109/​NAS.​2015.​72551​
96

	38.	 Zao JK, Gan TT, You CK, Méndez SJR, Chung CE, Te Wang Y, Mullen T, Jung TP (2014) Aug-
mented brain computer interaction based on fog computing and linked data. In: 2014 International
Conference on Intelligent Environments. IEEE, pp 374–377

	39.	 Ning Z, Huang J, Wang X (2019) Vehicular fog computing: enabling real-time traffic management
for smart cities. IEEE Wirel Commun 26(1):87–93

	40.	 Paul A, Pinjari H, Hong WH, Seo HC, Rho S (2018) Fog computing-based IoT for health monitor-
ing system. J Sens. https://​doi.​org/​10.​1155/​2018/​13864​70

	41.	 Zhu J, Chan DS, Prabhu MS, Natarajan P, Hu H, Bonomi F (2013) Improving web sites perfor-
mance using edge servers in fog computing architecture. In: 2013 IEEE Seventh International Sym-
posium on Service-oriented System Engineering, pp 320–323 . https://​doi.​org/​10.​1109/​SOSE.​2013.​
73

	42.	 Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for vm-based cloudlets in mobile
computing. IEEE Pervasive Comput 8(4):14–23. https://​doi.​org/​10.​1109/​MPRV.​2009.​82

	43.	 Aazam M, St-Hilaire M, Lung CH, Lambadaris I, Huh EN (2018) IoT resource estimation chal-
lenges and modeling in fog. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-​319-​57639-8-2

	44.	 La QD, Ngo MV, Dinh TQ, Quek TQ, Shin H (2019) Enabling intelligence in fog computing to
achieve energy and latency reduction. Digital Commun Netw 5(1):3–9. https://​doi.​org/​10.​1016/j.​
dcan.​2018.​10.​008, http://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S2352​86481​83010​81. Artificial
intelligence for future wireless communications and networking

	45.	 Aazam M, Zeadally S, Harras KA (2018) Offloading in fog computing for IoT: review, enabling
technologies, and research opportunities. Future Gener Comput Syst 87:278–289

	46.	 Aazam M, Huh EN, St-Hilaire M (2018) Towards media inter-cloud standardization-evaluating
impact of cloud storage heterogeneity. J Grid Comput 16(3):425–443

	47.	 Mahmoud MM, Rodrigues JJ, Saleem K, Al-Muhtadi J, Kumar N, Korotaev V (2018) Towards
energy-aware fog-enabled cloud of things for healthcare. Comput Electr Eng 67:58–69

	48.	 Lera I, Guerrero C, Juiz C (2018) Availability-aware service placement policy in fog computing
based on graph partitions. IEEE Internet Things J 6(2):3641–3651

	49.	 Xia Y, Etchevers X, Letondeur L, Coupaye T, Desprez F (2018) Combining hardware nodes and
software components ordering-based heuristics for optimizing the placement of distributed IoT
applications in the fog. In: Proceedings of the 33rd Annual ACM Symposium on Applied Comput-
ing, SAC ’18, p 751–760. Association for Computing Machinery, New York, NY, USA. https://​doi.​
org/​10.​1145/​31671​32.​31672​15

	50.	 Mahmoodi SE, Uma RN, Subbalakshmi KP (2016) Optimal joint scheduling and cloud offloading
for mobile applications. IEEE Trans Cloud Comput 7(2):301–313

	51.	 Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing: the
communication perspective. IEEE Commun Surv Tutor 19(4):2322–2358. https://​doi.​org/​10.​1109/​
COMST.​2017.​27452​01

	52.	 Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware application module management
for fog computing environments. ACM Trans Internet Technol (TOIT) 19(1):1–21

	53.	 Li L, Ota K, Dong M (2018) Deep learning for smart industry: efficient manufacture inspection sys-
tem with fog computing. IEEE Trans Ind Inf 14(10):4665–4673. https://​doi.​org/​10.​1109/​TII.​2018.​
28428​21

	54.	 Kang Y, Hauswald J, Gao C, Rovinski A, Mudge T, Mars J, Tang L (2017) Neurosurgeon: collabo-
rative intelligence between the cloud and mobile edge. SIGPLAN Not. 52(4):615–629. https://​doi.​
org/​10.​1145/​30933​36.​30376​98

https://doi.org/10.1109/NAS.2015.7255196
https://doi.org/10.1109/NAS.2015.7255196
https://doi.org/10.1155/2018/1386470
https://doi.org/10.1109/SOSE.2013.73
https://doi.org/10.1109/SOSE.2013.73
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1007/978-3-319-57639-8-2
https://doi.org/10.1016/j.dcan.2018.10.008
https://doi.org/10.1016/j.dcan.2018.10.008
http://www.sciencedirect.com/science/article/pii/S2352864818301081
https://doi.org/10.1145/3167132.3167215
https://doi.org/10.1145/3167132.3167215
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/TII.2018.2842821
https://doi.org/10.1109/TII.2018.2842821
https://doi.org/10.1145/3093336.3037698
https://doi.org/10.1145/3093336.3037698

2013

1 3

A survey on computation offloading and service placement in…

	55.	 Teerapittayanon S, McDanel B, Kung HT (2017) Distributed deep neural networks over the cloud,
the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), pp 328–339. https://​doi.​org/​10.​1109/​ICDCS.​2017.​226

	56.	 Zhao X, Zhao L, Liang K (2017) An energy consumption oriented offloading algorithm for fog
computing. In: Lecture notes of the institute for computer sciences, social informatics and telecom-
munications engineering, pp 293–301. Springer. https://​doi.​org/​10.​1007/​978-3-​319-​60717-7-​29

	57.	 Chang Z, Zhou Z, Ristaniemi T, Niu Z (2017) Energy efficient optimization for computation off-
loading in fog computing system. In: GLOBECOM 2017–2017 IEEE Global Communications Con-
ference. IEEE, pp 1–6

	58.	 Craciunescu R, Mihovska A, Mihaylov M, Kyriazakos S, Prasad R, Halunga S (2015) Implemen-
tation of fog computing for reliable e-health applications. In: 2015 49th Asilomar Conference on
Signals, Systems and Computers. IEEE, pp 459–463

	59.	 Sun X, Ansari N (2017) Latency aware workload offloading in the cloudlet network. IEEE Commun
Lett 21(7), 1481–1484. https://​doi.​org/​10.​1109/​LCOMM.​2017.​26906​78

	60.	 Alli AA, Alam MM (2019) Secoff-fciot: machine learning based secure offloading in fog-cloud of
things for smart city applications. Internet Things 7:100070

	61.	 Shah-Mansouri H, Wong VW (2018) Hierarchical fog-cloud computing for IoT systems: a computa-
tion offloading game. IEEE Internet Things J 5(4):3246–3257

	62.	 Liu L, Chang Z, Guo X, Mao S, Ristaniemi T (2018) Multiobjective optimization for computation
offloading in fog computing. IEEE Internet Things J 5(1):283–294. https://​doi.​org/​10.​1109/​JIOT.​
2017.​27802​36

	63.	 Chen L, Zhou S, Xu J (2018) Computation peer offloading for energy-constrained mobile edge com-
puting in small-cell networks. IEEE/ACM Trans Netw 26(4):1619–1632. https://​doi.​org/​10.​1109/​
TNET.​2018.​28417​58

	64.	 Wang Y, Sheng M, Wang X, Wang L, Li J (2016) Mobile-edge computing: partial computation off-
loading using dynamic voltage scaling. IEEE Trans Commun 64(10):4268–4282

	65.	 Du J, Zhao L, Feng J, Chu X (2018) Computation offloading and resource allocation in mixed fog/
cloud computing systems with min-max fairness guarantee. IEEE Trans Commun 66(4), 1594–1608

	66.	 Ma X, Lin C, Xiang X, Chen C (2015) Game-theoretic analysis of computation offloading for cloud-
let-based mobile cloud computing. In: Proceedings of the 18th ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp 271–278

	67.	 Mao Y, Zhang J, Letaief KB (2016) Dynamic computation offloading for mobile-edge computing
with energy harvesting devices. IEEE J Sel Areas Commun 34(12), 3590–3605

	68.	 Mebrek A, Merghem-Boulahia L, Esseghir M (2017) Efficient green solution for a balanced energy
consumption and delay in the IoT-fog-cloud computing. In: 2017 IEEE 16th International Sympo-
sium on Network Computing and Applications (NCA), pp 1–4 . https://​doi.​org/​10.​1109/​NCA.​2017.​
81713​59

	69.	 Bitam S, Zeadally S, Mellouk A (2018) Fog computing job scheduling optimization based on bees
swarm. Enterprise Inf Syst 12(4):373–397

	70.	 Hong H, Tsai P, Cheng A, Uddin MYS, Venkatasubramanian N, Hsu C (2017) Supporting internet-
of-things analytics in a fog computing platform. In: 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp 138–145. https://​doi.​org/​10.​1109/​Cloud​Com.​
2017.​45

	71.	 Skarlat O, Nardelli M, Schulte S, Borkowski M, Leitner P (2017) Optimized IoT service placement
in the fog. SOCA 11:427–443

	72.	 Skarlat O, Schulte S, Borkowski M, Leitner P (2016) Resource provisioning for IoT services in the
fog. In: 2016 IEEE 9th International Conference on Service-oriented Computing and Applications
(SOCA), pp 32–39 . https://​doi.​org/​10.​1109/​SOCA.​2016.​10

	73.	 Daneshfar N, Pappas N, Polishchuk V, Angelakis V (2018) Service allocation in a mobile fog infra-
structure under availability and QOS constraints. In: 2018 IEEE Global Communications Confer-
ence (GLOBECOM). IEEE, pp 1–6

	74.	 Zeng D, Gu L, Guo S, Cheng Z, Yu S (2016) Joint optimization of task scheduling and image place-
ment in fog computing supported software-defined embedded system. IEEE Trans Comput 65(12),
3702–3712. https://​doi.​org/​10.​1109/​TC.​2016.​25360​19

	75.	 Velasquez K, Abreu DP, Curado M, Monteiro E (2017) Service placement for latency reduction in
the internet of things. Ann Telecommun 72(1–2), 105–115

	76.	 Gu B, Chen Y, Liao H, Zhou Z, Zhang D (2018) A distributed and context-aware task assignment
mechanism for collaborative mobile edge computing. Sensors 18(8):2423

https://doi.org/10.1109/ICDCS.2017.226
https://doi.org/10.1007/978-3-319-60717-7-29
https://doi.org/10.1109/LCOMM.2017.2690678
https://doi.org/10.1109/JIOT.2017.2780236
https://doi.org/10.1109/JIOT.2017.2780236
https://doi.org/10.1109/TNET.2018.2841758
https://doi.org/10.1109/TNET.2018.2841758
https://doi.org/10.1109/NCA.2017.8171359
https://doi.org/10.1109/NCA.2017.8171359
https://doi.org/10.1109/CloudCom.2017.45
https://doi.org/10.1109/CloudCom.2017.45
https://doi.org/10.1109/SOCA.2016.10
https://doi.org/10.1109/TC.2016.2536019

2014	 K. Gasmi et al.

1 3

	77.	 Yousefpour A, Ishigaki G, Jue JP (2017) Fog computing: towards minimizing delay in the internet
of things. In: 2017 IEEE International Conference on Edge Computing (EDGE). IEEE, pp 17–24

	78.	 Li G, Liu Y, Wu J, Lin D, Zhao S (2019) Methods of resource scheduling based on optimized fuzzy
clustering in fog computing. Sensors (Basel, Switzerland) 19(9). https://​doi.​org/​10.​3390/​s1909​2122.
https://​europ​epmc.​org/​artic​les/​PMC65​39192

	79.	 Tang Z, Zhou X, Zhang F, Jia W, Zhao W (2018) Migration modeling and learning algorithms for
containers in fog computing. IEEE Trans Serv Comput 12(5), 712–725

	80.	 Li H, Ota K, Dong M (2019) Deep reinforcement scheduling for mobile crowdsensing in fog com-
puting. ACM Trans Internet Technol. https://​doi.​org/​10.​1145/​32344​63

	81.	 Filippo Poltronieri Mauro Tortonesi CS, Sur N (2021) Reinforcement learning for value-based
placement of fog services

	82.	 Holland JH et al. (1992) Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. MIT Press, Cambridge

	83.	 Yaseen SG, Al-Slamy N (2008) Ant colony optimization. IJCSNS 8(6):351
	84.	 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-Interna-

tional Conference on Neural Networks. IEEE, vol 4, pp 1942–1948
	85.	 Wang J, Wu W, Liao Z, Sangaiah AK, Simon Sherratt R (2019) An energy-efficient off-loading

scheme for low latency in collaborative edge computing. IEEE Access 7:149182–149190. https://​
doi.​org/​10.​1109/​ACCESS.​2019.​29466​83

	86.	 Badri H (2019) Stochastic optimization methods for resource management in edge computing sys-
tems. Wayne State University, Detroit

	87.	 Wright KL (2019) High-performance distributed computing techniques for wireless IoT and con-
nected vehicle systems. Ph.D. thesis, University of Southern California

	88.	 Sundar S (2019) Optimization algorithms for task offloading and scheduling in cloud computing.
Ph.D. thesis

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.3390/s19092122
https://europepmc.org/articles/PMC6539192
https://doi.org/10.1145/3234463
https://doi.org/10.1109/ACCESS.2019.2946683
https://doi.org/10.1109/ACCESS.2019.2946683

	A survey on computation offloading and service placement in fog computing-based IoT
	Abstract
	1 Introduction
	2 Related work
	3 Overview of fog computing
	3.1 Fog architecture
	3.2 Key characteristics and advantages of fog computing
	3.3 Fog computing issues
	3.4 Applications benefiting from fog computing
	3.4.1 Healthcare
	3.4.2 Augmented reality
	3.4.3 Traffic management system
	3.4.4 Caching and processing for improved networking

	3.5 Related technologies

	4 Computation offloading for fog computing paradigm
	4.1 Computing offloading decision
	4.1.1 Latency requirements
	4.1.2 Load balancing
	4.1.3 Intensive computation and other resource constraints
	4.1.4 Privacy and security
	4.1.5 Long-term storage
	4.1.6 Network bandwidth
	4.1.7 Energy efficiency

	4.2 Application models for computation offloading
	4.3 Proposed offloading algorithms and techniques
	4.3.1 Minimizing energy consumption
	4.3.2 Minimizing delay
	4.3.3 Jointly minimizing energy consumption and delay

	5 Service placement in fog computing
	5.1 Service placement challenges
	5.2 Optimization metrics
	5.3 Proposed service placement strategies
	5.3.1 Mathematical programming
	5.3.2 Heuristics
	5.3.3 Metaheuristics
	5.3.4 Machine learning
	5.3.5 Other strategies

	5.4 Discussions

	6 Future research directions
	7 Conclusion
	References

