
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:1983–2014
https://doi.org/10.1007/s11227-021-03941-y

1 3

A survey on computation offloading and service placement 
in fog computing‑based IoT

Kaouther Gasmi1 · Selma Dilek2 · Suleyman Tosun3  · Suat Ozdemir3

Accepted: 8 June 2021 / Published online: 24 June 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2021

Abstract
In recent years, fog computing has emerged as a computing paradigm to support 
the computationally intensive and latency-critical applications for resource limited 
Internet of Things (IoT) devices. The main feature of fog computing is to push com-
putation, networking, and storage facilities closer to the network edge. This enables 
IoT user equipment (UE) to profit from the fog computing paradigm by mainly off-
loading their intensive computation tasks to fog resources. Thus, computation off-
loading and service placement mechanisms can overcome the resource constraints of 
IoT devices, and improve the system performance in terms of increasing battery life-
time of UE and reducing the total delay. In this paper, we survey the current research 
conducted on computation offloading and service placement in fog computing-based 
IoT in a comparative manner.
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1 Introduction

It has been estimated that the number of deployed smart devices connected through 
the Internet of Things (IoT) will be around 75 billion by 2025 [1], while the amount 
of data generated by these devices is expected to be 73.1 zettabytes per year [2], 
as opposed to 1.1 zettabytes of data per year estimated in 2016 [3]. Most of this 
massive amount of data requires real-time processing to make efficient decisions 
[4]. However, the majority of the end devices in IoT are battery powered and have 
limited processing and storage capabilities. Therefore, they are unable to satisfy the 
requirements of the applications that need massive data processing. Hence, it is nec-
essary to utilize a resourceful computing paradigm that enables processing the data 
generated from the end IoT devices. This paradigm is often called cloud comput-
ing [5]. The cloud computing paradigm provides extensive processing power and 
unlimited storage through powerful virtual servers, which enables fast processing 
and unbounded storage. It can be useful for applications that are not delay sensi-
tive and do not require higher responsiveness. However, it may not be an attractive 
solution for applications that require real-time processing and high responsiveness, 
due to the high network bandwidth usage and large end-to-end delay for continu-
ously pushing large bulks of raw data. For this purpose, fog computing [6] has been 
designed as a promising computing paradigm for tackling the aforementioned issues 
related to limited device resources, limited bandwidth, and large end-to-end latency, 
by bringing computation, storage, and networking services directly to the network 
edge. Here, we describe “Edge” as any intelligent computing resources along the 
path between data sources and cloud data centers. These computing resources 
are referred to as edge devices. Some examples of edge devices include routers, 
switches, and smart gateways.

As fog-based systems ensure additional computing capabilities at the edge of a 
network, users can profit from the advantages of fog computing mainly by means of 
computation offloading1, which is a mechanism that can overcome the problem of 
resource constraints at the edge devices. Edge devices are connected to devices that 
have computation, storage, and networking capabilities such as routers and switches. 
Specifically, it can help to improve the performance of computation-intensive appli-
cations and battery life. However, selection of the tasks to be offloaded is a chal-
lenging problem. Generally, the purpose of decision making on task offloading is to 
ascertain whether the offloading is cost-effective for the user equipment in respect of 
energy consumption and execution delay [7].

Another challenge in computation offloading is making a decision about which 
node to assign to the offloaded task (i.e., service placement2 problem), while con-
sidering the selected metrics such as energy consumption and/or latency. Since the 
fog nodes are geographically distributed, resource-constrained, and highly dynamic, 

1 We use computation offloading and task offloading interchangeably throughout this paper, since both 
terms are used by different studies.
2 We use service placement, application placement, and task placement interchangeably throughout this 
paper, since all expressions are used by the previous studies with the same meaning.
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service placement problem becomes extremely difficult to solve. Several studies 
have addressed the aforementioned problem. Different strategies and techniques 
have been considered with a goal of designing efficient computing offloading and 
service placement schemes in fog environment. In this survey, we review a broad 
range of the recent existing studies that focus on these issues, and explore the strate-
gies and techniques proposed in the literature. First, we present the concept of fog 
computing and application domains. Second, we consider application models for 
offloading, computation offloading decisions, and provide a classification of the var-
ious algorithms proposed for computation offloading. Finally, we discuss optimiza-
tion methodologies and performance metrics for service placement, and present a 
classification scheme for service placement methodologies and techniques.

We can list the main contributions of this survey as follows: 

1. We provide an exhaustive overview of the computing offloading problem, by 
identifying several factors that can affect the offloading decision, presenting the 
key application models for offloading to fog environment, and classifying the 
algorithms and techniques that have been proposed recently for the computing 
offloading problem. The proposed classification is based on the offloading type 
and objective parameters.

2. We propose a novel classification for the optimization strategies that have been 
proposed to solve the service placement problem for IoT applications over fog 
nodes. This classification is based on the used methods and the optimization 
objectives.

3. Finally, we highlight the open challenges and discuss the future research direc-
tions in fog-based systems.

The rest of the paper is organized as follows. Section 2 summarizes existing surveys 
on fog computing. Section 3 presents an overview of fog computing paradigm: defi-
nition, architecture, main characteristics, advantages, application domains, as well as 
the differences and similarities with related computing paradigms. Section 4 intro-
duces the concepts of computation offloading: application models and the proposed 
methodologies for designing computation offloading schemes. Section 5 introduces 
the service placement problem, performance metrics, and proposed optimization 
methods. Finally, Sect. 7 concludes the paper.

2  Related work

Different aspects and challenges of fog computing have been addressed by several 
surveys. Mahmud et  al. [8] focus on key services that fog computing provide. 
Further, they present the major factors that have been considered for efficient 
resource and service provisioning in fog. Varshney and Simmhan [9] state the 
characteristics and requirements of applications that push the need for using the 
fog environment. Hong and Varghese [10] classify the architectures, infrastruc-
ture, and underlying algorithms for managing resources in fog/edge computing. 
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Ren et al. [11] discuss the state-of-the-art research in terms of computation off-
loading, caching, security, and privacy in edge computing and related comput-
ing technologies. Yi et al. [12] mainly discuss the issues related to fog network-
ing. Mouradian et  al. [13] review the proposed architectures and algorithms for 
building fog. The authors in [14, 15] summarize the proposed approaches for 
resource management such as resource allocation, task scheduling, resource pro-
visioning, task offloading, and application placement, with a focus on the relevant 
resource management issues. In [16], the authors provide a comprehensive review 
of existing literature that use stochastic offloading mechanisms in computation 
paradigms. Furthermore, they provide a comprehensive comparison of offloading 
mechanisms based on Markov chain. The authors of [17] present an exhaustive 
overview of IoT–Fog–Cloud ecosystems and mainly discuss the standards, tools, 
and applications that have been used. In [18], the authors provide a comprehen-
sive overview of various aspects of application management. They present an 
extensive exploration in IoT applications architecture distributed over fog nodes. 
They discuss programming models, service types, workload types, interaction 
methods, and functional layouts. Moreover, they overview the relevant elements 
associated with application placement such as mapping techniques and place-
ment strategies. Ranesh Kumarnaha et  al. [19] present a comprehensive review 
of existing literature with a focus on the requirements perspective related to infra-
structure, platform, and application in fog computing. They further summarize 
some existing research studies in resource allocation, scheduling, and fault toler-
ance in fog with some application examples. The survey in [20] summarizes the 
characteristics of fog architecture and presents the main similarities with and dif-
ferences from cloud. The paper also presents the key technologies applied in fog. 
In [21], the authors give a comparative discussion about fog computing and its 
related computing paradigms. Moreover, they summarize the software and tools 
for fog computing, as well as the applications that are exploited for the fog tech-
nology. Additionally, they investigate the problem of resource management, secu-
rity, and privacy. The authors of [22] take a closer look at networking, latency, 
and energy consumption models in fog computing, and discuss the issues related 
to service allocation and resource management in a fog infrastructure. Several 
others surveys discussed similarities and differences of fog computing compared 
to the related computing paradigms, fog architectures, application domains, as 
well as the challenges and open issues [22–25].

Although some of the mentioned surveys explore the computation offloading and 
service placement problem in fog computing, we notice that these studies are limited 
in the following perspectives:

• They omit the comprehensive summary of the relevant elements of the offload-
ing operation such as application model definitions, resolution strategies, off-
loading decision, and offloading type.

• Additionally, the aforementioned surveys do not provide an exhaustive review 
regarding the optimization strategies and their technical formulations for appli-
cation placement. In particular, the machine learning-based intelligent solution 
strategies are neglected.
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• They do not provide an insight into how to choose the best optimization strat-
egy for the application placement under different objectives, as one optimization 
method may be better than the other for certain types of applications/scenarios.

The aforementioned limitations of the existing surveys motivated us to initiate this 
survey which is mainly dedicated to achieving an exhaustive and comprehensible 
overview of relevant computing offloading aspects and the service placement prob-
lem in fog computing.

3  Overview of fog computing

Fog computing, proposed first by Cisco in 2012 [26], is defined as a distributed 
computing infrastructure that extends cloud-like services to the network edge by 
delivering computation and storage resources closer to users [27]. According to the 
OpenFog Consortium [28],

Fog Computing is a horizontal, system-level architecture that distributes com-
puting, storage, control, and networking functions closer to the users along a 
Cloud-to-Thing continuum.

As opposed to cloud computing, fog computing introduces fog servers and fog 
nodes, which are devices physically closer to the users than their cloud counterparts, 
with a goal of handling some of the application workload closer to the network 
edge. Any device such as a controller, smart gateway, switch, router, or embedded 
server, which possesses capabilities for processing, networking and storage, may be 
employed as a fog node. The advantage of these devices is wider deployment oppor-
tunities, as they can be placed at any location where network connection is available, 
such as inside factory buildings, alongside railways, inside of vehicles, and even on 
power poles. The main idea behind this approach is to optimize the transmission 
time it takes for data to reach the intended processing nodes, since deploying nodes 
closer to the edge of a network shortens the data transmission time to a negligible 
delay [27]. According to OpenFog, fog nodes are equipped with intelligent algo-
rithms that facilitate processing and storing data, as well as forwarding data from 
edge devices to fog, and from fog to cloud via smart networking.

3.1  Fog architecture

A number of architectures for fog computing have been proposed, most of which 
have a three-layer structure as illustrated in Fig. 1. A typical fog architecture com-
prises an IoT layer (also known as end layer) that consists of IoT devices, a fog layer 
that consists of fog nodes, and a cloud layer with a cloud data center and services 
[29], which are discussed in more detail below.

• IoT layer It is the lowest layer located at the nearest proximity to the end users. 
It incorporates various sensor nodes (temperature and humidity sensors, cam-
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eras, etc.) and actuators that may be distributed over a wide geographical area. 
Devices placed at this layer are responsible for collecting data about their envi-
ronment, and dispatching the gathered data to the upper layer for further process-
ing and/or storage.

• Fog layer It is an intermediary layer between a cloud and end devices, which 
consists of heterogeneous fog devices (e.g., access points, switches, routers, 
gateways, base stations, fog servers, etc.) that have relatively limited processing, 
storage, and communication capabilities. These fog nodes maintain a connection 
to cloud servers and can forward requests to cloud data centers. Fog nodes that 
have very limited processing, storage, and other capabilities are considered to 
be low-level nodes, while nodes with more abundant resources are classified as 
high-level nodes. Fog nodes may also be categorized as either stationary (if fixed 
at a certain location), or mobile, such as smartphones, vehicles, and drones [29, 
30].

• Cloud layer It is the top layer in a fog computing architecture. Cloud layer incor-
porates a number of servers and data centers, which are capable of executing 
complex processing and analysis, storing huge amounts of data, and providing 
feedback and results back to fog nodes [29, 30].

Considering this layered fog architecture, it is evident that fog services are located 
in a much closer proximity to the end users, allowing a denser geographical distribu-
tion, and offering a better mobility support, as opposed to a cloud environment in 
which services may reside in much farther locations necessitating wider bandwidths. 
Furthermore, a fog ecosystem also contributes to reduced latency and provides con-
text awareness due to fog node localization, resulting in pervasive, scalable, and 
united network connectivity [3].

3.2  Key characteristics and advantages of fog computing

The distinct characteristics and advantages of fog computing can be listed as follows.

• Low latency: The key motivation behind this emerging paradigm is to decrease 
the data transmission latency while increasing the data transmission rate [31]. 

Fig. 1  Illustration of a fog computing architecture
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Some novel applications such as intelligent vehicle-to-vehicle communication 
networks, virtual reality, and online gaming have an extremely high requirement 
for low delay. For instance, in a virtual reality application, a small delay in range 
of milliseconds can damage the user experience [23]. Due to the close proximity 
of fog nodes to end users, fog computing is capable of providing support for low 
latency and time-sensitive applications [11].

• Support for mobility: In applications such as vehicular networks the movement 
of the nodes can considerably affect the system performance, especially in sce-
narios that require handling fast channel changes [11]. Fog computing can facili-
tate the mobility of the end users through providing computational and storage 
resources over the entire network, as opposed to a traditional centralized cloud 
ecosystem [29].

• Bandwidth: Preprocessing of data before transferring it to a cloud for further 
analysis or storage plays an important role in reducing the network traffic. Fog 
computing enables data filtering and aggregation to be performed locally in 
order to speed up the execution of certain tasks that would otherwise take too 
long under a limited network bandwidth [29].

• Scalability: There are IoT scenarios in which a huge number of end users needs 
to be managed along with enormous amounts of data produced by billions of het-
erogeneous IoT objects with different performances and costs. In such scenarios, 
having fog nodes widely distributed and deployed in close proximity to the users 
plays an important role in making IoT applications scalable and adaptable to the 
network changes [11].

3.3  Fog computing issues

Fog computing paradigm promises to offer effective solutions for a number of prob-
lems that afflict IoT and cloud computing applications. Nevertheless, it also comes 
with its own challenges that need to be grasped and tackled in order for it to become 
an effective computing solution. Some of the fog-specific issues are discussed below.

• Resource management Fog environment contains heterogeneous fog nodes with 
limited computing and storage performance capabilities, which makes it harder 
to manage resource allocation, scheduling, and sharing. Efficient management 
solutions are needed for determining appropriate task placement strategies that 
satisfy applications’ requirements (e.g., solutions based on priority and migra-
tion) [32]. Furthermore, in order to provide mobility support, particularly in the 
case of connected objects, resources may need to be pre-allocated using effec-
tive methods such as probabilistic ones based on user history [33]. Therefore, 
a framework that enables the performance evaluation of resource management 
policies in IoT or fog computing infrastructures is a necessity [3].

• Privacy and security Some of the proposed solutions for security issues in 
fog computing focus on intrusion detection, access control, authentication, 
and detection of various other malicious activities including denial of ser-
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vice (DoS) attacks and port scanning. Introducing security mechanisms in fog 
computing is necessary for each level of the fog architecture [12].

• Energy management A fog infrastructure incorporates a large number of 
geographically distributed nodes. As a result, energy consumption in a fog 
ecosystem is higher in comparison with that of a cloud [23, 33]. Significant 
research efforts are needed to develop effective solutions for energy manage-
ment. For example, data processing and communication protocols that are less 
costly in terms of energy consumption need to be developed [33].

• Quality of service (QoS) One of the most important measures of network 
service quality in general is QoS, and this holds for fog computing as well. 
In [34], the authors consider QoS in fog computing based on four metrics: 
connectivity, reliability, capacity, and latency. Other metrics such as energy 
efficiency, bandwidth, and security may be taken into consideration as well, 
depending on the application requirements. The challenge with QoS provi-
sioning often entails making trade-offs between different QoS metrics, which 
is further complicated by a varying and often dynamic nature of different 
applications.

3.4  Applications benefiting from fog computing

Figure 2 illustrates a scope of applications that stand to gain from the fog com-
puting paradigm. In this subsection, we discuss some of those applications that 
can benefit from fog computing to a great extent.

Fig. 2  Applications benefiting from fog computing paradigm
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3.4.1  Healthcare

Healthcare applications and services, especially applications for remote monitoring 
of critical patients whose physiological states may rapidly deteriorate necessitating 
agile response and decision making, are time-critical applications that demand real-
time processing. In unpredictable network conditions, delivery of health data may 
become subject to high latency, making the data deficient, unreliable, and in some 
cases even useless. This issue may incur even worse outcomes for data that requires 
cascade-based analysis such as electrocardiogram (ECG) or electroencephalo-
gram (EEG) signals [35, 36]. This type of problematic scenarios may be prevented 
through employing solutions based on fog computing.

Cao et al. [37] proposed a fog-based system called FAST, which enables detec-
tion, prediction, and avoidance of falls for patients who suffered a stroke. Their fall 
detection learning algorithm was distributed across both edge and cloud resources, 
enabling a shorter response time in comparison with other proposed solutions that 
are solely based on cloud implementation.

3.4.2  Augmented reality

Fog computing may also play a major role in enhancing the performance of aug-
mented reality applications, which are highly delay-sensitive, as the user experience 
depends mainly on real-time response [33]

An example is the Augmented Brain Computer Interface developed by Zao et al. 
[38], which is capable of detecting the states of a user’s brain in real-life situations 
using data collected through EEG headsets. Since both fog and cloud servers are 
utilized, the system is capable of perpetual real-time classification of a user’s brain 
state performed at the fog layer, while employing cloud servers for regular tuning of 
classification models.

3.4.3  Traffic management system

The efficiency of a traffic signaling management system relies heavily on achieving 
real-time and location-aware system response. Fog computing can improve inter-
communication between vehicles, access points, and traffic signals for the overall 
enhancement of such systems [39].

3.4.4  Caching and processing for improved networking

Fog computing may also facilitate caching and processing operations for websites 
that work with large databases and huge amounts of data that needs to be processed, 
such as social networking, library, or online shopping websites, with the goal of 
improving their performance by reducing overall time and space complexity [40]. 
Zhu et  al. [41] proposed one such solution in which users connect to the Internet 
through devices placed in the fog layer, which act as relays for all HTTP requests. 
The fog devices improve the response time through employing various optimization 
tasks depending on the scenarios and network conditions. For instance, if congestion 
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occurs in the network, users may be provided lower-resolution graphics by a fog 
device in order to maintain acceptable response time. Another example of optimiza-
tion would be choosing appropriate resolution for graphics based on the browser’s 
rendering capabilities on a client machine [33].

3.5  Related technologies

Other middleware technologies such as mobile edge computing (MEC) and Cloud-
lets that have been proposed in the literature also fall within the scope of fog com-
puting [3]:

• Cloudlets refer to servers or clusters of servers that have plenty of resources and 
are deployed in a single-hop proximity of mobiles users. They employ virtual 
machines (VMs) for enabling mobile devices to offload tasks in applications that 
require intensive computation [42]. The key motivation for employing cloudlets 
is to enable mobile devices that have scarce computational and storage resources 
to offload their intensive computation to the cloudlets, especially in applications 
that have stringent end-to-end latency requirements, with the goal of guarantee-
ing real-time interactive responses, which is something a distant cloud environ-
ment cannot guarantee. Another advantage of cloudlets is the fact that they can 
exist as a standalone environment acting as a full cloud at the edge of a network 
without cloud interaction, even though they actually reside in the middle of a 
three-tier hierarchy (mobile device - cloudlet - cloud) [13].

• Mobile edge computing (MEC) was put forward by the European Telecommu-
nication Standards Institute (ETSI) with the goal of enabling cloud computing 
capabilities closer to the mobile subscribers and within the radio access network 
(RAN) [13]. MEC services can be set up at different platforms such as LTE base 
stations (eNodeB) and 3G radio network controllers (RNC) [13]. The main goal 
of MEC is to improve application performance and consequently user experience 
by enabling the processing of user requests at the network edge, and as a result, 
reducing network congestion [3]. Some of the target applications include aug-
mented reality and video processing.

Table 1  Comparison of fog, MEC, and cloudlet [13]

Paradigm Location for computing Virtualization Operation mode Target applications

Fog Devices along the routing 
path

VM, container Connected to cloud Mobile offloading appli-
cations, any application 
better provisioned at 
the edge

MEC Base stations and nearby 
devices

VM, container Standalone Mobile offloading appli-
cations, any application 
better provisioned at 
the edge

Cloudlet Nearby devices VM Standalone or con-
nected to cloud

Mobile offloading appli-
cations
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A brief comparison between Cloudlets, MEC, and fog computing is given in Table 1.

4  Computation offloading for fog computing paradigm

With the emergence and rapid proliferation of IoT applications, the necessity to 
efficiently manage the execution of increasingly complex tasks based on the vary-
ing requirements of different applications has also risen. Some of these differences 
stem from the varying capabilities of user devices. For instance, some devices such 
as smartphones may require faster response necessitating additional computational 
resources, whereas some devices may need to be able to accumulate and process 
data before dispatching it to the cloud, thus, requiring creation of local services [43]. 
In order to free mobile devices with limited resources from performing complex 
tasks, computation offloading has been proposed by both industry and academia as 
a promising solution for effective integration of resources in computing ecosystems 
that are designed based on edge-fog-cloud paradigm. Offloading of computation-
intensive tasks from constrained end devices to fog or cloud servers can significantly 
save energy and reduce response time [11].

4.1  Computing offloading decision

Offloading decision could be affected by several factors. This subsection discusses 
principal determinants and criteria used in making decisions whether proceeding 
with offloading or avoiding it would be more cost-effective.

4.1.1  Latency requirements

IoT applications that have strict latency requirements in the order of milliseconds 
can be considerably affected by the distance between nodes. In order to reduce end-
to-end latency in such applications, offloading tasks such as data analytics at the 
network edge can prove to be very effective and lead to much faster response [44]. 
An example would be offloading a part of or the entire content from a multimedia 
services cloud to be cached at an edge or fog node in order to bring the content to a 
closer proximity to users for faster access [45].

4.1.2  Load balancing

Load balancing within a service provider’s ecosystem plays an important role with 
regards to optimizing processor throughput, response time, and resource utilization, 
as well as prevention of node overload, since a device that has reached its processing 
capacity is not capable of performing any additional tasks. In such scenarios, tasks 
could be appropriately distributed among multiple nodes/servers in a fog data center 
with the goal of balancing the load of incoming requests [45].
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4.1.3  Intensive computation and other resource constraints

With the resource-constrained IoT devices, it is often the case that computation or 
storage requirements of an application exceed the capabilities of the device. In such 
cases, it is necessary to offload demanding tasks to other nodes that have more avail-
able resources (e.g., utilizing a cloud for updating map according to satellite data in 
a geographical map service application on a smartphone) [44, 45].

4.1.4  Privacy and security

In scenarios in which privacy and security concerns are raised, offloading may be 
preferred based on the susceptibility and privacy of data or tasks. For instance, data 
handled in a hospital or company may be transferred from a local storage to a pri-
vate cloud. Likewise, a user may prefer to store private data in a personal mobile 
edge cloud instead of a smartphone [46].

4.1.5  Long‑term storage

Depending upon the service type, long-term storage may take a lot of space. Thus, 
it may not be practical or sometimes even possible to satisfy storage requirements 
on small end devices such as smartphones. Offloading storage tasks in such cases to 
a cloud server that has abundant storage space for allocation is a practical solution 
[45].

4.1.6  Network bandwidth

In IoT applications, end users generate enormous amounts of data; however, these 
systems usually have limited bandwidth. Therefore, enabling data preprocessing and 
analytics at the network edge/fog layers can considerably minimize the network traf-
fic load, and improve the overall network performance [44].

4.1.7  Energy efficiency

Energy is another important indicator that must be considered when making off-
loading decisions. The existing studies show that users usually prefer longer battery 
life over other features. A distributed nature of a fog environment that integrates 
many fog nodes enables distributed and more energy-efficient computation models 
as opposed to a centralized cloud-based model of computation [33]. Figure 3 illus-
trates how energy consumption affects decision making in fog. In this figure, we 
assume that the tasks of IoT devices (i.e., tablet, smart phone, and VR glasses) are 
partitioned into six sub computations (C1-C6). Then, it is decided which sub-com-
putations will be offloaded based on the energy concern. Basically, a computation 
offloading decision may prevail on the following:

• Local execution The entire computation is executed on a local device instead 
of performing offloading to fog servers. This situation occurs either when off-
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loading is not cost-effective or when fog resources are unavailable. The tablet in 
Fig. 3 executes all computations locally.

• Partial offloading Offloading only a part of the whole computation to fog nodes, 
while having the rest of the computation tasks executed locally. The VR glasses 
in Fig. 3 execute four computations locally and offload the remaining two to the 
fog server.

• Full offloading Offloading the entire computation to be processed by fog nodes. 
The smart phone in Fig. 3 offloads all computations to the fog server.

4.2  Application models for computation offloading

Generally, mobile applications can be divided into N components, which makes 
it possible to implement partial/full offloading. Each component may differ in the 
amount of computation and latency requirements. Therefore, it is necessary to 
determine which components should be offloaded. As illustrated in Fig. 3, the first, 
second, third, and fourth components of the application at VR glasses are locally 
executed, while the fifth and sixth components are offloaded to the fog network. 
Likewise, all components can be fully offloaded in case of insufficient resources 
on mobile devices. In many applications, there are also some components that can-
not be offloaded in any case (e.g., data I/O, camera, etc., which must be processed 
locally). Furthermore, some components are dependent on each other, and this 
dependency cannot be neglected in the offloading process, especially in cases when 
the outputs of some components act as inputs to other components, otherwise the 
execution performance could suffer greatly. Three prominent models for partitioning 
of applications in the process of offloading are task graph, inter-dependent modules, 
and deep neural network [10].

Fig. 3  Possible outputs of computing offloading decision for different application components at mobile 
devices
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Task graph The simplest model for application partitioning is the task graph, 
usually represented as a directed acyclic graph (DAG), which is a widely used 
construction in cloud and fog computing for describing dependencies between 
components in complex distributed applications. In [47–50], the task-graph-
based models were applied to model applications, which denote the dependency 
between different sub-tasks and the automated partitioning strategies for generat-
ing an optimal offloading. Furthermore, DAG can contain other relevant informa-
tion in its vertices such as the number of necessary CPU cycles and the amount of 
required memory, as well as in its edges such as representing the amount of I/O 
data as edge weights [51].

Inter-dependent modules In this model, a large-scale application is partitioned 
into a set of modules that are deployed over the distributed nodes. Each component 
has different size and computation complexity. The dependencies between modules 
can be expressed as a unidirectional data flow. After the deployment of all modules, 
each module is expected to finish its computation within a fixed time. For example, 
[52] employs an inter-dependent module-based model to deploy a set of applications 
over fog nodes. The set of components represents the functionalities of applications, 
and each output of a module is served as an input to another module. The module 
management problem is tackled using linear programming and a heuristic approach, 
while considering both strict deadline and resource optimization.

Deep neural network (DNN) model DNN model has become increasingly popular 
as the core machine learning technique. It can be deployed as multilayers, distrib-
uted over different nodes, where each node is a processing element called neuron 
that applies a function to its inputs and generates an output. Different neurons are 
directly connected, and each connection defines a flow of data between two neu-
rons. The output of a layer serves as an input to the next layer. The depth of a DNN 
is determined by the number of layers. An example application is a fog computing 
based industrial manufacture inspection application, which detects possible defects 
regarding the product, and sends back recommendations and production status [53]. 
This application is implemented as a 6-layer DNN model. The application compu-
tations are distributed among mobile devices, fog nodes, and a cloud server based 
on the computation costs. The main idea is to enable processing immensely large 
amount of data in real-time, which is achieved through adapting a deep learning-
based classification model the fog computing paradigm with the goal of alleviating 
the computational burden of the central servers with the help of fog nodes.

Likewise, another research works focus on the distribution of the DNN across 
user devices, fog and cloud nodes, particularly to achieve low end-to-end latency 
and high energy efficiency [54, 55]. In [54], the authors designed a DNN-based Neu-
rosurgeon framework to automatically partition the computation between mobile 
devices and fog nodes. The proposed Neurosurgeon framework models the partition-
ing between layers in order to achieve low end-to-end latency and energy efficiency. 
Their idea was to consider different partitioning points in the network and predict 
the energy consumption at each of those points, so that a partitioning which opti-
mizes data transfer delay and minimizes energy consumption can be chosen. Simi-
larly, their study was extended by employing distributed DNN across hierarchical 
fog nodes in [55].
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A mobile application can be considered as a sequence of tasks. A task can be repre-
sented as T⟨I,D,W⟩ where I stands for the size of the input in bits, D for the completion 
deadline of the task in seconds, and W for the computation workload expressed in CPU 
cycles per bit. Tools such as task profilers can be used to estimate these parameters, 
which are essential parts of applications in terms of capturing the fundamental proper-
ties of mobile applications including computation and communication requirements. 
Furthermore, they can also assist with estimation of execution latency and energy con-
sumption [51].

4.3  Proposed offloading algorithms and techniques

In this subsection, we present several offloading algorithms and techniques for fog 
computing recently proposed in the literature. Similar to [11], we classify the exist-
ing studies into three categories according to their optimization objectives: (1) studies 
that focus solely on minimizing energy consumption; (2) studies whose primary aim is 
to minimize delay; and (iii) studies that consider both energy and delay as metrics for 
optimization. Table 2 summarizes the surveyed studies.

4.3.1  Minimizing energy consumption

Minimizing the energy consumption in the computation offloading process is an opti-
mization problem that has caught a lot of attention in research. Zhao et al. [56] pro-
posed a full offloading algorithm that minimizes the energy consumption of mobile 
devices in a fog/cloud system while meeting the application’s latency and maximum 
transmission power requirements. The offloading decision to either fog or cloud is 
made dynamically based on the computed energy consumption of both models. Off-
loading to fog entails data transfer from the device to a fog node, the device idle time 
energy consumption, and the energy consumption that results from the actual compu-
tation at the fog node. Offloading to a cloud node, on the other hand, involves addi-
tional data transfer from the fog node to the cloud, idle time energy consumption of 
both device and fog node, as well as the energy consumed during the execution of the 
computation at the cloud. The experimental testing done through simulation showed 
that the proposed algorithm improves energy consumption of the system over a model 
solely based on cloud computing.

Chang et al. [57] designed a distributed algorithm based on the alternating direction 
method of multipliers (ADMM) technique to offload tasks in multi-user fog systems 
with the main purpose of minimizing energy consumption while satisfying the latency 
constraint. A queuing model is used to efficiently model the energy consumption at a 
mobile device and fog nodes. The simulation results have shown that the energy con-
sumption is decreased when the offloading probability is increased while using a lower 
transmission power.
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4.3.2  Minimizing delay

Minimizing the latency in healthcare applications is of a crucial importance, espe-
cially in emergency response scenarios. Craciunescu et al. [58] investigated offload-
ing cloud tasks such as storage and processing of healthcare data closer to the net-
work edge (to fog nodes) in order to decrease the application latency and guarantee 
a quick response for patients in case of an emergency. They tested the proposed 
method in an e-Health laboratory and achieved a decrease in latency of two to four 
seconds in comparison with the cloud-only implementation.

Another challenging problem associated with making offloading decision for end-
to-end latency optimization is selection of optimal fog site that will take the work-
load. If a number of users aggregate at a single fog node (e.g., a cloudlet), while 
leaving other nodes unused, this may lead to overloading some nodes while wast-
ing the capacity of the others [11]. Sun and Ansari [59] investigated this problem 
and employed software defined networking (SDN) technology to propose a latency-
aware offloading solution for mobile devices in an ecosystem of geographically dis-
tributed cloudlets. Their objective was to minimize the average response time which 
entails both network and cloudlet delays by selecting optimal cloudlets to be allo-
cated for computational workload.

Harvesting renewable energy was explored by Mao et al. [67]. They developed a 
low-complexity dynamic computation offloading algorithm based on Lyapunov opti-
mization, designed for mobile devices that are powered with renewable energy. The 
algorithm adjusts the CPU clock frequency, transmission power, and computation 
offloading decision with the goal of minimizing energy cost, execution delay, and 
task failure. They showed that the proposed algorithm is asymptotically optimal and 
provides improved performance in regard to energy conservation and decreasing off-
loading failure.

4.3.3  Jointly minimizing energy consumption and delay

A number of studies have investigated fog-based computation offloading taking 
both energy consumption and delay into account. Machine learning techniques 
have been employed in studies that propose offloading solutions that minimize 
delay and energy consumption in fog environments. In [60], Alli and Alam 
(2019) proposed a secure offloading solution for a fog-cloud environment. A 
machine learning-based particle swarm optimization (PSO) algorithm is designed 
to choose an optimal fog node to which offloading will incur the minimum pro-
cessing delay between a mobile device and the fog. A fog node which has a high 
available computing capacity and maintaining energy is selected as an optimal 
fog node. In case the selected fog node is not capable of handling the incom-
ing workload, a dynamic offloading to cloud servers based on Q-learning mecha-
nism comes into play. During the offloading process, first a classification of the 
task is employed based on the task size, complexity, and latency. Then, the tasks 
are offloaded to either a private or public cloud accordingly. Finally, the authors 
applied a neural-fuzzy model to evaluate the security of the incoming tasks before 
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offloading. The simulation results confirmed that the proposed approach reduces 
the delay and energy consumption compared to other existing solutions.

The joint minimization of energy consumption and delay in fog environment 
is also investigated in [62], where the authors formulated a multi-objective opti-
mization problem using the nonlinear programming method to simultaneously 
optimize the energy consumption, latency, and the offloading cost. They applied 
queuing models to different elements of the fog network in order to deeply study 
the system cost. The simulation results showed that by adjusting the offloading 
probability and transmission power, the trade-off between energy, delay, and cost 
can be optimized.

Ma et  al. [66] proposed a computing offloading strategy that enables multiple 
homogeneous and heterogeneous mobile devices to offload their computation to 
multiple wireless access points (APs) with the main purpose of minimizing energy 
consumption and delay. The total energy consumed during the offloading process 
consists of the transmission energy, the scanning energy of the APs, and the main-
taining energy consumed to uphold the interface during transmission. They designed 
distributed offloading algorithms based on game theory in the context of homogene-
ous and heterogeneous mobile devices. The performance of the proposed algorithms 
is compared with local computation algorithm and random selection (the mobile 
user chooses one AP). The simulation results revealed that in the context of hetero-
geneous devices the proposed offloading policy can optimize the energy and delay 
compared to other algorithms, while increasing the number of mobile devices; how-
ever, in the context of homogeneous devices, it can improve the system cost for only 
up to ten mobile devices by 20% compared to others algorithms.

With the same goal of the aforementioned study, the problem of minimiz-
ing energy consumption and performance delay was similarly formulated using 
the game theory approach in [61, 63]. In [63], the authors designed an offloading 
scheme to optimize the system cost in terms of energy consumption and delay of the 
offloading process. Furthermore, the authors used the price of anarchy of the pro-
posed scheme to quantify the distance between the proposed scheme and the optimal 
performance. In [61], the authors designed a dynamic offloading computation algo-
rithm for a fog system with energy harvesting mobiles devices. They used queuing 
theory in their formalization to deeply derive the uplink-transmission energy con-
sumption and response time models during the offloading process. Compared to the 
other existing algorithms, their proposed algorithm can achieve better results when 
the requests arrival rate is minimal.

Another idea that targets minimizing both energy consumption and delay was 
presented in [65]. Du et al. [65] formulated an optimization problem using mixed-
integer nonlinear programming with the main goal to minimize the maximal cost in 
terms of energy consumption and delay for each offloading decision: local execu-
tion, fog processing, and cloud computing in multi-user fog/cloud computing sys-
tems. Furthermore, they designed an algorithm that makes an offloading decision 
with the minimum cost value of latency and energy, which performs computation 
resource allocation based on the final solution. The simulation results showed that 
the number of beneficial UE from the computation offloading is close to the total 
number of UEs compared to the method based only on local execution.
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Furthermore, apart from exploitation of renewable energy, a technique known 
as dynamic voltage scaling (DVS) has also been utilized as an energy conservation 
method. Wang et al. [64] proposed an algorithm for partial task offloading in mobile 
edge computing based on DVS technique, which has bi-objective optimization func-
tion of minimizing both energy consumption and latency. The DVS is employed on 
mobile devices for the purpose of adjusting the processing speed in order to con-
serve energy.

5  Service placement in fog computing

Fog computing is usually deployed in a heterogeneous and constrained environ-
ment, which leads to a complex and sophisticated resource management. Thereby, 
enabling an efficient deployment for offloaded applications is a critical challenge. A 
major question that arises is how to manage task execution. More precisely, to which 
nodes a particular task should be assigned, and what metrics should be considered 
to evaluate deployment performance. Several studies have addressed these questions 
and many strategies have been proposed accordingly. We review these proposed 
strategies in the following subsections. First, we present the existing challenges 
according the application placement. Then, we discuss the optimization metrics that 
have been considered. Finally, we cover application placement algorithms that have 
been proposed so far.

Before reviewing the recent studies that focus on service placement, let us define 
this problem formally. Let A be a multi-service (multi-component) application with 
a set of requirements R, and let I be a distributed fog infrastructure. Service place-
ment into fog infrastructure is a mapping of each service in A to a computation fog/
cloud node in I, while meeting all requirements in R, and optimizing a set of objec-
tives metrics O used to evaluate the placement performance.

5.1  Service placement challenges

A number of challenges regarding the problem of service placement in fog comput-
ing arise [49]: 

1. Device heterogeneity: A suitable placement of services in a fog environment is 
impeded by heterogeneity of devices that are present at any of the network layers 
and locations.

2. Constraint diversity: Different IoT applications have diverse constraints and 
requirements that need to be satisfied in order for proper performance to be pro-
vided. These constraints/requirements may involve either consumable or non-
consumable properties such as computing and bandwidth resources as the former, 
and latency or privacy as the latter. Meeting the diverse application requirements 
necessitates an intelligent approach in service selection.

3. Multi-tenancy: A fog infrastructure needs to be able to support the placement of 
multiple applications that require simultaneous management.
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4. Scalability: The complexity of placement problem dramatically increases with a 
growing infrastructure size (number of devices) and application size (number of 
components), which makes it even harder to deal with this large-scale problem.

5.2  Optimization metrics

The problem of resource allocation and service placement in a fog system entails 
optimization of one or more specified metrics, the values of which need to be either 
minimized or maximized depending on a metric’s contribution to the system per-
formance [49]. This subsection discusses the most widely considered optimization 
metrics in fog systems.

Latency: Reducing end-to-end latency of cloud-based delay-sensitive applica-
tions is one of the most important goals of fog computing, since it allows efficient 
monitoring and faster response of applications to their environment. There has been 
a lot of research that focuses on minimizing the latency of services placed on fog 
resources while meeting a number of constraints [62, 68, 69].

Energy consumption: Minimizing energy consumption in IoT in general and fog 
computing in particular is yet another crucial issue, especially due to the fact that 
IoT and fog devices have limited resources; hence, making energy consumption one 
of the most important metrics for performance optimization. It involves minimizing 
energy needed for transferring services from end users to fog nodes, energy con-
sumed by the nodes for processing, and energy needed to transfer a service from a 
fog node to a cloud if necessary, all of which reduces the lifespan of a fog network.

Resource utilization: Optimizing resource utilization is another important metric 
in fog computing with a goal to maximize the number of services deployed over 
suitable fog nodes. The proposed approaches generally make deployment decisions 
that maximize the number of satisfied application requests (e.g., via prioritization of 
applications that have the closest deadline) [70, 71].

Cost: There are two main types of costs depending on the viewpoint (providers 
vs. users): data transmission cost (i.e., networking cost) and service execution cost. 
Other types of costs include expenses related to storage, deployment, etc.

QoS assurance: QoS provisioning may be associated with minimizing delays, but 
also many other metrics as well, some of which may not result in delay reduction. 
For example, if QoS is measured as the percentage of requests executed before a 
deadline, then guaranteeing QoS would involve keeping the execution times below a 
threshold, not necessarily resulting in delay minimization.

5.3  Proposed service placement strategies

In the literature, several studies have addressed the service placement problem in 
the fog environment. These studies were motivated by optimization objectives such 
as minimizing latency, reducing energy consumption, or improving the quality of 
service. In Table 3, we give a classification of the state-of-the-art studies according 
to the employed optimization strategies: (i) machine learning (ii) mathematical pro-
gramming, (iii) heuristics, (iv) meta-heuristics, and (v) other methods. In the second 
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column of this table, we list the application types each method focuses on. We give 
the objective metrics in column three. In the last two columns of this table, we note 
the advantages and limitations of each method.

5.3.1  Mathematical programming

Mathematical programming is often used to solve optimization problems by for-
mulating them as a mathematical model with constraints and an objective function. 
Then, the solution domain of the objective function is explored with the main pur-
pose to either maximize or minimize its value, while guaranteeing to return the opti-
mum solution. However, it is important to note that checking the whole solution 
space suffers from extremely high execution time, and is only feasible for smaller 
problems, unlike the complex service placement problem in a fog environment [29]. 
Different types of mathematical programming models such linear, nonlinear, and 
mixed-linear are studied in fog computing.

In [72], the authors proposed a framework for resource allocation in a fog com-
puting environment. They defined a model based on integer linear programming 
(ILP) to optimize the placement of tasks in clusters of fog nodes. Each cluster is 
controlled by an efficient fog node, which plays the role of a broker and task orches-
trator: it receives tasks to be executed from different IoT devices and places them 
in the cluster. Tasks that cannot be placed (e.g., due to a lack of resources) are redi-
rected to the cloud. The objective function of their task placement model is to (i) 
maximize the number of tasks executed within each cluster, and therefore reduce the 
response time, and (ii) choose for each task a fog node that conforms to the process-
ing resource requirements (i.e., CPU, RAM, storage, and bandwidth), and the node 
closest to the controller in terms of latency.

Furthermore, Daneshfar et al. [73], in addition to proposing a fog infrastructure, 
formulated the service placement problem as an ILP model with the goal to mini-
mize the total cost of providing services when services are deployed onto fog nodes. 
Their formulation allows for a user to multi-cast their tasks to multiple fog servers 
in order to guarantee resource availability. They associated an availability value for 
each fog node, a cost of execution for each task (identical for all fog nodes), a maxi-
mum budget of time for each user to perform their tasks, and a maximum server 
number for each user to submit their tasks. The objective function of their model 
makes it possible to find a placement solution and multi-cast all tasks at a lower cost 
while respecting the desired availability for each user.

Similarly, Velasquez et al. [75] proposed an ILP-based approach for optimizing 
the placement of IoT services in fog with the following objectives: (i) minimize the 
number of jumps between the user and the requested service location in fog to mini-
mize the latency, (ii) minimize the number of existing jumps between cooperative 
services, and (iii) minimize the total number of offloaded services compared to the 
previous offloading to improve the system stability.

Zeng et al. [74] considered service placement problem with task scheduling and 
workload balancing in software-defined embedded systems with a support of fog 
computing. They formulated the problem as a mixed-integer nonlinear programming 
(MINLP) problem and reduced it to a mixed-integer linear programming (MILP) 
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problem to solve it with a commercial tool Gurobi. They compared the proposed 
method to server-greedy (i.e., cloud-ward) and client-greedy (i.e., edge-ward) place-
ment strategies, and demonstrated through extensive simulations that their solution 
is computationally efficient even for such a high-complexity problem, while achiev-
ing improvements in performance and response time.

5.3.2  Heuristics

A dynamic and mobile nature of a fog infrastructure makes the service placement 
problem extremely complex in terms of computation, and an exact analysis of the 
entire solution space is practically inapplicable. Hence, heuristic approaches are 
often explored as they provide means to obtain solutions in a reasonable amount of 
time. Heuristics are a set of rules and techniques that facilitate getting feasible solu-
tions for computationally complex problems. Nevertheless, they do not provide any 
performance guarantees [29].

Here, we present some of the most recent studies that employ heuristics for this 
problem. Xia et  al. [49] proposed an objective function, which aims to minimize 
average response time of an application deployed onto a set of fog nodes. They 
developed two backtrack search-based algorithms, namely exhaustive search and 
native search, to find placement solutions. Exhaustive search tries to visit all exist-
ing solutions and returns the optimal one that minimizes the average response time, 
whereas native search returns the first found solution. Based on native search, they 
proposed two heuristics: the first one aims at minimizing the response time returned 
by the naive search and the second one accelerates the search process. The simu-
lation results showed that the combination of both heuristics makes the placement 
decision-making process more scalable, which leads to a lower average response 
time.

Gu et al. [76] proposed a binary linear programming-based model and heuristics 
for task assignment in a MEC environment. Their model optimizes overall energy 
consumption induced by the execution and transmission of tasks, while ensuring 
that the delay constraint required by all tasks is satisfied. In their heuristics, server 
nodes (which process tasks) publish their performance among themselves (the fre-
quency of the CPU). Then, each task is sent (from its source) to a potential server 
node for execution. The choice of a node is made by a function based on energy con-
sumption. Upon receiving tasks, there are two possible cases: (i) the receiving node 
meets the required delay, and as a result, the task is handled by that node; and (ii) the 
node does not meet the required delay, in which case the task is forwarded to one of 
the nodes based on shared information about the nodes’ performance. This is done 
without any task administrators.

In [77], Yousefpour et al. proposed an algorithm that adopts the concept of load 
sharing to place tasks in a fog infrastructure, in which fog nodes collaborate with 
each other to execute the received request. Their algorithm aims to optimize the end-
to-end service delay. A fog node accepts to execute the received request based on its 
estimated waiting time; otherwise, it forwards the request to one of its neighbors or 
to the cloud. In addition, probabilistic models are built to estimate the time it takes 
to complete a task in a fog node.
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In [34], Taneja et  al. proposed heuristics to place IoT service requests in a fog 
infrastructure. Their idea is to sort in ascending order: (i) fog nodes according to 
their processing performance, and (ii) service requests according to the amount of 
resources required. Then, for each service request, their heuristics search for a fog 
node that meets the processing performance required by that request. Unplaced ser-
vice requests are redirected to the cloud. Although the proposed approach is simple 
and easy to deploy, it has several drawbacks: it does not consider constraints on the 
execution time of services, nor the balancing of the workload between fog nodes.

In [47], Mahmoud et al. proposed an energy-aware allocation heuristic for placing 
application tasks on fog devices with objective to minimize energy consumption. 
Their idea is to use the dynamic voltage and frequency scaling technology to adjust 
the CPU frequency of fog devices in a way to ensure a minimum increment of the 
energy consumption.

In [48], Lera et al. proposed a heuristic based method which aims to minimize 
the fog network delays that occur between interlinked services, while optimizing the 
QoS and the service availability for the users. Their heuristic involves prioritizing 
the applications with the shortest deadlines in the application placement process.

Furthermore, Mahmud et  al. [52] proposed a first -fit-based service placement 
approach that aims at (i) minimizing the total service delay. They aim to guarantee 
applications’ QoS in satisfying service delivery deadlines.

5.3.3  Metaheuristics

Metaheuristic methods are generally inspired by nature. The main idea of these 
approaches is to try and improve the result in a reasonable time through an iterative 
process of searching for better solutions while trying to avoid getting stuck in local 
optima, unlike heuristic approaches that are prone to this problem. A number of 
metaheuristic techniques have been proposed in the literature, such as genetic algo-
rithms (GAs) [82], ant colony optimization (ACO) [83], and particle swarm optimi-
zation (PSO) [84]. These algorithms are typically based on the idea of population 
(solution) evolution, in which the best solutions for a given objective are usually 
preserved for the next evolutionary step of obtaining a new generation of solutions 
with a hope of getting a fitter population [29].

Mebrek et al. [68] proposed a GA for optimizing task placement in a fog infra-
structure. Their algorithm optimizes energy consumption incurred by the trans-
fer and execution of tasks, while satisfying the delay constraints required for each 
task. In their optimization model, a task’s response time includes the time it takes 
to deliver the task, the time it takes to complete it, and possibly the time it takes to 
redirect the query to the cloud (in the case of insufficient resources).

Li et  al. [78] combined the fuzzy clustering algorithm with PSO to propose a 
resource scheduling method for fog computing. Their algorithm divides users’ 
requirements into different classes: computing requirements, bandwidth require-
ments, and storage requirements. In addition, fog resources are classified according 
to their capabilities: storage, computing, and bandwidth resources, in order to match 
them to tasks.
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In [69], Bitam et al. (2018) proposed a novel bio-inspired method, namely bees 
life algorithm (BLA), to address the task allocation problem in a fog computing 
environment. The aim of the study is to optimize the distribution of tasks among fog 
nodes by achieving optimal trade-off between CPU execution time and the memory 
used by fog nodes. The empirical evaluation of the performance in terms of response 
time and memory cost of the proposed method showed that it outperformed the 
existing PSO and GA approaches.

5.3.4  Machine learning

Machine learning techniques have also been employed by researchers to solve the 
service placement problem in fog systems. Deep reinforcement learning is the 
most used technique for service placement in fog computing. This technique ena-
bles learning policy in unknown environment through a trade-off between explo-
ration and exploitation. In [79], Tang et  al. exploited deep reinforcement learning 
technique to solve the service placement problem in fog computing. After modeling 
the problem as a multidimensional Markov decision process that aims to minimize 
communication delay, power consumption, and migration costs, they proposed a 
Q-learning algorithm to determine the optimal learning policy for placement deci-
sion making. The proposal took into account user mobility and was evaluated over a 
medium-sized infrastructure using real data.

In addition, Li at al. [80] proposed a deep reinforcement learning–based frame-
work to decide the task scheduling strategy in hierarchical fog computing. They 
developed a four-layer neural network that incorporates two convolution layers 
and two fully connected layers, used to solve the scheduling problem after exten-
sive training. Their main objective is guarantying QoS to the user by providing a 
minimum computing in cloud and bandwidth cost. The proposed framework is com-
posed of a task scheduler and a fog node manager, and it operates as follows. The 
task scheduler collects the state information about all fog nodes and task requests, 
and forwards it to a learning network to generate several scheduling decisions. 
After that, the task scheduler chooses and forwards the best-valued decision to the 
fog node manager who allocates the fog nodes to the task requests based on that 
decision. Finally, a mobile device dispatches its data to the assigned fog node for 
processing.

5.3.5  Other strategies

A number of other strategies have also been investigated in the literature. In [62], 
Liu et  al. formulated a multi-objective convex optimization problem with a set of 
constraints, which involves minimizing energy consumption, performance delay, 
and payment cost in fog-based mobile cloud computing (MCC) systems. First, they 
transformed the formulated multi-objective problem into a single objective prob-
lem using the scalarization method by applying a set of weight factors to reflect the 
importance of each objective including energy cost, execution time, and payment 
cost. Then, they addressed the problem by proposing an Interior point method-based 
algorithm, in which they focus on increasing the offloading probability for each 
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service request in order to optimize the energy consumed by the mobile device, and 
strengthening the mobile device’s transmission power in order to reduce the execu-
tion time for request processing.

In [85], Wang et  al. proposed a Hungarian algorithm based approach to task 
assignment in a mobile edge infrastructure, in which user tasks are divided into 
sub-tasks and assigned to effectively selected neighboring edge servers considering 
their characteristics including location, computing capacity, and the estimated wait-
ing time. Their main purpose is to reduce the energy consumption with respect to a 
task’s delay constraint. The proposed approach is compared with greedy assignment 
and non-assignment methods.

5.4  Discussions

Based on our extensive review, we identified four main classes of commonly used 
approaches to deal with IoT application placement problem in fog computing: (1) 
mathematical programming such as integer linear programming (ILP), (2) heuris-
tics such as best-fit, worst-fit, and backtracking search strategies, (3) meta-heuristics 
such as GA and PSO algorithms, and 4) machine learning-based approaches such as 
deep reinforcement learning.

From the scalability perspective, ILP-based service placement approaches suffer 
from a high computational CPU times as the problem size increases. The ILP solv-
ers cannot handle the large number of variables in a reasonable time frame. ILP-
based methods are not an efficient choice for a fog environment with a large number 
of resources and optimization parameters. On the other hand, heuristic and meta-
heuristic approaches have much shorter execution times when compared to ILP-
based methods; however, they do not guarantee the optimal solutions. Therefore, 
ILP-based methods are good candidates for small-sized problems, while heuristic 
and meta-heuristic methods can be preferred for large-sized problems. Furthermore, 
solutions returned by ILP-based methods can be used for evaluating heuristics and 
meta-heuristics. Finally, machine learning-based approaches such as deep reinforce-
ment learning strategies suffer from a long training time in problems with large solu-
tion space for decision making.

When we consider the capabilities of aforementioned methods for the service 
placement problem, ILP is used to express the problem with mathematical for-
mulations under the given constrains and objective function for systematically 
identifying the best candidate solution, with the aim of maximizing/minimizing 
the objective function. Meta-heuristic approaches like GA algorithms start by 
improving an initial valid placement iteratively. However, determining an initial 
valid placement is not an easy task due to the heterogeneous fog nodes and strict 
constraints of emergent IoT services. Heuristic approaches try to find a global 
optimal placement through an iterative optimization process; however, the initial 
solution may force the final solution to be a local optimal one. Therefore, both 
heuristics and meta-heuristics need good design decisions in terms of finding the 
global optimum. Deep reinforcement learning enables learning policy through 
an online approach under certain criteria. It can converge to the optimal decision 
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for service placement problem. Nevertheless, the large solution space leads to 
long training times. Machine learning-based approaches are also suitable for fast 
changing environments of the fog systems. Most of the reviewed studies in this 
work apply Q-learning algorithm to search for optimal learning policy based on 
a trade-off between exploration and exploitation without any prior environment 
knowledge. Hence, Q-learning may be a suitable reinforcement learning method 
for decision making with limited information and a dynamic environment like 
the fog problems discussed in this survey.

6  Future research directions

After rigorously reviewing the previous studies, we observed some open issues 
in fog computing that can lead the future research on this topic to excel. We can 
list them as follows: 

1. As we presented in Table 3, one of the most common disadvantages of the pre-
vious studies is not considering the mobility of the edge devices. They also do 
not take the user mobility into account. Therefore, a future work can focus on 
optimization methods that consider QoS along with the user mobility [86].

2. Most of the previous studies do not focus on handling multiple applications from 
numerous users. In such cases, real-time processing and online scheduling can 
be difficult problems to solve. Therefore, the new real-time and online scheduling 
methods for multiple applications coming from a number of different users can 
be an interesting problem to tackle [87].

3. Most of the existing service placement methods focus on energy, performance, 
cost, and QoS metrics. However, meeting QoS is very difficult in the presence of 
faulty fog nodes. Therefore, incorporating fault tolerance in service placement 
and computation offloading is a crucial issue. Thus, a new fault-tolerant offloading 
algorithms can be a good addition to the literature [87].

4. The prior work generally does not consider straggler nodes. However, a straggler 
can be present at any time in a network. This may pose a risk for the operation and 
QoS of the overall system. Therefore, identifying the straggler nodes in a network 
and mitigating their danger to the system are also very important problems to 
study [88].

5. Most of the previous task scheduling and offloading methods assume independ-
ent tasks. Therefore, there is still a huge need for considering dependent task 
scheduling under several factors such as communication overhead among edge 
devices and also fog devices. This problem becomes a very difficult optimization 
problem to solve when the number of metrics is increased [88].

6. Finally, applying machine learning algorithms on different network problems 
is still an open research area. Particularly, using these algorithms to predict the 
future network behavior is a very interesting research topic.
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7  Conclusion

The fog computing concept brings computation resources closer to the network 
edge. This development has paved the way for the end users to offload their com-
putation-intensive and delay-sensitive applications to fog nodes, in order to meet 
the strict application requirements of latency and to reduce energy consumption 
at end users. In this paper, we surveyed recent research related to computation 
offloading and service placement in fog. In particular, we have identified and clas-
sified the different approaches and strategies that have been developed according 
to their objectives. In this regard, the fog paradigm incurs critical challenges that 
need to be addressed to satisfy both users and service providers. Moreover, recent 
research validates the results of the proposed methods mostly in simplistic sce-
narios, while the tests under real assumptions have not been taken into account.

As the second contribution of this work, we reviewed the existing application 
placement strategies in fog computing from the perspectives of mapping tech-
niques and placement objectives. We proposed separate taxonomies for each 
of the aspects of application placement and discussed their associated research 
issues. We also highlighted a perspective model for offloading applications in fog 
environments and presented several research directions for further exploration of 
the fog computing-related problems.
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