
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:1144–1181
https://doi.org/10.1007/s11227-021-03914-1

1 3

Containerization technologies: taxonomies, applications
and challenges

Ouafa Bentaleb1,2,3 · Adam S. Z. Belloum3 · Abderrazak Sebaa4,5  ·
Aouaouche El‑Maouhab1

Accepted: 22 May 2021 / Published online: 8 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Modern scientific research challenges require new technologies, integrated tools,
reusable and complex experiments in distributed computing infrastructures. But
above all, computing power for efficient data processing and analyzing. Containers
technologies have emerged as a new paradigm to address such intensive scientific
applications problems. Their easy deployment in a reasonable amount of time and
the few required computational resource make them more suitable. Containers are
considered light virtualization solutions. They enable performance isolation and
flexible deployment of complex, parallel, and high-performance systems. Moreover,
they gained popularity to modernize and migrate scientific applications in comput-
ing infrastructure management. Additionally, they reduce computational time pro-
cessing. In this paper, we first give an overview of virtualization and containeriza-
tion technologies. We discuss the taxonomies of containerization technologies of the
literature, and then we provide a new one that covers and completes those proposed
in the literature. We identify the most important application domains of contain-
erization and their technological progress. Furthermore, we discuss the performance
metrics used in most containerization techniques. Finally, we point out research gaps
in the related aspects of containerization technology that require more research.

Keywords  Computing · Parallel · Scientific application · Micro-services ·
Virtualization · Container · Orchestrator

 *	 Ouafa Bentaleb
	 ouafabentaleb@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0002-8742-1240
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03914-1&domain=pdf

1145

1 3

Containerization technologies: taxonomies, applications…

1  Introduction

In the last years, there has been a growing need for solving complex problems in
a reasonable amount of time. This requirement has led to the implementation of
rather complex, parallel, and high-performance systems. Virtualization technology
is a common way to reduce this complexity and increase the system’s flexibility [1].
Virtualization used as a basic strategy to incorporate servers in data and computing
infrastructures. Virtualization allows for improving resource utilization and alloca-
tion. It represents a basic building block for deployments in cloud computing [2].
There are two main technologies used to implement virtualization, namely virtual-
ization-based hypervisors, and virtualization-based containers technologies. How-
ever, virtualized computing infrastructures based on hypervisor [3] have not efficient
deployments during resources management, where thus resources are needed to
accelerate applications in terms of time processing.

Unlike hypervisor-based deployment, applications implemented in environ-
ment based-containers share the same operating system, while being isolated from
the other applications. Therefore, this deployment is a significantly smaller mem-
ory footprint [4]. Moreover, the utilization of virtualization-based containers keeps
growing. It provides a full middleware stack that offers mechanisms suitable for
deploying, and running applications that allow features such as scalability, fault
tolerance, and high availability. At the heart of the containerization approach, vir-
tualization-based containers are a leading concept, responsible to provide services.
These services allow running various environments sharing computing resources,
across computing infrastructures [5].

Containerization technology was first proposed by IBM [6] in 1979. Imple-
mented in UNIX operating system V7, and introducing a chroot [7] system call. This
advance was the beginning process for isolation, running isolated groups on a single
host. That isolation leverage several underlying technologies built on the Linux ker-
nel: namespaces and cgroups [8]. The support of namespaces introduced in Linux
kernel version 2.4.19, while cgroups released in Linux kernels version “2.6.24”,
known as the control group technology.

The emergence of micro-services architecture [9] based on containers technol-
ogy, considering, Linux containers (LXC) [7], OpenVZ [10], Docker [11], Singular-
ity [12], and uDocker [13] created a shift in the way we develop applications, from
operations to programming. Many popular orchestration tools, such as Kubernetes
[14], Docker Swarm [2], and Apache Mesos [15] used container lifecycle manage-
ment. These orchestrators provided frameworks for managing containers within
micro-services architecture. Moreover, these frameworks enable features suitable for
scheduling containers with resources, which are under limits control, fault tolerance,
and allow auto-scaling. Among the orchestration tools, Kubernetes [16] and Open-
Shift [17] are becoming widely adopted in computing systems including, industry
and scientific domains. Thereafter, recently Rancher compliant orchestration man-
agement platforms evolved to manage orchestrators, and maintain efficiency features
that ensure performance across the computing infrastructure.

1146	 O. Bentaleb et al.

1 3

Although cloud computing [18] is the most popular environment for the contain-
erization of applications. Containerization strategy applied to diverse applications
domains beyond cloud services, such as scientific computing, big data processing,
Internet of Things and edge computing.

Despite the substantial body of literature on containerization technologies, only
a few studies review and survey [1–5, 19] this field. Thus, the surveys [1–5, 19]
pointed out the challenges related to the adoption of containerization technologies,
identifying the main issues that arise in containerization implementation, such as
performance, orchestration, and security. However, none of these studies has pro-
vided a general overview of the related aspects of containerization. They are focus-
ing only on containerization in cloud infrastructures. Moreover, a lot of work done
afterward [14, 19–21] and many of the aspects related to containerization technol-
ogies have since evolved. It is thus necessary to extend these studies to cover the
newly emerging relevant aspects of containerization, to deploy application quickly
across distributed clusters and provide a complete taxonomy, effectiveness, and limi-
tations of related containerization technologies. The primary motivation behind this
survey is to provide a comprehensive understanding of containerization technolo-
gies, fundamentals for researchers interested in the field of virtualization, to comple-
ment, fill the gaps of previous efforts, a result of the fast evolution of container tech-
nology over the past several years, and give a view of these technologies, including
recent advances and future trends.

Relevant literature was identified by querying scholarly databases for the terms
“Containerization Technologies”. Then, returned results were downloaded, read,
and analyzed. The scholarly databases queried included: (1) Google Scholar. (2) Sci-
enceDirect. (3) SpringerLink database. (4) IEEE Xplore. (5) ACM Digital Library.
In all reviewed papers, each one was carefully read and analyzed to extract the
research problem, the containers technologies, containers orchestration platforms,
applications domains, most relevant container taxonomies in the literature, to obtain
a complete classification and a comprehensive review of various performance evalu-
ation metrics.

The main contributions of this work are summarized as follows:

•	 We discuss the previous taxonomies of containerization technologies, provide a
new one that covers, and complete those proposed in the literature.

•	 We give an overview of containerization technology and define the most impor-
tant concepts features of each concept. We also describe the most popular
orchestration platforms of the literature.

•	 We overview several application domains in which containerization technologies
have been proven successful and their evolution across these application domains
in distributed computing infrastructures [22], including Grid, Cloud, IoT (Inter-
net of things), Fog, and Edge computing. Such application domains have evolved
over the past years towards a similar vision that focuses on delivering computa-
tional resources.

•	 We provide the main performance evaluation criteria considered when designing
implementing a containerization technology.

1147

1 3

Containerization technologies: taxonomies, applications…

•	 We identify research gaps of the related aspects, which partially explored or not
addressed to inspire new research contributions.

The remainder of this work organized as follows. In Sects. 2 and 3, we describe
various container concepts, their emergence, features offered by each technology
while illustrating the most popular orchestration platforms. Then, in Sect. 4, we
discuss containerization taxonomy and then propose a new taxonomy classification
for containerization following the architecture-based containers model introduced
in Sect. 3. In Sect. 5, we identify the application domains of containerization and
the technological progress through these different application domains. Finally,
in Sect. 6, we discuss performance parameters measurement for containerization
techniques.

2 � Overview

2.1 � Virtualization

Virtualization is a technology for provisioning resources to end-users beyond the
computing infrastructure. The main feature of virtualization is achieved through an
isolation layer, built on top of the operating system level. For instance, provide users
with an environment similar to a dedicated server. In the late 1960s and early 1970s,
IBM [6] has introduced the virtualization concept in their systems. Since that time,
there has been considerable evolution in thus virtualization ecosystems. There is a
clear distinction, between relevant types of virtualization, which have emerged over
time, para-virtualization and full-virtualization [1]. In 2005, VMware [22] proposes
the para-virtualization (VMI), as a communication mechanism between the guest
operating system and the hypervisor. This mechanism has enabled a new wave of
transparent para-virtualization, in which a single binary version of the operating
system can run either on bare hardware. However, the full-virtualization concept
was implemented as a hardware module. This type of virtualization allows users to
deploy virtual machines with full isolation from the operating system level, which
can be performed directly on the top of the hardware.

The most important benefit of virtualization is to abstract the hardware. How-
ever, it gives an isolated [23] working environment for applications, by creating an
aggregated pool of logical resources, such as CPU, memory, network, and disks. As
shown in Fig. 1a, a full guest OS of the virtual machine (VM) instance runs as a sin-
gle process on the host. This leads to high resource requirements, which elicit a slow
during the start-up of the VM.

The efforts made on virtualization have spawned the largest computational sys-
tems, such as cloud computing, and data centers. Afterward, building environment-
based virtualization for high-performance computing requires in-depth knowledge
at least for one of the hypervisor technologies-based virtualization, such as VMware
[24], Xen [25], KVM [26]. The hypervisor aims to virtualize the physical hardware,
and present each VM with a standardized set of virtual devices, like using a Bridge
(br0) via the network card, to translate the VM requests to the system hardware.

1148	 O. Bentaleb et al.

1 3

Fi
g.

 1
  

Sy
ste

m
 a

rc
hi

te
ct

ur
e-

ba
se

d
vi

rtu
al

iz
at

io
n

co
m

pa
ris

on

1149

1 3

Containerization technologies: taxonomies, applications…

Virtualization involves the routing of I/O to manage requests between virtual devices
and the shared physical hardware. Instead of managing resources, the migration of
virtual machines between physical machines spawned security issues [27]. This
issue makes the system more vulnerable, and deploying systems based on virtualiza-
tion became much harder. The most common type of virtualization is the operating
system-level virtualization, which enables using isolation mechanisms. The isolation
mechanism provides users with virtual environments similar to a dedicated server.
This isolated virtual environment illustrated in Fig. 1b is called Container.

2.2 � Containerization alternative

Containerization technology [18] is a light alternative to virtualization. As shown
in Fig. 1, containerization focus to abstract the operating system (OS) level,
instead of virtualizing the hardware stack with virtual machines [28, 29]. Con-
tainerization is a major trend through which applications can run. Essentially,
containerization is carried out on the ability to develop, test, and deploy appli-
cations inside containers. Furthermore, ensure the efficiency of interconnection
among containers, where containers are lightweight and portable. However, they
have a lower start-up time compared to one of the virtual machines (Vms), due
to their ability to share resources with the host machines. These features can
allow them to enhance resource utilization, and using fewer of them, such as
CPU, memory and storage disks. Moreover, containers handle independently for
each running instance the provision the spatial isolation, processes, file systems,
namespace, and hardware resources.

Due to their feature of promoting the fast deployment of applications, con-
tainer paradigms have created a shift in the way computing operations are made
for scientific programming. They can reach a near-native performance when
tested against bar metal execution CPU-intensive applications [30]. They have
gained increasing attention in high-performance computing applications [31].

Additionally, there are many disadvantages of hypervisor-based virtualization.
Some of these drawbacks have been avoided through container technologies. For
instance, remove the hypervisor dependency just-in-time compilation, perfor-
mance degradation, and slow booting times of VMs.

Many studies [1, 6, 20, 32], and [33] have compared the hypervisor of vir-
tual machines with containers. For instance, the study [34] compared KVM with
Docker containers, by evaluating the performances of resources including CPU
speed, memory bandwidth, disk space, and network throughput. This evaluation
of performances was deducted using various environments, such as bare-metal,
virtual machines, Linux containers, cloud computing [35], and Internet of Things
(IoT) [36]. Their results indicate that containers are more beneficial than vir-
tual machines. Besides, KVM hypervisor uses a high bandwidth of the memory.
Indeed, while Docker virtualizes only the application level, the hypervisor virtu-
alizes the whole operating system. Moreover, the performances during the startup
time of a containerized application in bare-metal enhanced by about 50%, which
is better than virtual machines. Furthermore, virtualization within orchestration

1150	 O. Bentaleb et al.

1 3

platforms is challenging, due to the scaling of various heterogeneous resources
[37].

Besides previous disadvantages of hypervisors, container technologies provide
an isolation mechanism through Linux kernel features, including namespaces
and cgroups. They can secure the run-time environment for applications [38]
and network resources management [39]. Thus, mechanisms process applications
at a large scale [40] by packaging the code of an application with its depend-
encies into an encapsulated environment [41]. Also, they offer many features,
including easy replication, reproducibility, and portability across the computing
infrastructure.

2.3 � Containerization technologies

Container-based virtualization technology [39] has been widely investigated over
the last years [42]. In this section, we briefly depicted some container technologies,
including Docker, Singularity, and uDocker. These technologies are, respectively,
representative of container-based virtualization techniques. Currently, they are
adopted in scientific computing communities. Some of the container technologies
focus on specific applicability in the industry, such as Docker. Others focus on the
portability of containers across HPC environments, such as Singularity. Each of the
technologies mentioned above implements its methods to achieve process hardware
and network isolation. In terms of container security, isolation is the main impor-
tant concept needed to enhance security level in all solutions, such as cloud comput-
ing, GRID, and HPC clusters. A user space defines a separate instance of a running
container.

2.3.1 � Docker

As illustrated in Fig. 1b, Docker [11] is a lightweight container-based virtualization
platform. Extend functionalities from Linux containers LXC [7], such as sharing
the same operating system among containers, built from the same container image,
where the processes inside a container seem like they own the entire system.

Docker container provides methods for security level, by using namespaces,
and Cgroups mechanisms, to achieve process hardware, and isolation mechanisms.
There are many types of namespaces, like the user, net, PID, mnt, Cgroup, time,
etc., which limits the user’s space and provides isolated Linux kernel resources (user
management, file system, network, hostname) for the container. Therefore, Cgroups
kernel mechanism manages to process subsets by enforcing resource consumption.

Xiaolian Li et al. [43] perform a measurement study on Linux container secu-
rity using real exploits that can break the isolation launched to attack containers, by
proposing a defense mechanism to defeat all identified privilege escalation attacks.
Sergei et al. [44] enhanced container security by providing a secure container mech-
anism to protect the container processes from outside attacks using the SGX trusted
execution support of Intel CPUs. Aside from that, Docker is the most popular

1151

1 3

Containerization technologies: taxonomies, applications…

platform for containerization for different operating systems (Linux and Windows).
Docker allows an easy way for running and managing containers among users and
data centers. Moreover, Docker images can easily build with a Dockerfile, which
specifies initial tasks, then used to construct container images on top of an exist-
ing one by adding another layer. Docker-Hub [45] is the main container registry for
sharing applications with automated builds. It contains all requirements related to
the software application, dependencies, and libraries needed to run the application
on the Docker engine. Docker-compose is the engine that provides an efficient layer
to run micro-services. Indeed, micro-services are encapsulated into multicontainers
of one composed application. They communicate via the network and interact with
volumes for data storage. Noting that, the density of a Docker can increase to handle
more workloads.

2.3.2 � Singularity

Singularity [12] is a pattern developed by Lawrence Berkeley National Laboratory
(Sylabs Inc.), which focuses on Linux container approaches. Allow users to create
and deploy their execution environments, designed for computational science. Sin-
gularity images can build starting from specific languages and can be a result of
the conversion of Docker images even layered differently from Docker. Moreover,
Singularity allows the configuration of namespaces for containers. It can minimize
the number of virtualized namespaces. The goal is to achieve mobility, network and
resource performances. Singularity container platform provides a container with the
same privileges (inside and outside it), which ensures users operate freely in their
working environment. Singularity provides software stacks into a single configura-
tion file for building and distributing containers on other different platforms [46].
This file has a special format (Singularity Image Format ‘SIF’), enables new fea-
tures that guaranteed reproducibility, portability, and security related to cryptogra-
phy signing, i.e., (PGP key).

Singularity aims to provide a containerization engine for a security model that
differs from the other models proposed by the others container platforms, which
enable untrusted users to run untrusted containers safely. Singularity enables shar-
ing the entire user namespaces with the host system except for the mnt namespace,
to disable running a host file with another unprivileged user in a container. This
security model enforces security policies at runtime, by leveraging kernel security
modules (SELinux, second, AppArmor). Additionally, Singularity gives Admins the
ability to limits attacks and prevents them from outside the containers. It prevents
attacks from outside the container, which disallows the changing of users’ context
with sudo.

Furthermore, Singularity has proved its efficiency and changed the way to do
development for computational science, using a distributed image format with an
efficient and complete environment. Moreover, Singularity is very promising in pro-
duction within high-performance computing, because it supports various features of
resources management, such as file systems, schedulers (LSF, SLURM, HTCondor),
InfiniBand, Parallelism mechanism (MPI), and NVIDIA GPUs [47].

1152	 O. Bentaleb et al.

1 3

2.3.3 � uDocker

uDocker [13] is a technology introduced in 2016, oriented to provide a user-space
runtime environment for containers execution under Linux operating system. The
main benefit that promotes using uDocker containers is the possibility to acquire
customized and isolated environments, which allow running determined micro-
services. Moreover, uDocker environment can be installed without using additional
software. It does not require root privileges and any administrator interventions to
set up the environments.

uDdocker container images created based on Docker images using Dockerfile.
Afterward, push to Docker-Hub or a private Docker registry. The main capabilities
of uDocker container are capable to use process controls as a host application. Those
process controls are used to access the network and enable interactive accounting,
also managed by many batch systems. uDocker provides tools to access transpar-
ently to external computing environments. In addition, it is convenient to run
uDocker containers into various computing infrastructures, namely cloud computing
and HPC [48]. However, uDocker implements a large set of commands (CLI) that
are the same as Docker. Also, uDocker promotes easing the use of those tools that
are already familiar with Docker. uDocker engine interacts directly with Dockerhub
to instantiate and run containers, using the Docker format.

Most of the scientific applications are usually developed to be executed in
multi-user shared environments. This environment owns unprivileged users.
Additionally, due to the ability to mount host directories to access data inside the
container, it does not require an isolation feature like Docker, as long as the appli-
cations are executed without privileges [49].

2.3.4 � Comparison

To get an overview of how some mechanisms and environments interact with the
three presented containerization technologies, Docker, Singularity, and uDocker,
Table 1 depicts the main differences.

As is shown in Table 1, Docker and uDocker are lightweight virtualization tools.
They use namespaces, and cgroups mechanisms to isolate the computing environ-
ments, and spinning up the amount number of containers. Moreover, they have
inherent advantages over virtual machines (VMs), considering the start-up time
reduced. They are near to the native performance, and convenient for migration.
Besides, Singularity supports Docker images, there are some features in common
with them. For instance, it is necessary during the image creation, to specify the
HOST PATH in the mount point. As it is illustrated in the comparison table (1), the
three containers have their corresponding registry for images. Indeed, the ability of
Singularity and uDocker to have multi-users accessed the system. Fundamentally,
root permission is not required, and neither escalation is allowed during running a
container. These represent the ideal container technologies for running scientific
applications across distributed computing resources, such as high-performance
Computing, and GRID computing infrastructures. They offer features focusing on

1153

1 3

Containerization technologies: taxonomies, applications…

Ta
bl

e 
1  

S
um

m
ar

y
of

 c
on

ta
in

er
s t

ec
hn

ol
og

ie
s c

om
pa

ris
on

 [5
0]

D
oc

ke
r

Si
ng

ul
ar

ity
uD

oc
ke

r

C
om

m
un

ity
 a

do
pt

io
n

En
te

rp
ris

e
Sc

ie
nt

ifi
c

(D
C

I)
Sc

ie
nt

ifi
c

(D
C

I)
Is

ol
at

io
n

N
am

es
pa

ce
, r

es
ou

rc
e,

 n
et

w
or

k
N

am
es

pa
ce

, h
os

t n
et

w
or

k
LX

C
, D

oc
ke

r
Pr

iv
ile

ge
 m

od
el

Ro
ot

 D
ae

m
on

SU
ID

SU
ID

Tr
iv

ia
l H

PC
 in

st
al

l (
on

e
pa

ck
ag

e,
 z

er
o

co
nf

)
Ye

s w
ith

 se
cu

rit
y

im
pl

ic
at

io
n,

Ye
s

Ye
s

In
te

rn
al

 im
ag

e
bu

ild
/b

oo
tst

ra
p

N
o

de
pe

nd
 o

n
up

str
ea

m
Ye

s
Ye

s
A

dd
iti

on
al

 h
ar

dw
ar

e
M

ay
be

N
o

N
o

A
dd

iti
on

al
 n

et
w

or
k

co
nfi

gu
ra

tio
n

Ye
s

N
o

N
o

N
at

iv
e

su
pp

or
t f

or
 G

PU
N

o
Ye

s
Ye

s
N

at
iv

e
su

pp
or

t f
or

 M
PI

N
o

Ye
s

Ye
s

N
at

iv
e

su
pp

or
t f

or
 In

fin
ib

an
d

Ye
s

Ye
s

Ye
s

W
or

ks
 w

ith
 a

ll
sc

he
du

le
rs

N
o

Ye
s

Ye
s

A
dm

in
 c

an
 c

on
tro

l a
nd

 li
m

it
ca

pa
bi

lit
ie

s
N

o
Ye

s
Ye

s
Fi

le
 sy

ste
m

 a
cc

es
s

M
ou

nt
/v

ol
um

e
m

ou
nt

M
ou

nt
Po

rta
bi

lit
y

M
ul

ti
la

ye
re

d
im

ag
e

Si
ng

le
 fi

le
 im

ag
e

Si
ng

le
 fi

le
 im

ag
e

St
or

ag
e

O
ve

rla
yF

S
ex

t3
, e

xt
4

O
ve

rla
yF

S

1154	 O. Bentaleb et al.

1 3

system security, by minimizing the number of virtualized namespaces, performing
mobility, freedom, and performance. Thus, features are used to simplify their archi-
tectural design. Therefore, Docker has been very restricted, and not adopted in these
infrastructures.

3 � Container features

This section aims to provide an overview of container features, namely the container
architecture, lifecycle, and orchestration. At the end of the section, we describe the
proposed taxonomies of containerization technologies and provide a new one, which
extends these taxonomies to cover concepts that emerged after their publication.

3.1 � Container architecture

Since 2013, container-based [51] architecture models changed from software
components-oriented architecture to service-oriented architecture [52]. Particu-
larly, micro-services architecture is an implementation that inheriting concepts
from service-oriented architecture “SOA”, aims to build services independently
over distributed systems. Container introduced as a concept composed of Unix-
like pipelines [32]. The pipeline mechanism allows inter-process communication
within Linux operating system. Micro-services are smaller autonomous compo-
nents, encapsulated in an application that performs a specific task. Moreover, it
encapsulates everything, considering the operating system, the runtime environ-
ments with all dependencies, packaged as one unit of application, ready for exe-
cution. Micro-services architecture has successfully attracted a lot of attention.
They possess diverse opportunities related to creating a predictable environment
for applications, introduced as services. Each service has a specific functionality
as opposed to a monolithic architecture, application functionality usually wrapped
into a single process. However, distributed computing [9], and cloud computing
[53] platforms have adopted micro-services architecture, to deploy and scale [54]
applications as services. They are structured as a set of loosely coupled services.

Fig. 2   Architecture-based container in computing system

1155

1 3

Containerization technologies: taxonomies, applications…

This structure makes them easier to update, and simpler to manage. An appli-
cation decomposes into multiple services, which are known as micro-services,
delivered to users through the web technology, using an HTTP protocol mecha-
nism. They communicate with each other using REST APIs [55].

According to [56], containerization can be considered as the ideal solution
for micro-services-based applications, with the benefit of decomposing an appli-
cation into smaller components, each component performs a specific task. This
decomposition enables the parallelization of the processing using computational
resources, which makes the application extensible and easily maintainable [57].

In Fig. 2, we present an overview of a container-based architecture model of
computing systems. This architecture illustrates how to deploy container technol-
ogies for intensive application processing. It introduces fundamental layers that
provide an architecture based on container environment, and their management
systems that illustrate parallelization functionalities, to enable high-speed distrib-
uted processing of intensive scientific applications at a large scale.

3.2 � Container lifecycle

Container lifecycle is referring to explore the states that are possible for the con-
tainer. The container manager provides a framework offering a set of API. This
framework allows easy management of the container’s lifecycle, considering con-
tainer creation, building, running, and maintaining. First, the developer has to create
his new image as a template. Afterward, all operations are going to operate with
this image created. As shown in Fig. 2, the entire lifecycle of the container, after the
creation of the basic image, moves into the running state. Moreover, the container
can have different states such as paused, killed, and stopped.

Container application implementation is primarily about consistency, flexibil-
ity, and scalability. Thus, to manage easily the container applications lifecycle [58],
which means that is responsible to ensure that the system resources are efficiently
utilized without downtime. As shown in Fig. 3, the container application lifecycle
begins with a scientist or a developer that wants to implement his container image.
Developers create the container-based image and hold everything inside the image,

Fig. 3   Container operations lifecycle

1156	 O. Bentaleb et al.

1 3

including the software, the libraries with all dependencies. Hence, using different
libraries than used by the host OS to reinforce the container security, and solving
application conflicts between other environments. Then, they validate and push the
container images into the registry, and finally, easily shared with IT Operations and
throw them up in the production environment. The majors’ benefits are to simplify
the build, test, and deployment of the container workflow pipelines for DevOps
environment, where developers can leverage third parties such as Jenkins to auto-
mate their Docker application releases.

3.3 � Container orchestration

The container orchestration is a layer that interfaces with applications. It main-
tains service-level agreements, by scheduling containers in a cluster, choosing the
optimal hosts and keeps the container running in the desired state. Nevertheless,
the orchestration layer is required when the number of containers and devices
increases regularly in the cluster. Containers orchestration is a platform-based
micro-service that orchestrates computing, networking, and storage resources
to support user workloads. Indeed, it is used to automate and manage procure-
ment and deployment, allocation of resources, scaling, scheduling, load balanc-
ing, and securing interactions between containers, see Fig. 4. Moreover, container
orchestration platforms allow organizations to rationalize application develop-
ment through deploying the same application without needing to redesign it, con-
figuring them according to the container which they will run, and, accelerating
the process of delivering them, across clusters, or in cloud infrastructures [59].
In this case, the application runtime environment takes the form of jobs, where
a job may define as a single containerized task. Furthermore, containerization
became increasingly popular because of the following features provided by con-
tainer technologies, including performance [21], isolation, scalability [36], port-
ability [60], dependency, fault-tolerance, and load balancing [36]. Those advan-
tages involve infrastructure services, ensuring distribution of the load between
container instances and making applications run efficiently.

In this section, we discuss some container orchestration systems, including
Docker Swarm, Mesos, Kubernetes, and Nextflow. Moreover, there are many other
orchestration platforms such as Cloudify, Rancher, and Red hat Openshift, which
use Kubernetes as a fundamental platform.

3.3.1 � Docker swarm

Docker Swarm [61] is an open-source orchestration platform, originally is the native
Docker orchestrator. Docker Swarm supports Docker container for the beginning on
Linux, and after supported on Windows in 2017. Docker Swarm service is defined
using a configuration file, written in YAML, to brin gup a pool of Docker instances
across cluster nodes. Docker Swarm disposes of two categories of nodes, a manager,
and a worker node. Indeed, the Swarm manager has the responsibility of managing

1157

1 3

Containerization technologies: taxonomies, applications…

Sc
ie

n�
st

/
De

ve
lo

pe
r

co
m

m
it

ru
n

Pr
od

uc
�o

n
En

vi
ro

nm
en

t

Pu
ll

im
ag

e

Pu
ll

im
ag

e

Do
ck

er

im
ag

e

Do
ck

er
 H

ub
O

r o
w

n
Re

po
sit

or
y

O
r v

er
sio

n
co

nt
ro

l

Do
ck

er

Co
nt

ai
ne

r

Do
ck

er

fil
e

Do
ck

er

Co
nt

ai
ne

r

Do
ck

er

Co
nt

ai
ne

r

Do
ck

er

im
ag

e

Do
ck

er

im
ag

e

Te
st

En

vi
ro

nm
en

t

Fi
g.

 4
  

C
on

ta
in

er
 a

pp
lic

at
io

n
lif

ec
yc

le
 [4

7]

1158	 O. Bentaleb et al.

1 3

related tasks to the delegation of process, membership, routing requests to worker
nodes using the load balancing concept, and finally exposing services using IP
address and port. Swarm nodes are composed of virtual or physical hosts managed
by the Swarm manager, which is responsible to execute, control the deployment,
manage the container lifecycle, and handle the replication of container applications.
Therefore, the Docker engine supports the clustering functionalities, to build stacks
of scalable production-grade applications. In this case, users may add Shiny-Proxy
[62] layer to Docker Swarm. There are many features brought by Swarm, such as
rolling updates, auto-recovery services, and applying security mechanisms much
better than Docker-compose. This last, designed only for the development environ-
ment instead of the production environment.

Docker Swarm does not provide monitoring of resources utilization mechanism.
Therefore, Bella et al. [63] analyzed the performance of the load balancing mecha-
nism required to distribute and monitor the memory utilization in hosts.

3.3.2 � Mesos

Mesos [15] is an orchestration and management platform developed to orchestrate
applications using principles of the Linux kernel. It started with Linux cgroups con-
tainers and then supports Docker containers. Indeed, Mesos has three main compo-
nents, namely ’Mesos Master’ to manage resources negotiations amongst agents and
frameworks, ’Mesos Agent’ to execute tasks requested within available resources,
and finally, ’Mesos Framework’ to weave workloads with each other, pooling
resources of all hosts to build up distributed computing systems efficiently. How-
ever, Mesos does not natively support service discovery functionality. Therefore, to
address this lack, a third party such as Kubernetes or Swarm is involved. It takes
a modular approach to group containers when dealing with other containers man-
agement. It allows the cluster-wide management of services running on its top. It
maintains the execution of applications launched even if node failures, including
Kubernetes, Swarm, Chromos, and Marathon [64]. Mesos-DNS integrated discov-
ery service acts as a load balancer responsible to manage applications. Noting that
due to Mesos features of redundancy and scalability, it is ideal to run applications
that require large systems, such as Spark, Kafka, Hadoop, Elastic search, and Kuber-
netes. In addition, Mesos schedules the deployment of containers into clusters, by
determining the best host for running containers. In [65], the authors adopted a
scheduling policy based on two levels to schedule tasks into a node, and to allo-
cate resources. Xiaolian et al. [43] verify the communication performance of Docker
containers applications built on Mesos cluster. The authors show the resource allo-
cations’ influence on response time using the DRF (Dominant Resource Fairness)
algorithm. As result, the authors prove that the system can ensure an adequate and
feasible communication performance. Another work [66] shows system efficiency
with higher performance when connecting a system based on workflow to container
schedulers.

1159

1 3

Containerization technologies: taxonomies, applications…

3.3.3 � Kubernetes

Kubernetes (k8s) [16] built firstly by Google, then open-sourced in 2014 [67].
Kubernetes is a powerful orchestration platform, aims to automate the deployment
of application services. These applications are set over multiple containers, sched-
uled, and managed at a large scale efficiently. The adoption of Google Kubernetes
[14] has gained popularity to manage scientific workloads, due to the great features
of deployment, flexibility, portability, and reproducibility [68]. Furthermore, Kuber-
netes provides frameworks to deploy and manage workloads inside clusters auto-
matically. It is built out of one or multiple containers gathered in PODs. The POD is
a fundamental building block in the Kubernetes cluster. It encapsulates one instance
of running applications across clusters. The Kubernetes cluster is composed of Mas-
ter and Worker nodes. Hence, the master node is the core component of the orches-
tration system, and the worker nodes perform well-defined services to run PODs.
Indeed, Kubernetes takes control of running containers by automating their lifecycle
management and securing workloads. Kubernetes can assists workload for load bal-
ancing by using basic monitoring, logging, and health checking. In addition, enables
moving applications without redesigning them.

The Scheduling in Kubernetes uses containers as their primary unit of execution,
and isolation. It decouples users from all details of the underlying computing infra-
structure. It places containers on worker nodes automatically and recovering them
from failure. Therefore, Kubernetes can apply a user remapping feature, which can
rely upon defined users in a container to system-defined non-privileged user IDs.
Hence, the controllers can manage a particular aspect of a cluster state, to regulate
the state of a system. For example, they control the execution of containers in a clus-
ter, or at a large scale. Nevertheless, it is necessary to make the current execution
state come closer to that desired state.

Kubernetes become more prevalent, and his performance features become more
crucial. It requires configuring the system, to match the application requirements, to
the best concern. Thus, by choosing optimized images, configuring resources related
to nodes, PODs. Also defining all Kubernetes features, by setting up the resource
limits, ie., memory, CPU usage, Disk I/O, and network I/O. All these are about to
give an efficient performance adjustment.

For instance, the main benefit of using Kubernetes is that it is proficient to auto-
mate the container’s deployment and establish communications between them. To
enhance an efficient integration between all micro-services, we have to monitor
the performance of containers, micro-services interactions, trace user requests, and
solve identified issues.

3.3.4 � Nextflow

Nextflow [69] is a workflow management system “WfMS”, designed for data-driven
computational pipelines, developed by the comparative bioinformatics group at the
Barcelona CRG (Centre for Genomic Regulation). Nextflow is designed to pro-
vide a portable, flexible, and reproducible workflow management system executed
on multiple platforms, like HPC and cloud platforms. It supports several container

1160	 O. Bentaleb et al.

1 3

Ta
bl

e 
2  

C
om

pa
ris

on
 o

f o
rc

he
str

at
io

n
pl

at
fo

rm
s

Sy
ste

m
C

on
ta

in
er

 te
ch

no
lo

gy
Re

so
ur

ce
 m

an
ag

em
en

t
In

fr
as

tru
ct

ur
e

Sy
ste

m
 o

bj
ec

tiv
es

Is
ol

at
io

n

W
or

kl
oa

d
Jo

b
co

m
po

si
tio

n
A

cc
es

s c
on

tro
l

C
on

ta
in

er
-c

en
tri

c

K
ub

er
ne

te
s

D
oc

ke
r,

rk
t,

C
R

I A
PI

im

pl
em

en
ta

tio
ns

,
O

C
I-

co
m

pl
ia

nt

ru
nt

im
es

A
ll

M
ul

tip
le

 c
o-

lo
ca

te
d

ta
sk

s
V

irt
ua

liz
ed

,
no

n-
vi

rtu
al

iz
ed

El
as

tic
, m

an
ua

l,
au

to
-

sc
al

in
g

Sc
al

ab
ili

ty
Re

str
ic

te
d

A
PI

ac

ce
ss

,
A

ut
he

nt
ic

at
io

n,

R
BA

C
-b

as
ed

A

ut
ho

riz
at

io
n

Re
str

ic
te

d
ex

ec
ut

io
n,

H
yp

er
vi

so
r i

so
la

tio
n

Sw
ar

m
D

oc
ke

r i
m

ag
es

Lo
ng

-r
un

ni
ng

 jo
bs

C
o-

lo
ca

te
d

ta
sk

s
V

irt
ua

liz
ed

,
no

n-
vi

rtu
al

iz
ed

,
El

as
tic

, m
an

ua
l

sc
al

in
g

Sc
al

ab
ili

ty
,

av
ai

la
bi

lit
y,

ut

ili
za

tio
n,

th

ro
ug

hp
ut

A
ut

he
nt

ic
at

io
n

Re
str

ic
te

d
Ex

ec
ut

io
n

M
es

os
M

es
os

 c
on

ta
in

er
s,

D
oc

ke
r

Si
ng

ul
ar

ity

A
ll

Si
ng

le
 ta

sk
V

irt
ua

liz
ed

,
N

on
-v

irt
ua

liz
ed

,
El

as
tic

, m
an

ua
l

sc
al

in
g

Sc
al

ab
ili

ty
,

A
va

ila
bi

lit
y

Re
str

ic
te

d
A

PI

ac
ce

ss
,

A
ut

he
nt

ic
at

io
n,

R

BA
C

-b
as

ed

A
ut

ho
riz

at
io

n

Re
str

ic
te

d
ex

ec
ut

io
n

N
ex

tfl
ow

D
oc

ke
r i

m
ag

e
Si

ng
ul

ar
ity

A
ll

M
ul

tip
le

 c
o-

lo
ca

te
d

ta
sk

s
V

irt
ua

liz
ed

,
no

n-
vi

rtu
al

iz
ed

, e
la

s-
tic

, m
an

ua
l s

ca
lin

g

Sc
al

ab
ili

ty
,

Re
pr

od
uc

ib
ili

ty
Re

str
ic

te
d

A
PI

ac

ce
ss

,
A

ut
he

nt
ic

at
io

n,

R
BA

C
-b

as
ed

A

ut
ho

riz
at

io
n

Re
str

ic
te

d
ex

ec
ut

io
n

1161

1 3

Containerization technologies: taxonomies, applications…

runtimes, such as Docker, Singularity, and Common Workflow Language (CWL)
support, along with the integration of GitHub that allows reproducing any former of
them, where they showed performances close to the local computing environment
[70]. Moreover, it is more suitable to scale up or scale out of scientific workflows
transparently. Google Pipelines APIs are used to manage computing services and
allow the execution of containerized workloads. It provides parallelization features
based on DSL (domain-specific language), to simplify writing computational pipe-
lines to deploy workflows and process the huge amount of data that may alter into
components independently.

3.3.5 � Comparison

Table 2 presents a comparison of various features of different orchestration plat-
forms, including Kubernetes, Swarm, Mesos, and Nextflow. This comparison
allows administrators and researchers to choose the most appropriate tool for con-
tainer orchestration. Docker Swarm is quite popular amongst developers. It offers
fast deployments and simple features to get starting. However, it is not extensible
with limited fault tolerance. Kubernetes is a powerful and highly extensible plat-
form. Furthermore, Kubernetes, Mesos, and Nextflow platforms support services
built up with more complex approaches than Swarm, used for production environ-
ments. Moreover, Mesos takes a distributed approach to combine multiple clusters
to manage computing systems and cloud resources compared to Docker Swarm and
Kubernetes.

4 � Containerization taxonomy

In this section, literature taxonomies of containerization technologies are discussed.
Then, a new one that covers and completes those proposed in the literature. There
are some efforts in the literature to improve the understanding and classifying of
container technology. Casalicchio and Lannucci [71] proposed a taxonomy of con-
tainers that structure the container landscape in subcategories, applications, orches-
tration, performance, and security. Many challenges are covered in each subcategory
such as performance for scheduling, auto-scaling, availability, and security. The
authors performed and evaluated containers performances using orchestration man-
agement systems to packaging containers for applications on different distributed
computing infrastructures. Ernst et al. [72] proposed taxonomy based on the techno-
logical foundations of containers. They subdivided container technologies into two
main building blocks: lifecycle management of containers and cluster management
of containers across multiple hosts. The taxonomy provides a global overview of
container components and it helps to compare, integrate, and analyze containeriza-
tion and their respective orchestration system. Another taxonomy proposed in [73]
describes a reference architecture that gives a global view of container ecosystems
and their patterns that represents container units. The goal behind this taxonomy
is to facilitate the work for those who are using container-based systems and per-
form security analysis of the whole system. Rodriguez and Buyya [74] present a

1162	 O. Bentaleb et al.

1 3

taxonomy that provides a classification of container orchestration systems, which
can be applied for further research studies. This taxonomy identifies mechanisms
that can use to meet challenges related to scalability, fault tolerance, and availability
within efficient resource utilization. Maxime et al. [44] proposed a taxonomy related
to container security that defense the infrastructure level. They analyzed some infra-
structure approaches to improve the security level of containers. They classified
frameworks required to set up and enforce security when data is transmitted between
the container and the host kernel.

In these works, the authors introduced an architecture reference based on layers,
application layer for submitting job users, cluster manager layer to managing clus-
ters and orchestrating jobs, cluster of worker compute nodes layer and infrastructure
layer for deploying compute nodes.

Due to the very rapid evolution of the container approach, most of the proposed
taxonomies potentially became outdated in a short time. In this work, we introduce a
taxonomy that completes the existing one by covering characteristics of containeri-
zation, discussed in the previews taxonomies [71–73], and [75]. Moreover, it illus-
trates container technologies challenges and puts in evidence concepts required to
illustrate parallelism functionalities to scale scientific applications using container-
based systems. Adding parallel functionality to the taxonomy will be beneficial for
scientists for different application domains who are interested to easily deploy the
required software efficiently across distributed computing infrastructure to scale
their applications.

We proposed containerization taxonomy as shown in Fig. 5. It provides an adap-
tive sampling for container orchestration platforms designed for scientific purposes,
which follows the container-based architecture model depicted in Fig. 2. This tax-
onomy defines a classification for all layers depicted to enable features needed to
accomplish the processing of containers based on orchestration systems, designed
for high-performance computing infrastructures. Then, itemize each layer with the
appropriate classification that points to job submission, scheduling, security, lifecy-
cle management, monitoring, and performance.

The proposed taxonomy aims to provide a classification for the whole container-
based orchestration system for computing infrastructures. It divides container-based
orchestration systems into three levels namely, application, orchestration system,
and the computing infrastructures.

•	 The application layer encompasses tools to specify container configurations
related to networking, availability, load balancing, and service discovery. These
tools aim to provide transparent access to the distributed computing system, via
protocols and resource binding. Thus, guaranteed access throw different trust
services, such as Federated AAI, GUI access, Direct API access.

•	 The container orchestration systems layer provides orchestration functionalities,
which are suitable for container cluster management. Also to specify the coher-
ent units of containers such as PODs in Kubernetes, a single host in Docker-
compose, and a cluster of hosts in Docker Swarm. They are non-trivial stack
that provides diverse features which are the main system objectives such as scal-
ability, fault tolerance, and flexibility. The security mechanism is important to

1163

1 3

Containerization technologies: taxonomies, applications…

Fi
g.

 5
  

C
on

ta
in

er
iz

at
io

n
ta

xo
no

m
y

1164	 O. Bentaleb et al.

1 3

improve performance by applying isolation mechanisms. Thus, mechanisms are
suitable to defeats attacks from outside using some policies, and a code with a
specific configuration. Additionally, advanced network tools are responsible for
service discovery, monitoring, and accounting. The service discovery provides
static access to different services, where they mapped dynamically to run con-
tainers, using a discovery agent to monitor the container’s lifecycle, publish his
state needed for observing and tracing a dynamic traffic routing. It monitors the
containerized tasks deployed on nodes.

•	 Finally, the lifecycle management capability is important to distribute resources
between computing nodes, scheduling of jobs, and execute containers. It consid-
ers the configuration of resources, including resource limits, resource granularity,
and resource consumption. The scheduling of jobs consists of allocating neces-
sary computing resources and controls the execution of jobs on those workloads.
Usually, executing a job through a container requires some setup and cleanup for
the lifecycle container processing. Also, it provides functionalities that enable
scale-in and the scale-out of workloads. Moreover, it offers heterogeneities fea-
tures of the underlying resources, to allocating computational resources in dis-
tributed environments, including locations, and resource types and sizes.

•	 The computing infrastructure is the physical level, composed of machines to
manage computing processing and data management operations, considering the
main features of resources management in the distributed computing platforms,
including scalability, availability, flexibility, and fault tolerance. The distributed
computing infrastructures can be physical machines and virtual machines on
cloud (public or private). In addition, involved edge devices connected among
them across the distributed infrastructure.

5 � Applications of containerization

This part aims to extend previous containerization efforts made in different contexts
that promote handling a large number of resources and providing fault tolerance to
maintain computing systems. In this section, we provide some interesting container
application domains, discussing features provided by relevant container technolo-
gies such as performance, isolation, scalability, portability, dependency, fault-toler-
ance, and load balancing. Besides, it illustrates the main properties in the container
orchestration platform, which are orchestration, scheduling, and isolation.

5.1 � Scientific computing

Scientific computing [76] is the power of computational processing, used by diverse
scientific domains, especially life sciences [77], artificial intelligence, and machine
learning [78]. Scientific computing handles a huge amount of intensive tasks as
well as intensive data applications. Currently, containers are a hot research topic
for scientific computing. An application built up from an image is containerized
inside a container. However, containers encapsulate applications as well as all their

1165

1 3

Containerization technologies: taxonomies, applications…

dependencies, isolated from the other processes running in the same host. The host
can provide a view of all containerized resources, while containers share the same
operating system kernel.

Scientific computing within the emergence of containerization offers to scientists
a range of container solution to develop, manage, and applies isolation mechanism
between application processes, and run them independently from the other running
applications container. In addition, the orchestration platform like Kubernetes [16],
enables automated deployment, scaling, and managing of containerized applica-
tions. As result, we can have an execution environment portable, secure, easy to
scale, and simple to manage.

In the work [48], the authors introduced the INDIGO-Data Cloud platform that
aims to facilitate access to e-Infrastructures, including distributed computing infra-
structures (grid), cloud, and HPC clusters. It aims to enable porting scientific appli-
cations based on containers, using the uDocker tool. Moreover, the advent of “multi-
core” hardware processors and accelerators puts unprecedented pressure on the
need for parallelism of applications to gain time processing by applying advanced
implementations of parallelization (MPI, OpenMP, and Hybrid) and GPU support.
Then, container technology is well suitable to deploy parallel scientific computing
in distributed computing and shared storage systems. To take advantage of the fast
network and leverage hardware acceleration, Lucas Benedicic et al. [60] deployed a
detection system tool in a host of MPI libraries, which provides parallel implementa-
tions inside a container, to ensure the portability of the application. In particular, the
advantage is to achieve native performance by providing efficient and scalable mes-
sage parsing communications. Wang et al. [21] studied how to improve container
performance aspects for aerial systems by executing containerized applications in
native and computing environments.

On the other hand, modern scientific workflows [66, 79] represent another trend
of scientific computing-intensive applications, which require sharing a large amount
of data between tasks. A container-based virtualization mechanism is emerged
within the scientific workflow to provide a portable, flexible, and reproducible work-
flow management system across HPC platforms.

5.2 � Big data processing

Big data processing is the handling of data-intensive applications that require frame-
works and sophisticated programming models to handle a mass of data in a reason-
able amount of time. Humans and machines generate such data sets from sensors
and social networks. However, it is tough to store, analyze, process, and visualize
those datasets using traditional database approaches. Nevertheless, big data appli-
cation processing faces challenges in dealing with those massive data sets, to do
their processing above distributed computing nodes that require a high speed of the
network, scalable storage systems, and large bandwidth of the memory. Besides, dis-
tributed computing systems must change the way hardware resources are managed
to improve their performance.

1166	 O. Bentaleb et al.

1 3

Over the last years, containers are considered an exciting topic to manage inten-
sive-data applications, which have gained more performance from distributed stor-
age environments. Various scientific domains such as big data analytics [77], dis-
tributed processing, monitoring devices, security, and the Internet of Things (IoT)
are producing a mass of data that carried out using frameworks capable to manage
those data sets at a large scale. However, containerized parallel applications enabled
for big data processing systems require MPI libraries and specialized hardware like
graphical processing units (GPUs) and field-programmable gate array (FPGA). It
provides scheduling of containerized jobs to speed up the analytics tasks. To guaran-
tee that the security performances of HPC platforms based on containers for big data
processing are near to the native computing environment.

Zhan et al. [6] considered the efficiency of hardware resources such as CPU and
memory, used in scheduling big data applications to achieve better performance and
higher utilization. The authors compared the execution of Spark Jobs between a con-
tainer and virtual machine environments to improve performance in terms of make-
spans of running workloads, scaling, and convenient execution environment. The
results mentioned that containers offer easy deployment and scalable environments
of big data workloads compared to virtual machines.

Liu et al. [80] presented a study of a big data platform based on cloud comput-
ing container technology. They deployed the Kubernetes cluster to manage comput-
ing resources instead of YARN, where YARN manages cluster resources, including
storage and execute data jobs efficiently at a large scale. This study poses challenges
when running big data workloads that require scalability, performance, and promise
fault-tolerance features. Thus, prove that those features guaranteed an easy deploy-
ment of scalable stream processing and batch processing for applications at a large
scale efficiently.

A containerized distributed platform for high-performance computing and scal-
ing big data applications used for execution and management on HPC nodes, illus-
trated in the work of Aldinucci et al. in [81]. The authors presented the SmartData@
POLITO Big Data HPC centre that belongs to the Italian research network, which
aims to offer a big data workloads, using Apache Mesos and Marathon for schedul-
ing of containers, designed to be horizontally scalable to enhance performance, and
do not affect users execution workspace, even during the execution phase.

Another work is done by Sergeev et al. in [78] studied distributed deep learn-
ing and machine learning used by TensorFlow instead of MLIB library afforded by
Apache Spark machine learning. TensorFlow is a typical toolkit specialized to sup-
port machine and deep learning stacks in high-performance computing, it enables
the build-up of singularity images for scientific computing.

Rao et al. [82] explored several stages of the big data system, data sources, data
management, computing frameworks, and data analysis, categorized into vari-
ous types, in-memory computing, and in-memory data models, set respectively
by Apache Spark, Map-Reduce frameworks. Therefore, they provide an overview
of advanced processing tools necessary for the analysis of massive datasets, using
the stream, batch, distributed/cloud environment, container orchestration plat-
forms, interactive querying, and data-ingestion. They compared those systems using
machine learning (ML) tools, utilizing streaming processing, computing processing,

1167

1 3

Containerization technologies: taxonomies, applications…

interactive analytical processing and graph processing at a large scale, by handling
massive data sets that belong to real case studies. As result, they make an efficient
observation that helps to use suitable tools properly for big data application process-
ing in respect of operations of the delivery mechanism, replication, scalability, fault
tolerance, storage, memory management, and other parameters, like throughput and
latency measurements.

Recently, Blamey et al. in [83] introduce a study on containers that enhance using
Apache Spark for stream processing instead of using Map-Reduce. Furthermore,
Apache Spark provides a high throughput processing of streams, such as (Spark
SQL as a high-level computationally tasks tool).

5.3 � High‑performance computing

High-performance computing (HPC) or "computing capacity" addresses the prob-
lems that require specific capacity. Usually, it allows highly optimized and tightly
coupled centralized installations of processors. Moreover, interconnected with
specialized hardware, using Infiniband, accelerators, and GPGPU, which is offer-
ing functionalities used to accelerate application processing. In the work of Aldi-
nucci et al. [81], the authors give an overview of HPC4AI project that involves
various high-performance computing centers that belongs to the Italian research
Infrastructure. The HPC-center hosted HPC clusters provide a solution of adap-
tive container-based architecture, targeting distributed nodes interconnected by
Infiniband. Those clusters shared the same Luster storage for HPC applications.
They allow creating a customized execution environment using Singularity con-
tainers images. The container images are managed through a private Singularity
HPC registry. Where users can upload images and download them.

Azab in [19] introduced a secure wrapper named “Socker” to deploy Docker
containers on high-performance computing platforms. He added functionali-
ties inside the wrapper for running Docker containers to solve issues related to
enforcing membership of running Docker containers (for security) and limita-
tions of resource consumption (CPU, memory) on queuing systems in production.
Socker is suitable for running many tasks computing using MPI jobs. Wang et al.
[21] studied how to improve container performance aspects for Aerial Systems
by executing native and containerized applications in computing environments.
Results show that container outperforms virtual machine in most of the perfor-
mance aspects, due to the benefit of isolation of most hardware resource.

Piras et al. [84] proposed a method that brings a solution to deploy worker
nodes in Kubernetes clusters. They used the Grid engine to deploy Bach jobs
dynamically on the HPC system.

In [60], Lucas Benedicic discussed how computing systems could achieve
scalability by leveraging modular architecture. He presented a container engine
called “Sarus” deployed to launch container instances for HPC environments. The
Sarus environment offers security within resources management and application
deployment. Results show that performance and scalability are better than the
native execution.

1168	 O. Bentaleb et al.

1 3

Zheng et al. [66] presented a model built to process container applications on
HPC cluster with the Mesos orchestration platform. They connect Makeflow to
Mesos platform to claim resources on demand. They adopt two levels of resource
scheduling model, namely static and dynamic, which allow more flexibility.

We consider the work of Zhou et al. in [85]. The authors introduced an archi-
tecture based on Torque-Operator to bridge HPC workload managers and con-
tainer orchestrator platforms. This architecture composed of an HPC cluster with
Torque, and a Kubernetes cluster with WLM-Operator. Torque-Operator extends
WLM-Operator with Torque. WLM-Operator allows the submission of Slurm
jobs to Kubernetes cluster. This platform enables to schedule the execution of
containerized and non-containerized jobs from HPC cluster to the cloud platform.

However, considering HPC as a specific environment is not opportunis-
tic since various architectures and categories of distributed computing systems
exist. Therefore, we discuss some of the high-performance computing categories,
including grid, cloud, and cluster in the next paragraphs.

5.4 � Grid computing

Grid computing [59] introduced by Ian Foster, as a federation of distributed hetero-
gonous resources, cooperates among multi-institutional research communities, called
virtual organizations. Virtual organization (VO) [86] is a community group, logically
grouped, working on the same, or different topics of research to authorize them using
the computing systems. The Grid computing infrastructure comprises compute, stor-
age, and network resources, designed to bring the processing power and many of the
technology capabilities, to solve computational problems that belong to a specific
scientific domain. It provides toolkits to accredit users through authorizations and
authentications. It allows data management, accounting, and resource monitoring, and
designed to run massive and long-running computations over days and weeks. Moreo-
ver, it establishes application processing using job schedulers such as Slurm, LSF, and
HTCondor. Grid computing is now known as the Distributed Computing Infrastructure
(DCI).

Containers’ applicability towards Distributed Computing Infrastructure recently
considered by using orchestration platforms, to handles scheduling of containers across
clusters. The European Grid Infrastructure Foundation project (EGI)[81]provides
a computing and data infrastructure to carry out innovation and research in Europe.
EGI funded to provide scientists access to 1,000,000 computing core and 740 PB of
disk storage resources [87]. Indeed, it is suitable to run containers for intensive applica-
tions in batch systems on their HPC, and HPC systems [88]. Also, Open Science GRID
(OSG) [89] is providing support for containers, including Docker and Singularity throw
HTCondor [90] workload scheduler.

The Worldwide LHC Computing Grid (WLCG) involved solving major challenges
of Large Hadrons Collider (LHC) [91] particle physics experiments at CERN [86].
This infrastructure allows access to a huge amount of distributed resource archives and
can support powerful, complex, and tedious data analyses. Usually, data storage relies

1169

1 3

Containerization technologies: taxonomies, applications…

on a shared file system such as NFS, DPM, Storm, and Luster, to leverage data infor-
mation when scheduling computational tasks.

Nevertheless, deploying containers on distributed computing systems poses chal-
lenges due to the massive volume of high-energy physics (HEP) software stacks.
Simone Mosciatti et al. [92], introduces container as a solution to run scientific applica-
tions on high-energy physics domain. They deployed Docker image used as a source
image, converted after to Singularity image as a flat root file systems, and to Docker
image as a compatible directory structure, and then published into CernVM-FS reposi-
tory. Then, to evaluate their approach they deployed real uses-cases using LHC experi-
ments in a production environment, integrating Singularity container. Results of this
work show that the computing environment based on container technology is robust
and near to the native performance, compared to that one based on virtual machines.

5.5 � High throughput computing HTC

In particular, high throughput computing (HTC) [93] is another category of comput-
ing infrastructure that performs a lot of computing power to address problems that
require a large amount of computation time. HTC is the efficient execution environ-
ment of a large number of loosely coupled tasks. It offers storage capacity and anal-
ysis support to process a huge amount of experimental data. For instance, recently,
CERN [86] started to emerge Singularity containers among HTC (high throughput
computing) computational infrastructure, which has played an important role in
deploying complex software inside containers. Results of integration show that HPC
resources based on container technology are robust and near to the native perfor-
mance, compared to that one based on virtual machines [94].

5.6 � Cloud computing

Cloud computing is defined by Ian Foster [59] as a “large-scale distributed comput-
ing paradigm that is driven by economies of scale, in which a pool of abstracted, vir-
tualized, dynamically scalable, managed computing power, storage, platforms, and
services are delivered on-demand to external customers over the Internet”. Cloud
computing allows deploying and scale services on-demand, by selecting precon-
figured virtual appliances, with complete control over computing resources. Cloud
computing comprises three fundamental layers: (1) Infrastructure as a Service layer
(IaaS), which provides virtual appliances, including, computing, networking, and
storage. (2) Platform as a Service layer (PaaS), which provides platforms to man-
age, develop, and deploy applications. (3) Software as a Service layer (SaaS), which
provides software to end-users. Maenhaut et al. [31] introduced the adoption of
container technology in traditional cloud computing (private, public, and hybrid).
According to them, containerization gives advantages that guarantee security, per-
formance, and elasticity concepts, for High-performance computing during schedul-
ing [2] of compute nodes and managing resources efficiently. Then, cloud comput-
ing has adopted the usage of container technologies in their infrastructures through
the Containers as a Service (CaaS) solution [53].

1170	 O. Bentaleb et al.

1 3

European Grid Initiative Foundation infrastructure (EGI) [95], implements a fed-
erated cloud to access cloud provider’s resources that belong to National Resources
Network initiatives “NREN”, based on cloud providers resources. Recently, it deliv-
ers Container as a Service “CaaS” [96]for advanced computing power and storage
for data-intensive science research applications using EC3 (Elastic Cloud Comput-
ing Cluster) [97], which allows the creation of elastic virtual clusters as a service
[98]. Moreover, EGI enables using the INDICO-Data cloud [99] platform as a PaaS
orchestrator to build an application encapsulated as a container, and launch it in
the Cloud, from a web interface (Future Gateway). INDICO-Data cloud offers ser-
vices as service (SaaS) to deploy specific services relevant for scientific computing
regarding authentication, workload, and data management. It provides too, another
platform as a service PaaS for CMS experiment, called Dynamic on Demand Anal-
ysis Service (DODAS), to instantiate container-based clusters to execute software
applications and distribute the load across cloud providers.

Several popular cloud providers have invested in Container technologies. For
instance, Amazon Web Services (AWS) [100] provides Elastic Compute Cloud
(EC2) as compute instances, using Elastic Container Service (ECS) to build Kuber-
netes (EKS) clusters since 2017. Google Cloud Platform (GCP) [101] provides
Google Compute Engine (GCE) for users to create and run virtual machines on a
large scale. Moreover, Google Cloud Storage is used to store large data objects, con-
sidering consistency, durability, high availability, and scalability features. Besides,
to benefit from Google’s network capabilities that offer high performance and auto-
matic dealing of load balancing issues. Microsoft Azure [102] provides Hyper-
V containers, where each container runs inside of a special virtual machine. Red
Hat’s OpenShift [17] is a leader and active builder of Kubernetes. It provides addi-
tional tools for automatically deploying, building, updating container infrastruc-
ture. It offers monitoring and security features for cluster management and resource
provisioning.

5.7 � Internet of Things “IoT”

The Internet of Things (IoT) is a new paradigm. It is a recent trend of traditional
cloud computing infrastructure that integrates not only traditional computers but
also many kinds of things, lightweight devices, or a large number of technologies
manage objects around us like mobile edge (smartphone) In the real world, IoT
embedded many of network sensors, and intelligent devices, which generates a
huge amount of data. These massive volumes of data generated [80] by IoT devices
require storage capabilities, computational resources, and wireless communication
of the distributed computing infrastructures. Where computing resources might be
closer to IoT devices to reduces latency and provides high bandwidth of the network.

In another work, Chang et al. [103] depicted a virtualized system based on
Open5GCore using virtualization techniques to simulate IoT devices. The authors
analyze the performance of the 5G network throughput, response time, CPU utiliza-
tion, and memory usage in this system. Their results show that the use of the Docker

1171

1 3

Containerization technologies: taxonomies, applications…

container is the most appropriate solution and feasible because of its low virtualiza-
tion overhead and rapid deployment at a large scale.

Aruna et al. [36] studied scalability in the Internet of Things (IoT) system using
container technologies to manage resources, integrating many connected devices.
For this aim, they introduced a new paradigm that enables IoT scalable architecture.
Results show that IoT based on the model may extend the network; it expands the
scalability and improves the efficiency of services related to CPU, memory, and I/O
performance.

In the work [104], the authors tested the performance of Internet of Things (IoT)
applications within computational processing and storage capabilities on top of Fog
computing based on a cluster of SBC (Small Board Computers) devices. They pro-
pose a solution based on Linux containers and an orchestration platform. They tested
wireless communication in Fog computing. The comparison shows that the Internet
of Things and its applications based on container orchestration platforms (Docker
swarm end Kubernetes) can support running more pods of containers than cores in
SBC devices. However, Docker Swarm outperforms Kubernetes in terms of the use
of resources and processing time. But Kubernetes outperforms Swarm with higher
performance, due to the auto-scaling to perform the load balancing features offered
by Kubernetes. As result, IoT applications showed an improved performance.

5.8 � Fog and edge computing

Fog computing [104] is a paradigm, introduced by Cisco Systems Inc leveraging
heterogeneous nodes such as devices, gateways, and computers. It provides faster
reaction with low overhead of storage and networking services, between devices
[105]. Moreover, Fog computing extends traditional cloud computing architecture
to the edge of networks, to have better flexibility to scale servers. Both of them have
brought a new era to design, deploy IoT applications, and distribute them through
FoT nodes. While Fog nodes provide tools to manage storage and data processing
into devices, considering, resource allocation, monitoring, and security [36].

Edge computing (EC) [106] tends to push computing applications, data process-
ing, and services away from centralized cloud data center architectures to edges
belongs to the underlying network, to save network bandwidth.

Rafael et al. [104] have introduced a study among Fog computing using SBC
cluster (Small Board Computers) devices. The authors proposed a solution based
on Linux containers and orchestration platforms such as Swarm and Kubernetes, to
carry out the scheduling, the processing, and manage storage capabilities on top of
two types of clusters (Homogenous and Heterogeneous). They perform a compar-
ison between them using both communications wired and wireless environments.
The authors collect experimental tests related to the monitoring of devices’ sta-
tus, measuring their memory and CPU availability. Results showed in general an
improved performance in terms of execution time, latency, and throughput network.

For instance, in Kaur et al. [107], KEIDS’s system model for Kubernetes deploy-
ment in an IoT ecosystem equipped with edge-cloud functionality is a competent
controller. KEIDS aims to minimize the energy usage of edge-cloud in IoT devices

1172	 O. Bentaleb et al.

1 3

and solve the problem of application tasks scheduling on available nodes in less
time, using linear programming based on multi-objective optimization. An evalua-
tion of this system indicates that its superior performance in real-time.

In reference [108], the authors study the performance and scalability bottleneck
of data movement (MPI, asynchronous) on HPC environment-based virtualization.
They designed a model based on the range of two-stage methods to enhance the per-
formance of the HPC system. Their results show that the performance of this model
can improve the performance needed for running a real scientific application.

5.9 � DevOps

Development and Systems Operations “DevOps” [109] is a community interested in
application development and programming. In recent years, micro-services architec-
ture is considered an exciting topic besides the community of DevOps. Developers
became more productive within programming applications through micro-services
format deployment. Then, the final application is obtained by the composition of
micro-services components.

Furthermore, container orchestration engines, namely Kubernetes, Swarm, and
Mesos are involved in DevOps infrastructure management to provide portability and
dependency features. Containers can run everywhere, from development to produc-
tion. Each developer should develop a component separately, defining the standard
image format, and the run-time environment for containers, without interfering with
the other application components. Usually, the developer starts to develop an appli-
cation from a base image format, which contains the operating system and default
libraries. Although, the image layered by adding customized libraries and data to the
code source. Moreover, the multilayered application image built is read-only except
for the last layer who is persistent.

6 � Performance metrics of containerization

Many works [6, 32] have been compared to the performance of different virtual-
ization concepts. In this section, we discuss performance parameters considered on
container technologies over computational environments, as well as how to evaluate
the best performance of using containerization along with virtualization.

6.1 � Computing performance

Computing performance attracts the measurement of performance that encompasses
testing CPU, Memory throughput, and Disk I/O resources. To do that we need to
measure the number of operations, the completion time of tasks performed by the
system, using benchmarks tools.

1173

1 3

Containerization technologies: taxonomies, applications…

Many works [56] that have been done testing containers overhead by comparing
them to virtual machines such KVM, as seen in [32], the authors measured the CPU
overhead of containers, including Docker, LXC, and Singularity. Testing CPU per-
formance provided by using the ‘Sysbench’ benchmark across the industry applica-
tion domain. Although this work showed that the CPU performance of containers is
better than virtualization and almost the same as native performance. Indeed, for the
work of Wang et al. in [21], where authors studied container performance aspects
for Aerial Systems by executing native and containerized applications in computing
environments.

Recently in the work [110], they discussed applying Sysbench, Apache and
Phoronix benchmarks tools, to evaluate performances of containerized applications
in computing environments such as HPC cluster. Therefore, most of the results show
that container performance is better than virtual machines and almost the same as
the native. Because they use fewer resources, and while they share the same OS,
their boot-up time is short and their creation time is within seconds.

Rafael Fayos-Jordan et al. in [104] compared container orchestration platforms
with different communication topologies (wired/wireless) on SBC devices, in terms
of use of resources, and processing time, show that the model deployed on the Inter-
net of Things devices and its applications has the lowest power consumption and the
lower throughput.

In paper [6], Zhan et al. provided container performance for Big data processing
using different big data workloads, considering scheduling, packaging, and resource
access problems. According to their results, container achieves low overhead with
using CPU and memory, and better scalability than virtual machines.

In[36], Aruna et al. studied the ability to scale an Internet of Things (IoT) system
using containers to manage resources, including many connected devices. As result,
the performance of the extended network improves the scalability and efficiency of
services related to CPU, memory, and I/O.

6.2 � Isolation performance

Containers provide a virtualization mechanism that allows running an application
and its dependencies in an isolated environment (user-space) instead of creating
virtual machines. In resource isolation, the failure is due to the excessive resource
utilization by the process of one container and cannot affect the others. As seen in
[56], the authors evaluated the performance of an isolated execution environment,
by executing containers with collocated micro-services and comparing them to a
baseline container running one micro-service, to identify the interference between
them with minimal degradation performance. Their results show that the best per-
formance of micro-services is achieved within the deployment of micro-services in
separate containers.

Container measurement as discussed in the work of Wang et al. [21] used to refer
to one or more processes running in an isolated fashion, where the OS-kernel fea-
tures enforce the isolation. There are many levels of security applied to measure iso-
lation performance in, considering user-pace, data, and network security. However,

1174	 O. Bentaleb et al.

1 3

Linux containers provide an isolated execution environment in High-performance
computing, and this by relying on Docker Container for the execution and the
resources management on HPC nodes, illustrated in the work of Aldinucci et al. in
[81].

In reference [36], the authors analyzed the performance of low-cost devices of
the Internet of Things (IoT) ecosystem on a cloud computing environment, with dif-
ferent orchestration platforms, including Kubernetes, Docker Swarm and Mesos. In
this work, the authors conclude that the use of Kubernetes is superior to all other
orchestration platforms including deployments of complex IoT applications.

Vazhkudai et al. in [111] introduce containerization in the field of high-perfor-
mance computing data-intensive applications using CORAL2 data science bench-
mark, to assess the performance of the CPU, GPU, memory, I/O, and deep learning
workloads. Thus, to allow performing the provisioning of resources efficiently and
provides low overhead performance isolation.

6.3 � Network performance

About [32] network performance measurements in container systems are satisfy-
ing, using a network benchmark IPerf tool. On another hand, there are many other
benchmarks used such as Linpak, Stream, Fio, and Netperf [56].

In terms of network performance throughput, in the field of Internet of Things
‘IoT’ devices, Chang et al. [103] assess an evaluation of the performance of the
Open5GCore based on container virtualization techniques, show that the usage of
Docker container is the most appropriate solution, and feasible in terms of response
time, CPU utilization, and memory usage in this system. This is because of its low
overhead, and it allows rapid deployment at a large scale. Also, network perfor-
mance refers to the ability to perform and maintain the reliability of the network in
the computing systems based on containers that require features such as scalability
metrics as seen in [30].

We can also find interesting contributions in references [36, 60] to network per-
formance and platforms. The authors introduced a solution to handle computational
resources using network interface from devices involved in Fog and Edge environ-
ments, they conclude that this variability is null, and cannot affects the communica-
tion between devices.

In [108], Hang et Lu tried to improve the performance and scalability of par-
allel and asynchronous data movement in HPC system based on virtualization. To
enhance the performance degradation and scalability bottleneck of I/O virtualization
stacks, they designed a BADM middleware based on v-switches to reduce the band-
width of the virtual network and collective data movements. Their results improve
the performance of executing a real scientific application.

Also, Arnaldo Pereira et al. [112] evaluates the containers performance, run-
ning on various Kubernetes platforms across different mainstream Cloud environ-
ments including Amazon Elastic Container Service for Kubernetes (EKS), Azure
Kubernetes Service (AKS), and Google Kubernetes Engine (GKE), using CEEM
(Cloud Evaluation Experiment Methodology) to support traceable and reproducible

1175

1 3

Containerization technologies: taxonomies, applications…

experimental evaluation results. Their results show that for CPU and the network-
intensive containerized applications provided the best performance.

7 � Conclusion and future work

Both containers and virtual machines technologies enable users to define and build
their software environments and then run them on top of various resources in a port-
able, reproducible way. This paper presents a thorough investigation of containeri-
zation technologies that are widely used. We have identified the main features of
container technology. Then, we have discussed already existing taxonomies and
proposed a taxonomy that covers most of the existing ones. We described contain-
ers architecture for computing systems by illustrating and discussing some details
for application domains. The work has shown that is important to understand the
capabilities and techniques available for a given containers-based solution as well as
the characteristics of workloads to optimize systems. At this moment, the container
approach is at the heart of the modern computing infrastructure as it avoids sev-
eral of the challenges related to intricate execution environment dependencies that
are often in conflict with other components of the application workflows. Contain-
ers have been adopted by several initiatives and approach a default technology like
Cloud Native, Dev/Ops. With containers, it is possible to construct scalable archi-
tecture composed of a large number of services (micro-services), IT companies like
Google, Microsoft, Netflix etc., are nowadays relying on container technology in
their production environment.

While the adoption of container technologies is growing, the community still has
many questions about such technologies. To address the shortcomings of existing
container-based platforms and solutions, further research must be done regarding
best practices, foundational functionalities, standards and tools. In the following, we
highlight some interesting future research directions on the containerization technol-
ogies field. Future research in this field is highly related to the promising environ-
ments in the field. Thus, we discuss such new technologies and related challenges.

In another vein, effort should be made to track the development of frameworks.
However, the implementation of new solutions in computing infrastructures at a
large scale leads to a set of questions that need to be addressed in future research:
Containers are known for their lightweight footprint and their easy deployment, but
there is always a better way to do things. The research community will not stop at
container technology. New emerging, technologies are already on the horizon; uni-
kernels, which look like’improved containers’ but with better security and perfor-
mance, are merging very quickly. Unikernels offer better isolation and run on a mini-
malistic operating system, which is tailored, to the application [113]. Another recent
research initiative around container technology is the combination with the server-
less approach tools like AWS Fargate, KNative combine the serverless approach and
containers to reduce the cost to manage the container-based system.

1176	 O. Bentaleb et al.

1 3

Acknowledgements  This work was partially supported by the General Directorate of Scien-
tific Research and Technological Development (DGRSDT, Algeria), under the PRFU project (ref:
C00L07UN060120200003).

References

	 1.	 Bermejo B, Juiz C, Guerrero C (2019) Virtualization and consolidation: a systematic review of the
past 10 years of research on energy and performance. J Supercomput 75(2):808–836

	 2.	 Menouer T, Darmon P (2019) Containers scheduling consolidation approach for cloud computing.
In: Esposito C, Hong J, Choo KK. (eds) Pervasive Systems, Algorithms and Networks. I-SPAN.
Communications in Computer and Information Science, vol. 1080

	 3.	 Zheng L, et al. (2017) Performance overhead comparison between hypervisor and container based
virtualization, IEEE 31st International Conference on Advanced Information Networking and
Applications (AINA) pp. 955–962

	 4.	 Chae M, Lee H, Lee K (2019) A performance comparison of linux containers and virtual
machines using Docker and KVM. Cluster Comput 22:1765–1775. https://​doi.​org/​10.​1007/​
s10586-​017-​1511-2

	 5.	 Yu B, Tian J, Ma S, Yi S, Yu D (2011) Gird or cloud? Survey on scientific computing infrastruc-
ture, IEEE International Conference on Cloud Computing and Intelligence Systems, Beijing, pp.
244–249

	 6.	 Zhang Q, Liu L, Pu C, Dou Q, Wu L, Zhou W (2018) A comparative study of containers and
virtual machines in big data environment. In: 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD). San Francisco, CA, pp 178–185. https://​doi.​org/​10.​1109/​CLOUD.​2018.​
00030

	 7.	 Linux containers LXC, [Online] available March 2020: https://​linux​conta​iners.​org/
	 8.	 Eric Chiang Containers from Scratch. [Online], available March 2020: https://​ericc​hiang.​github.​io/​

post/​conta​iners-​from-​scrat​ch/#​conta​iner-​file-​system
	 9.	 Campeanu G (2018) A mapping study on microservice architectures of Internet of Things and

cloud computing solutions, 2018 7th Mediterranean Conference on Embedded Computing
(MECO), Budva, pp. 1–4, doi: https://​doi.​org/​10.​1109/​MECO.​2018.​84060​08

	 10.	 OpenVZlinu containers, [online] available April 2020: http://​openvz.​org/
	 11.	 Docker, [Online] available April 2020: https://​docs.​docker.​com
	 12.	 Singularity, [Online], available April 2020: https://​www.​sylabs.​io/​docs/
	 13.	 uDocker. [Online], available April 2020: https://​github.​com/​indigo-​dc/​udock​er
	 14.	 Beltre AM, Saha P, Govindaraju M, Younge A, Grant RE (2019) Enabling HPC workloads on

cloud infrastructure using kubernetes container orchestration mechanisms. Paper presented at 2019
IEEE/ACM International Workshop on Containers and New Orchestration Paradigms forIsolated
Environments in HPC(CANOPIE-HPC), Denver, CO, USA, 2019, pp. 11-20. doi: https://​doi.​org/​
10.​1109/​CANOP​IE-​HPC49​598.​2019.​00007

	 15.	 The apache software foundation. Mesos, apache. [Online], available April 2020: http://​mesos.​
apache.​org/

	 16.	 Kubernetes, [online], available July 2020 : https://​kuber​netes.​io/
	 17.	 RedHat Openshift.[Online], available April 2020: https://​www.​redhat.​com/​en/​techn​ologi​es/​cloud-​

compu​ting/​opens​hift
	 18.	 Pahl C, Brogi A, Soldani J, Jamshidi P (2019) Cloud container technologies: a state-of-the-art

review," in IEEE Transactions on Cloud Computing, 1 July–Sept. 2019, vol. 7, no. 3, pp. 677–692
	 19.	 Azab A (2017) Enabling docker containers for high-performance and many-task computing,"

IEEE International Conference on Cloud Engineering (IC2E), Vancouver, BC , pp. 279–285, doi:
https://​doi.​org/​10.​1109/​IC2E.​2017.​52

	 20.	 Lingayat A Badre RR, A. K. Gupta AK (2018) Integration of linux containers in openstack: an
introspection. Indones J Electr Eng Comput Sci. Vol. 12, no. 3

	 21.	 Wang B, Xie J, Li S, Wan Y, Fu S, Lu K (2018) Enabling high-performance onboard comput-
ing with virtualization for unmanned aerial systems", 2018 International Conference on Unmanned

https://doi.org/10.1007/s10586-017-1511-2
https://doi.org/10.1007/s10586-017-1511-2
https://doi.org/10.1109/CLOUD.2018.00030
https://doi.org/10.1109/CLOUD.2018.00030
https://linuxcontainers.org/
https://ericchiang.github.io/post/containers-from-scratch/#container-file-system
https://ericchiang.github.io/post/containers-from-scratch/#container-file-system
https://doi.org/10.1109/MECO.2018.8406008
http://openvz.org/
https://docs.docker.com
https://www.sylabs.io/docs/
https://github.com/indigo-dc/udocker
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00007
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00007
http://mesos.apache.org/
http://mesos.apache.org/
https://kubernetes.io/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://doi.org/10.1109/IC2E.2017.52

1177

1 3

Containerization technologies: taxonomies, applications…

Aircraft Systems (ICUAS), Dallas, TX, 2018, pp. 202–211.doi: https://​doi.​org/​10.​1109/​ICUAS.​
2018.​84533​68

	 22.	 VMware_paravirtualization. [Online], available April 2020: https://​www.​vmware.​com/​conte​nt/​
dam/​digit​almar​keting/​vmware/​en/​pdf/​techp​aper/​VMware_​parav​irtua​lizat​ion.​pdf

	 23.	 Bazm M, Lacoste M, Südholt M et al (2019) Isolation in cloud computing infrastructures: new
security challenges. Ann Telecommun 74:197–209

	 24.	 VMWare. [Online], available April 2020: http://​www.​vmware.​com
	 25.	 Xen. [Online], available April 2020: https://​xenpr​oject.​org/
	 26.	 KVM “Kernel based Virtual Machines”. [Online] Available April 2020: https://​www.​redhat.​com/​

fr/​topics/​virtu​aliza​tion/​what-​is-​KVM
	 27.	 Wei M, Lin Y, Lee C (2019) Performance optimization for InfiniBand virtualization on QEMU/

KVM," 2019 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), Sydney, Australia, 2019, pp. 19–26

	 28.	 Masdari M, Zangakani M (2019) Green cloud computing using proactive virtual machine place-
ment: challenges and issues. J Grid Computing. https://​doi.​org/​10.​1007/​s10723-​019-​09489-9

	 29.	 Sultan S, Ahmad I, Dimitriou T (2019) Container security: issues, challenges, and the road ahead.
IEEE Access 7:52976–52996. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29117​32

	 30.	 Stephen S et al Container-based operating system virtualization: a scalable, high-performance
alternative to hypervisors. SIGOPS Oper. Syst. Rev., pp 275–287. ISSN 0163–5980. https://​doi.​
org/​10.​1145/​12729​98.​12730​25

	 31.	 Maenhaut P, Volckaert B, Ongenae V et al (2020) Resource management in a containerized cloud:
status and challenges. J NetwSyst Manage 28:197–246

	 32.	 Á. Kovács 2017 "Comparison of different Linux containers," 2017 40th International Conference
on Telecommunications and Signal Processing (TSP), Barcelona, pp. 47–51, doi: https://​doi.​org/​
10.​1109/​TSP.​2017.​80759​34

	 33.	 Marcel (2018) Performance evaluation of mikroTik-based virtual machine for small-scale network
virtualization on VMware Platform. In: 2018 International Conference on Control, Electronics,
Renewable Energy and Communications (ICCEREC), 2018, pp 154-158. https://​doi.​org/​10.​1109/​
ICCER​EC.​2018.​87120​00

	 34.	 Lingayat A, Badre RR, Kumar Gupta A (2018) Performance evaluation for deploying docker con-
tainers on baremetal and virtual machine. In: 2018 3rd International Conference on Communica-
tion and Electronics Systems (ICCES), Coimbatore, India, «pp. 1019–1023, doi: https://​doi.​org/​10.​
1109/​CESYS.​2018.​87239​98

	 35.	 Openstack, Cloud operating system [Online], available June 2020: https://​opens​tack.​org
	 36.	 Aruna K, Pradeep G (2020) Performance and scalability improvement using IoT-based edge com-

puting container technologies. SN COMPUT SCI 1:91. https://​doi.​org/​10.​1007/​s42979-​020-​0106-9
	 37.	 Barika M, Garg S, Zomaya AY, van Lizhe Wang A, Moorsel, Rajiv R (2019) Orchestrating big

data analysis workflows in the cloud: research challenges, survey, and future directions. ACM
Comput Surv 52:1–37. https://​doi.​org/​10.​1145/​33323​01

	 38.	 Socker: A wrapper for secure running of docker containers on slurm, A. Azab, [online] Available
June 2020: https://​github.​com/​unios​lo/​socker

	 39.	 Raicu I, Foster IT, Zhao Y (2008) Many-task computing for grids and supercomputers", Many-
Task Computing on Grids and Supercomputers 2008. MTAGS 2008. Workshop on, pp. 1–11

	 40.	 Dominic L, Sukhpal SG, Peter G (2019) PRISM: an experiment framework for straggler analytics
in containerized clusters. In Proceedings of the 5th International Workshop on Container Tech-
nologies and Container Clouds (WOC ’19).2019, pp. Association for Computing Machinery, New
York, NY, USA, 13–18

	 41.	 Chen J et al. (2018) Build and execution environment (BEE): an encapsulated environment ena-
bling HPC applications running everywhere," 2018 IEEE International Conference on Big Data
(Big Data), Seattle, WA, USA, 2018, pp. 1737–1746, doi: https://​doi.​org/​10.​1109/​BigDa​ta.​2018

	 42.	 Smith JE, Nair R (2005) Virtual machines: versatile platforms for systems and processes. The Mor-
gan Kaufmann Series in Computer Architecture and Design Series. Morgan Kaufmann Publishers;
2005

	 43.	 Li X, Jiang Y, Ding Y, Wei D, Ma X, Li W (2010) Application research of docker based on mesos
application container cluster," 2020 International Conference on Computer Vision, Image and
Deep Learning (CVIDL), 2020, 476–479, Doi:https://​doi.​org/​10.​1109/​CVIDL​51233.​2020.​00-​47

	 44.	 Sergei A, Bohdan T, Franz G, Thomas K, Andre M, Christian P, Joshua L, Divya M, Dan O’Keeffe,
Mark L. Stillwell, David G, David E, Rüdiger K, Peter P, Christof F (2016) SCONE: secure Linux

https://doi.org/10.1109/ICUAS.2018.8453368
https://doi.org/10.1109/ICUAS.2018.8453368
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/VMware_paravirtualization.pdf
http://www.vmware.com
https://xenproject.org/
https://www.redhat.com/fr/topics/virtualization/what-is-KVM
https://www.redhat.com/fr/topics/virtualization/what-is-KVM
https://doi.org/10.1007/s10723-019-09489-9
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1145/1272998.1273025
https://doi.org/10.1145/1272998.1273025
https://doi.org/10.1109/TSP.2017.8075934
https://doi.org/10.1109/TSP.2017.8075934
https://doi.org/10.1109/ICCEREC.2018.8712000
https://doi.org/10.1109/ICCEREC.2018.8712000
https://doi.org/10.1109/CESYS.2018.8723998
https://doi.org/10.1109/CESYS.2018.8723998
https://openstack.org
https://doi.org/10.1007/s42979-020-0106-9
https://doi.org/10.1145/3332301
https://github.com/unioslo/socker
https://doi.org/10.1109/BigData.2018
https://doi.org/10.1109/CVIDL51233.2020.00-47

1178	 O. Bentaleb et al.

1 3

containers with Intel SGX. In: Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, USA, 689–703

	 45.	 Docker Hub. [online], available 20 April 2020: https://​hub.​docker.​com/
	 46.	 Hu G, Zhang Y, Chen W (2019) Exploring the performance of singularity for high performance

computing scenarios. In: 2019 IEEE 21st International Conference on High Performance Com-
puting and Communications; IEEE 17th International Conference on Smart City; IEEE 5th Inter-
national Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China,
2019, pp. 2587–2593. https://​doi.​org/​10.​1109/​HPCC/​Smart​City/​DSS.​2019.​00362

	 47.	 Zhang J, Lu X, Panda DK (2017) Is singularity-based container technology ready for running MPI
applications on HPC clouds", Proceedings of the l0th International Conference on Utility and
Cloud Computing,

	 48.	 Salomoni D et al (2018) INDIGO-DataCloud: aplatform to facilitate seamless access to e-infra-
structures. J Grid Comput. 163:381–408

	 49.	 Gomes J, Bagnaschi E, Campos I, David M, Alves L, Martins J, Pina J, López-García A, Orviz P
(2018) Enabling rootless Linux Containers in multi-user environments: the udocker tool. Comput
Phys Commun 232:84–97. https://​doi.​org/​10.​1016/j.​cpc.​2018.​05.​021

	 50.	 Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: scientific containers for mobility of com-
pute. PLoS ONE 12(5):e0177459. https://​doi.​org/​10.​1371/​journ​al.​pone.​01774​59

	 51.	 Silva V, Kirikova M, Alksnis G (2018) Containers for virtualization: an overview. Appl Comput
Syst. 23(1):21–27

	 52.	 De Lauretis L (2019) From monolithic architecture to micro-services architecture. 2019 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW), Berlin, Ger-
many, pp. 93–96, doi: https://​doi.​org/​10.​1109/​ISSREW.​2019.​00050

	 53.	 Yang M, Huang M (2019) An micro-services-based openstack monitoring tool. In: 2019 IEEE 10th
International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
pp. 706–709, doi: https://​doi.​org/​10.​1109/​ICSES​S47205.​2019.​90407​40..

	 54.	 Wilhelm H (2016) Micro-services for Scalability: Keynote Talk Abstract. In Proceedings of the
7th ACM/SPEC on International Conference on Performance Engineering (ICPE ’16). Association
for Computing Machinery, New York, NY, USA, 133–134

	 55.	 Li L, Tang T, Chou W (2015) A REST service framework for fine-grained resource management in
container-based cloud," 2015 IEEE 8th International Conference on Cloud Computing, New York,
NY, pp. 645–652, Doi: https://​doi.​org/​10.​1109/​CLOUD.​2015.​91

	 56.	 Jha DN, Garg S, Jayaraman PP, Buyya R, Li Z, Ranjan R (2018) A holistic evaluation of docker
containers for interfering micro-services. In: 2018 IEEE International Conference on Services
Computing (SCC), San Francisco, CA, pp 33–40. https://​doi.​org/​10.​1109/​SCC.​2018.​00012

	 57.	 Sampaio AR, et al. (2017) Supporting microservice evolution. 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Shanghai, pp. 539–543, doi: https://​doi.​org/​10.​
1109/​ICSME.​2017.​63

	 58.	 Cesar de la Torre C (2016) Containerized docker application lifecycle with microsoft platform and
tools

	 59.	 Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree com-
pared," 2008 Grid Computing Environments Workshop, Austin, TX, 2008, pp. 1-10, doi: https://​
doi.​org/​10.​1109/​GCE.​2008.​47384​45

	 60.	 Benedicic L, Cruz FA, Madonna A, Mariotti K Sarus(2019) Highly scalable docker contain-
ers for HPC systems. Benedicic L, Cruz FA, Madonna A., Mariotti K , ISC high performance
2019. Lecture notes in computer science, vol 11887. Springer, Cham, https://​doi.​org/​10.​1007/​
978-3-​030-​34356-9_5

	 61.	 Menouer T, Darmon P (2019) Containers scheduling consolidation approach for cloud comput-
ing. In: Esposito C, Hong J, Choo KK (eds) Pervasive systems, algorithms and networks. I-SPAN.
Communications in computer and information science, vol 1080, Springer, Cham. https://​doi.​org/​
10.​1007/​978-3-​030-​30143-9_​15

	 62.	 Perampalam P, Dick FA (2020) BEAVR: a browser-based tool for the exploration and visualization
of RNA-seq data. BMC Bioinformatics 21:221

	 63.	 Bella MRM, Data M, Yahya W (2018) Web server load balancing based on memory utilization
using docker swarm. In" 2018 International Conference on Sustainable Information Engineering
and Technology (SIET), 2018, pp. 220-223, doi: https://​doi.​org/​10.​1109/​SIET.​2018.​86932​12

	 64.	 Marathon, orchestration tool for Mesos. [Online], availableJune 2020: https://​mesos​phere.​github.​
io/​marat​hon

https://hub.docker.com/
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00362
https://doi.org/10.1016/j.cpc.2018.05.021
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1109/ISSREW.2019.00050
https://doi.org/10.1109/ICSESS47205.2019.9040740
https://doi.org/10.1109/CLOUD.2015.91
https://doi.org/10.1109/SCC.2018.00012
https://doi.org/10.1109/ICSME.2017.63
https://doi.org/10.1109/ICSME.2017.63
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/10.1007/978-3-030-34356-9_5
https://doi.org/10.1007/978-3-030-34356-9_5
https://doi.org/10.1007/978-3-030-30143-9_15
https://doi.org/10.1007/978-3-030-30143-9_15
https://doi.org/10.1109/SIET.2018.8693212
https://mesosphere.github.io/marathon
https://mesosphere.github.io/marathon

1179

1 3

Containerization technologies: taxonomies, applications…

	 65.	 Saha P, Beltre A, Govindaraju M (2018) Exploring the fairness and resource distribution in an
apache mesos environment. In: 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), San Francisco, CA, 2018, pp. 434–441, doi: https://​doi.​org/​10.​1109/​CLOUD.​2018.​000

	 66.	 Zheng C, Tovar B, Thain D (2017) Deploying high throughput scientific workflows on container
schedulers with makeflow and mesos," 2017 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), 2017, pp. 130-139, doi: https://​doi.​org/​10.​1109/​CCGRID.​
2017.9

	 67.	 Bisong E. (2019) Containers and Google Kubernetes Engine. In: Building Machine Learning and
Deep Learning Models on Google Cloud Platform. Apress, Berkeley, CA

	 68.	 Medel V, Tolosana-Calasanz R, ÁngelBañares J, Arronategui U, Rana OF (2018) Characterising
resource management performance in Kubernetes. Comput Electr Eng 68:286-297. https://​doi.​org/​
10.​1016/j.​compe​leceng.​2018.​03.​041

	 69.	 Nexflow [Online], available Jully 2020: https://​www.​nextf​low.​io/
	 70.	 Larsonneur E, Mercier J, Wiart N, Floch EL, Delhomme O, MeyerV (2018) Evaluating workflow

management systems: a bioinformatics use case. In: 2018 IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM), Madrid, Spain, 2018, pp. 2773–277, https://​doi.​org/​10.​1109/​
BIBM.​2018.​86211​41

	 71.	 Casalicchio E, Iannucci S. The state‐of‐the‐art in container technologies: application, orchestration
and security. Concurrency Computat Pract Exper. 2020; e5668. https://​doi.​org/​10.​1002/​cpe.​5668

	 72.	 Ernst D, Bermbach D, Tai S (2016) Understanding the container ecosystem: a taxonomy of build-
ing blocks for container lifecycle and cluster management. Retrieved from the the: Proceedings of
WoC. IEEE

	 73.	 Madiha HS, Eduardo BF (2018). A reference architecture for the container ecosystem. In Proceed-
ings of the 13th International Conference on Availability, Reliability and Security (ARES 2018).
Association for Computing Machinery, New York

	 74.	 Rodriguez MA, Buyya R (2019). Container‐based cluster orchestration systems: ataxonomy and
future directions. Softw Pract Exp, 49(5), 698–719

	 75.	 Bélair M, Laniepce S, Menaud J-M (2019) Leveraging kernel security mechanisms to improve
container security: a survey. In Proceedings of the 14th International Conference on Availability,
Reliability and Security (ARES ’19). Association for Computing Machinery, New York, NY, USA,
Article 76, 1–6

	 76.	 Jenkins J, Shipman G, Mohd-Yusof J, Barros K, Carns P, Ross R (2017) A case study in com-
putational caching micro-services for HPC. In: 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp

	 77.	 Becker M. et al. (2020) Scaling genomics data processing with memory-driven computing to accel-
erate computational biology. In: Sadayappan P, Chamberlain B, Juckeland G, Ltaief H (eds) High
performance computing. ISC High Performance 2020. Lecture Note

	 78.	 Alexander S, Del Balso M (2018) "Horovod: fast and easy distributed deep learning in Tensor-
Flow." arXiv preprint. https://​arxiv.​org/​abs/​1802.​05799

	 79.	 Vahi K et al (2019) Custom execution environments with containers in pegasus-enabled scientific
workflows. In: 2019 15th International Conference on eScience (eScience), pp 281–290. https://​
doi.​org/​10.​1109/​eScie​nce.​2019.​00039

	 80.	 Liu W, Fan W, Li P, Li L (2018) Survey of big data platform based on cloud computing container
technology. In: Barolli L, Terzo O (eds) Complex, intelligent, and software intensive systems.
CISIS. Advances in intelligent systems and computing, vol 611. Springer, Cham. https://​doi.​org/​
10.​1007/​978-3-​319-​61566-0_​90

	 81.	 Aldinucci M et al (2018) HPC4AI: an AI-on-demand federated platform endeavour. In: Proceed-
ings of the 15th ACM International Conference on Computing Frontiers (CF ’18). Association for
Computing Machinery, New York, NY, USA, pp 279–286. https://​doi.​org/​10.​1145/​32032​17.​32053​
40

	 82.	 Rao TR, Mitra P, Bhatt R et al (2019) The big data system, components, tools, and technologies: a
survey. Knowl Inf Syst 60:1165–1245. https://​doi.​org/​10.​1007/​s10115-​018-​1248-0

	 83.	 Blamey B, Hellander A, Toor S (2019) Apache spark streaming, Kafka and HarmonicIO: A perfor-
mance benchmark and architecture comparison for enterprise and scientific computing. In: Gao W.,
Zhan J., Fox G., Lu X., Stanzione D. (eds) Benchmarking, Measuri. «and optimizing. Bench 2019.
Lecture notes in computer science, vol 12093. Springer, Cham

https://doi.org/10.1109/CLOUD.2018.000
https://doi.org/10.1109/CCGRID.2017.9
https://doi.org/10.1109/CCGRID.2017.9
https://doi.org/10.1016/j.compeleceng.2018.03.041
https://doi.org/10.1016/j.compeleceng.2018.03.041
https://www.nextflow.io/
https://doi.org/10.1109/BIBM.2018.8621141
https://doi.org/10.1109/BIBM.2018.8621141
https://doi.org/10.1002/cpe.5668
https://arxiv.org/abs/1802.05799
https://doi.org/10.1109/eScience.2019.00039
https://doi.org/10.1109/eScience.2019.00039
https://doi.org/10.1007/978-3-319-61566-0_90
https://doi.org/10.1007/978-3-319-61566-0_90
https://doi.org/10.1145/3203217.3205340
https://doi.org/10.1145/3203217.3205340
https://doi.org/10.1007/s10115-018-1248-0

1180	 O. Bentaleb et al.

1 3

	 84.	 Piras ME, Pireddu L, Moro M, Zanetti G (2019) Container orchestration on HPC clusters. In: Wei-
land M., Juckeland G., Alam S., Jagode H. (eds) High performance computing. ISC high perfor-
mance 2019. Lecture notes in computer science, vol 11887. Springer,Cham

	 85.	 Zhou N, Georgiou Y, Zhong L, Zhou H, Pospieszny M (2020) Container orchestration on HPC sys-
tems," 2020 IEEE 13th International Conference on Cloud Computing (CLOUD), , pp. 34–36, doi:
https://​doi.​org/​10.​1109/​CLOUD​49709.​2020.​00017

	 86.	 Ciubăncan M, Dulea M (2017) Implementing advanced data flow and storage management solu-
tions within a multi-VO grid site," 2017 16th RoEduNet Conference: Networking in Education and
Research (RoEduNet), TarguMures, pp. 1-4, doi: https://​doi.​org/​10.​1109/​ROEDU​NET.​20

	 87.	 Pablo Orviz F, Joao P, Álvaro López G et al (2018) umd-verification: automation of software vali-
dation for the EGI Federated e-infrastructure. J Grid Comput 16(4):683–696

	 88.	 Alfonso DE, Carlos C, Amanda M, Germán. et al (2017) Container-based virtual elastic clusters. J
Syst Softw 127:1–11

	 89.	 OSG, Open Science GRID. [Online], available Jully 2020: https://​opens​cienc​egrid.​org/
	 90.	 HTcondor resource management. [Online], available Jully 2020: https://​htcon​dor.​readt​hedocs.​io/​

en/​latest/​overv​iew/​index.​html
	 91.	 The Large Hadron Collider (LHC) - CERN. [Online], available Jully 2020: http://​lhc.​web.​cern.​ch
	 92.	 Simone M, et al. (2020) CernVM-FS container image integration. J Phys Conf Ser. Vol. 1525. No.

1. IOP Publishing
	 93.	 High throughput computing"HTC". [Online], available Jully 2020: https://​htcon​dor.​readt​hedocs.​io/​

en/​latest/​overv​iew/​high-​throu​ghput-​compu​ting-​requi​remen​ts.​html
	 94.	 Singularity on HTC. [Online], available Jully 2020: https://​indico.​cern.​ch/​event/​578972/​contr​ibuti​

ons/​26527​40/​attac​hments/​14912​78/​23181​70/​ATLAS_​Singu​larity_​Status_​1.​pdf.
	 95.	 Fernández-Del-Castillo E, Scardaci D, López García Á (2015) The EGI Federated Cloud e-Infra-

structure. Proc Comput Sci, vol. 68, 2015. doi:https://​doi.​org/​10.​1016/j.​procs.​2015.​09.​235
	 96.	 EGI: Advanced Computing for Research, presentation of Webinar. [Online], available Jully 2020:

https://​indico.​egi.​eu/​event/​5090/​attac​hments/​12961/​15418/​egi-​conta​iners-​webin​ar-​20200​610.​pdf
	 97.	 EC3 (Elastic Cloud Computing Cluster). [Online], available July 2020 : https://​egi-​feder​ated-​cloud.​

readt​hedocs.​io/​en/​latest/​aod.​html#​ec3
	 98.	 Moltó G, Caballer M, Pérez A, De Alfonso C, Blanquer I (2017) Coherent application delivery on

hybrid distributed computing infrastructures of virtual machines and docker containers. In: 2017
25th Euromicro International Conference on Parallel, Distributed and Network-based Processing
(PDP), p. 486-490. https://​doi.​org/​10.​1109/​PDP.​2017.​29

	 99.	 EGI, European GRID Infrastructure Foundation. [Online], available Jully 2020: https://​www.​egi.​
eu/

	100.	 AWS, Amazon Web Services.[Online], available August 2020: https://​aws.​amazon.​com/
	101.	 Bisong E (2019) An overview of google cloud platform services. In: building machine learning

and deep learning models on google cloud platform. Apress, Berkeley, CA. https://​doi.​org/​10.​1007/​
978-1-​4842-​4470-8

	102.	 Microsoft Azure. [Online], available August 2020: https://​azure.​micro​soft.​com/​en-​us/
	103.	 Chang H, et al. (2018) Performance evaluation of Open5GCore over KVM and Docker by using

Open5GMTC," NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium,
Taipei, pp. 1–6, doi: https://​doi.​org/​10.​1109/​NOMS.​2018.​84061​41

	104.	 Fayos-Jordan R, Felici-Castell S, Segura-Garcia J, Lopez-Ballester J et al (2020) Maximo cobos,
performance comparison of container orchestration platforms with low cost devices in the fog,
assisting Internet of Things applications. J Netw Comput Appl 169:102788. https://​doi.​org/​10.​
1016/j.​jnca.​2020.​102788

	105.	 Mouradian C, Naboulsi D, Yangui S, Glitho RH, Morrow MJ, Polakos PA (2018) A comprehen-
sive survey on fog computing: state-of-the-art and research challenges. IEEE Commun Surv Tuto-
rials, vol.20, no.1, pp.416–464, Firstquarter2018. , https://​doi.​org/​10.​1109/​COMST.​2017.​27711​53

	106.	 Svorobej S, Bendechache M, Griesinger F, Domaschka J. (2020) Orchestration from the Cloud
to the Edge. In: Lynn T, Mooney J, Lee B, Endo P (eds) The Cloud-to-thing continuum. Palgrave
studies in digital business & enabling technologies., Palgrave Macmillan, Cham

	107.	 Kaur K, Garg S, Kaddoum G, Ahmed SH, Atiquzzaman M (2020) KEIDS: kubernetes-based
energy and interference driven scheduler for industrial IoT in edge-cloud ecosystem. IEEE Internet
Things J 7(5):4228–4237. https://​doi.​org/​10.​1109/​JIOT.​2019.​29395​34

	108.	 Huang D, Lu Y (2020) Improving the efficiency of HPC data movement on container-based virtual
cluster. CCF Trans HPC 2:67–80. https://​doi.​org/​10.​1007/​s42514-​020-​00025-w

https://doi.org/10.1109/CLOUD49709.2020.00017
https://doi.org/10.1109/ROEDUNET.20
https://opensciencegrid.org/
https://htcondor.readthedocs.io/en/latest/overview/index.html
https://htcondor.readthedocs.io/en/latest/overview/index.html
http://lhc.web.cern.ch
https://htcondor.readthedocs.io/en/latest/overview/high-throughput-computing-requirements.html
https://htcondor.readthedocs.io/en/latest/overview/high-throughput-computing-requirements.html
https://indico.cern.ch/event/578972/contributions/2652740/attachments/1491278/2318170/ATLAS_Singularity_Status_1.pdf
https://indico.cern.ch/event/578972/contributions/2652740/attachments/1491278/2318170/ATLAS_Singularity_Status_1.pdf
https://doi.org/10.1016/j.procs.2015.09.235
https://indico.egi.eu/event/5090/attachments/12961/15418/egi-containers-webinar-20200610.pdf
https://egi-federated-cloud.readthedocs.io/en/latest/aod.html#ec3
https://egi-federated-cloud.readthedocs.io/en/latest/aod.html#ec3
https://doi.org/10.1109/PDP.2017.29
https://www.egi.eu/
https://www.egi.eu/
https://aws.amazon.com/
https://doi.org/10.1007/978-1-4842-4470-8
https://doi.org/10.1007/978-1-4842-4470-8
https://azure.microsoft.com/en-us/
https://doi.org/10.1109/NOMS.2018.8406141
https://doi.org/10.1016/j.jnca.2020.102788
https://doi.org/10.1016/j.jnca.2020.102788
https://doi.org/10.1109/COMST.2017.2771153
https://doi.org/10.1109/JIOT.2019.2939534
https://doi.org/10.1007/s42514-020-00025-w

1181

1 3

Containerization technologies: taxonomies, applications…

	109.	 Riti (2018) Introduction to DevOps. In: Pro DevOps with Google Cloud Platform. A press, Berke-
ley, CA. https://​doi.​org/​10.​1001/​978-1-​48-​42-​3897-4_3

	110.	 Potdar AM, Narayan DG, Kengond S, Mulla MM (2020) Performance evaluation of docker con-
tainer and virtual machine. Procedia Computer Science, vol 171, Pp 1419–1428, ISSN 1877–0509.
https://​doi.​org/​10.​1016/j.​procs.​2020.​04.​152

	111.	 Vazhkudai SS, de Supinski BR, Bland AS, Geist A, Sexton J, Kahle J, Zimmer CJ, Atchley S, Oral
S, Maxwell DE, et al. (2018) The design, deployment, and evaluation of the coral pre-exascalesys-
tems.In: , Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage, and Analysis. IEEE Press, p. 52

	112.	 Pereira Ferreira A, Sinnott R (2019) A performance evaluation of containers running on managed
kubernetes services. In: 2019 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), , pp. 199–208, doi: https://​doi.​org/​10.​1109/​Cloud​Com.​2019.​00038

	113.	 Bratterud A, Happe A, Duncan RAK (2017) Enhancing cloud security and privacy: the Uniker-
nel solution. In: Eighth International Conference on Cloud Computing, GRIDs, and Virtualization,
Athens, Greece. Curran Associates

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Ouafa Bentaleb1,2,3 · Adam S. Z. Belloum3 · Abderrazak Sebaa4,5  ·
Aouaouche El‑Maouhab1

	 Adam S. Z. Belloum
	 a.s.z.belloum@uva.nl

	 Abderrazak Sebaa
	 sebaa@estin.dz

	 Aouaouche El‑Maouhab
	 elmaouhab@arn.dz

1	 Network Division, CERIST, Algiers, Algeria
2	 Department of Computer Science, Faculty of Exact Sciences, University of Bejaia, Bejaia,

Algeria
3	 Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
4	 LIMED Laboratory, Faculty of Exact Sciences, University of Bejaia, 06000 Bejaia, Algeria
5	 Higher School of Computing and Digital Sciences and Technologies (ESTIN), 06008 Amizour,

Bejaia, Algeria

https://doi.org/10.1001/978-1-48-42-3897-4_3
https://doi.org/10.1016/j.procs.2020.04.152
https://doi.org/10.1109/CloudCom.2019.00038
http://orcid.org/0000-0002-8742-1240

	Containerization technologies: taxonomies, applications and challenges
	Abstract
	1 Introduction
	2 Overview
	2.1 Virtualization
	2.2 Containerization alternative
	2.3 Containerization technologies
	2.3.1 Docker
	2.3.2 Singularity
	2.3.3 uDocker
	2.3.4 Comparison

	3 Container features
	3.1 Container architecture
	3.2 Container lifecycle
	3.3 Container orchestration
	3.3.1 Docker swarm
	3.3.2 Mesos
	3.3.3 Kubernetes
	3.3.4 Nextflow
	3.3.5 Comparison

	4 Containerization taxonomy
	5 Applications of containerization
	5.1 Scientific computing
	5.2 Big data processing
	5.3 High-performance computing
	5.4 Grid computing
	5.5 High throughput computing HTC
	5.6 Cloud computing
	5.7 Internet of Things “IoT”
	5.8 Fog and edge computing
	5.9 DevOps

	6 Performance metrics of containerization
	6.1 Computing performance
	6.2 Isolation performance
	6.3 Network performance

	7 Conclusion and future work
	Acknowledgements
	References

