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Abstract
Modern scientific research challenges require new technologies, integrated tools, 
reusable and complex experiments in distributed computing infrastructures. But 
above all, computing power for efficient data processing and analyzing. Containers 
technologies have emerged as a new paradigm to address such intensive scientific 
applications problems. Their easy deployment in a reasonable amount of time and 
the few required computational resource make them more suitable. Containers are 
considered light virtualization solutions. They enable performance isolation and 
flexible deployment of complex, parallel, and high-performance systems. Moreover, 
they gained popularity to modernize and migrate scientific applications in comput-
ing infrastructure management. Additionally, they reduce computational time pro-
cessing. In this paper, we first give an overview of virtualization and containeriza-
tion technologies. We discuss the taxonomies of containerization technologies of the 
literature, and then we provide a new one that covers and completes those proposed 
in the literature. We identify the most important application domains of contain-
erization and their technological progress. Furthermore, we discuss the performance 
metrics used in most containerization techniques. Finally, we point out research gaps 
in the related aspects of containerization technology that require more research.
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1  Introduction

In the last years, there has been a growing need for solving complex problems in 
a reasonable amount of time. This requirement has led to the implementation of 
rather complex, parallel, and high-performance systems. Virtualization technology 
is a common way to reduce this complexity and increase the system’s flexibility [1]. 
Virtualization used as a basic strategy to incorporate servers in data and computing 
infrastructures. Virtualization allows for improving resource utilization and alloca-
tion. It represents a basic building block for deployments in cloud computing [2]. 
There are two main technologies used to implement virtualization, namely virtual-
ization-based hypervisors, and virtualization-based containers technologies. How-
ever, virtualized computing infrastructures based on hypervisor [3] have not efficient 
deployments during resources management, where thus resources are needed to 
accelerate applications in terms of time processing.

Unlike hypervisor-based deployment, applications implemented in environ-
ment based-containers share the same operating system, while being isolated from 
the other applications. Therefore, this deployment is a significantly smaller mem-
ory footprint [4]. Moreover, the utilization of virtualization-based containers keeps 
growing. It provides a full middleware stack that offers mechanisms suitable for 
deploying, and running applications that allow features such as scalability, fault 
tolerance, and high availability. At the heart of the containerization approach, vir-
tualization-based containers are a leading concept, responsible to provide services. 
These services allow running various environments sharing computing resources, 
across computing infrastructures [5].

Containerization technology was first proposed by IBM [6] in 1979. Imple-
mented in UNIX operating system V7, and introducing a chroot [7] system call. This 
advance was the beginning process for isolation, running isolated groups on a single 
host. That isolation leverage several underlying technologies built on the Linux ker-
nel: namespaces and cgroups [8]. The support of namespaces introduced in Linux 
kernel version 2.4.19, while cgroups released in Linux kernels version “2.6.24”, 
known as the control group technology.

The emergence of micro-services architecture [9] based on containers technol-
ogy, considering, Linux containers (LXC) [7], OpenVZ [10], Docker [11], Singular-
ity [12], and uDocker [13] created a shift in the way we develop applications, from 
operations to programming. Many popular orchestration tools, such as Kubernetes 
[14], Docker Swarm [2], and Apache Mesos [15] used container lifecycle manage-
ment. These orchestrators provided frameworks for managing containers within 
micro-services architecture. Moreover, these frameworks enable features suitable for 
scheduling containers with resources, which are under limits control, fault tolerance, 
and allow auto-scaling. Among the orchestration tools, Kubernetes [16] and Open-
Shift [17] are becoming widely adopted in computing systems including, industry 
and scientific domains. Thereafter, recently Rancher compliant orchestration man-
agement platforms evolved to manage orchestrators, and maintain efficiency features 
that ensure performance across the computing infrastructure.
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Although cloud computing [18] is the most popular environment for the contain-
erization of applications. Containerization strategy applied to diverse applications 
domains beyond cloud services, such as scientific computing, big data processing, 
Internet of Things and edge computing.

Despite the substantial body of literature on containerization technologies, only 
a few studies review and survey [1–5, 19] this field. Thus, the surveys [1–5, 19] 
pointed out the challenges related to the adoption of containerization technologies, 
identifying the main issues that arise in containerization implementation, such as 
performance, orchestration, and security. However, none of these studies has pro-
vided a general overview of the related aspects of containerization. They are focus-
ing only on containerization in cloud infrastructures. Moreover, a lot of work done 
afterward [14, 19–21] and many of the aspects related to containerization technol-
ogies have since evolved. It is thus necessary to extend these studies to cover the 
newly emerging relevant aspects of containerization, to deploy application quickly 
across distributed clusters and provide a complete taxonomy, effectiveness, and limi-
tations of related containerization technologies. The primary motivation behind this 
survey is to provide a comprehensive understanding of containerization technolo-
gies, fundamentals for researchers interested in the field of virtualization, to comple-
ment, fill the gaps of previous efforts, a result of the fast evolution of container tech-
nology over the past several years, and give a view of these technologies, including 
recent advances and future trends.

Relevant literature was identified by querying scholarly databases for the terms 
“Containerization Technologies”. Then, returned results were downloaded, read, 
and analyzed. The scholarly databases queried included: (1) Google Scholar. (2) Sci-
enceDirect. (3) SpringerLink database. (4) IEEE Xplore. (5) ACM Digital Library. 
In all reviewed papers, each one was carefully read and analyzed to extract the 
research problem, the containers technologies, containers orchestration platforms, 
applications domains, most relevant container taxonomies in the literature, to obtain 
a complete classification and a comprehensive review of various performance evalu-
ation metrics.

The main contributions of this work are summarized as follows:

•	 We discuss the previous taxonomies of containerization technologies, provide a 
new one that covers, and complete those proposed in the literature.

•	 We give an overview of containerization technology and define the most impor-
tant concepts features of each concept. We also describe the most popular 
orchestration platforms of the literature.

•	 We overview several application domains in which containerization technologies 
have been proven successful and their evolution across these application domains 
in distributed computing infrastructures [22], including Grid, Cloud, IoT (Inter-
net of things), Fog, and Edge computing. Such application domains have evolved 
over the past years towards a similar vision that focuses on delivering computa-
tional resources.

•	 We provide the main performance evaluation criteria considered when designing 
implementing a containerization technology.
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•	 We identify research gaps of the related aspects, which partially explored or not 
addressed to inspire new research contributions.

The remainder of this work organized as follows. In Sects. 2 and 3, we describe 
various container concepts, their emergence, features offered by each technology 
while illustrating the most popular orchestration platforms. Then, in Sect.  4, we 
discuss containerization taxonomy and then propose a new taxonomy classification 
for containerization following the architecture-based containers model introduced 
in Sect. 3. In Sect. 5, we identify the application domains of containerization and 
the technological progress through these different application domains. Finally, 
in Sect.  6, we discuss performance parameters measurement for containerization 
techniques.

2 � Overview

2.1 � Virtualization

Virtualization is a technology for provisioning resources to end-users beyond the 
computing infrastructure. The main feature of virtualization is achieved through an 
isolation layer, built on top of the operating system level. For instance, provide users 
with an environment similar to a dedicated server. In the late 1960s and early 1970s, 
IBM [6] has introduced the virtualization concept in their systems. Since that time, 
there has been considerable evolution in thus virtualization ecosystems. There is a 
clear distinction, between relevant types of virtualization, which have emerged over 
time, para-virtualization and full-virtualization [1]. In 2005, VMware [22] proposes 
the para-virtualization (VMI), as a communication mechanism between the guest 
operating system and the hypervisor. This mechanism has enabled a new wave of 
transparent para-virtualization, in which a single binary version of the operating 
system can run either on bare hardware. However, the full-virtualization concept 
was implemented as a hardware module. This type of virtualization allows users to 
deploy virtual machines with full isolation from the operating system level, which 
can be performed directly on the top of the hardware.

The most important benefit of virtualization is to abstract the hardware. How-
ever, it gives an isolated [23] working environment for applications, by creating an 
aggregated pool of logical resources, such as CPU, memory, network, and disks. As 
shown in Fig. 1a, a full guest OS of the virtual machine (VM) instance runs as a sin-
gle process on the host. This leads to high resource requirements, which elicit a slow 
during the start-up of the VM.

The efforts made on virtualization have spawned the largest computational sys-
tems, such as cloud computing, and data centers. Afterward, building environment-
based virtualization for high-performance computing requires in-depth knowledge 
at least for one of the hypervisor technologies-based virtualization, such as VMware 
[24], Xen [25], KVM [26]. The hypervisor aims to virtualize the physical hardware, 
and present each VM with a standardized set of virtual devices, like using a Bridge 
(br0) via the network card, to translate the VM requests to the system hardware. 
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Virtualization involves the routing of I/O to manage requests between virtual devices 
and the shared physical hardware. Instead of managing resources, the migration of 
virtual machines between physical machines spawned security issues [27]. This 
issue makes the system more vulnerable, and deploying systems based on virtualiza-
tion became much harder. The most common type of virtualization is the operating 
system-level virtualization, which enables using isolation mechanisms. The isolation 
mechanism provides users with virtual environments similar to a dedicated server. 
This isolated virtual environment illustrated in Fig. 1b is called Container.

2.2 � Containerization alternative

Containerization technology [18] is a light alternative to virtualization. As shown 
in Fig.  1, containerization focus to abstract the operating system (OS) level, 
instead of virtualizing the hardware stack with virtual machines [28, 29]. Con-
tainerization is a major trend through which applications can run. Essentially, 
containerization is carried out on the ability to develop, test, and deploy appli-
cations inside containers. Furthermore, ensure the efficiency of interconnection 
among containers, where containers are lightweight and portable. However, they 
have a lower start-up time compared to one of the virtual machines (Vms), due 
to their ability to share resources with the host machines. These features can 
allow them to enhance resource utilization, and using fewer of them, such as 
CPU, memory and storage disks. Moreover, containers handle independently for 
each running instance the provision the spatial isolation, processes, file systems, 
namespace, and hardware resources.

Due to their feature of promoting the fast deployment of applications, con-
tainer paradigms have created a shift in the way computing operations are made 
for scientific programming. They can reach a near-native performance when 
tested against bar metal execution CPU-intensive applications [30]. They have 
gained increasing attention in high-performance computing applications [31].

Additionally, there are many disadvantages of hypervisor-based virtualization. 
Some of these drawbacks have been avoided through container technologies. For 
instance, remove the hypervisor dependency just-in-time compilation, perfor-
mance degradation, and slow booting times of VMs.

Many studies [1, 6, 20, 32], and [33] have compared the hypervisor of vir-
tual machines with containers. For instance, the study [34] compared KVM with 
Docker containers, by evaluating the performances of resources including CPU 
speed, memory bandwidth, disk space, and network throughput. This evaluation 
of performances was deducted using various environments, such as bare-metal, 
virtual machines, Linux containers, cloud computing [35], and Internet of Things 
(IoT) [36]. Their results indicate that containers are more beneficial than vir-
tual machines. Besides, KVM hypervisor uses a high bandwidth of the memory. 
Indeed, while Docker virtualizes only the application level, the hypervisor virtu-
alizes the whole operating system. Moreover, the performances during the startup 
time of a containerized application in bare-metal enhanced by about 50%, which 
is better than virtual machines. Furthermore, virtualization within orchestration 
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platforms is challenging, due to the scaling of various heterogeneous resources 
[37].

Besides previous disadvantages of hypervisors, container technologies provide 
an isolation mechanism through Linux kernel features, including namespaces 
and cgroups. They can secure the run-time environment for applications [38] 
and network resources management [39]. Thus, mechanisms process applications 
at a large scale [40] by packaging the code of an application with its depend-
encies into an encapsulated environment [41]. Also, they offer many features, 
including easy replication, reproducibility, and portability across the computing 
infrastructure.

2.3 � Containerization technologies

Container-based virtualization technology [39] has been widely investigated over 
the last years [42]. In this section, we briefly depicted some container technologies, 
including Docker, Singularity, and uDocker. These technologies are, respectively, 
representative of container-based virtualization techniques. Currently, they are 
adopted in scientific computing communities. Some of the container technologies 
focus on specific applicability in the industry, such as Docker. Others focus on the 
portability of containers across HPC environments, such as Singularity. Each of the 
technologies mentioned above implements its methods to achieve process hardware 
and network isolation. In terms of container security, isolation is the main impor-
tant concept needed to enhance security level in all solutions, such as cloud comput-
ing, GRID, and HPC clusters. A user space defines a separate instance of a running 
container.

2.3.1 � Docker

As illustrated in Fig. 1b, Docker [11] is a lightweight container-based virtualization 
platform. Extend functionalities from Linux containers LXC [7], such as sharing 
the same operating system among containers, built from the same container image, 
where the processes inside a container seem like they own the entire system.

Docker container provides methods for security level, by using namespaces, 
and Cgroups mechanisms, to achieve process hardware, and isolation mechanisms. 
There are many types of namespaces, like the user, net, PID, mnt, Cgroup, time, 
etc., which limits the user’s space and provides isolated Linux kernel resources (user 
management, file system, network, hostname) for the container. Therefore, Cgroups 
kernel mechanism manages to process subsets by enforcing resource consumption.

Xiaolian Li et  al. [43] perform a measurement study on Linux container secu-
rity using real exploits that can break the isolation launched to attack containers, by 
proposing a defense mechanism to defeat all identified privilege escalation attacks. 
Sergei et al. [44] enhanced container security by providing a secure container mech-
anism to protect the container processes from outside attacks using the SGX trusted 
execution support of Intel CPUs. Aside from that, Docker is the most popular 
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platform for containerization for different operating systems (Linux and Windows). 
Docker allows an easy way for running and managing containers among users and 
data centers. Moreover, Docker images can easily build with a Dockerfile, which 
specifies initial tasks, then used to construct container images on top of an exist-
ing one by adding another layer. Docker-Hub [45] is the main container registry for 
sharing applications with automated builds. It contains all requirements related to 
the software application, dependencies, and libraries needed to run the application 
on the Docker engine. Docker-compose is the engine that provides an efficient layer 
to run micro-services. Indeed, micro-services are encapsulated into multicontainers 
of one composed application. They communicate via the network and interact with 
volumes for data storage. Noting that, the density of a Docker can increase to handle 
more workloads.

2.3.2 � Singularity

Singularity [12] is a pattern developed by Lawrence Berkeley National Laboratory 
(Sylabs Inc.), which focuses on Linux container approaches. Allow users to create 
and deploy their execution environments, designed for computational science. Sin-
gularity images can build starting from specific languages and can be a result of 
the conversion of Docker images even layered differently from Docker. Moreover, 
Singularity allows the configuration of namespaces for containers. It can minimize 
the number of virtualized namespaces. The goal is to achieve mobility, network and 
resource performances. Singularity container platform provides a container with the 
same privileges (inside and outside it), which ensures users operate freely in their 
working environment. Singularity provides software stacks into a single configura-
tion file for building and distributing containers on other different platforms [46]. 
This file has a special format (Singularity Image Format ‘SIF’), enables new fea-
tures that guaranteed reproducibility, portability, and security related to cryptogra-
phy signing, i.e., (PGP key).

Singularity aims to provide a containerization engine for a security model that 
differs from the other models proposed by the others container platforms, which 
enable untrusted users to run untrusted containers safely. Singularity enables shar-
ing the entire user namespaces with the host system except for the mnt namespace, 
to disable running a host file with another unprivileged user in a container. This 
security model enforces security policies at runtime, by leveraging kernel security 
modules (SELinux, second, AppArmor). Additionally, Singularity gives Admins the 
ability to limits attacks and prevents them from outside the containers. It prevents 
attacks from outside the container, which disallows the changing of users’ context 
with sudo.

Furthermore, Singularity has proved its efficiency and changed the way to do 
development for computational science, using a distributed image format with an 
efficient and complete environment. Moreover, Singularity is very promising in pro-
duction within high-performance computing, because it supports various features of 
resources management, such as file systems, schedulers (LSF, SLURM, HTCondor), 
InfiniBand, Parallelism mechanism (MPI), and NVIDIA GPUs [47].
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2.3.3 � uDocker

uDocker [13] is a technology introduced in 2016, oriented to provide a user-space 
runtime environment for containers execution under Linux operating system. The 
main benefit that promotes using uDocker containers is the possibility to acquire 
customized and isolated environments, which allow running determined micro-
services. Moreover, uDocker environment can be installed without using additional 
software. It does not require root privileges and any administrator interventions to 
set up the environments.

uDdocker container images created based on Docker images using Dockerfile. 
Afterward, push to Docker-Hub or a private Docker registry. The main capabilities 
of uDocker container are capable to use process controls as a host application. Those 
process controls are used to access the network and enable interactive accounting, 
also managed by many batch systems. uDocker provides tools to access transpar-
ently to external computing environments. In addition, it is convenient to run 
uDocker containers into various computing infrastructures, namely cloud computing 
and HPC [48]. However, uDocker implements a large set of commands (CLI) that 
are the same as Docker. Also, uDocker promotes easing the use of those tools that 
are already familiar with Docker. uDocker engine interacts directly with Dockerhub 
to instantiate and run containers, using the Docker format.

Most of the scientific applications are usually developed to be executed in 
multi-user shared environments. This environment owns unprivileged users. 
Additionally, due to the ability to mount host directories to access data inside the 
container, it does not require an isolation feature like Docker, as long as the appli-
cations are executed without privileges [49].

2.3.4 � Comparison

To get an overview of how some mechanisms and environments interact with the 
three presented containerization technologies, Docker, Singularity, and uDocker, 
Table 1 depicts the main differences.

As is shown in Table 1, Docker and uDocker are lightweight virtualization tools. 
They use namespaces, and cgroups mechanisms to isolate the computing environ-
ments, and spinning up the amount number of containers. Moreover, they have 
inherent advantages over virtual machines (VMs), considering the start-up time 
reduced. They are near to the native performance, and convenient for migration. 
Besides, Singularity supports Docker images, there are some features in common 
with them. For instance, it is necessary during the image creation, to specify the 
HOST PATH in the mount point. As it is illustrated in the comparison table (1), the 
three containers have their corresponding registry for images. Indeed, the ability of 
Singularity and uDocker to have multi-users accessed the system. Fundamentally, 
root permission is not required, and neither escalation is allowed during running a 
container. These represent the ideal container technologies for running scientific 
applications across distributed computing resources, such as high-performance 
Computing, and GRID computing infrastructures. They offer features focusing on 
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system security, by minimizing the number of virtualized namespaces, performing 
mobility, freedom, and performance. Thus, features are used to simplify their archi-
tectural design. Therefore, Docker has been very restricted, and not adopted in these 
infrastructures.

3 � Container features

This section aims to provide an overview of container features, namely the container 
architecture, lifecycle, and orchestration. At the end of the section, we describe the 
proposed taxonomies of containerization technologies and provide a new one, which 
extends these taxonomies to cover concepts that emerged after their publication.

3.1 � Container architecture

Since 2013, container-based [51] architecture models changed from software 
components-oriented architecture to service-oriented architecture [52]. Particu-
larly, micro-services architecture is an implementation that inheriting concepts 
from service-oriented architecture “SOA”, aims to build services independently 
over distributed systems. Container introduced as a concept composed of Unix-
like pipelines [32]. The pipeline mechanism allows inter-process communication 
within Linux operating system. Micro-services are smaller autonomous compo-
nents, encapsulated in an application that performs a specific task. Moreover, it 
encapsulates everything, considering the operating system, the runtime environ-
ments with all dependencies, packaged as one unit of application, ready for exe-
cution. Micro-services architecture has successfully attracted a lot of attention. 
They possess diverse opportunities related to creating a predictable environment 
for applications, introduced as services. Each service has a specific functionality 
as opposed to a monolithic architecture, application functionality usually wrapped 
into a single process. However, distributed computing [9], and cloud computing 
[53] platforms have adopted micro-services architecture, to deploy and scale [54] 
applications as services. They are structured as a set of loosely coupled services. 

Fig. 2   Architecture-based container in computing system
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This structure makes them easier to update, and simpler to manage. An appli-
cation decomposes into multiple services, which are known as micro-services, 
delivered to users through the web technology, using an HTTP protocol mecha-
nism. They communicate with each other using REST APIs [55].

According to [56], containerization can be considered as the ideal solution 
for micro-services-based applications, with the benefit of decomposing an appli-
cation into smaller components, each component performs a specific task. This 
decomposition enables the parallelization of the processing using computational 
resources, which makes the application extensible and easily maintainable [57].

In Fig. 2, we present an overview of a container-based architecture model of 
computing systems. This architecture illustrates how to deploy container technol-
ogies for intensive application processing. It introduces fundamental layers that 
provide an architecture based on container environment, and their management 
systems that illustrate parallelization functionalities, to enable high-speed distrib-
uted processing of intensive scientific applications at a large scale.

3.2 � Container lifecycle

Container lifecycle is referring to explore the states that are possible for the con-
tainer. The container manager provides a framework offering a set of API. This 
framework allows easy management of the container’s lifecycle, considering con-
tainer creation, building, running, and maintaining. First, the developer has to create 
his new image as a template. Afterward, all operations are going to operate with 
this image created. As shown in Fig. 2, the entire lifecycle of the container, after the 
creation of the basic image, moves into the running state. Moreover, the container 
can have different states such as paused, killed, and stopped.

Container application implementation is primarily about consistency, flexibil-
ity, and scalability. Thus, to manage easily the container applications lifecycle [58], 
which means that is responsible to ensure that the system resources are efficiently 
utilized without downtime. As shown in Fig. 3, the container application lifecycle 
begins with a scientist or a developer that wants to implement his container image. 
Developers create the container-based image and hold everything inside the image, 

Fig. 3   Container operations lifecycle
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including the software, the libraries with all dependencies. Hence, using different 
libraries than used by the host OS to reinforce the container security, and solving 
application conflicts between other environments. Then, they validate and push the 
container images into the registry, and finally, easily shared with IT Operations and 
throw them up in the production environment. The majors’ benefits are to simplify 
the build, test, and deployment of the container workflow pipelines for DevOps 
environment, where developers can leverage third parties such as Jenkins to auto-
mate their Docker application releases.

3.3 � Container orchestration

The container orchestration is a layer that interfaces with applications. It main-
tains service-level agreements, by scheduling containers in a cluster, choosing the 
optimal hosts and keeps the container running in the desired state. Nevertheless, 
the orchestration layer is required when the number of containers and devices 
increases regularly in the cluster. Containers orchestration is a platform-based 
micro-service that orchestrates computing, networking, and storage resources 
to support user workloads. Indeed, it is used to automate and manage procure-
ment and deployment, allocation of resources, scaling, scheduling, load balanc-
ing, and securing interactions between containers, see Fig. 4. Moreover, container 
orchestration platforms allow organizations to rationalize application develop-
ment through deploying the same application without needing to redesign it, con-
figuring them according to the container which they will run, and, accelerating 
the process of delivering them, across clusters, or in cloud infrastructures [59]. 
In this case, the application runtime environment takes the form of jobs, where 
a job may define as a single containerized task. Furthermore, containerization 
became increasingly popular because of the following features provided by con-
tainer technologies, including performance [21], isolation, scalability [36], port-
ability [60], dependency, fault-tolerance, and load balancing [36]. Those advan-
tages involve infrastructure services, ensuring distribution of the load between 
container instances and making applications run efficiently.

In this section, we discuss some container orchestration systems, including 
Docker Swarm, Mesos, Kubernetes, and Nextflow. Moreover, there are many other 
orchestration platforms such as Cloudify, Rancher, and Red hat Openshift, which 
use Kubernetes as a fundamental platform.

3.3.1 � Docker swarm

Docker Swarm [61] is an open-source orchestration platform, originally is the native 
Docker orchestrator. Docker Swarm supports Docker container for the beginning on 
Linux, and after supported on Windows in 2017. Docker Swarm service is defined 
using a configuration file, written in YAML, to brin gup a pool of Docker instances 
across cluster nodes. Docker Swarm disposes of two categories of nodes, a manager, 
and a worker node. Indeed, the Swarm manager has the responsibility of managing 
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related tasks to the delegation of process, membership, routing requests to worker 
nodes using the load balancing concept, and finally exposing services using IP 
address and port. Swarm nodes are composed of virtual or physical hosts managed 
by the Swarm manager, which is responsible to execute, control the deployment, 
manage the container lifecycle, and handle the replication of container applications. 
Therefore, the Docker engine supports the clustering functionalities, to build stacks 
of scalable production-grade applications. In this case, users may add Shiny-Proxy 
[62] layer to Docker Swarm. There are many features brought by Swarm, such as 
rolling updates, auto-recovery services, and applying security mechanisms much 
better than Docker-compose. This last, designed only for the development environ-
ment instead of the production environment.

Docker Swarm does not provide monitoring of resources utilization mechanism. 
Therefore, Bella et al. [63] analyzed the performance of the load balancing mecha-
nism required to distribute and monitor the memory utilization in hosts.

3.3.2 � Mesos

Mesos [15] is an orchestration and management platform developed to orchestrate 
applications using principles of the Linux kernel. It started with Linux cgroups con-
tainers and then supports Docker containers. Indeed, Mesos has three main compo-
nents, namely ’Mesos Master’ to manage resources negotiations amongst agents and 
frameworks, ’Mesos Agent’ to execute tasks requested within available resources, 
and finally, ’Mesos Framework’ to weave workloads with each other, pooling 
resources of all hosts to build up distributed computing systems efficiently. How-
ever, Mesos does not natively support service discovery functionality. Therefore, to 
address this lack, a third party such as Kubernetes or Swarm is involved. It takes 
a modular approach to group containers when dealing with other containers man-
agement. It allows the cluster-wide management of services running on its top. It 
maintains the execution of applications launched even if node failures, including 
Kubernetes, Swarm, Chromos, and Marathon [64]. Mesos-DNS integrated discov-
ery service acts as a load balancer responsible to manage applications. Noting that 
due to Mesos features of redundancy and scalability, it is ideal to run applications 
that require large systems, such as Spark, Kafka, Hadoop, Elastic search, and Kuber-
netes. In addition, Mesos schedules the deployment of containers into clusters, by 
determining the best host for running containers. In [65], the authors adopted a 
scheduling policy based on two levels to schedule tasks into a node, and to allo-
cate resources. Xiaolian et al. [43] verify the communication performance of Docker 
containers applications built on Mesos cluster. The authors show the resource allo-
cations’ influence on response time using the DRF (Dominant Resource Fairness) 
algorithm. As result, the authors prove that the system can ensure an adequate and 
feasible communication performance. Another work [66] shows system efficiency 
with higher performance when connecting a system based on workflow to container 
schedulers.
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3.3.3 � Kubernetes

Kubernetes (k8s) [16] built firstly by Google, then open-sourced in 2014 [67]. 
Kubernetes is a powerful orchestration platform, aims to automate the deployment 
of application services. These applications are set over multiple containers, sched-
uled, and managed at a large scale efficiently. The adoption of Google Kubernetes 
[14] has gained popularity to manage scientific workloads, due to the great features 
of deployment, flexibility, portability, and reproducibility [68]. Furthermore, Kuber-
netes provides frameworks to deploy and manage workloads inside clusters auto-
matically. It is built out of one or multiple containers gathered in PODs. The POD is 
a fundamental building block in the Kubernetes cluster. It encapsulates one instance 
of running applications across clusters. The Kubernetes cluster is composed of Mas-
ter and Worker nodes. Hence, the master node is the core component of the orches-
tration system, and the worker nodes perform well-defined services to run PODs. 
Indeed, Kubernetes takes control of running containers by automating their lifecycle 
management and securing workloads. Kubernetes can assists workload for load bal-
ancing by using basic monitoring, logging, and health checking. In addition, enables 
moving applications without redesigning them.

The Scheduling in Kubernetes uses containers as their primary unit of execution, 
and isolation. It decouples users from all details of the underlying computing infra-
structure. It places containers on worker nodes automatically and recovering them 
from failure. Therefore, Kubernetes can apply a user remapping feature, which can 
rely upon defined users in a container to system-defined non-privileged user IDs. 
Hence, the controllers can manage a particular aspect of a cluster state, to regulate 
the state of a system. For example, they control the execution of containers in a clus-
ter, or at a large scale. Nevertheless, it is necessary to make the current execution 
state come closer to that desired state.

Kubernetes become more prevalent, and his performance features become more 
crucial. It requires configuring the system, to match the application requirements, to 
the best concern. Thus, by choosing optimized images, configuring resources related 
to nodes, PODs. Also defining all Kubernetes features, by setting up the resource 
limits, ie., memory, CPU usage, Disk I/O, and network I/O. All these are about to 
give an efficient performance adjustment.

For instance, the main benefit of using Kubernetes is that it is proficient to auto-
mate the container’s deployment and establish communications between them. To 
enhance an efficient integration between all micro-services, we have to monitor 
the performance of containers, micro-services interactions, trace user requests, and 
solve identified issues.

3.3.4 � Nextflow

Nextflow [69] is a workflow management system “WfMS”, designed for data-driven 
computational pipelines, developed by the comparative bioinformatics group at the 
Barcelona CRG (Centre for Genomic Regulation). Nextflow is designed to pro-
vide a portable, flexible, and reproducible workflow management system executed 
on multiple platforms, like HPC and cloud platforms. It supports several container 
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runtimes, such as Docker, Singularity, and Common Workflow Language (CWL) 
support, along with the integration of GitHub that allows reproducing any former of 
them, where they showed performances close to the local computing environment 
[70]. Moreover, it is more suitable to scale up or scale out of scientific workflows 
transparently. Google Pipelines APIs are used to manage computing services and 
allow the execution of containerized workloads. It provides parallelization features 
based on DSL (domain-specific language), to simplify writing computational pipe-
lines to deploy workflows and process the huge amount of data that may alter into 
components independently.

3.3.5 � Comparison

Table  2 presents a comparison of various features of different orchestration plat-
forms, including Kubernetes, Swarm, Mesos, and Nextflow. This comparison 
allows administrators and researchers to choose the most appropriate tool for con-
tainer orchestration. Docker Swarm is quite popular amongst developers. It offers 
fast deployments and simple features to get starting. However, it is not extensible 
with limited fault tolerance. Kubernetes is a powerful and highly extensible plat-
form. Furthermore, Kubernetes, Mesos, and Nextflow platforms support services 
built up with more complex approaches than Swarm, used for production environ-
ments. Moreover, Mesos takes a distributed approach to combine multiple clusters 
to manage computing systems and cloud resources compared to Docker Swarm and 
Kubernetes.

4 � Containerization taxonomy

In this section, literature taxonomies of containerization technologies are discussed. 
Then, a new one that covers and completes those proposed in the literature. There 
are some efforts in the literature to improve the understanding and classifying of 
container technology. Casalicchio and Lannucci [71] proposed a taxonomy of con-
tainers that structure the container landscape in subcategories, applications, orches-
tration, performance, and security. Many challenges are covered in each subcategory 
such as performance for scheduling, auto-scaling, availability, and security. The 
authors performed and evaluated containers performances using orchestration man-
agement systems to packaging containers for applications on different distributed 
computing infrastructures. Ernst et al. [72] proposed taxonomy based on the techno-
logical foundations of containers. They subdivided container technologies into two 
main building blocks: lifecycle management of containers and cluster management 
of containers across multiple hosts. The taxonomy provides a global overview of 
container components and it helps to compare, integrate, and analyze containeriza-
tion and their respective orchestration system. Another taxonomy proposed in [73] 
describes a reference architecture that gives a global view of container ecosystems 
and their patterns that represents container units. The goal behind this taxonomy 
is to facilitate the work for those who are using container-based systems and per-
form security analysis of the whole system. Rodriguez and Buyya [74] present a 
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taxonomy that provides a classification of container orchestration systems, which 
can be applied for further research studies. This taxonomy identifies mechanisms 
that can use to meet challenges related to scalability, fault tolerance, and availability 
within efficient resource utilization. Maxime et al. [44] proposed a taxonomy related 
to container security that defense the infrastructure level. They analyzed some infra-
structure approaches to improve the security level of containers. They classified 
frameworks required to set up and enforce security when data is transmitted between 
the container and the host kernel.

In these works, the authors introduced an architecture reference based on layers, 
application layer for submitting job users, cluster manager layer to managing clus-
ters and orchestrating jobs, cluster of worker compute nodes layer and infrastructure 
layer for deploying compute nodes.

Due to the very rapid evolution of the container approach, most of the proposed 
taxonomies potentially became outdated in a short time. In this work, we introduce a 
taxonomy that completes the existing one by covering characteristics of containeri-
zation, discussed in the previews taxonomies [71–73], and [75]. Moreover, it illus-
trates container technologies challenges and puts in evidence concepts required to 
illustrate parallelism functionalities to scale scientific applications using container-
based systems. Adding parallel functionality to the taxonomy will be beneficial for 
scientists for different application domains who are interested to easily deploy the 
required software efficiently across distributed computing infrastructure to scale 
their applications.

We proposed containerization taxonomy as shown in Fig. 5. It provides an adap-
tive sampling for container orchestration platforms designed for scientific purposes, 
which follows the container-based architecture model depicted in Fig. 2. This tax-
onomy defines a classification for all layers depicted to enable features needed to 
accomplish the processing of containers based on orchestration systems, designed 
for high-performance computing infrastructures. Then, itemize each layer with the 
appropriate classification that points to job submission, scheduling, security, lifecy-
cle management, monitoring, and performance.

The proposed taxonomy aims to provide a classification for the whole container-
based orchestration system for computing infrastructures. It divides container-based 
orchestration systems into three levels namely, application, orchestration system, 
and the computing infrastructures.

•	 The application layer encompasses tools to specify container configurations 
related to networking, availability, load balancing, and service discovery. These 
tools aim to provide transparent access to the distributed computing system, via 
protocols and resource binding. Thus, guaranteed access throw different trust 
services, such as Federated AAI, GUI access, Direct API access.

•	 The container orchestration systems layer provides orchestration functionalities, 
which are suitable for container cluster management. Also to specify the coher-
ent units of containers such as PODs in Kubernetes, a single host in Docker-
compose, and a cluster of hosts in Docker Swarm. They are non-trivial stack 
that provides diverse features which are the main system objectives such as scal-
ability, fault tolerance, and flexibility. The security mechanism is important to 
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improve performance by applying isolation mechanisms. Thus, mechanisms are 
suitable to defeats attacks from outside using some policies, and a code with a 
specific configuration. Additionally, advanced network tools are responsible for 
service discovery, monitoring, and accounting. The service discovery provides 
static access to different services, where they mapped dynamically to run con-
tainers, using a discovery agent to monitor the container’s lifecycle, publish his 
state needed for observing and tracing a dynamic traffic routing. It monitors the 
containerized tasks deployed on nodes.

•	 Finally, the lifecycle management capability is important to distribute resources 
between computing nodes, scheduling of jobs, and execute containers. It consid-
ers the configuration of resources, including resource limits, resource granularity, 
and resource consumption. The scheduling of jobs consists of allocating neces-
sary computing resources and controls the execution of jobs on those workloads. 
Usually, executing a job through a container requires some setup and cleanup for 
the lifecycle container processing. Also, it provides functionalities that enable 
scale-in and the scale-out of workloads. Moreover, it offers heterogeneities fea-
tures of the underlying resources, to allocating computational resources in dis-
tributed environments, including locations, and resource types and sizes.

•	 The computing infrastructure is the physical level, composed of machines to 
manage computing processing and data management operations, considering the 
main features of resources management in the distributed computing platforms, 
including scalability, availability, flexibility, and fault tolerance. The distributed 
computing infrastructures can be physical machines and virtual machines on 
cloud (public or private). In addition, involved edge devices connected among 
them across the distributed infrastructure.

5 � Applications of containerization

This part aims to extend previous containerization efforts made in different contexts 
that promote handling a large number of resources and providing fault tolerance to 
maintain computing systems. In this section, we provide some interesting container 
application domains, discussing features provided by relevant container technolo-
gies such as performance, isolation, scalability, portability, dependency, fault-toler-
ance, and load balancing. Besides, it illustrates the main properties in the container 
orchestration platform, which are orchestration, scheduling, and isolation.

5.1 � Scientific computing

Scientific computing [76] is the power of computational processing, used by diverse 
scientific domains, especially life sciences [77], artificial intelligence, and machine 
learning [78]. Scientific computing handles a huge amount of intensive tasks as 
well as intensive data applications. Currently, containers are a hot research topic 
for scientific computing. An application built up from an image is containerized 
inside a container. However, containers encapsulate applications as well as all their 
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dependencies, isolated from the other processes running in the same host. The host 
can provide a view of all containerized resources, while containers share the same 
operating system kernel.

Scientific computing within the emergence of containerization offers to scientists 
a range of container solution to develop, manage, and applies isolation mechanism 
between application processes, and run them independently from the other running 
applications container. In addition, the orchestration platform like Kubernetes [16], 
enables automated deployment, scaling, and managing of containerized applica-
tions. As result, we can have an execution environment portable, secure, easy to 
scale, and simple to manage.

In the work [48], the authors introduced the INDIGO-Data Cloud platform that 
aims to facilitate access to e-Infrastructures, including distributed computing infra-
structures (grid), cloud, and HPC clusters. It aims to enable porting scientific appli-
cations based on containers, using the uDocker tool. Moreover, the advent of “multi-
core” hardware processors and accelerators puts unprecedented pressure on the 
need for parallelism of applications to gain time processing by applying advanced 
implementations of parallelization (MPI, OpenMP, and Hybrid) and GPU support. 
Then, container technology is well suitable to deploy parallel scientific computing 
in distributed computing and shared storage systems. To take advantage of the fast 
network and leverage hardware acceleration, Lucas Benedicic et al. [60] deployed a 
detection system tool in a host of MPI libraries, which provides parallel implementa-
tions inside a container, to ensure the portability of the application. In particular, the 
advantage is to achieve native performance by providing efficient and scalable mes-
sage parsing communications. Wang et  al. [21] studied how to improve container 
performance aspects for aerial systems by executing containerized applications in 
native and computing environments.

On the other hand, modern scientific workflows [66, 79] represent another trend 
of scientific computing-intensive applications, which require sharing a large amount 
of data between tasks. A container-based virtualization mechanism is emerged 
within the scientific workflow to provide a portable, flexible, and reproducible work-
flow management system across HPC platforms.

5.2 � Big data processing

Big data processing is the handling of data-intensive applications that require frame-
works and sophisticated programming models to handle a mass of data in a reason-
able amount of time. Humans and machines generate such data sets from sensors 
and social networks. However, it is tough to store, analyze, process, and visualize 
those datasets using traditional database approaches. Nevertheless, big data appli-
cation processing faces challenges in dealing with those massive data sets, to do 
their processing above distributed computing nodes that require a high speed of the 
network, scalable storage systems, and large bandwidth of the memory. Besides, dis-
tributed computing systems must change the way hardware resources are managed 
to improve their performance.
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Over the last years, containers are considered an exciting topic to manage inten-
sive-data applications, which have gained more performance from distributed stor-
age environments. Various scientific domains such as big data analytics [77], dis-
tributed processing, monitoring devices, security, and the Internet of Things (IoT) 
are producing a mass of data that carried out using frameworks capable to manage 
those data sets at a large scale. However, containerized parallel applications enabled 
for big data processing systems require MPI libraries and specialized hardware like 
graphical processing units (GPUs) and field-programmable gate array (FPGA). It 
provides scheduling of containerized jobs to speed up the analytics tasks. To guaran-
tee that the security performances of HPC platforms based on containers for big data 
processing are near to the native computing environment.

Zhan et al. [6] considered the efficiency of hardware resources such as CPU and 
memory, used in scheduling big data applications to achieve better performance and 
higher utilization. The authors compared the execution of Spark Jobs between a con-
tainer and virtual machine environments to improve performance in terms of make-
spans of running workloads, scaling, and convenient execution environment. The 
results mentioned that containers offer easy deployment and scalable environments 
of big data workloads compared to virtual machines.

Liu et al. [80] presented a study of a big data platform based on cloud comput-
ing container technology. They deployed the Kubernetes cluster to manage comput-
ing resources instead of YARN, where YARN manages cluster resources, including 
storage and execute data jobs efficiently at a large scale. This study poses challenges 
when running big data workloads that require scalability, performance, and promise 
fault-tolerance features. Thus, prove that those features guaranteed an easy deploy-
ment of scalable stream processing and batch processing for applications at a large 
scale efficiently.

A containerized distributed platform for high-performance computing and scal-
ing big data applications used for execution and management on HPC nodes, illus-
trated in the work of Aldinucci et al. in [81]. The authors presented the SmartData@
POLITO Big Data HPC centre that belongs to the Italian research network, which 
aims to offer a big data workloads, using Apache Mesos and Marathon for schedul-
ing of containers, designed to be horizontally scalable to enhance performance, and 
do not affect users execution workspace, even during the execution phase.

Another work is done by Sergeev et  al. in [78] studied distributed deep learn-
ing and machine learning used by TensorFlow instead of MLIB library afforded by 
Apache Spark machine learning. TensorFlow is a typical toolkit specialized to sup-
port machine and deep learning stacks in high-performance computing, it enables 
the build-up of singularity images for scientific computing.

Rao et al. [82] explored several stages of the big data system, data sources, data 
management, computing frameworks, and data analysis, categorized into vari-
ous types, in-memory computing, and in-memory data models, set respectively 
by Apache Spark, Map-Reduce frameworks. Therefore, they provide an overview 
of advanced processing tools necessary for the analysis of massive datasets, using 
the stream, batch, distributed/cloud environment, container orchestration plat-
forms, interactive querying, and data-ingestion. They compared those systems using 
machine learning (ML) tools, utilizing streaming processing, computing processing, 
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interactive analytical processing and graph processing at a large scale, by handling 
massive data sets that belong to real case studies. As result, they make an efficient 
observation that helps to use suitable tools properly for big data application process-
ing in respect of operations of the delivery mechanism, replication, scalability, fault 
tolerance, storage, memory management, and other parameters, like throughput and 
latency measurements.

Recently, Blamey et al. in [83] introduce a study on containers that enhance using 
Apache Spark for stream processing instead of using Map-Reduce. Furthermore, 
Apache Spark provides a high throughput processing of streams, such as (Spark 
SQL as a high-level computationally tasks tool).

5.3 � High‑performance computing

High-performance computing (HPC) or "computing capacity" addresses the prob-
lems that require specific capacity. Usually, it allows highly optimized and tightly 
coupled centralized installations of processors. Moreover, interconnected with 
specialized hardware, using Infiniband, accelerators, and GPGPU, which is offer-
ing functionalities used to accelerate application processing. In the work of Aldi-
nucci et al. [81], the authors give an overview of HPC4AI project that involves 
various high-performance computing centers that belongs to the Italian research 
Infrastructure. The HPC-center hosted HPC clusters provide a solution of adap-
tive container-based architecture, targeting distributed nodes interconnected by 
Infiniband. Those clusters shared the same Luster storage for HPC applications. 
They allow creating a customized execution environment using Singularity con-
tainers images. The container images are managed through a private Singularity 
HPC registry. Where users can upload images and download them.

Azab in [19] introduced a secure wrapper named “Socker” to deploy Docker 
containers on high-performance computing platforms. He added functionali-
ties inside the wrapper for running Docker containers to solve issues related to 
enforcing membership of running Docker containers (for security) and limita-
tions of resource consumption (CPU, memory) on queuing systems in production. 
Socker is suitable for running many tasks computing using MPI jobs. Wang et al. 
[21] studied how to improve container performance aspects for Aerial Systems 
by executing native and containerized applications in computing environments. 
Results show that container outperforms virtual machine in most of the perfor-
mance aspects, due to the benefit of isolation of most hardware resource.

Piras et  al. [84] proposed a method that brings a solution to deploy worker 
nodes in Kubernetes clusters. They used the Grid engine to deploy Bach jobs 
dynamically on the HPC system.

In [60], Lucas Benedicic discussed how computing systems could achieve 
scalability by leveraging modular architecture. He presented a container engine 
called “Sarus” deployed to launch container instances for HPC environments. The 
Sarus environment offers security within resources management and application 
deployment. Results show that performance and scalability are better than the 
native execution.
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Zheng et al. [66] presented a model built to process container applications on 
HPC cluster with the Mesos orchestration platform. They connect Makeflow to 
Mesos platform to claim resources on demand. They adopt two levels of resource 
scheduling model, namely static and dynamic, which allow more flexibility.

We consider the work of Zhou et al. in [85]. The authors introduced an archi-
tecture based on Torque-Operator to bridge HPC workload managers and con-
tainer orchestrator platforms. This architecture composed of an HPC cluster with 
Torque, and a Kubernetes cluster with WLM-Operator. Torque-Operator extends 
WLM-Operator with Torque. WLM-Operator allows the submission of Slurm 
jobs to Kubernetes cluster. This platform enables to schedule the execution of 
containerized and non-containerized jobs from HPC cluster to the cloud platform.

However, considering HPC as a specific environment is not opportunis-
tic since various architectures and categories of distributed computing systems 
exist. Therefore, we discuss some of the high-performance computing categories, 
including grid, cloud, and cluster in the next paragraphs.

5.4 � Grid computing

Grid computing [59] introduced by Ian Foster, as a federation of distributed hetero-
gonous resources, cooperates among multi-institutional research communities, called 
virtual organizations. Virtual organization (VO) [86] is a community group, logically 
grouped, working on the same, or different topics of research to authorize them using 
the computing systems. The Grid computing infrastructure comprises compute, stor-
age, and network resources, designed to bring the processing power and many of the 
technology capabilities, to solve computational problems that belong to a specific 
scientific domain. It provides toolkits to accredit users through authorizations and 
authentications. It allows data management, accounting, and resource monitoring, and 
designed to run massive and long-running computations over days and weeks. Moreo-
ver, it establishes application processing using job schedulers such as Slurm, LSF, and 
HTCondor. Grid computing is now known as the Distributed Computing Infrastructure 
(DCI).

Containers’ applicability towards Distributed Computing Infrastructure recently 
considered by using orchestration platforms, to handles scheduling of containers across 
clusters. The European Grid Infrastructure Foundation project (EGI)[81]provides 
a computing and data infrastructure to carry out innovation and research in Europe. 
EGI funded to provide scientists access to 1,000,000 computing core and 740 PB of 
disk storage resources [87]. Indeed, it is suitable to run containers for intensive applica-
tions in batch systems on their HPC, and HPC systems [88]. Also, Open Science GRID 
(OSG) [89] is providing support for containers, including Docker and Singularity throw 
HTCondor [90] workload scheduler.

The Worldwide LHC Computing Grid (WLCG) involved solving major challenges 
of Large Hadrons Collider (LHC) [91] particle physics experiments at CERN [86]. 
This infrastructure allows access to a huge amount of distributed resource archives and 
can support powerful, complex, and tedious data analyses. Usually, data storage relies 
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on a shared file system such as NFS, DPM, Storm, and Luster, to leverage data infor-
mation when scheduling computational tasks.

Nevertheless, deploying containers on distributed computing systems poses chal-
lenges due to the massive volume of high-energy physics (HEP) software stacks. 
Simone Mosciatti et al. [92], introduces container as a solution to run scientific applica-
tions on high-energy physics domain. They deployed Docker image used as a source 
image, converted after to Singularity image as a flat root file systems, and to Docker 
image as a compatible directory structure, and then published into CernVM-FS reposi-
tory. Then, to evaluate their approach they deployed real uses-cases using LHC experi-
ments in a production environment, integrating Singularity container. Results of this 
work show that the computing environment based on container technology is robust 
and near to the native performance, compared to that one based on virtual machines.

5.5 � High throughput computing HTC

In particular, high throughput computing (HTC) [93] is another category of comput-
ing infrastructure that performs a lot of computing power to address problems that 
require a large amount of computation time. HTC is the efficient execution environ-
ment of a large number of loosely coupled tasks. It offers storage capacity and anal-
ysis support to process a huge amount of experimental data. For instance, recently, 
CERN [86] started to emerge Singularity containers among HTC (high throughput 
computing) computational infrastructure, which has played an important role in 
deploying complex software inside containers. Results of integration show that HPC 
resources based on container technology are robust and near to the native perfor-
mance, compared to that one based on virtual machines [94].

5.6 � Cloud computing

Cloud computing is defined by Ian Foster [59] as a “large-scale distributed comput-
ing paradigm that is driven by economies of scale, in which a pool of abstracted, vir-
tualized, dynamically scalable, managed computing power, storage, platforms, and 
services are delivered on-demand to external customers over the Internet”. Cloud 
computing allows deploying and scale services on-demand, by selecting precon-
figured virtual appliances, with complete control over computing resources. Cloud 
computing comprises three fundamental layers: (1) Infrastructure as a Service layer 
(IaaS), which provides virtual appliances, including, computing, networking, and 
storage. (2) Platform as a Service layer (PaaS), which provides platforms to man-
age, develop, and deploy applications. (3) Software as a Service layer (SaaS), which 
provides software  to end-users. Maenhaut et  al. [31] introduced the adoption of 
container technology in traditional cloud computing (private, public, and hybrid). 
According to them, containerization gives advantages that guarantee security, per-
formance, and elasticity concepts, for High-performance computing during schedul-
ing [2] of compute nodes and managing resources efficiently. Then, cloud comput-
ing has adopted the usage of container technologies in their infrastructures through 
the Containers as a Service (CaaS) solution [53].
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European Grid Initiative Foundation infrastructure (EGI) [95], implements a fed-
erated cloud to access cloud provider’s resources that belong to National Resources 
Network initiatives “NREN”, based on cloud providers resources. Recently, it deliv-
ers Container as a Service “CaaS” [96]for advanced computing power and storage 
for data-intensive science research applications using EC3 (Elastic Cloud Comput-
ing Cluster) [97], which allows the creation of elastic virtual clusters as a service 
[98]. Moreover, EGI enables using the INDICO-Data cloud [99] platform as a PaaS 
orchestrator to build an application encapsulated as a container, and launch it in 
the Cloud, from a web interface (Future Gateway). INDICO-Data cloud offers ser-
vices as service (SaaS) to deploy specific services relevant for scientific computing 
regarding authentication, workload, and data management. It provides too, another 
platform as a service PaaS for CMS experiment, called Dynamic on Demand Anal-
ysis Service (DODAS), to instantiate container-based clusters to execute software 
applications and distribute the load across cloud providers.

Several popular cloud providers have invested in Container technologies. For 
instance, Amazon Web Services (AWS) [100] provides Elastic Compute Cloud 
(EC2) as compute instances, using Elastic Container Service (ECS) to build Kuber-
netes (EKS) clusters since 2017. Google Cloud Platform (GCP) [101] provides 
Google Compute Engine (GCE) for users to create and run virtual machines on a 
large scale. Moreover, Google Cloud Storage is used to store large data objects, con-
sidering consistency, durability, high availability, and scalability features. Besides, 
to benefit from Google’s network capabilities that offer high performance and auto-
matic dealing of load balancing issues. Microsoft Azure [102] provides Hyper-
V containers, where each container runs inside of a special virtual machine. Red 
Hat’s OpenShift [17] is a leader and active builder of Kubernetes. It provides addi-
tional tools for automatically deploying, building, updating container infrastruc-
ture. It offers monitoring and security features for cluster management and resource 
provisioning.

5.7 � Internet of Things “IoT”

The Internet of Things (IoT) is a new paradigm. It is a recent trend of traditional 
cloud computing infrastructure that integrates not only traditional computers but 
also many kinds of things, lightweight devices, or a large number of technologies 
manage objects around us like mobile edge (smartphone) In the real world, IoT 
embedded many of network sensors, and intelligent devices, which generates a 
huge amount of data. These massive volumes of data generated [80] by IoT devices 
require storage capabilities, computational resources, and wireless communication 
of the distributed computing infrastructures. Where computing resources might be 
closer to IoT devices to reduces latency and provides high bandwidth of the network.

In another work, Chang et  al. [103] depicted a virtualized system based on 
Open5GCore using virtualization techniques to simulate IoT devices. The authors 
analyze the performance of the 5G network throughput, response time, CPU utiliza-
tion, and memory usage in this system. Their results show that the use of the Docker 
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container is the most appropriate solution and feasible because of its low virtualiza-
tion overhead and rapid deployment at a large scale.

Aruna et al. [36] studied scalability in the Internet of Things (IoT) system using 
container technologies to manage resources, integrating many connected devices. 
For this aim, they introduced a new paradigm that enables IoT scalable architecture. 
Results show that IoT based on the model may extend the network; it expands the 
scalability and improves the efficiency of services related to CPU, memory, and I/O 
performance.

In the work [104], the authors tested the performance of Internet of Things (IoT) 
applications within computational processing and storage capabilities on top of Fog 
computing based on a cluster of SBC (Small Board Computers) devices. They pro-
pose a solution based on Linux containers and an orchestration platform. They tested 
wireless communication in Fog computing. The comparison shows that the Internet 
of Things and its applications based on container orchestration platforms (Docker 
swarm end Kubernetes) can support running more pods of containers than cores in 
SBC devices. However, Docker Swarm outperforms Kubernetes in terms of the use 
of resources and processing time. But Kubernetes outperforms Swarm with higher 
performance, due to the auto-scaling to perform the load balancing features offered 
by Kubernetes. As result, IoT applications showed an improved performance.

5.8 � Fog and edge computing

Fog computing [104] is a paradigm, introduced by Cisco Systems Inc leveraging 
heterogeneous nodes such as devices, gateways, and computers. It provides faster 
reaction with low overhead of storage and networking services, between devices 
[105]. Moreover, Fog computing extends traditional cloud computing architecture 
to the edge of networks, to have better flexibility to scale servers. Both of them have 
brought a new era to design, deploy IoT applications, and distribute them through 
FoT nodes. While Fog nodes provide tools to manage storage and data processing 
into devices, considering, resource allocation, monitoring, and security [36].

Edge computing (EC) [106] tends to push computing applications, data process-
ing, and services away from centralized cloud data center architectures to edges 
belongs to the underlying network, to save network bandwidth.

Rafael et  al. [104] have introduced a study among Fog computing using SBC 
cluster (Small Board Computers) devices. The authors proposed a solution based 
on Linux containers and orchestration platforms such as Swarm and Kubernetes, to 
carry out the scheduling, the processing, and manage storage capabilities on top of 
two types of clusters (Homogenous and Heterogeneous). They perform a compar-
ison between them using both communications wired and wireless environments. 
The authors collect experimental tests related to the monitoring of devices’ sta-
tus, measuring their memory and CPU availability. Results showed in general an 
improved performance in terms of execution time, latency, and throughput network.

For instance, in Kaur et al. [107], KEIDS’s system model for Kubernetes deploy-
ment in an IoT ecosystem equipped with edge-cloud functionality is a competent 
controller. KEIDS aims to minimize the energy usage of edge-cloud in IoT devices 
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and solve the problem of application tasks scheduling on available nodes in less 
time, using linear programming based on multi-objective optimization. An evalua-
tion of this system indicates that its superior performance in real-time.

In reference [108], the authors study the performance and scalability bottleneck 
of data movement (MPI, asynchronous) on HPC environment-based virtualization. 
They designed a model based on the range of two-stage methods to enhance the per-
formance of the HPC system. Their results show that the performance of this model 
can improve the performance needed for running a real scientific application.

5.9 � DevOps

Development and Systems Operations “DevOps” [109] is a community interested in 
application development and programming. In recent years, micro-services architec-
ture is considered an exciting topic besides the community of DevOps. Developers 
became more productive within programming applications through micro-services 
format deployment. Then, the final application is obtained by the composition of 
micro-services components.

Furthermore, container orchestration engines, namely Kubernetes, Swarm, and 
Mesos are involved in DevOps infrastructure management to provide portability and 
dependency features. Containers can run everywhere, from development to produc-
tion. Each developer should develop a component separately, defining the standard 
image format, and the run-time environment for containers, without interfering with 
the other application components. Usually, the developer starts to develop an appli-
cation from a base image format, which contains the operating system and default 
libraries. Although, the image layered by adding customized libraries and data to the 
code source. Moreover, the multilayered application image built is read-only except 
for the last layer who is persistent.

6 � Performance metrics of containerization

Many works [6, 32] have been compared to the performance of different virtual-
ization concepts. In this section, we discuss performance parameters considered on 
container technologies over computational environments, as well as how to evaluate 
the best performance of using containerization along with virtualization.

6.1 � Computing performance

Computing performance attracts the measurement of performance that encompasses 
testing CPU, Memory throughput, and Disk I/O resources. To do that we need to 
measure the number of operations, the completion time of tasks performed by the 
system, using benchmarks tools.
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Many works [56] that have been done testing containers overhead by comparing 
them to virtual machines such KVM, as seen in [32], the authors measured the CPU 
overhead of containers, including Docker, LXC, and Singularity. Testing CPU per-
formance provided by using the ‘Sysbench’ benchmark across the industry applica-
tion domain. Although this work showed that the CPU performance of containers is 
better than virtualization and almost the same as native performance. Indeed, for the 
work of Wang et al. in [21], where authors studied container performance aspects 
for Aerial Systems by executing native and containerized applications in computing 
environments.

Recently in the work [110], they discussed applying Sysbench, Apache and 
Phoronix benchmarks tools, to evaluate performances of containerized applications 
in computing environments such as HPC cluster. Therefore, most of the results show 
that container performance is better than virtual machines and almost the same as 
the native. Because they use fewer resources, and while they share the same OS, 
their boot-up time is short and their creation time is within seconds.

Rafael Fayos-Jordan et  al. in [104] compared container orchestration platforms 
with different communication topologies (wired/wireless) on SBC devices, in terms 
of use of resources, and processing time, show that the model deployed on the Inter-
net of Things devices and its applications has the lowest power consumption and the 
lower throughput.

In paper [6], Zhan et al. provided container performance for Big data processing 
using different big data workloads, considering scheduling, packaging, and resource 
access problems. According to their results, container achieves low overhead with 
using CPU and memory, and better scalability than virtual machines.

In[36], Aruna et al. studied the ability to scale an Internet of Things (IoT) system 
using containers to manage resources, including many connected devices. As result, 
the performance of the extended network improves the scalability and efficiency of 
services related to CPU, memory, and I/O.

6.2 � Isolation performance

Containers provide a virtualization mechanism that allows running an application 
and its dependencies in an isolated environment (user-space) instead of creating 
virtual machines. In resource isolation, the failure is due to the excessive resource 
utilization by the process of one container and cannot affect the others. As seen in 
[56], the authors evaluated the performance of an isolated execution environment, 
by executing containers with collocated micro-services and comparing them to a 
baseline container running one micro-service, to identify the interference between 
them with minimal degradation performance. Their results show that the best per-
formance of micro-services is achieved within the deployment of micro-services in 
separate containers.

Container measurement as discussed in the work of Wang et al. [21] used to refer 
to one or more processes running in an isolated fashion, where the OS-kernel fea-
tures enforce the isolation. There are many levels of security applied to measure iso-
lation performance in, considering user-pace, data, and network security. However, 
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Linux containers provide an isolated execution environment in High-performance 
computing, and this by relying on Docker Container for the execution and the 
resources management on HPC nodes, illustrated in the work of Aldinucci et al. in 
[81].

In reference [36], the authors analyzed the performance of low-cost devices of 
the Internet of Things (IoT) ecosystem on a cloud computing environment, with dif-
ferent orchestration platforms, including Kubernetes, Docker Swarm and Mesos. In 
this work, the authors conclude that the use of Kubernetes is superior to all other 
orchestration platforms including deployments of complex IoT applications.

Vazhkudai et  al. in [111] introduce containerization in the field of high-perfor-
mance computing data-intensive applications using CORAL2 data science bench-
mark, to assess the performance of the CPU, GPU, memory, I/O, and deep learning 
workloads. Thus, to allow performing the provisioning of resources efficiently and 
provides low overhead performance isolation.

6.3 � Network performance

About [32] network performance measurements in container systems are satisfy-
ing, using a network benchmark IPerf tool. On another hand, there are many other 
benchmarks used such as Linpak, Stream, Fio, and Netperf [56].

In terms of network performance throughput, in the field of Internet of Things 
‘IoT’ devices, Chang et  al. [103] assess an evaluation of the performance of the 
Open5GCore based on container virtualization techniques, show that the usage of 
Docker container is the most appropriate solution, and feasible in terms of response 
time, CPU utilization, and memory usage in this system. This is because of its low 
overhead, and it allows rapid deployment at a large scale. Also, network perfor-
mance refers to the ability to perform and maintain the reliability of the network in 
the computing systems based on containers that require features such as scalability 
metrics as seen in [30].

We can also find interesting contributions in references [36, 60] to network per-
formance and platforms. The authors introduced a solution to handle computational 
resources using network interface from devices involved in Fog and Edge environ-
ments, they conclude that this variability is null, and cannot affects the communica-
tion between devices.

In [108], Hang et Lu tried to improve the performance and scalability of par-
allel and asynchronous data movement in HPC system based on virtualization. To 
enhance the performance degradation and scalability bottleneck of I/O virtualization 
stacks, they designed a BADM middleware based on v-switches to reduce the band-
width of the virtual network and collective data movements. Their results improve 
the performance of executing a real scientific application.

Also, Arnaldo Pereira et  al. [112] evaluates the containers performance, run-
ning on various Kubernetes platforms across different mainstream Cloud environ-
ments including Amazon Elastic Container Service for Kubernetes (EKS), Azure 
Kubernetes Service (AKS), and Google Kubernetes Engine (GKE), using CEEM 
(Cloud Evaluation Experiment Methodology) to support traceable and reproducible 
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experimental evaluation results. Their results show that for CPU and the network-
intensive containerized applications provided the best performance.

7 � Conclusion and future work

Both containers and virtual machines technologies enable users to define and build 
their software environments and then run them on top of various resources in a port-
able, reproducible way. This paper presents a thorough investigation of containeri-
zation technologies that are widely used. We have identified the main features of 
container technology. Then, we have discussed already existing taxonomies and 
proposed a taxonomy that covers most of the existing ones. We described contain-
ers architecture for computing systems by illustrating and discussing some details 
for application domains. The work has shown that is important to understand the 
capabilities and techniques available for a given containers-based solution as well as 
the characteristics of workloads to optimize systems. At this moment, the container 
approach is at the heart of the modern computing infrastructure as it avoids sev-
eral of the challenges related to intricate execution environment dependencies that 
are often in conflict with other components of the application workflows. Contain-
ers have been adopted by several initiatives and approach a default technology like 
Cloud Native, Dev/Ops. With containers, it is possible to construct scalable archi-
tecture composed of a large number of services (micro-services), IT companies like 
Google, Microsoft, Netflix etc., are nowadays relying on container technology in 
their production environment.

While the adoption of container technologies is growing, the community still has 
many questions about such technologies. To address the shortcomings of existing 
container-based platforms and solutions, further research must be done regarding 
best practices, foundational functionalities, standards and tools. In the following, we 
highlight some interesting future research directions on the containerization technol-
ogies field. Future research in this field is highly related to the promising environ-
ments in the field. Thus, we discuss such new technologies and related challenges.

In another vein, effort should be made to track the development of frameworks. 
However, the implementation of new solutions in computing infrastructures at a 
large scale leads to a set of questions that need to be addressed in future research: 
Containers are known for their lightweight footprint and their easy deployment, but 
there is always a better way to do things. The research community will not stop at 
container technology. New emerging, technologies are already on the horizon; uni-
kernels, which look like’improved containers’ but with better security and perfor-
mance, are merging very quickly. Unikernels offer better isolation and run on a mini-
malistic operating system, which is tailored, to the application [113]. Another recent 
research initiative around container technology is the combination with the server-
less approach tools like AWS Fargate, KNative combine the serverless approach and 
containers to reduce the cost to manage the container-based system.
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