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Abstract
Hypercubes are popular topologies of massive multiprocessor systems due to their 
super properties. Cross-cubes are significant variations of hypercubes and they have 
smaller diameters and higher fault-tolerant capability than hypercubes at the same 
dimensions. In this paper, we construct node-to-set disjoint paths of an n-dimen-
sional cross-cube, C

n
 , whose maximum length is limited by 2n − 3 . Furthermore, we 

propose an O(Nlog2N) algorithm with a view to finding node-to-set disjoint paths of 
C
n
 , where N is the node number of C

n
 . And we also present the simulation results for 

the maximal length of disjoint paths obtained by our algorithm.

Keywords Interconnection networks · Cross-cube · Node-to-set disjoint paths · 
Parallel processing

1 Introduction

Huge multiprocessor systems are solutions to large-scale computing problems such 
as weather forecasting, scientific research, intelligence agencies, and data mining 
[1]. Hypercubes are widely used in interconnection networks of massively multipro-
cessor systems due to their excellent properties, including regularity, symmetry, and 
small link complexity [2]. Based on the constructive method of hypercubes, many 
variants of hypercubes were proposed [3–6]. The n-dimensional cross-cube, Cn , has 
smaller diameter and higher fault-tolerant capability than the n-dimensional hyper-
cube, Qn . Moreover, a cycle of odd length and a complete binary tree of height n can 
be embedded into Cn , while Qn does not have these properties [3].

The disjoint path problems are substantial in the design and implementation of 
interconnection networks [7–9]. The node-to-set disjoint paths problem is one of the 
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disjoint path problems: Given a single source node s and a set D = {d1, d2,… , dk} of 
k destination nodes with s ∉ D in a k-connected graph G = (V(G),E(G)) , construct k 
paths from s to di which are node-disjoint except for s for all 1 ≤ i ≤ k . As the num-
ber of nodes in interconnection networks increases, node failure seems to become 
the norm rather than exception. Therefore, constructing disjoint paths increases the 
probability of finding fault-free communication route in interconnection networks. 
So far, problems of finding node-to-set disjoint paths on some classes of graphs have 
been studied, such as hypercubes [10], Möbius cubes [11], star graphs [12], pancake 
graphs [13], burnt pancake graphs [14], hierarchical cubic networks [15], perfect 
hierarchical hypercubes [16, 17], and biswapped networks [18].

In general, the node-to-set disjoint path problems can be obtained from the poly-
nomial-order of |V(G)| by applying the maximum flow algorithm. However, the com-
plexity of the algorithm is not eligible for an n-dimensional cross-cube Cn because 
the number of nodes in Cn is 2n . Bossard and Kaneko proposed an O(log2N) algo-
rithm to find node-to-set disjoint paths in an n-dimensional hypercube Qn , where 
their longest length is no more than n + 1 and N is the node number of Qn [10]. 
Unfortunately, this algorithm is not appropriate for cross-cubes directly because they 
do not exist some properties that hold in hypercubes. Therefore, it is necessary to 
design an applicable algorithm by studying properties of a Cn . In this paper, we pro-
pose an O(Nlog2N) algorithm for constructing n + 1 node-to-set disjoint paths in Cn , 
where n + 1 is equivalent to the connectivity of Cn ’s and N is the node number of 
Cn . Moreover, we prove that the length of the longest path of the n + 1 disjoint paths 
constructed by our algorithm is no more than 2n − 3 . We also show the experiments 
of Cn to evaluate the performance of the algorithm we have proposed.

The remainder of this paper is organized as follows. Section 2 provides relevant 
preliminary knowledge. In Sect. 3, the construction of node-to-set disjoint paths in 
cross-cubes is studied. Conclusions of this paper and suggestions on future work are 
given in Sect. 4.

2  Preliminaries

For terminology and notation not defined here, we follow [19]. Given a simple graph 
G = G(V(G),E(G)) to represent an interconnection network, where V(G) and E(G) 
denote the node set and edge set, respectively. A path in a graph is a sequence of 
nodes, P = (u1, u2,… , uj,… , un−1, un) , in which no node is repeated and uj, uj+1 are 
adjacent for any integer 1 ≤ j < n . The length of a path P, l(P), is the number of 
edges in P, and we use V(P) to represent the node set in P. We also write the path 
(u1, u2,… , uk) as (u1,Q, ui, ui+1,… , uk) , where Q is the path (u2, u3,… , ui−1) . If u 
and v are nodes on a path P, we write Path(P, u, v) to denote the sub-path of P from 
u to v. Furthermore, we use P[i] to denote the node ui for P = (u1, u2,… , un) for any 
integer 1 ≤ i ≤ n and use P[−1] to denote the last node in P.

For U ⊆ V(G) , we use G[U] = (U,E�) to denote the subgraph induced by U in 
G where E� = {(u, v) ∈ E(G)|u, v ∈ U} . Given two distinct nodes u and v of G, 
the distance between u and v is defined as the length of the shortest path between 
u and v in G, denoted by dist(G, u, v). The diameter of G is defined as d(G) = 
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max(dist(G, u, v)|u, v ∈ V(G), u ≠ v ). A graph is connected when there is a path 
between every pair of nodes. In a connected graph, there are no unreachable 
nodes. A graph that is not connected is called to be disconnected. The connectiv-
ity �(G) of a connected graph G (other than a complete graph) is the minimum 
number of nodes whose removal disconnects G. We say u is a neighbor of v or u 
is adjacent to v if (u, v) ∈ E(G) . Then, we use NG(u) to denote neighbors of u in 
graph G.

A binary string u with length n can be written as un−1un−2 … u0 and 
u[i] = ui ∈ {0, 1} is denoted by the i-th bit of u for any integer i with 0 ≤ i ≤ n − 1 . 
The complement of ui is denoted by ūi or 1 − ui.

The n-dimensional cross-cube, Cn , has 2n nodes and (n + 1)2n−1 edges. Each 
node of Cn is represented by a unique binary string from 0 to 2n − 1 of length n, 
called the address of the node. For i ∈ {0, 1} , let Ci

n−1
 denote the graph obtained 

by prefixing the address of each node of Cn−1 with i. Obviously, Ci
n−1

 is iso-
morphic to Cn−1 with i ∈ {0, 1} . In this paper, we would not make a distinction 
between nodes of Cn and their addresses. We adopt the recursively definitions of 
Cn from [3] as follows.

Definition 1 C2 is a complete graph on four nodes whose addresses are 00, 01, 10, and 
11. For n ≥ 3 , Cn consists of C0

n−1
 and C1

n−1
 . The nodes u = un−1un−2 … u0 ∈ V(C0

n−1
) 

and v = vn−1vn−2 … v0 ∈ V(C1
n−1

) are joined by an edge in Cn if and only if 
un−2un−3 … u0 = vn−2vn−3 … v0.

Figure  1 depicts several cross-cubes such as C2 , C3 , and C4 . For n ≥ 3 , let  
u = un−1un−2 … u1u0 ∈ V(Cn) . Then, let (u)2 = {u

n−1un−2 … u2�|� ∈ {00, 01, 10, 11} and 
� ≠ u1u0} be 2-neighbors of u and (u)i = un−1un−2 …(1 − ui−1)… u1u0 be i-neigh-
bor of u for 3 ≤ i ≤ n.

Fig. 1  The structure of a two-dimensional cross-cube C2 , b three-dimensional cross-cube C3 , and c four-
dimensional cross-cube C4 , respectively
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Lemma 2 An n-dimensional cross-cube Cn has the following combinatorial proper-
ties [3]. 

1. Cn is (n + 1)-regular;
2. The diameter of Cn is d(Cn) = n − 1;
3. The connectivity of Cn is �(Cn) = n + 1.

Definition 3 The node-to-set disjoint paths problem in an n-dimensional cross-cube 
is to construct n + 1 paths from a single source node s to each node in a destination 
nodes set D = {d1, d2,… , dn+1} which are node-disjoint except for s.

3  Main results

In this section, we construct n + 1 node-to-set disjoint paths in Cn in Theorem 10. 
Then, we propose an O(Nlog2N) algorithm for finding n + 1 node-to-set disjoint 
paths in Cn , where N is the node number of Cn . Furthermore, we show simulations 
and experiments of Cn to evaluate the performance of our algorithm proposed in 
cross-cubes.

3.1  Node‑to‑set disjoint paths in cross‑cubes

In this subsection, one of main results is Theorem 10, in which the one-to-set disjoint 
paths of Cn are constructed for any integer n ≥ 2 , using mathematical induction on n . 
For this purpose, Lemmas 4–9 are presented for the following construction schemes.

In [20], Wang, He, and Zhang proposed an O(n) algorithm to find a shortest path 
between any two distinct nodes u and v in Cn , which is called CRouting(Cn, u, v ) 
algorithm. By Definition 1 and Lemma 2, the following lemma holds.

Lemma 4 l(CRouting(Cn, u, v)) ≤ d(Cn) = n − 1.

Lemma 5 For any integer n ∈ {2, 3} , choose a source node s and an arbitrary node 
set D = {d1, d2,… , dn+1} in a Cn with s ∉ D , there exist n + 1 node-disjoint paths 
(except for s) from s to nodes of D, whose maximum length is limited by 2n − 3.

Proof First of all, we show that the lemma holds for n = 2 since C2 is a complete  
graph with 4 nodes [19]. Secondly, the lemma is verified by a computer program when  
n = 3 . For example, the four paths P1

1
,P2

1
,P3

1
,P4

1
 (resp. P1

2
,P2

2
,P3

2
,P4

2
 ; P1

3
,P2

3
,P3

3
,P4

3
 ; 

… ; P1
35
,P2

35
,P3

35
,P4

35
 ) from s = 000 to nodes of D = {010, 011, 001, 111} (resp.  

{010, 011, 001, 110} , {010, 011, 001, 100} , {010, 011, 001, 101} , {010, 011, 111, 110} , 
{010, 011, 111, 100} , {010, 011, 111, 101} , {010, 011, 110, 100} , {010, 011, 110, 101} , 
{010, 011, 100, 101} , {010, 001, 111, 110} , {010, 001, 111, 100} , {010, 001, 111, 101} , 
{010, 001, 110, 100} , {010, 001, 110, 101} , {010, 001, 100, 101} , {010, 111, 110, 100} , 
{010, 111, 110, 101} , {010, 111, 100, 101} , {010, 110, 100, 101} , {011, 001, 111, 110} , 
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{011, 001, 111, 100} , {011, 001, 111, 101} , {011, 001, 110, 100} , {011, 001, 110, 101} , 
{011, 001, 100, 101} , {011, 111, 110, 100} , {011, 111, 110, 101} , {011, 111, 100, 101} ,  
{011, 110, 100, 101} , {001, 111, 110, 100} , {001, 111, 110, 101} , {001, 111, 100, 101} , 
{001, 110, 100, 101} , {111, 110, 100, 101} ) are node-disjoint (except for s), whose 
maximum length is limited by 3, are listed in Table 1.   ◻

Lemma 6 For any integer n ≥ 3 , i ∈ {0, 1} , and any node u ∈ V(Ci
n−1

) , let u� = (u)n 
and x1, x2,… , xn be the n neighbors of u in Ci

n−1
 . Furthermore, let x�

j
= (xj)

n for all 
j ∈ {1, 2,… , n} . Then, P1 = (u, x1, x

�
1
) , P2 = (u, x2, x

�
2
) , … , Pn = (u, xn, x

�
n
) , 

Pn+1 = (u, u�) are n + 1 node-disjoint paths (except for u) from u into C1−i
n−1

.

Proof By Definition 1, for any integers j and k with 1 ≤ j, k ≤ n and j ≠ k , we have 
xj ≠ xk and hence x′

j
≠ x′

k
 . Then, since u ≠ xj for any integer j with 1 ≤ j ≤ n , so 

u′ ≠ x′
j
 . Accordingly, P1 = (u, x1, x

�
1
) , P2 = (u, x2, x

�
2
) , … , Pn = (u, xn, x

�
n
) , 

Pn+1 = (u, u�) are n + 1 node-disjoint paths (except for u) from u into C1−i
n−1

 (refer to 
Fig. 2).   ◻

Lemma 7 For any integer n ≥ 3 , i ∈ {0, 1} , and any node u ∈ V(Ci
n−1

) , let u� = (u)n . 
For any integer k with 1 ≤ k ≤ n − 1 , let T = {u�, y1, y2,… , yk, y

�
1
, y�

2
,… , y�

k
} with 

u ∉ T  , y1, y2,… , yk ∈ V(Ci
n−1

) , and y�
1
, y�

2
,… , y�

k
∈ V(C1−i

n−1
) such that y�

j
= (yj)

n for 
all j ∈ {1, 2,… , k} . Then, there exists a path P = (u, x, x�) such that (u, x) ∈ E(Ci

n−1
) , 

x� = (x)n , and V(P) ∩ T = �.

Proof Let x1, x2,… , xn be the n neighbors of u in Ci
n−1

 . Furthermore, let x�
j
= (xj)

n 
for all j ∈ {1, 2,… , n} . By Lemma 6, these exist n + 1 node-disjoint paths (except 
for u) P1 = (u, x1, x

�
1
) , P2 = (u, x2, x

�
2
) , … , Pn = (u, xn, x

�
n
) , Pn+1 = (u, u�) from u into 

C1−i
n−1

 . Accordingly, we have V(Pn+1) ∩ T = {u�} . Since k ≤ n − 1 , there exists a node 
x ∈ {x1, x2,… , xn} such that x ∉ {y1, y2,… , yk} and (u, x) ∈ E(Ci

n−1
) . Let x� = (x)n 

and P = (u, x, x�) (refer to Fig.  3). By Definition  1, we can verify that x ∉ T  and 
x� ∉ {y�

1
, y�

2
,… , y�

k
, u�} . Hence, we have V(P) ∩ T = � .   ◻

Lemma 8 For any integer n ≥ 3 , i ∈ {0, 1} , and u1, u2,… , ur ∈ V(Ci
n−1

) with 
1 ≤ r ≤ ⌈ n−1

2
⌉ , let u�

j
= (uj)

n for j ∈ {1, 2,… , r} . For any integer k with 
1 ≤ k ≤ n − 2r + 1 , let T = {u�

1
, u�

2
,… , u�

r
, y1, y2,… , yk, y

�
1
, y�

2
,… , y�

k
} with 

{u1, u2,… , ur} ∩ T = � such that yj ∈ V(Ci
n−1

) , y�
j
∈ V(C1−i

n−1
) , and y�

j
= (yj)

n for 
j ∈ {1, 2,… , k} . Then, 

(1) if r = 1 , there exists a path P = (u1, x1, z1) such that (u1, x1) ∈ E(Ci
n−1

) , z1 = (x1)
n , 

and V(P) ∩ T = �.
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(2) if 2 ≤ r ≤ ⌈ n−1

2
⌉ , there exist r node-disjoint paths P1 = (u1, x1, z1) , 

P2 = (u2, x2, z2) , … , Pr = (ur, xr, zr) such that (uj, xj) ∈ E(Ci
n−1

) , zj = (xj)
n , and 

V(Pj) ∩ T = � for j ∈ {1, 2,… , r}.

Table 1  Four node-disjoint paths from 000 to nodes of D in C3

D = {010, 011, 001, 111} P
1

1
= ⟨000, 010),P2

1
= (000, 011),P3

1
= (000, 001),P4

1
= (000, 100, 111)

D = {010, 011, 001, 110} P
1

2
= (000, 010),P2

2
= (000, 011),P3

2
= (000, 001),P4

2
= (000, 100, 110)

D = {010, 011, 001, 100} P
1

3
= (000, 010),P2

3
= (000, 011),P3

3
= (000, 001),P4

3
= (000, 100)

D = {010, 011, 001, 101} P
1

4
= (000, 010),P2

4
= (000, 011),P3

4
= (000, 001),P4

4
= (000, 100, 101)

D = {010, 011, 111, 110} P
1

5
= (000, 010),P2

5
= (000, 011),P3

5
= (000, 100, 111),P4

5
= (000, 001, 101, 110)

D = {010, 011, 111, 100} P
1

6
= (000, 010),P2

6
= (000, 011),P3

6
= (000, 001, 101, 111),P4

6
= (000, 100)

D = {010, 011, 111, 101} P
1

7
= (000, 010),P2

7
= (000, 011),P3

7
= (000, 100, 111),P4

7
= (000, 001, 101)

D = {010, 011, 110, 100} P
1

8
= (000, 010),P2

8
= (000, 011),P3

8
= (000, 001, 101, 110),P4

8
= (000, 100)

D = {010, 011, 110, 101} P
1

9
= (000, 010),P2

9
= (000, 011),P3

9
= (000, 100, 110),P4

9
= (000, 001, 101)

D = {010, 011, 100, 101} P
1

10
= (000, 010),P2

10
= (000, 011),P3

10
= (000, 100),P4

10
= (000, 001, 101)

D = {010, 001, 111, 110} P
1

11
= (000, 010),P2

11
= (000, 001),P3

11
= (000, 011, 111),P4

11
= (000, 100, 110)

D = {010, 001, 111, 100} P
1

12
= (000, 010),P2

12
= (000, 001),P3

12
= (000, 011, 111),P4

12
= (000, 100)

D = {010, 001, 111, 101} P
1

13
= (000, 010),P2

13
= (000, 001),P3

13
= (000, 011, 111),P4

13
= (000, 100, 101)

D = {010, 001, 110, 100} P
1

14
= (000, 010),P2

14
= (000, 001),P3

14
= (000, 011, 111, 110),P4

14
= (000, 100)

D = {010, 001, 110, 101} P
1

15
= (000, 010),P2

15
= (000, 001),P3

15
= (000, 100, 110),P4

15
= (000, 011, 111, 101)

D = {010, 001, 100, 101} P
1

16
= (000, 010),P2

16
= (000, 001),P3

16
= (000, 100),P4

16
= (000, 011, 111, 101)

D = {010, 111, 110, 100} P
1

17
= (000, 010),P2

17
= (000, 011, 111),P3

17
= (000, 001, 101, 110),P4

17
= (000, 100)

D = {010, 111, 110, 101} P
1

18
= (000, 010),P2

18
= (000, 011, 111),P3

18
= (000, 100, 110),P4

18
= (000, 001, 101)

D = {010, 111, 100, 101} P
1

19
= (000, 010),P2

19
= (000, 011, 111),P3

19
= (000, 100),P4

19
= (000, 001, 101)

D = {010, 110, 100, 101} P
1

20
= (000, 010),P2

20
= (000, 011, 111, 110),P3

20
= (000, 100),P4

20
= (000, 001, 101)

D = {011, 001, 111, 110} P
1

21
= (000, 011),P2

21
= (000, 001),P3

21
= (000, 100, 111),P4

21
= (000, 010, 110)

D = {011, 001, 111, 100} P
1

22
= (000, 011),P2

22
= (000, 001),P3

22
= (000, 010, 110, 111),P4

22
= (000, 100)

D = {011, 001, 111, 101} P
1

23
= (000, 011),P2

23
= (000, 001),P3

23
= (000, 100, 111),P4

23
= (000, 010, 110, 101)

D = {011, 001, 110, 100} P
1

24
= (000, 011),P2

24
= (000, 001),P3

24
= (000, 010, 110),P4

24
= (000, 100)

D = {011, 001, 110, 101} P
1

25
= (000, 011),P2

25
= (000, 001),P3

25
= (000, 010, 110),P4

25
= (000, 100, 101)

D = {011, 001, 100, 101} P
1

26
= (000, 011),P2

26
= (000, 001),P3

26
= (000, 100),P4

26
= (000, 010, 110, 101)

D = {011, 111, 110, 100} P
1

27
= (000, 011),P2

27
= (000, 001, 101, 111),P3

27
= (000, 010, 110),P4

27
= (000, 100)

D = {011, 111, 110, 101} P
1

28
= (000, 011),P2

28
= (000, 100, 111),P3

28
= (000, 010, 110),P4

28
= (000, 001, 101)

D = {011, 111, 100, 101} P
1

29
= (000, 011),P2

29
= (000, 010, 110, 111),P3

29
= (000, 100),P4

29
= (000, 001, 101)

D = {011, 110, 100, 101} P
1

30
= (000, 011),P2

30
= (000, 010, 110),P3

30
= (000, 100),P4

30
= (000, 001, 101)

D = {001, 111, 110, 100} P
1

31
= (000, 001),P2

31
= (000, 011, 111),P3

31
= (000, 010, 110),P4

31
= (000, 100)

D = {001, 111, 110, 101} P
1

32
= (000, 001),P2

32
= (000, 011, 111),P3

32
= (000, 010, 110),P4

32
= (000, 100, 101)

D = {001, 111, 100, 101} P
1

33
= (000, 001),P2

33
= (000, 011, 111),P3

33
= (000, 100),P4

33
= (000, 010, 110, 101)

D = {001, 110, 100, 101} P
1

34
= (000, 001),P2

34
= (000, 010, 110),P3

34
= (000, 100),P4

34
= (000, 011, 111, 101)

D = {111, 110, 100, 101} P
1

35
= (000, 011, 111),P2

35
= (000, 010, 110),P3

35
= (000, 100),P4

35
= (000, 001, 101)
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Proof If n = 3 , we have r = 1 and thus the lemma holds based on Lemma 7. In what 
follows, we will prove that the lemma holds for n ≥ 4 by induction on r. By Lemma 
7, the lemma holds for r = 1 . We assume that the lemma holds for r = � when 
1 ≤ � ≤ ⌈ n−1

2
⌉ − 1.

Then, we consider r = � + 1 . Note that, we have 2 ≤ r = � + 1 ≤ ⌈ n−1

2
⌉ . For any 

integer m with 1 ≤ m ≤ n − 2(𝜏 + 1) + 1 < n − 2𝜏 + 1 , without loss of generality, 
denote T � = {u�

1
, u�

2
,… , u�

�
, y1, y2,… , ym, y

�
1
, y�

2
,… , y�

m
} . Clearly, we have T ′ ⊆ T  and 

{u1, u2,… , u�} ∩ T � = � . Accordingly, we have V(Pj) ∩ T � = � for j ∈ {1, 2,… , �}.
Choose a node u�+1 ∈ V(Ci

n−1
) such that 

u�+1 ∉ {u1, u2,… , u�} and u�+1 ∉ T � . Let u�
�+1

= (u�+1)
n and 

T �� = T � ∪ {u�
�+1

} = {u�
1
, u�

2
,… , u�

�
, u�

�+1
, y1, y2,… , ym, y

�
1
, y�

2
,… , y�

m
}  . 

By Definition  1, it is easy to verify that {u1, u2,… , u� , u�+1} ∩ T �� = � and 
u�
�+1

∉ {z1, z2,… , z�} . Thus, we have V(Pj) ∩ T �� = � for j ∈ {1, 2,… , �}.
Denote D = {u1, u2,… , u�} ∪ {x1, x2,… , x�} ∪ {y1, y2,… , ym} . Then, we have

Fig. 2  n + 1 node-disjoint paths 
(except for u) from u into C1−i

n−1

Fig. 3  Example of P = (u, x, x�) 
with V(P) ∩ T = �
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Let x1
�+1

, x2
�+1

,… , xn
�+1

 be the n neighbors of u�+1 in Ci
n−1

 . Since |D| < n , there exists a 
node x�+1 ∈ {x1

�+1
, x2

�+1
,… , xn

�+1
} such that x�+1 ∉ D and (u�+1, x�+1) ∈ E(Ci

n−1
) . Let 

z�+1 = (x�+1)
n and P�+1 = (ur, x�+1, z�+1) . By Definition 1, we have x�+1, z�+1 ∉ T �� 

and x�+1, z�+1 ∉ V(Pj) for j ∈ {1, 2,… , �}.
Hence, P1 = (u1, x1, z1) , P2 = (u2, x2, z2) , … , P� = (u� , x� , z�) , 

P�+1 = (u�+1, x�+1, z�+1) are � + 1 node-disjoint paths such that V(Pj) ∩ T �� = � for 
j ∈ {1, 2,… , � + 1} (refer to Fig. 4).

From the above discussion, we claim that the lemma holds.   ◻

Lemma 9 For any integer n ≥ 3 , choose an arbitrary source node s and an arbitrary 
node set D = {d1, d2,… , dn+1} in a Cn with s ∉ D , there exist n + 1 node-disjoint 
paths (except for s) from s to nodes of D, whose maximum length is limited by 2n − 3.

Proof The lemma is proved by induction on n, which is the dimension of Cn . By 
Lemma 5, the lemma holds for n = 3 . We assume that the lemma holds for n = � − 1 
when � ≥ 4 . Then, we can obtain the following statement based on the induction 
hypothesis: for a node s and a node set D� = {d1, d2,… , d�} in a C�−1 with s ∉ D� 
and � ≥ 4 , there exist � node-disjoint paths (except for s) from s to nodes of D′ , 
whose maximum length is limited by 2(� − 1) − 3 = 2� − 5 . In what follows, by 
choosing an arbitrary source node s and an arbitrary node set D = {d1, d2,… , d�+1} 
in a C� with s ∉ D , we will prove that the lemma holds for n = � when � ≥ 4.

Choose an integer i with i ∈ {0, 1} . Let D1 = D ∩ V(Ci
�−1

) , D2 = D ∩ V(C1−i
�−1

) , 
D3 = {u|u ∈ D1 and (u)� ∈ D} , D4 = {u|u ∈ D2 and (u)� ∈ D} , � = |D1| , � = |D2| , 
� = |D3| = |D4| , and s� = (s)� . Without loss of generality, suppose that s ∈ V(Ci

�−1
) . 

Then, we can claim the following three cases with respect to �.
Case 1. � = � + 1.
Let D�� = {d2, d3,… , d�+1} and � = 0 . According to induction hypothesis, there 

exist � paths node-disjoint paths Q1,Q2,… ,Q� (except for s) from s to nodes of D′ , 

|D| = 𝜏 + 𝜏 + m ≤ 2𝜏 + n − 2(𝜏 + 1) + 1 = n − 1 < n.

Fig. 4  � + 1 node-disjoint 
paths P1,P2,… ,P� ,P�+1 in 
C
n
 with V(P

j
) ∩ T

�� = � for 
j ∈ {1, 2,… , � + 1}
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whose maximum length is limited by 2� − 5 . Choose � ∈ {1, 2,… , �} such that 
d�+1 ∈ V(Q�) . We further obtain the following two subcases with respect to �.

Case 1.1 � ∉ {1, 2,… , �}.
Let d�

�+1
= (d�+1)

� and Q� = CRouting(C1−i
�−1

, s�, d�
�+1

) . For any integer 
1 ≤ j ≤ � + 1 , if 1 ≤ j ≤ � , let Pj = Qj ; otherwise, let Pj = (s,Q�, d�+1) (refer to 
Fig. 5a).

By the induction hypothesis, P1,P2,… ,P� are node-disjoint expect for s. In addi-
tion, we can verify that V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state 
that P1,P2,… ,P�+1 are node-disjoint expect for s. By Lemma 4, we have

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Subcase 1.2 � ∈ {1, 2,… , �}.
Without loss of generality, denote � = 1 . Let d�

1
= (d1)

� and 
Q� = CRouting(C1−i

�−1
, s�, d�

1
) . For any integer 1 ≤ j ≤ � + 1 , let

Accordingly, all the � + 1 needed paths connecting s and nodes of 
D = {d1, d2,… , d�+1} of C� are constructed above (refer to Fig. 5b). By the induc-
tion hypothesis, P2,P3,… ,P�+1 are node-disjoint expect for s. In addition, we 
can verify that V(P1) ∩ V(Pk) = {s} for all 2 ≤ k ≤ � + 1 . Therefore, we state that 
P1,P2,… ,P�+1 are node-disjoint expect for s. By Lemma 4, we have

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

|Pj| ≤ max{2� − 5, � − 2 + 2} ≤ 2� − 3

Pj =

⎧
⎪⎨⎪⎩

(s,Q�, d1) if j = 1,

Qj if 2 ≤ j ≤ �,

Path(Q1, s, d�+1) if j = � + 1.

|Pj| ≤ max{� − 2 + 2, 2� − 5, (2� − 5) − 1} ≤ 2� − 3

Fig. 5  Illustrations for a Case 1.1 and b Case 1.2 in Lemma 9, respectively
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Case 2. � = 0.
For any integer j with 1 ≤ j ≤ � + 1 , let d�

j
= (dj)

� . Let D�� = {d�
1
, d�

2
,… , d�

�
} . We 

further deal with the following two subcases with respect to s′.
Subcase 2.1. s� ∈ D.
Without loss of generality, let d�+1 = s� . By the induction hypothesis, there are � 

node-disjoint paths Q1,Q2,… ,Q� (except for s) joining s and nodes of D′′ in Ci
�−1

 
such that d�

k
∈ V(Qk) for 1 ≤ k ≤ � , whose maximum length is limited by 2� − 5 . For 

any integer 1 ≤ j ≤ � + 1 , if 1 ≤ j ≤ � , let Pj = (Qj, dj) ; otherwise, let Pj = (s, d�+1) 
(refer to Fig. 6a).

By the induction hypothesis and Definition  1, we can verify that the 
� paths P1,P2,… ,P� are node-disjoint expect for s. In addition, we have 
V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state that P1,P2,… ,P�+1 are 
node-disjoint expect for s. By the induction hypothesis, we have

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Subcase 2.2. s� ∉ D.
Let D��� = {d2, d3,… , d�+1} . By the induction hypothesis, there exist � node-dis-

joint paths Q2,Q3,… ,Q�+1 (except for s′ ) joining s′ and nodes of D′′′ in C1−i
�−1

 such that 
dk ∈ V(Qk) for 2 ≤ k ≤ � + 1 , whose maximum length is limited by 2� − 5 . Choose 
� ∈ {2, 3,… , � + 1} with d1 ∉ V(Q�) . Without loss of generality, let � = � + 1 . By 
the induction hypothesis, there exist � node-disjoint paths S1, S2,… , S� (except for s) 
joining s and nodes of D′′ in Ci

�−1
 such that dk ∈ V(Sk) for 1 ≤ k ≤ � , whose maxi-

mum length is limited by 2� − 5 . For any integer 1 ≤ j ≤ � + 1 , let if 1 ≤ j ≤ � , let 
Pj = (Sj, dj) ; otherwise, let Pj = (s,Q�+1) (refer to Fig. 6b).

By the induction hypothesis and Definition  1, we can verify that the 
� paths P1,P2,… ,P� are node-disjoint expect for s. In addition, we have 
V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state that P1,P2,… ,P�+1 are 
node-disjoint expect for s. By the induction hypothesis, we have

|Pj| ≤ max{1, (2� − 5) + 1} = 2� − 4 ≤ 2� − 3

Fig. 6  Illustrations for a Case 2.1 and b Case 2.2 in Lemma 9, respectively
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for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Case 3. 1 ≤ � ≤ �.
Without loss of generality, denote D1 = {d1, d2,… , d�} , 

D2 = {d�+1, d�+2,… , d�+1} , D3 = {d1, d2,… , d�} and D4 = {d�+1, d�+2,… , d�+�} if 
� ≥ 1 and � ≥ 1 . Clearly, we have � ≤ � , � ≤ � , and � + � = � + 1 . For any integer j 
with � + 1 ≤ j ≤ � + 1 , let d�

j
= (dj)

� . We further have the following four subcases 
with respect to � and s′.

Subcase 3.1. � = 0 and s� ∈ D.
Without loss of generality, let s� = d�+1 . Then, let

By the induction hypothesis, there exist � node-disjoint paths (except for s) 
Q1,Q2,… ,Q� joining s and nodes of D′′ in Ci

�−1
 such that dk ∈ V(Qk) for all 

1 ≤ k ≤ � and d�
k
∈ V(Qk) for all � + 1 ≤ k ≤ � if 𝛽 > 1 , whose maximum length is 

limited by 2� − 5 . For any integer 1 ≤ j ≤ � + 1 , let

Accordingly, all the � + 1 needed paths connecting s and nodes of 
D = {d1, d2,… , d�+1} of C� are constructed above (refer to Figure  7a, b). By the 
induction hypothesis and Definition 1, we can verify that the � paths P1,P2,… ,P� 
are node-disjoint expect for s. In addition, we can verify that V(P�+1) ∩ V(Pk) = {s} 
for all 1 ≤ k ≤ � . Therefore, we state that P1,P2,… ,P�+1 are node-disjoint expect 
for s. By Lemma 4, we have

|Pj| ≤ max{(2� − 5) + 1, (2� − 5) + 1} = 2� − 4 ≤ 2� − 3

D�� =

{
{d1, d2,… , d𝛼} if 𝛽 = 1,

{d1, d2,… , d𝛼 , d
�
𝛼+1

, d�
𝛼+2

,… , d�
𝜏
} if 𝛽 > 1.

Pj =

⎧
⎪⎨⎪⎩

Qj if 1 ≤ j ≤ 𝛼,

(Qj, dj) if 𝛼 + 1 ≤ j ≤ 𝜏 and 𝛽 > 1,

(s, d𝜏+1) if j = 𝜏 + 1.

Fig. 7  Illustrations for a � = 1 and b 𝛽 > 1 of Case 3.1 in Lemma 9, respectively



1367

1 3

Node-to-set disjoint paths problem in cross-cubes  

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Subcase 3.2. � ≤ 1 and s� ∉ D.
Without loss of generality, let d�+1 ∈ D4 if � = 1 . Let

Then, by the induction hypothesis, there exist � node-disjoint paths (except for 
s) Q1,Q2,… ,Q� joining s and nodes of D′′ in Ci

�−1
 such that dk ∈ V(Qk) for all 

1 ≤ k ≤ � and d�
k
∈ V(Qk) for all � + 1 ≤ k ≤ � if 𝛽 > 1 , whose maximum length is 

limited by 2� − 5.
If 𝛽 > 1 . Choose � − 1 distinct nodes (resp. node) x2, x3,… , x� in C1−i

�−1
 such that 

{x2, x3,… , x�} ∩ {s�, d�+1, d�+2,… , d�+1} = � when 𝛼 > 1 . Then, let

By the induction hypothesis, there exist � node-disjoint paths (except for s′ ) 
S2, S3,… , S�+1 joining s′ and nodes of D′′′ in C1−i

�−1
 such that xk ∈ V(Sk) for 2 ≤ k ≤ � 

if 𝛼 > 1 and dk ∈ V(Sk) for � + 1 ≤ k ≤ � + 1 , whose maximum length is limited by 
2� − 5.

For any integer 1 ≤ j ≤ � + 1 , let

Furthermore, all the � + 1 needed paths connecting s and nodes of 
D = {d1, d2,… , d�+1} of C� are constructed above (refer to Fig. 8a–c). By the induc-
tion hypothesis and Definition 1, we can verify that the � paths P1,P2,… ,P� are 
node-disjoint expect for s. In addition, by the induction hypothesis, we can verify 
that V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state that P1,P2,… ,P�+1 
are node-disjoint expect for s. By Lemma 4, we have

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Subcase 3.3. � ≥ 1 and s� ∈ D.
Without loss of generality, let s� = d�+1 and dj = (d�+j)

� for j ∈ {1, 2,… , �} . For 
any integer j with � + 1 ≤ j ≤ � and � + � + 1 ≤ j ≤ � , let d�

j
= (dj)

� . Denote

|Pj| ≤ max{2� − 5, (2� − 5) + 1, 1} ≤ 2� − 4 ≤ 2� − 3

D�� =

{
{d1, d2,… , d𝛼} if 𝛽 = 1,

{d1, d2,… , d𝛼 , d
�
𝛼+1

, d�
𝛼+2

,… , d�
𝜏
} if 𝛽 > 1.

D��� =

{
{d2, d3,… , d𝜏+1} if 𝛼 = 1,

{x2, x3,… , x𝛼 , d𝛼+1, d𝛼+2,… , d𝜏+1} if 𝛼 > 1.

Pj =

⎧
⎪⎨⎪⎩

Qj if 1 ≤ j ≤ 𝛼,

(Qj, dj) if 𝛼 + 1 ≤ j ≤ 𝜏 and 𝛽 > 1,

(s, S𝜏+1) if j = 𝜏 + 1 and 𝛽 > 1,

(s, CRouting(C1−i
𝜏−1

, s�, d𝜏+1)) if j = 𝜏 + 1 and 𝛽 = 1.

|Pj| ≤ max{2𝜏 − 5, (2𝜏 − 5) + 1, (2𝜏 − 5) + 1, 𝜏 − 2 + 1} ≤ 2𝜏 − 4 < 2𝜏 − 3
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and

Since � + � = � + 1 , � ≥ � + 1 , and � ≥ � , we have � ≤
�

2
= ⌈ �−1

2
⌉ and

If � = 1 , by Lemma  8, there exists a path S�+1 = (d�+1, x�+1, d
�
�+1

) such that 
(d�+1, x�+1) ∈ E(C1−i

�−1
) , d�

�+1
= (x�+1)

� , and V(S�+1) ∩ T = � ; If 𝛾 > 1 , by Lemma 8, 
there exist � node-disjoint paths S�+1 = (d�+1, x�+1, d

�
�+1

) , S�+2 = (d�+2, x�+2, d
�
�+2

) , 
… , S�+� = (d�+� , x�+� , d

�
�+�

) such that (dj, xj) ∈ E(C1−i
�−1

) , d�
j
= (xj)

� , and V(Sj) ∩ T = � 
for j ∈ {� + 1, � + 2,… , � + �}.

Furthermore, let D�� = {d1, d2,… , d� , d
�
�+1

, d�
�+2

,… , d�
�
} . Hence, we can verify 

that D�� ∩ {s} = � and |D��| = � . By the induction hypothesis, there exist � node-
disjoint paths (except for s) Q1,Q2,… ,Q� joining s and nodes of D′′ in Ci

�−1
 such 

T =

⎧
⎪⎨⎪⎩

{d1, d2,… , d𝛼 , s, s
�, d�

𝛾+1
, d�

𝛾+2
,… , d�

𝛼
} if 𝛾 = 𝛽 − 1,

{d1, d2,… , d𝛼 , s, s
�, d�

𝛾+1
, d�

𝛾+2
,… , d�

𝛼
, d𝛼+𝛾+1,

d𝛼+𝛾+2,… , d𝜏 , d
�
𝛼+𝛾+1

, d�
𝛼+𝛾+2

,… , d�
𝜏
} if 𝛾 < 𝛽 − 1.

k =

{
𝛼 − 𝛾 + 1 if 𝛾 = 𝛽 − 1,

𝛼 − 𝛾 + 1 + 𝜏 − (𝛼 + 𝛾) if 𝛾 < 𝛽 − 1.

k =

{
𝜏 + 1 − 𝛽 − 𝛾 + 1 = 𝜏 − 2𝛾 + 1 if 𝛾 = 𝛽 − 1,

𝛼 − 𝛾 + 1 + 𝜏 − (𝛼 + 𝛾) = 𝜏 − 2𝛾 + 1 if 𝛾 < 𝛽 − 1.

Fig. 8  Illustrations for a � = 1 , b 𝛽 > 1 and � = 1 , and c 𝛽 > 1 and 𝛼 > 1 of Case 3.2 in Lemma 9, respec-
tively
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that dk ∈ V(Qk) for 1 ≤ k ≤ � and d�
k
∈ V(Qk) for � + 1 ≤ k ≤ � , whose maximum 

length is limited by 2� − 5 . For any integer 1 ≤ j ≤ � + 1 , let

Accordingly, all the � + 1 needed paths connecting s and nodes of 
D = {d1, d2,… , d�+1} of C� are constructed above (refer to Fig.  9a, b). By the 
induction hypothesis, Lemma  8, and Definition  1, we can verify that the � paths 
P1,P2,… ,P� are node-disjoint expect for s. In addition, by the induction hypothesis, 
we can verify that V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state that 
P1,P2,… ,P�+1 are node-disjoint expect for s. By Lemma 4, we have

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Subcase 3.4. � ≥ 2 and s� ∉ D.
Without loss of generality, let dj = (d�+j)

� for j ∈ {1, 2,… , �} . For any integer j 
with � + 1 ≤ j ≤ � and � + � + 1 ≤ j ≤ � + 1 , let d�

j
= (dj)

� . Denote � = � − 1 , 
k = 2 + (� − �) , and

Since � + � = � + 1 , � ≤ � , and � ≥ � , we have

and

Pj =

⎧⎪⎨⎪⎩

Qj if 1 ≤ j ≤ 𝛼,

(Qj, xj, dj) if 𝛼 + 1 ≤ j ≤ 𝛼 + 𝛾 ,

(Qj, dj) if 𝛼 + 𝛾 + 1 ≤ j ≤ 𝜏 and 𝛾 < 𝛽 − 1,

(s, d𝜏+1) if j = 𝜏 + 1.

|Pj| ≤ max{2� − 5, (2� − 5) + 1 + 1, (2� − 5) + 1, 1} ≤ 2� − 3

T =

{
{d1, d2,… , d𝛼 , s, s

�, d𝜏+1} if 𝛾 = 𝛽,

{d1, d2,… , d𝛼 , s, s
�, d𝛼+𝛾 , d𝛼+𝛾+1,… , d𝜏+1, d

�
𝛼+𝛾+1

, d�
𝛼+𝛾+2

,… , d�
𝜏+1

} if 𝛾 < 𝛽.

1 ≤ � = � − 1 ≤
� + 1

2
− 1 ≤ ⌈� − 1

2
⌉

Fig. 9  Illustrations for a � = � − 1 and b 𝛾 < 𝛽 − 1 of Case 3.3 in Lemma 9, respectively
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If � = 1 , by Lemma  8, there exists a path Q�
�+1

= (d�+1, x�+1, d
�
�+1

) such that 
(d�+1, x�+1) ∈ E(C1−i

�−1
) , d�

�+1
= (x�+1)

� , and V(Q�
�+1

) ∩ T = � ; If 𝜙 > 1 , by Lemma 8, 
there exist � node-disjoint paths Q�

�+1
= (d�+1, x�+1, d

�
�+1

) , Q�
�+2

= (d�+2, x�+2, d
�
�+2

) , 
… , Q�

�+�
= (d�+�, x�+�, d

�
�+�

) such that (dj, xj) ∈ E(C1−i
�−1

) , d�
j
= (xj)

� , and 
V(Q�

j
) ∩ T = � for j ∈ {� + 1, � + 2,… , � + �}.

Let � = � − 2� − (� − �) . Accordingly, we have

and thus we have 0 ≤ 𝜑 < 𝛼 . If � ≥ 0 , we have � = � . If � ≥ 1 , 
choose � distinct nodes (resp. node) x1, x2,… , x� in C1−i

�−1
 such that 

{x1, x2,… , x�} ∩ {s�, d�+1, d�+2,… , d�+1, x�+1, x�+2,… , x�+�} = � . Furthermore, let

and D��� = {d1, d2,… , d� , d
�
�+1

, d�
�+2

,… , d�
�+�

, d�
�+�+1

, d�
�+�+2

,… , d�
�+1

} . Hence, we 
can verify that D�� ∩ {s�} = � , D��� ∩ {s} = � , |D���| = � + � − 1 = � , and

By the induction hypothesis, there exist � node-disjoint paths (except for s′ ) 
Q2,Q3,… ,Q�+1 joining s′ and nodes of D′′ in C1−i

�−1
 such that dk ∈ V(Qk) for all 

� + 1 ≤ k ≤ � + 1 , xk+� ∈ V(Qk) for all � − � + 1 ≤ k ≤ � , and xk−1 ∈ V(Qk) for 
all 2 ≤ k ≤ � − � if � ≥ 1 , whose maximum length is limited by 2� − 5 . Moreo-
ver, by the induction hypothesis, there exist � node-disjoint paths (except for 
s) S1, S2,… , S�+�, S�+�+1, S�+�+2,… , S�+1 joining s and nodes of D′′′ in Ci

�−1
 

such that dk ∈ V(Sk) for 1 ≤ k ≤ � and d�
k
∈ V(Sk) for � + 1 ≤ k ≤ � + � and 

� + � + 1 ≤ k ≤ � + 1 , whose maximum length is limited by 2� − 5 . For any integer 
1 ≤ j ≤ � + 1 , let

Accordingly, all the � + 1 needed paths connecting s and nodes of 
D = {d1, d2,… , d�+1} of C� are constructed above (refer to Fig.  10a–d). By the 
induction hypothesis, Lemma 8, and Definition  1, we can verify that the � paths 
P1,P2,… ,P� are node-disjoint expect for s. In addition, by the induction hypothesis, 
we can verify that V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state that 
P1,P2,… ,P�+1 are node-disjoint expect for s. By Lemma 4, we have

k = 2 + (� − �) = � + 1 − (� + �) + 2 ≤ � − 2(� − 1) + 1 = � − 2� + 1.

� = � − 2� − (� − �) = � + � − 1 − � − � = � − (� + 1) = � − �

D�� =

{
{d�+1, d�+2,… , d�+1, x�+1, x�+2,… , x�+�} if � = 0,

{d�+1, d�+2,… , d�+1, x1, x2,… , x�, x�+1, x�+2,… , x�+�} if � ≥ 1.

|D��| =
{

� + � = � + � − 1 = � if � = 0,

� + � + � = � + � − 1 + � − � = � + � − 1 = � if � ≥ 1.

Pj =

⎧
⎪⎨⎪⎩

Sj if 1 ≤ j ≤ �,

(Sj, xj, dj) if � + 1 ≤ j ≤ � + �,

(s,Qj) if j = � + � ,

(Sj, dj) if � + � + 1 ≤ j ≤ � + 1.

|Pj| ≤ max{2� − 5, (2� − 5) + 1 + 1, (2� − 5) + 1, (2� − 5) + 1} ≤ 2� − 3
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for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

In summary, the lemma holds for n = � .   ◻

By Lemma 5 and 9, the following theorem holds.

Theorem 10 For any integer n ≥ 2 , choose an arbitrary source node s and an arbi-
trary node set D = {d1, d2,… , dn+1} in a Cn with s ∉ D , there exist n + 1 node-dis-
joint paths (except for s) from s to nodes of D, whose maximum length is limited by 
2n − 3.

Consider two nodes s = 00000 and D = {01001, 01010, 01111, 11001, 11010, 11111} 
in C5 . The construction of the six node-disjoint paths falls into Lemma 9. The follow-
ing six paths (refer to Figure 11) are constructed according to Lemma 9, respectively.

P1 = (00000, 00001, 01001),
P2 = (00000, 00010, 01010),
P3 = (00000, 01000, 01011, 01111),
P4 = (00000, 10000, 11000, 11001),
P5 = (00000, 00011, 00111, 00110, 01110, 11110, 11010) , and
P6 = (00000, 00100, 01100, 11100, 11111).

Fig. 10  Illustrations for a � = � and � = 0 , b � = � and � ≥ 1 , c � ≤ � − 1 and � = 0 , and d � ≤ � − 1 
and � ≥ 1 of Case 3.4 in Lemma 9, respectively
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The maximum length of the six node-disjoint paths is computed as 6. Actually, 
Theorem 10 took with the worst-case consideration of the maximal length of n + 1 
node-disjoint paths between node s and nodes of D in Cn.

3.2  A Constructive Node‑to‑set Algorithm of Cross‑cubes

In this subsection, we give an efficient algorithm, Algorithm N2SMain, to find 
n + 1 node-to-set disjoint paths in Cn if n ≥ 2 . Then, we analyze the time complexity 
of the Algorithm N2SMain.

Theorem 11 For any integer n ≥ 2 , given any arbitrary source node s and an arbi-
trary node set D = {d1, d2,… , dn+1} in a Cn with s ∉ D , there exist an O(Nlog2N) 
algorithm for finding n + 1 node-disjoint paths (except for s) from s to nodes of D of 
Cn , where N is the node number of Cn.

Proof Considering node-to-set disjoint paths for the given node u and set D in Cn 
with s ∉ D , we propose an efficient algorithm, Algorithm N2SMain. To simplify 
the presentation of the proposed routing algorithm, we first introduce two algo-
rithms, namely CProute and CSet, that will be the two core components of the 
proposed algorithm.

In order to compactly express the algorithm, we need some notations. We use a 
dictionary as a data structure that represents a collection of keys and values pair of 
data. Let T be a dictionary, we use T = [ ] to denote a empty dictionary which con-
tains zero element. Then, let a, b ∈ V(G) be two nodes of G, we use T(a) = b to set 
b as a value of key a and T(a) to return the item of b with key a in T, respectively. 
Let S be a set with m elements, we use |S| to denote the number of elements in a set 
S such that |S| = m . Furthermore, we use S.add(a) to add element a to the set S, S.
remove(a) to remove element a from the set S, and S = � to denote a empty set with 
|S| = 0 , respectively.   ◻

Fig. 11  Six node-disjoint paths from s = 00000 to nodes of D = {01001, 01010, 01111, 11001, 11010, 11111} 
in C5 are constructed according to Theorem 10
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We first study the Algorithm CProute. In line 3, it takes O(1) time to get the last 
node from the path Qi with i ∈ {1, 2,… , n} . In lines 5 and 7, we assume, in our time 
analysis, that (x)n can be computed in constant time, which is the case when using 
the connection rule given in Definition 1. In line 7, it takes O(1) time to compute 
T[x]. In line 5, it takes constant time to construct Pi by joining path Qi and node (x)n . 
In line 7, it takes O(1) time to construct Pi by joining path Qi and nodes (x)n , T[x]. In 
line 12, it takes constant time to return n paths {P1,P2,… ,Pn} . Accordingly, we can 
verify that the time complexity of function CProute1 in Algorithm CProute is 
O(n). In lines 16 and 23, it takes O(1) time to compute V(Qi) . In lines 16 and 23, it 
takes O(n) time to compute D ∩ V(Qi) . In lines 17 and 24, it takes constant time to 
return a path Qi with i ∈ {1, 2,… , n} . Thus, we can verify that the time complexity 
of function CProute2 and CProute3 in Algorithm CProute is O(n2).
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In addition, we propose Algorithm CSet. In lines 4 and 6, we assume, in our 
time analysis, that (x)n and NG(u) can be computed in constant time, which is the 
case when using the connection rule given in Definition 1. In lines 2 and 6 of Algo-
rithm CSet, it takes constant time to compute H (resp. S, T, H.add(x), S.add(v), 
T[v], and M.remove(v)). Accordingly, we can verify that the time complexity 
of function CSet1 in Algorithm CSet is O(n2) . In line 18, it takes O(n) time to 
choose � distinct nodes x1, x2,… , x� from a node set D. Thus, we can verify that the 
time complexity of function CSet2 in Algorithm CSet is O(n).
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Accordingly, we propose our main algorithm, Algorithm N2SMain. Given a 
node s and a node set D = {d1, d2,… , dn+1} in Cn where s ∉ D , we construct n + 1 
node-disjoint paths except for s in Cn joining s and D. Suppose that a path in algo-
rithm N2SMain is saved by a doubly linked circular list whose head u and tail v 
are pointed by two pointers. Furthermore, each node is stored by a tuple.
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In what follows, we will analyze the time complexity of Algorithm N2SMain as 
follows. In lines 1 ∼ 3 of Algorithm N2SMain, it takes constant time to construct 
the required node-disjoint paths. In lines 4 ∼ 5 of Algorithm N2SMain, it takes 
O(1) time to compute i (resp. � , � , � , and s′ ). In lines 9, 12, and 33 of Algorithm 
N2SMain, it takes O(n) time to construct the required path from u to v using the 
��������(Cn, u, v) function in Cn [20]. In lines 4, 11, 16, 19, 28, 35, 41, 45, and 49 
of Algorithm N2SMain, it takes O(n) time to compute D1 (resp. D2 , D3 , D4 , � , D5 , 
and D′).

We use U(s, D, n) to denote the time of finding n + 1 node-to-set disjoint paths 
between s and D in Cn . Furthermore, we assume that n is sufficiently large. Let

Accordingly, we have T(2) = O(1) . We can claim the following discussions with 
respect to n for n ≥ 3 . In lines 7 ∼ 13 , 16 ∼ 17 , 25 ∼ 30 , and 32 ∼ 33 of Algorithm 
N2SMain, we have

In lines 45 ∼ 47 of Algorithm N2SMain, we have

In lines 19 ∼ 20 , 35 ∼ 42 , and 49 ∼ 52 of Algorithm N2SMain, we have

Thus, based on Eqs. (3.1)∼(3.4) and Definition 1, we have

where N = 2n . Therefore, according to Eq. (3.5), under the worst case, the time 
complexity of algorithm N2SMain is T(n) ≤ O(Nlog2N) , where n ≤ 2 and N = 2n 
is the node number of Cn.

(3.1)T(n) = max{U(s,D, n)|{s},D ⊂ V(Cn) and s ∉ D}.

(3.2)T(n) ≤ T(n − 1) + O(n).

(3.3)T(n) ≤ T(n − 1) + O(n2).

(3.4)T(n) ≤ 2T(n − 1) + O(n2).

(3.5)

T(n) ≤ max{2T(n − 1) + O(n2), T(n − 1) + O(n2), T(n − 1) + O(n)}

≤ max{O(n22n),O(n3),O(n2)}

≤ O(n22n)

= O(Nlog2N).
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3.3  Evaluation of algorithm N2SMain

In this subsection, we use simulations to evaluate the performance of Algorithm 
N2SMain. The Algorithm N2SMain was implemented by using the programming 
language Python under version 3.8.1 with libraries include Networkx, Matplotlib, 
NumPy, Cython, etc. The program was run on a Lenovo notebook computer with 
Intel 1.61GHz CPU, 16GB DRAM, and 512GB hard disk.

In our simulations, A set of n + 1 destination nodes D = {d1, d2,… , dn+1} are 
selected randomly. Then, a source node s randomly was selected with s ∉ D . Fur-
thermore, we applied Algorithm N2SMain and measured the execution time and 
the path length. The results were obtained by at least 10000 simulation runs.

Given a n-dimensional cross-cube, Cn , we use M(n) and D(n) to denote the maxi-
mal length of disjoint paths constructed by Algorithm N2SMain and diameter of Cn , 
respectively. In the following, a comparison of M(n) and D(n) is shown in Fig. 12. 
In the experiment, we can find that the maximal length of node-to-set disjoint paths 
gotten by our algorithm is much closer to the diameter of Cn.

4  Conclusions

Cross-cubes have been proposed as significant variations of hypercubes, which have 
higher fault-tolerant capability and smaller diameter than hypercubes at the same 
dimension. In this paper, we construct node-to-set disjoint paths of an n-dimensional 
cross-cube, Cn , whose maximum length is limited by 2n − 3 . Furthermore, we pro-
pose an O(Nlog2N) algorithm for finding node-to-set disjoint paths of Cn , where N is 
the node number of Cn . Then, we give the simulation results of the maximal length 
of disjoint paths obtained by our algorithm. Last but not least, as approaching to the 
end of this paper, further research issues on the cross-cubes are suggested. Some of 
them are fairly intriguing and still open for cross-cubes, e.g., set-to-set disjoint paths 
[21, 22], disjoint path covers [23, 24], completely independent spanning trees [25], 
and fault-tolerant routing [26].
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