
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:1356–1380
https://doi.org/10.1007/s11227-021-03872-8

1 3

Node‑to‑set disjoint paths problem in cross‑cubes

Xi Wang1,2 · Jianxi Fan2 · Shukui Zhang2 · Jia Yu3

Accepted: 6 May 2021 / Published online: 9 June 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2021

Abstract
Hypercubes are popular topologies of massive multiprocessor systems due to their 
super properties. Cross-cubes are significant variations of hypercubes and they have 
smaller diameters and higher fault-tolerant capability than hypercubes at the same 
dimensions. In this paper, we construct node-to-set disjoint paths of an n-dimen-
sional cross-cube, C

n
 , whose maximum length is limited by 2n − 3 . Furthermore, we 

propose an O(Nlog2N) algorithm with a view to finding node-to-set disjoint paths of 
C
n
 , where N is the node number of C

n
 . And we also present the simulation results for 

the maximal length of disjoint paths obtained by our algorithm.

Keywords Interconnection networks · Cross-cube · Node-to-set disjoint paths · 
Parallel processing

1 Introduction

Huge multiprocessor systems are solutions to large-scale computing problems such 
as weather forecasting, scientific research, intelligence agencies, and data mining 
[1]. Hypercubes are widely used in interconnection networks of massively multipro-
cessor systems due to their excellent properties, including regularity, symmetry, and 
small link complexity [2]. Based on the constructive method of hypercubes, many 
variants of hypercubes were proposed [3–6]. The n-dimensional cross-cube, Cn , has 
smaller diameter and higher fault-tolerant capability than the n-dimensional hyper-
cube, Qn . Moreover, a cycle of odd length and a complete binary tree of height n can 
be embedded into Cn , while Qn does not have these properties [3].

The disjoint path problems are substantial in the design and implementation of 
interconnection networks [7–9]. The node-to-set disjoint paths problem is one of the 

 * Shukui Zhang 
 zhangsk@suda.edu.cn

1 Suzhou Institute of Industrial Technology, Suzhou 215004, China
2 School of Computer Science and Technology, Soochow University, Suzhou 215006, China
3 College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03872-8&domain=pdf


1357

1 3

Node-to-set disjoint paths problem in cross-cubes  

disjoint path problems: Given a single source node s and a set D = {d1, d2,… , dk} of 
k destination nodes with s ∉ D in a k-connected graph G = (V(G),E(G)) , construct k 
paths from s to di which are node-disjoint except for s for all 1 ≤ i ≤ k . As the num-
ber of nodes in interconnection networks increases, node failure seems to become 
the norm rather than exception. Therefore, constructing disjoint paths increases the 
probability of finding fault-free communication route in interconnection networks. 
So far, problems of finding node-to-set disjoint paths on some classes of graphs have 
been studied, such as hypercubes [10], Möbius cubes [11], star graphs [12], pancake 
graphs [13], burnt pancake graphs [14], hierarchical cubic networks [15], perfect 
hierarchical hypercubes [16, 17], and biswapped networks [18].

In general, the node-to-set disjoint path problems can be obtained from the poly-
nomial-order of |V(G)| by applying the maximum flow algorithm. However, the com-
plexity of the algorithm is not eligible for an n-dimensional cross-cube Cn because 
the number of nodes in Cn is 2n . Bossard and Kaneko proposed an O(log2N) algo-
rithm to find node-to-set disjoint paths in an n-dimensional hypercube Qn , where 
their longest length is no more than n + 1 and N is the node number of Qn [10]. 
Unfortunately, this algorithm is not appropriate for cross-cubes directly because they 
do not exist some properties that hold in hypercubes. Therefore, it is necessary to 
design an applicable algorithm by studying properties of a Cn . In this paper, we pro-
pose an O(Nlog2N) algorithm for constructing n + 1 node-to-set disjoint paths in Cn , 
where n + 1 is equivalent to the connectivity of Cn ’s and N is the node number of 
Cn . Moreover, we prove that the length of the longest path of the n + 1 disjoint paths 
constructed by our algorithm is no more than 2n − 3 . We also show the experiments 
of Cn to evaluate the performance of the algorithm we have proposed.

The remainder of this paper is organized as follows. Section 2 provides relevant 
preliminary knowledge. In Sect. 3, the construction of node-to-set disjoint paths in 
cross-cubes is studied. Conclusions of this paper and suggestions on future work are 
given in Sect. 4.

2  Preliminaries

For terminology and notation not defined here, we follow [19]. Given a simple graph 
G = G(V(G),E(G)) to represent an interconnection network, where V(G) and E(G) 
denote the node set and edge set, respectively. A path in a graph is a sequence of 
nodes, P = (u1, u2,… , uj,… , un−1, un) , in which no node is repeated and uj, uj+1 are 
adjacent for any integer 1 ≤ j < n . The length of a path P, l(P), is the number of 
edges in P, and we use V(P) to represent the node set in P. We also write the path 
(u1, u2,… , uk) as (u1,Q, ui, ui+1,… , uk) , where Q is the path (u2, u3,… , ui−1) . If u 
and v are nodes on a path P, we write Path(P, u, v) to denote the sub-path of P from 
u to v. Furthermore, we use P[i] to denote the node ui for P = (u1, u2,… , un) for any 
integer 1 ≤ i ≤ n and use P[−1] to denote the last node in P.

For U ⊆ V(G) , we use G[U] = (U,E�) to denote the subgraph induced by U in 
G where E� = {(u, v) ∈ E(G)|u, v ∈ U} . Given two distinct nodes u and v of G, 
the distance between u and v is defined as the length of the shortest path between 
u and v in G, denoted by dist(G, u, v). The diameter of G is defined as d(G) = 



1358 X. Wang et al.

1 3

max(dist(G, u, v)|u, v ∈ V(G), u ≠ v ). A graph is connected when there is a path 
between every pair of nodes. In a connected graph, there are no unreachable 
nodes. A graph that is not connected is called to be disconnected. The connectiv-
ity �(G) of a connected graph G (other than a complete graph) is the minimum 
number of nodes whose removal disconnects G. We say u is a neighbor of v or u 
is adjacent to v if (u, v) ∈ E(G) . Then, we use NG(u) to denote neighbors of u in 
graph G.

A binary string u with length n can be written as un−1un−2 … u0 and 
u[i] = ui ∈ {0, 1} is denoted by the i-th bit of u for any integer i with 0 ≤ i ≤ n − 1 . 
The complement of ui is denoted by ūi or 1 − ui.

The n-dimensional cross-cube, Cn , has 2n nodes and (n + 1)2n−1 edges. Each 
node of Cn is represented by a unique binary string from 0 to 2n − 1 of length n, 
called the address of the node. For i ∈ {0, 1} , let Ci

n−1
 denote the graph obtained 

by prefixing the address of each node of Cn−1 with i. Obviously, Ci
n−1

 is iso-
morphic to Cn−1 with i ∈ {0, 1} . In this paper, we would not make a distinction 
between nodes of Cn and their addresses. We adopt the recursively definitions of 
Cn from [3] as follows.

Definition 1 C2 is a complete graph on four nodes whose addresses are 00, 01, 10, and 
11. For n ≥ 3 , Cn consists of C0

n−1
 and C1

n−1
 . The nodes u = un−1un−2 … u0 ∈ V(C0

n−1
) 

and v = vn−1vn−2 … v0 ∈ V(C1
n−1

) are joined by an edge in Cn if and only if 
un−2un−3 … u0 = vn−2vn−3 … v0.

Figure  1 depicts several cross-cubes such as C2 , C3 , and C4 . For n ≥ 3 , let  
u = un−1un−2 … u1u0 ∈ V(Cn) . Then, let (u)2 = {u

n−1un−2 … u2�|� ∈ {00, 01, 10, 11} and 
� ≠ u1u0} be 2-neighbors of u and (u)i = un−1un−2 …(1 − ui−1)… u1u0 be i-neigh-
bor of u for 3 ≤ i ≤ n.

Fig. 1  The structure of a two-dimensional cross-cube C2 , b three-dimensional cross-cube C3 , and c four-
dimensional cross-cube C4 , respectively



1359

1 3

Node-to-set disjoint paths problem in cross-cubes  

Lemma 2 An n-dimensional cross-cube Cn has the following combinatorial proper-
ties [3]. 

1. Cn is (n + 1)-regular;
2. The diameter of Cn is d(Cn) = n − 1;
3. The connectivity of Cn is �(Cn) = n + 1.

Definition 3 The node-to-set disjoint paths problem in an n-dimensional cross-cube 
is to construct n + 1 paths from a single source node s to each node in a destination 
nodes set D = {d1, d2,… , dn+1} which are node-disjoint except for s.

3  Main results

In this section, we construct n + 1 node-to-set disjoint paths in Cn in Theorem 10. 
Then, we propose an O(Nlog2N) algorithm for finding n + 1 node-to-set disjoint 
paths in Cn , where N is the node number of Cn . Furthermore, we show simulations 
and experiments of Cn to evaluate the performance of our algorithm proposed in 
cross-cubes.

3.1  Node‑to‑set disjoint paths in cross‑cubes

In this subsection, one of main results is Theorem 10, in which the one-to-set disjoint 
paths of Cn are constructed for any integer n ≥ 2 , using mathematical induction on n . 
For this purpose, Lemmas 4–9 are presented for the following construction schemes.

In [20], Wang, He, and Zhang proposed an O(n) algorithm to find a shortest path 
between any two distinct nodes u and v in Cn , which is called CRouting(Cn, u, v ) 
algorithm. By Definition 1 and Lemma 2, the following lemma holds.

Lemma 4 l(CRouting(Cn, u, v)) ≤ d(Cn) = n − 1.

Lemma 5 For any integer n ∈ {2, 3} , choose a source node s and an arbitrary node 
set D = {d1, d2,… , dn+1} in a Cn with s ∉ D , there exist n + 1 node-disjoint paths 
(except for s) from s to nodes of D, whose maximum length is limited by 2n − 3.

Proof First of all, we show that the lemma holds for n = 2 since C2 is a complete  
graph with 4 nodes [19]. Secondly, the lemma is verified by a computer program when  
n = 3 . For example, the four paths P1

1
,P2

1
,P3

1
,P4

1
 (resp. P1

2
,P2

2
,P3

2
,P4

2
 ; P1

3
,P2

3
,P3

3
,P4

3
 ; 

… ; P1
35
,P2

35
,P3

35
,P4

35
 ) from s = 000 to nodes of D = {010, 011, 001, 111} (resp.  

{010, 011, 001, 110} , {010, 011, 001, 100} , {010, 011, 001, 101} , {010, 011, 111, 110} , 
{010, 011, 111, 100} , {010, 011, 111, 101} , {010, 011, 110, 100} , {010, 011, 110, 101} , 
{010, 011, 100, 101} , {010, 001, 111, 110} , {010, 001, 111, 100} , {010, 001, 111, 101} , 
{010, 001, 110, 100} , {010, 001, 110, 101} , {010, 001, 100, 101} , {010, 111, 110, 100} , 
{010, 111, 110, 101} , {010, 111, 100, 101} , {010, 110, 100, 101} , {011, 001, 111, 110} , 



1360 X. Wang et al.

1 3

{011, 001, 111, 100} , {011, 001, 111, 101} , {011, 001, 110, 100} , {011, 001, 110, 101} , 
{011, 001, 100, 101} , {011, 111, 110, 100} , {011, 111, 110, 101} , {011, 111, 100, 101} ,  
{011, 110, 100, 101} , {001, 111, 110, 100} , {001, 111, 110, 101} , {001, 111, 100, 101} , 
{001, 110, 100, 101} , {111, 110, 100, 101} ) are node-disjoint (except for s), whose 
maximum length is limited by 3, are listed in Table 1.   ◻

Lemma 6 For any integer n ≥ 3 , i ∈ {0, 1} , and any node u ∈ V(Ci
n−1

) , let u� = (u)n 
and x1, x2,… , xn be the n neighbors of u in Ci

n−1
 . Furthermore, let x�

j
= (xj)

n for all 
j ∈ {1, 2,… , n} . Then, P1 = (u, x1, x

�
1
) , P2 = (u, x2, x

�
2
) , … , Pn = (u, xn, x

�
n
) , 

Pn+1 = (u, u�) are n + 1 node-disjoint paths (except for u) from u into C1−i
n−1

.

Proof By Definition 1, for any integers j and k with 1 ≤ j, k ≤ n and j ≠ k , we have 
xj ≠ xk and hence x′

j
≠ x′

k
 . Then, since u ≠ xj for any integer j with 1 ≤ j ≤ n , so 

u′ ≠ x′
j
 . Accordingly, P1 = (u, x1, x

�
1
) , P2 = (u, x2, x

�
2
) , … , Pn = (u, xn, x

�
n
) , 

Pn+1 = (u, u�) are n + 1 node-disjoint paths (except for u) from u into C1−i
n−1

 (refer to 
Fig. 2).   ◻

Lemma 7 For any integer n ≥ 3 , i ∈ {0, 1} , and any node u ∈ V(Ci
n−1

) , let u� = (u)n . 
For any integer k with 1 ≤ k ≤ n − 1 , let T = {u�, y1, y2,… , yk, y

�
1
, y�

2
,… , y�

k
} with 

u ∉ T  , y1, y2,… , yk ∈ V(Ci
n−1

) , and y�
1
, y�

2
,… , y�

k
∈ V(C1−i

n−1
) such that y�

j
= (yj)

n for 
all j ∈ {1, 2,… , k} . Then, there exists a path P = (u, x, x�) such that (u, x) ∈ E(Ci

n−1
) , 

x� = (x)n , and V(P) ∩ T = �.

Proof Let x1, x2,… , xn be the n neighbors of u in Ci
n−1

 . Furthermore, let x�
j
= (xj)

n 
for all j ∈ {1, 2,… , n} . By Lemma 6, these exist n + 1 node-disjoint paths (except 
for u) P1 = (u, x1, x

�
1
) , P2 = (u, x2, x

�
2
) , … , Pn = (u, xn, x

�
n
) , Pn+1 = (u, u�) from u into 

C1−i
n−1

 . Accordingly, we have V(Pn+1) ∩ T = {u�} . Since k ≤ n − 1 , there exists a node 
x ∈ {x1, x2,… , xn} such that x ∉ {y1, y2,… , yk} and (u, x) ∈ E(Ci

n−1
) . Let x� = (x)n 

and P = (u, x, x�) (refer to Fig.  3). By Definition  1, we can verify that x ∉ T  and 
x� ∉ {y�

1
, y�

2
,… , y�

k
, u�} . Hence, we have V(P) ∩ T = � .   ◻

Lemma 8 For any integer n ≥ 3 , i ∈ {0, 1} , and u1, u2,… , ur ∈ V(Ci
n−1

) with 
1 ≤ r ≤ ⌈ n−1

2
⌉ , let u�

j
= (uj)

n for j ∈ {1, 2,… , r} . For any integer k with 
1 ≤ k ≤ n − 2r + 1 , let T = {u�

1
, u�

2
,… , u�

r
, y1, y2,… , yk, y

�
1
, y�

2
,… , y�

k
} with 

{u1, u2,… , ur} ∩ T = � such that yj ∈ V(Ci
n−1

) , y�
j
∈ V(C1−i

n−1
) , and y�

j
= (yj)

n for 
j ∈ {1, 2,… , k} . Then, 

(1) if r = 1 , there exists a path P = (u1, x1, z1) such that (u1, x1) ∈ E(Ci
n−1

) , z1 = (x1)
n , 

and V(P) ∩ T = �.



1361

1 3

Node-to-set disjoint paths problem in cross-cubes  

(2) if 2 ≤ r ≤ ⌈ n−1

2
⌉ , there exist r node-disjoint paths P1 = (u1, x1, z1) , 

P2 = (u2, x2, z2) , … , Pr = (ur, xr, zr) such that (uj, xj) ∈ E(Ci
n−1

) , zj = (xj)
n , and 

V(Pj) ∩ T = � for j ∈ {1, 2,… , r}.

Table 1  Four node-disjoint paths from 000 to nodes of D in C3

D = {010, 011, 001, 111} P
1

1
= ⟨000, 010),P2

1
= (000, 011),P3

1
= (000, 001),P4

1
= (000, 100, 111)

D = {010, 011, 001, 110} P
1

2
= (000, 010),P2

2
= (000, 011),P3

2
= (000, 001),P4

2
= (000, 100, 110)

D = {010, 011, 001, 100} P
1

3
= (000, 010),P2

3
= (000, 011),P3

3
= (000, 001),P4

3
= (000, 100)

D = {010, 011, 001, 101} P
1

4
= (000, 010),P2

4
= (000, 011),P3

4
= (000, 001),P4

4
= (000, 100, 101)

D = {010, 011, 111, 110} P
1

5
= (000, 010),P2

5
= (000, 011),P3

5
= (000, 100, 111),P4

5
= (000, 001, 101, 110)

D = {010, 011, 111, 100} P
1

6
= (000, 010),P2

6
= (000, 011),P3

6
= (000, 001, 101, 111),P4

6
= (000, 100)

D = {010, 011, 111, 101} P
1

7
= (000, 010),P2

7
= (000, 011),P3

7
= (000, 100, 111),P4

7
= (000, 001, 101)

D = {010, 011, 110, 100} P
1

8
= (000, 010),P2

8
= (000, 011),P3

8
= (000, 001, 101, 110),P4

8
= (000, 100)

D = {010, 011, 110, 101} P
1

9
= (000, 010),P2

9
= (000, 011),P3

9
= (000, 100, 110),P4

9
= (000, 001, 101)

D = {010, 011, 100, 101} P
1

10
= (000, 010),P2

10
= (000, 011),P3

10
= (000, 100),P4

10
= (000, 001, 101)

D = {010, 001, 111, 110} P
1

11
= (000, 010),P2

11
= (000, 001),P3

11
= (000, 011, 111),P4

11
= (000, 100, 110)

D = {010, 001, 111, 100} P
1

12
= (000, 010),P2

12
= (000, 001),P3

12
= (000, 011, 111),P4

12
= (000, 100)

D = {010, 001, 111, 101} P
1

13
= (000, 010),P2

13
= (000, 001),P3

13
= (000, 011, 111),P4

13
= (000, 100, 101)

D = {010, 001, 110, 100} P
1

14
= (000, 010),P2

14
= (000, 001),P3

14
= (000, 011, 111, 110),P4

14
= (000, 100)

D = {010, 001, 110, 101} P
1

15
= (000, 010),P2

15
= (000, 001),P3

15
= (000, 100, 110),P4

15
= (000, 011, 111, 101)

D = {010, 001, 100, 101} P
1

16
= (000, 010),P2

16
= (000, 001),P3

16
= (000, 100),P4

16
= (000, 011, 111, 101)

D = {010, 111, 110, 100} P
1

17
= (000, 010),P2

17
= (000, 011, 111),P3

17
= (000, 001, 101, 110),P4

17
= (000, 100)

D = {010, 111, 110, 101} P
1

18
= (000, 010),P2

18
= (000, 011, 111),P3

18
= (000, 100, 110),P4

18
= (000, 001, 101)

D = {010, 111, 100, 101} P
1

19
= (000, 010),P2

19
= (000, 011, 111),P3

19
= (000, 100),P4

19
= (000, 001, 101)

D = {010, 110, 100, 101} P
1

20
= (000, 010),P2

20
= (000, 011, 111, 110),P3

20
= (000, 100),P4

20
= (000, 001, 101)

D = {011, 001, 111, 110} P
1

21
= (000, 011),P2

21
= (000, 001),P3

21
= (000, 100, 111),P4

21
= (000, 010, 110)

D = {011, 001, 111, 100} P
1

22
= (000, 011),P2

22
= (000, 001),P3

22
= (000, 010, 110, 111),P4

22
= (000, 100)

D = {011, 001, 111, 101} P
1

23
= (000, 011),P2

23
= (000, 001),P3

23
= (000, 100, 111),P4

23
= (000, 010, 110, 101)

D = {011, 001, 110, 100} P
1

24
= (000, 011),P2

24
= (000, 001),P3

24
= (000, 010, 110),P4

24
= (000, 100)

D = {011, 001, 110, 101} P
1

25
= (000, 011),P2

25
= (000, 001),P3

25
= (000, 010, 110),P4

25
= (000, 100, 101)

D = {011, 001, 100, 101} P
1

26
= (000, 011),P2

26
= (000, 001),P3

26
= (000, 100),P4

26
= (000, 010, 110, 101)

D = {011, 111, 110, 100} P
1

27
= (000, 011),P2

27
= (000, 001, 101, 111),P3

27
= (000, 010, 110),P4

27
= (000, 100)

D = {011, 111, 110, 101} P
1

28
= (000, 011),P2

28
= (000, 100, 111),P3

28
= (000, 010, 110),P4

28
= (000, 001, 101)

D = {011, 111, 100, 101} P
1

29
= (000, 011),P2

29
= (000, 010, 110, 111),P3

29
= (000, 100),P4

29
= (000, 001, 101)

D = {011, 110, 100, 101} P
1

30
= (000, 011),P2

30
= (000, 010, 110),P3

30
= (000, 100),P4

30
= (000, 001, 101)

D = {001, 111, 110, 100} P
1

31
= (000, 001),P2

31
= (000, 011, 111),P3

31
= (000, 010, 110),P4

31
= (000, 100)

D = {001, 111, 110, 101} P
1

32
= (000, 001),P2

32
= (000, 011, 111),P3

32
= (000, 010, 110),P4

32
= (000, 100, 101)

D = {001, 111, 100, 101} P
1

33
= (000, 001),P2

33
= (000, 011, 111),P3

33
= (000, 100),P4

33
= (000, 010, 110, 101)

D = {001, 110, 100, 101} P
1

34
= (000, 001),P2

34
= (000, 010, 110),P3

34
= (000, 100),P4

34
= (000, 011, 111, 101)

D = {111, 110, 100, 101} P
1

35
= (000, 011, 111),P2

35
= (000, 010, 110),P3

35
= (000, 100),P4

35
= (000, 001, 101)



1362 X. Wang et al.

1 3

Proof If n = 3 , we have r = 1 and thus the lemma holds based on Lemma 7. In what 
follows, we will prove that the lemma holds for n ≥ 4 by induction on r. By Lemma 
7, the lemma holds for r = 1 . We assume that the lemma holds for r = � when 
1 ≤ � ≤ ⌈ n−1

2
⌉ − 1.

Then, we consider r = � + 1 . Note that, we have 2 ≤ r = � + 1 ≤ ⌈ n−1

2
⌉ . For any 

integer m with 1 ≤ m ≤ n − 2(𝜏 + 1) + 1 < n − 2𝜏 + 1 , without loss of generality, 
denote T � = {u�

1
, u�

2
,… , u�

�
, y1, y2,… , ym, y

�
1
, y�

2
,… , y�

m
} . Clearly, we have T ′ ⊆ T  and 

{u1, u2,… , u�} ∩ T � = � . Accordingly, we have V(Pj) ∩ T � = � for j ∈ {1, 2,… , �}.
Choose a node u�+1 ∈ V(Ci

n−1
) such that 

u�+1 ∉ {u1, u2,… , u�} and u�+1 ∉ T � . Let u�
�+1

= (u�+1)
n and 

T �� = T � ∪ {u�
�+1

} = {u�
1
, u�

2
,… , u�

�
, u�

�+1
, y1, y2,… , ym, y

�
1
, y�

2
,… , y�

m
}  . 

By Definition  1, it is easy to verify that {u1, u2,… , u� , u�+1} ∩ T �� = � and 
u�
�+1

∉ {z1, z2,… , z�} . Thus, we have V(Pj) ∩ T �� = � for j ∈ {1, 2,… , �}.
Denote D = {u1, u2,… , u�} ∪ {x1, x2,… , x�} ∪ {y1, y2,… , ym} . Then, we have

Fig. 2  n + 1 node-disjoint paths 
(except for u) from u into C1−i

n−1

Fig. 3  Example of P = (u, x, x�) 
with V(P) ∩ T = �



1363

1 3

Node-to-set disjoint paths problem in cross-cubes  

Let x1
�+1

, x2
�+1

,… , xn
�+1

 be the n neighbors of u�+1 in Ci
n−1

 . Since |D| < n , there exists a 
node x�+1 ∈ {x1

�+1
, x2

�+1
,… , xn

�+1
} such that x�+1 ∉ D and (u�+1, x�+1) ∈ E(Ci

n−1
) . Let 

z�+1 = (x�+1)
n and P�+1 = (ur, x�+1, z�+1) . By Definition 1, we have x�+1, z�+1 ∉ T �� 

and x�+1, z�+1 ∉ V(Pj) for j ∈ {1, 2,… , �}.
Hence, P1 = (u1, x1, z1) , P2 = (u2, x2, z2) , … , P� = (u� , x� , z�) , 

P�+1 = (u�+1, x�+1, z�+1) are � + 1 node-disjoint paths such that V(Pj) ∩ T �� = � for 
j ∈ {1, 2,… , � + 1} (refer to Fig. 4).

From the above discussion, we claim that the lemma holds.   ◻

Lemma 9 For any integer n ≥ 3 , choose an arbitrary source node s and an arbitrary 
node set D = {d1, d2,… , dn+1} in a Cn with s ∉ D , there exist n + 1 node-disjoint 
paths (except for s) from s to nodes of D, whose maximum length is limited by 2n − 3.

Proof The lemma is proved by induction on n, which is the dimension of Cn . By 
Lemma 5, the lemma holds for n = 3 . We assume that the lemma holds for n = � − 1 
when � ≥ 4 . Then, we can obtain the following statement based on the induction 
hypothesis: for a node s and a node set D� = {d1, d2,… , d�} in a C�−1 with s ∉ D� 
and � ≥ 4 , there exist � node-disjoint paths (except for s) from s to nodes of D′ , 
whose maximum length is limited by 2(� − 1) − 3 = 2� − 5 . In what follows, by 
choosing an arbitrary source node s and an arbitrary node set D = {d1, d2,… , d�+1} 
in a C� with s ∉ D , we will prove that the lemma holds for n = � when � ≥ 4.

Choose an integer i with i ∈ {0, 1} . Let D1 = D ∩ V(Ci
�−1

) , D2 = D ∩ V(C1−i
�−1

) , 
D3 = {u|u ∈ D1 and (u)� ∈ D} , D4 = {u|u ∈ D2 and (u)� ∈ D} , � = |D1| , � = |D2| , 
� = |D3| = |D4| , and s� = (s)� . Without loss of generality, suppose that s ∈ V(Ci

�−1
) . 

Then, we can claim the following three cases with respect to �.
Case 1. � = � + 1.
Let D�� = {d2, d3,… , d�+1} and � = 0 . According to induction hypothesis, there 

exist � paths node-disjoint paths Q1,Q2,… ,Q� (except for s) from s to nodes of D′ , 

|D| = 𝜏 + 𝜏 + m ≤ 2𝜏 + n − 2(𝜏 + 1) + 1 = n − 1 < n.

Fig. 4  � + 1 node-disjoint 
paths P1,P2,… ,P� ,P�+1 in 
C
n
 with V(P

j
) ∩ T

�� = � for 
j ∈ {1, 2,… , � + 1}



1364 X. Wang et al.

1 3

whose maximum length is limited by 2� − 5 . Choose � ∈ {1, 2,… , �} such that 
d�+1 ∈ V(Q�) . We further obtain the following two subcases with respect to �.

Case 1.1 � ∉ {1, 2,… , �}.
Let d�

�+1
= (d�+1)

� and Q� = CRouting(C1−i
�−1

, s�, d�
�+1

) . For any integer 
1 ≤ j ≤ � + 1 , if 1 ≤ j ≤ � , let Pj = Qj ; otherwise, let Pj = (s,Q�, d�+1) (refer to 
Fig. 5a).

By the induction hypothesis, P1,P2,… ,P� are node-disjoint expect for s. In addi-
tion, we can verify that V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state 
that P1,P2,… ,P�+1 are node-disjoint expect for s. By Lemma 4, we have

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Subcase 1.2 � ∈ {1, 2,… , �}.
Without loss of generality, denote � = 1 . Let d�

1
= (d1)

� and 
Q� = CRouting(C1−i

�−1
, s�, d�

1
) . For any integer 1 ≤ j ≤ � + 1 , let

Accordingly, all the � + 1 needed paths connecting s and nodes of 
D = {d1, d2,… , d�+1} of C� are constructed above (refer to Fig. 5b). By the induc-
tion hypothesis, P2,P3,… ,P�+1 are node-disjoint expect for s. In addition, we 
can verify that V(P1) ∩ V(Pk) = {s} for all 2 ≤ k ≤ � + 1 . Therefore, we state that 
P1,P2,… ,P�+1 are node-disjoint expect for s. By Lemma 4, we have

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

|Pj| ≤ max{2� − 5, � − 2 + 2} ≤ 2� − 3

Pj =

⎧
⎪⎨⎪⎩

(s,Q�, d1) if j = 1,

Qj if 2 ≤ j ≤ �,

Path(Q1, s, d�+1) if j = � + 1.

|Pj| ≤ max{� − 2 + 2, 2� − 5, (2� − 5) − 1} ≤ 2� − 3

Fig. 5  Illustrations for a Case 1.1 and b Case 1.2 in Lemma 9, respectively



1365

1 3

Node-to-set disjoint paths problem in cross-cubes  

Case 2. � = 0.
For any integer j with 1 ≤ j ≤ � + 1 , let d�

j
= (dj)

� . Let D�� = {d�
1
, d�

2
,… , d�

�
} . We 

further deal with the following two subcases with respect to s′.
Subcase 2.1. s� ∈ D.
Without loss of generality, let d�+1 = s� . By the induction hypothesis, there are � 

node-disjoint paths Q1,Q2,… ,Q� (except for s) joining s and nodes of D′′ in Ci
�−1

 
such that d�

k
∈ V(Qk) for 1 ≤ k ≤ � , whose maximum length is limited by 2� − 5 . For 

any integer 1 ≤ j ≤ � + 1 , if 1 ≤ j ≤ � , let Pj = (Qj, dj) ; otherwise, let Pj = (s, d�+1) 
(refer to Fig. 6a).

By the induction hypothesis and Definition  1, we can verify that the 
� paths P1,P2,… ,P� are node-disjoint expect for s. In addition, we have 
V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state that P1,P2,… ,P�+1 are 
node-disjoint expect for s. By the induction hypothesis, we have

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Subcase 2.2. s� ∉ D.
Let D��� = {d2, d3,… , d�+1} . By the induction hypothesis, there exist � node-dis-

joint paths Q2,Q3,… ,Q�+1 (except for s′ ) joining s′ and nodes of D′′′ in C1−i
�−1

 such that 
dk ∈ V(Qk) for 2 ≤ k ≤ � + 1 , whose maximum length is limited by 2� − 5 . Choose 
� ∈ {2, 3,… , � + 1} with d1 ∉ V(Q�) . Without loss of generality, let � = � + 1 . By 
the induction hypothesis, there exist � node-disjoint paths S1, S2,… , S� (except for s) 
joining s and nodes of D′′ in Ci

�−1
 such that dk ∈ V(Sk) for 1 ≤ k ≤ � , whose maxi-

mum length is limited by 2� − 5 . For any integer 1 ≤ j ≤ � + 1 , let if 1 ≤ j ≤ � , let 
Pj = (Sj, dj) ; otherwise, let Pj = (s,Q�+1) (refer to Fig. 6b).

By the induction hypothesis and Definition  1, we can verify that the 
� paths P1,P2,… ,P� are node-disjoint expect for s. In addition, we have 
V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state that P1,P2,… ,P�+1 are 
node-disjoint expect for s. By the induction hypothesis, we have

|Pj| ≤ max{1, (2� − 5) + 1} = 2� − 4 ≤ 2� − 3

Fig. 6  Illustrations for a Case 2.1 and b Case 2.2 in Lemma 9, respectively



1366 X. Wang et al.

1 3

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Case 3. 1 ≤ � ≤ �.
Without loss of generality, denote D1 = {d1, d2,… , d�} , 

D2 = {d�+1, d�+2,… , d�+1} , D3 = {d1, d2,… , d�} and D4 = {d�+1, d�+2,… , d�+�} if 
� ≥ 1 and � ≥ 1 . Clearly, we have � ≤ � , � ≤ � , and � + � = � + 1 . For any integer j 
with � + 1 ≤ j ≤ � + 1 , let d�

j
= (dj)

� . We further have the following four subcases 
with respect to � and s′.

Subcase 3.1. � = 0 and s� ∈ D.
Without loss of generality, let s� = d�+1 . Then, let

By the induction hypothesis, there exist � node-disjoint paths (except for s) 
Q1,Q2,… ,Q� joining s and nodes of D′′ in Ci

�−1
 such that dk ∈ V(Qk) for all 

1 ≤ k ≤ � and d�
k
∈ V(Qk) for all � + 1 ≤ k ≤ � if 𝛽 > 1 , whose maximum length is 

limited by 2� − 5 . For any integer 1 ≤ j ≤ � + 1 , let

Accordingly, all the � + 1 needed paths connecting s and nodes of 
D = {d1, d2,… , d�+1} of C� are constructed above (refer to Figure  7a, b). By the 
induction hypothesis and Definition 1, we can verify that the � paths P1,P2,… ,P� 
are node-disjoint expect for s. In addition, we can verify that V(P�+1) ∩ V(Pk) = {s} 
for all 1 ≤ k ≤ � . Therefore, we state that P1,P2,… ,P�+1 are node-disjoint expect 
for s. By Lemma 4, we have

|Pj| ≤ max{(2� − 5) + 1, (2� − 5) + 1} = 2� − 4 ≤ 2� − 3

D�� =

{
{d1, d2,… , d𝛼} if 𝛽 = 1,

{d1, d2,… , d𝛼 , d
�
𝛼+1

, d�
𝛼+2

,… , d�
𝜏
} if 𝛽 > 1.

Pj =

⎧
⎪⎨⎪⎩

Qj if 1 ≤ j ≤ 𝛼,

(Qj, dj) if 𝛼 + 1 ≤ j ≤ 𝜏 and 𝛽 > 1,

(s, d𝜏+1) if j = 𝜏 + 1.

Fig. 7  Illustrations for a � = 1 and b 𝛽 > 1 of Case 3.1 in Lemma 9, respectively



1367

1 3

Node-to-set disjoint paths problem in cross-cubes  

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Subcase 3.2. � ≤ 1 and s� ∉ D.
Without loss of generality, let d�+1 ∈ D4 if � = 1 . Let

Then, by the induction hypothesis, there exist � node-disjoint paths (except for 
s) Q1,Q2,… ,Q� joining s and nodes of D′′ in Ci

�−1
 such that dk ∈ V(Qk) for all 

1 ≤ k ≤ � and d�
k
∈ V(Qk) for all � + 1 ≤ k ≤ � if 𝛽 > 1 , whose maximum length is 

limited by 2� − 5.
If 𝛽 > 1 . Choose � − 1 distinct nodes (resp. node) x2, x3,… , x� in C1−i

�−1
 such that 

{x2, x3,… , x�} ∩ {s�, d�+1, d�+2,… , d�+1} = � when 𝛼 > 1 . Then, let

By the induction hypothesis, there exist � node-disjoint paths (except for s′ ) 
S2, S3,… , S�+1 joining s′ and nodes of D′′′ in C1−i

�−1
 such that xk ∈ V(Sk) for 2 ≤ k ≤ � 

if 𝛼 > 1 and dk ∈ V(Sk) for � + 1 ≤ k ≤ � + 1 , whose maximum length is limited by 
2� − 5.

For any integer 1 ≤ j ≤ � + 1 , let

Furthermore, all the � + 1 needed paths connecting s and nodes of 
D = {d1, d2,… , d�+1} of C� are constructed above (refer to Fig. 8a–c). By the induc-
tion hypothesis and Definition 1, we can verify that the � paths P1,P2,… ,P� are 
node-disjoint expect for s. In addition, by the induction hypothesis, we can verify 
that V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state that P1,P2,… ,P�+1 
are node-disjoint expect for s. By Lemma 4, we have

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Subcase 3.3. � ≥ 1 and s� ∈ D.
Without loss of generality, let s� = d�+1 and dj = (d�+j)

� for j ∈ {1, 2,… , �} . For 
any integer j with � + 1 ≤ j ≤ � and � + � + 1 ≤ j ≤ � , let d�

j
= (dj)

� . Denote

|Pj| ≤ max{2� − 5, (2� − 5) + 1, 1} ≤ 2� − 4 ≤ 2� − 3

D�� =

{
{d1, d2,… , d𝛼} if 𝛽 = 1,

{d1, d2,… , d𝛼 , d
�
𝛼+1

, d�
𝛼+2

,… , d�
𝜏
} if 𝛽 > 1.

D��� =

{
{d2, d3,… , d𝜏+1} if 𝛼 = 1,

{x2, x3,… , x𝛼 , d𝛼+1, d𝛼+2,… , d𝜏+1} if 𝛼 > 1.

Pj =

⎧
⎪⎨⎪⎩

Qj if 1 ≤ j ≤ 𝛼,

(Qj, dj) if 𝛼 + 1 ≤ j ≤ 𝜏 and 𝛽 > 1,

(s, S𝜏+1) if j = 𝜏 + 1 and 𝛽 > 1,

(s, CRouting(C1−i
𝜏−1

, s�, d𝜏+1)) if j = 𝜏 + 1 and 𝛽 = 1.

|Pj| ≤ max{2𝜏 − 5, (2𝜏 − 5) + 1, (2𝜏 − 5) + 1, 𝜏 − 2 + 1} ≤ 2𝜏 − 4 < 2𝜏 − 3



1368 X. Wang et al.

1 3

and

Since � + � = � + 1 , � ≥ � + 1 , and � ≥ � , we have � ≤
�

2
= ⌈ �−1

2
⌉ and

If � = 1 , by Lemma  8, there exists a path S�+1 = (d�+1, x�+1, d
�
�+1

) such that 
(d�+1, x�+1) ∈ E(C1−i

�−1
) , d�

�+1
= (x�+1)

� , and V(S�+1) ∩ T = � ; If 𝛾 > 1 , by Lemma 8, 
there exist � node-disjoint paths S�+1 = (d�+1, x�+1, d

�
�+1

) , S�+2 = (d�+2, x�+2, d
�
�+2

) , 
… , S�+� = (d�+� , x�+� , d

�
�+�

) such that (dj, xj) ∈ E(C1−i
�−1

) , d�
j
= (xj)

� , and V(Sj) ∩ T = � 
for j ∈ {� + 1, � + 2,… , � + �}.

Furthermore, let D�� = {d1, d2,… , d� , d
�
�+1

, d�
�+2

,… , d�
�
} . Hence, we can verify 

that D�� ∩ {s} = � and |D��| = � . By the induction hypothesis, there exist � node-
disjoint paths (except for s) Q1,Q2,… ,Q� joining s and nodes of D′′ in Ci

�−1
 such 

T =

⎧
⎪⎨⎪⎩

{d1, d2,… , d𝛼 , s, s
�, d�

𝛾+1
, d�

𝛾+2
,… , d�

𝛼
} if 𝛾 = 𝛽 − 1,

{d1, d2,… , d𝛼 , s, s
�, d�

𝛾+1
, d�

𝛾+2
,… , d�

𝛼
, d𝛼+𝛾+1,

d𝛼+𝛾+2,… , d𝜏 , d
�
𝛼+𝛾+1

, d�
𝛼+𝛾+2

,… , d�
𝜏
} if 𝛾 < 𝛽 − 1.

k =

{
𝛼 − 𝛾 + 1 if 𝛾 = 𝛽 − 1,

𝛼 − 𝛾 + 1 + 𝜏 − (𝛼 + 𝛾) if 𝛾 < 𝛽 − 1.

k =

{
𝜏 + 1 − 𝛽 − 𝛾 + 1 = 𝜏 − 2𝛾 + 1 if 𝛾 = 𝛽 − 1,

𝛼 − 𝛾 + 1 + 𝜏 − (𝛼 + 𝛾) = 𝜏 − 2𝛾 + 1 if 𝛾 < 𝛽 − 1.

Fig. 8  Illustrations for a � = 1 , b 𝛽 > 1 and � = 1 , and c 𝛽 > 1 and 𝛼 > 1 of Case 3.2 in Lemma 9, respec-
tively



1369

1 3

Node-to-set disjoint paths problem in cross-cubes  

that dk ∈ V(Qk) for 1 ≤ k ≤ � and d�
k
∈ V(Qk) for � + 1 ≤ k ≤ � , whose maximum 

length is limited by 2� − 5 . For any integer 1 ≤ j ≤ � + 1 , let

Accordingly, all the � + 1 needed paths connecting s and nodes of 
D = {d1, d2,… , d�+1} of C� are constructed above (refer to Fig.  9a, b). By the 
induction hypothesis, Lemma  8, and Definition  1, we can verify that the � paths 
P1,P2,… ,P� are node-disjoint expect for s. In addition, by the induction hypothesis, 
we can verify that V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state that 
P1,P2,… ,P�+1 are node-disjoint expect for s. By Lemma 4, we have

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

Subcase 3.4. � ≥ 2 and s� ∉ D.
Without loss of generality, let dj = (d�+j)

� for j ∈ {1, 2,… , �} . For any integer j 
with � + 1 ≤ j ≤ � and � + � + 1 ≤ j ≤ � + 1 , let d�

j
= (dj)

� . Denote � = � − 1 , 
k = 2 + (� − �) , and

Since � + � = � + 1 , � ≤ � , and � ≥ � , we have

and

Pj =

⎧⎪⎨⎪⎩

Qj if 1 ≤ j ≤ 𝛼,

(Qj, xj, dj) if 𝛼 + 1 ≤ j ≤ 𝛼 + 𝛾 ,

(Qj, dj) if 𝛼 + 𝛾 + 1 ≤ j ≤ 𝜏 and 𝛾 < 𝛽 − 1,

(s, d𝜏+1) if j = 𝜏 + 1.

|Pj| ≤ max{2� − 5, (2� − 5) + 1 + 1, (2� − 5) + 1, 1} ≤ 2� − 3

T =

{
{d1, d2,… , d𝛼 , s, s

�, d𝜏+1} if 𝛾 = 𝛽,

{d1, d2,… , d𝛼 , s, s
�, d𝛼+𝛾 , d𝛼+𝛾+1,… , d𝜏+1, d

�
𝛼+𝛾+1

, d�
𝛼+𝛾+2

,… , d�
𝜏+1

} if 𝛾 < 𝛽.

1 ≤ � = � − 1 ≤
� + 1

2
− 1 ≤ ⌈� − 1

2
⌉

Fig. 9  Illustrations for a � = � − 1 and b 𝛾 < 𝛽 − 1 of Case 3.3 in Lemma 9, respectively



1370 X. Wang et al.

1 3

If � = 1 , by Lemma  8, there exists a path Q�
�+1

= (d�+1, x�+1, d
�
�+1

) such that 
(d�+1, x�+1) ∈ E(C1−i

�−1
) , d�

�+1
= (x�+1)

� , and V(Q�
�+1

) ∩ T = � ; If 𝜙 > 1 , by Lemma 8, 
there exist � node-disjoint paths Q�

�+1
= (d�+1, x�+1, d

�
�+1

) , Q�
�+2

= (d�+2, x�+2, d
�
�+2

) , 
… , Q�

�+�
= (d�+�, x�+�, d

�
�+�

) such that (dj, xj) ∈ E(C1−i
�−1

) , d�
j
= (xj)

� , and 
V(Q�

j
) ∩ T = � for j ∈ {� + 1, � + 2,… , � + �}.

Let � = � − 2� − (� − �) . Accordingly, we have

and thus we have 0 ≤ 𝜑 < 𝛼 . If � ≥ 0 , we have � = � . If � ≥ 1 , 
choose � distinct nodes (resp. node) x1, x2,… , x� in C1−i

�−1
 such that 

{x1, x2,… , x�} ∩ {s�, d�+1, d�+2,… , d�+1, x�+1, x�+2,… , x�+�} = � . Furthermore, let

and D��� = {d1, d2,… , d� , d
�
�+1

, d�
�+2

,… , d�
�+�

, d�
�+�+1

, d�
�+�+2

,… , d�
�+1

} . Hence, we 
can verify that D�� ∩ {s�} = � , D��� ∩ {s} = � , |D���| = � + � − 1 = � , and

By the induction hypothesis, there exist � node-disjoint paths (except for s′ ) 
Q2,Q3,… ,Q�+1 joining s′ and nodes of D′′ in C1−i

�−1
 such that dk ∈ V(Qk) for all 

� + 1 ≤ k ≤ � + 1 , xk+� ∈ V(Qk) for all � − � + 1 ≤ k ≤ � , and xk−1 ∈ V(Qk) for 
all 2 ≤ k ≤ � − � if � ≥ 1 , whose maximum length is limited by 2� − 5 . Moreo-
ver, by the induction hypothesis, there exist � node-disjoint paths (except for 
s) S1, S2,… , S�+�, S�+�+1, S�+�+2,… , S�+1 joining s and nodes of D′′′ in Ci

�−1
 

such that dk ∈ V(Sk) for 1 ≤ k ≤ � and d�
k
∈ V(Sk) for � + 1 ≤ k ≤ � + � and 

� + � + 1 ≤ k ≤ � + 1 , whose maximum length is limited by 2� − 5 . For any integer 
1 ≤ j ≤ � + 1 , let

Accordingly, all the � + 1 needed paths connecting s and nodes of 
D = {d1, d2,… , d�+1} of C� are constructed above (refer to Fig.  10a–d). By the 
induction hypothesis, Lemma 8, and Definition  1, we can verify that the � paths 
P1,P2,… ,P� are node-disjoint expect for s. In addition, by the induction hypothesis, 
we can verify that V(P�+1) ∩ V(Pk) = {s} for all 1 ≤ k ≤ � . Therefore, we state that 
P1,P2,… ,P�+1 are node-disjoint expect for s. By Lemma 4, we have

k = 2 + (� − �) = � + 1 − (� + �) + 2 ≤ � − 2(� − 1) + 1 = � − 2� + 1.

� = � − 2� − (� − �) = � + � − 1 − � − � = � − (� + 1) = � − �

D�� =

{
{d�+1, d�+2,… , d�+1, x�+1, x�+2,… , x�+�} if � = 0,

{d�+1, d�+2,… , d�+1, x1, x2,… , x�, x�+1, x�+2,… , x�+�} if � ≥ 1.

|D��| =
{

� + � = � + � − 1 = � if � = 0,

� + � + � = � + � − 1 + � − � = � + � − 1 = � if � ≥ 1.

Pj =

⎧
⎪⎨⎪⎩

Sj if 1 ≤ j ≤ �,

(Sj, xj, dj) if � + 1 ≤ j ≤ � + �,

(s,Qj) if j = � + � ,

(Sj, dj) if � + � + 1 ≤ j ≤ � + 1.

|Pj| ≤ max{2� − 5, (2� − 5) + 1 + 1, (2� − 5) + 1, (2� − 5) + 1} ≤ 2� − 3



1371

1 3

Node-to-set disjoint paths problem in cross-cubes  

for j ∈ {1, 2,… , � + 1} with � ≥ 4 . From these discussions, � + 1 paths 
P1,P2,… ,P�+1 joining s and nodes of D in C� are node-disjoint expect for s, which 
is consistent with our assumptions.

In summary, the lemma holds for n = � .   ◻

By Lemma 5 and 9, the following theorem holds.

Theorem 10 For any integer n ≥ 2 , choose an arbitrary source node s and an arbi-
trary node set D = {d1, d2,… , dn+1} in a Cn with s ∉ D , there exist n + 1 node-dis-
joint paths (except for s) from s to nodes of D, whose maximum length is limited by 
2n − 3.

Consider two nodes s = 00000 and D = {01001, 01010, 01111, 11001, 11010, 11111} 
in C5 . The construction of the six node-disjoint paths falls into Lemma 9. The follow-
ing six paths (refer to Figure 11) are constructed according to Lemma 9, respectively.

P1 = (00000, 00001, 01001),
P2 = (00000, 00010, 01010),
P3 = (00000, 01000, 01011, 01111),
P4 = (00000, 10000, 11000, 11001),
P5 = (00000, 00011, 00111, 00110, 01110, 11110, 11010) , and
P6 = (00000, 00100, 01100, 11100, 11111).

Fig. 10  Illustrations for a � = � and � = 0 , b � = � and � ≥ 1 , c � ≤ � − 1 and � = 0 , and d � ≤ � − 1 
and � ≥ 1 of Case 3.4 in Lemma 9, respectively



1372 X. Wang et al.

1 3

The maximum length of the six node-disjoint paths is computed as 6. Actually, 
Theorem 10 took with the worst-case consideration of the maximal length of n + 1 
node-disjoint paths between node s and nodes of D in Cn.

3.2  A Constructive Node‑to‑set Algorithm of Cross‑cubes

In this subsection, we give an efficient algorithm, Algorithm N2SMain, to find 
n + 1 node-to-set disjoint paths in Cn if n ≥ 2 . Then, we analyze the time complexity 
of the Algorithm N2SMain.

Theorem 11 For any integer n ≥ 2 , given any arbitrary source node s and an arbi-
trary node set D = {d1, d2,… , dn+1} in a Cn with s ∉ D , there exist an O(Nlog2N) 
algorithm for finding n + 1 node-disjoint paths (except for s) from s to nodes of D of 
Cn , where N is the node number of Cn.

Proof Considering node-to-set disjoint paths for the given node u and set D in Cn 
with s ∉ D , we propose an efficient algorithm, Algorithm N2SMain. To simplify 
the presentation of the proposed routing algorithm, we first introduce two algo-
rithms, namely CProute and CSet, that will be the two core components of the 
proposed algorithm.

In order to compactly express the algorithm, we need some notations. We use a 
dictionary as a data structure that represents a collection of keys and values pair of 
data. Let T be a dictionary, we use T = [ ] to denote a empty dictionary which con-
tains zero element. Then, let a, b ∈ V(G) be two nodes of G, we use T(a) = b to set 
b as a value of key a and T(a) to return the item of b with key a in T, respectively. 
Let S be a set with m elements, we use |S| to denote the number of elements in a set 
S such that |S| = m . Furthermore, we use S.add(a) to add element a to the set S, S.
remove(a) to remove element a from the set S, and S = � to denote a empty set with 
|S| = 0 , respectively.   ◻

Fig. 11  Six node-disjoint paths from s = 00000 to nodes of D = {01001, 01010, 01111, 11001, 11010, 11111} 
in C5 are constructed according to Theorem 10



1373

1 3

Node-to-set disjoint paths problem in cross-cubes  

We first study the Algorithm CProute. In line 3, it takes O(1) time to get the last 
node from the path Qi with i ∈ {1, 2,… , n} . In lines 5 and 7, we assume, in our time 
analysis, that (x)n can be computed in constant time, which is the case when using 
the connection rule given in Definition 1. In line 7, it takes O(1) time to compute 
T[x]. In line 5, it takes constant time to construct Pi by joining path Qi and node (x)n . 
In line 7, it takes O(1) time to construct Pi by joining path Qi and nodes (x)n , T[x]. In 
line 12, it takes constant time to return n paths {P1,P2,… ,Pn} . Accordingly, we can 
verify that the time complexity of function CProute1 in Algorithm CProute is 
O(n). In lines 16 and 23, it takes O(1) time to compute V(Qi) . In lines 16 and 23, it 
takes O(n) time to compute D ∩ V(Qi) . In lines 17 and 24, it takes constant time to 
return a path Qi with i ∈ {1, 2,… , n} . Thus, we can verify that the time complexity 
of function CProute2 and CProute3 in Algorithm CProute is O(n2).



1374 X. Wang et al.

1 3

In addition, we propose Algorithm CSet. In lines 4 and 6, we assume, in our 
time analysis, that (x)n and NG(u) can be computed in constant time, which is the 
case when using the connection rule given in Definition 1. In lines 2 and 6 of Algo-
rithm CSet, it takes constant time to compute H (resp. S, T, H.add(x), S.add(v), 
T[v], and M.remove(v)). Accordingly, we can verify that the time complexity 
of function CSet1 in Algorithm CSet is O(n2) . In line 18, it takes O(n) time to 
choose � distinct nodes x1, x2,… , x� from a node set D. Thus, we can verify that the 
time complexity of function CSet2 in Algorithm CSet is O(n).



1375

1 3

Node-to-set disjoint paths problem in cross-cubes  

Accordingly, we propose our main algorithm, Algorithm N2SMain. Given a 
node s and a node set D = {d1, d2,… , dn+1} in Cn where s ∉ D , we construct n + 1 
node-disjoint paths except for s in Cn joining s and D. Suppose that a path in algo-
rithm N2SMain is saved by a doubly linked circular list whose head u and tail v 
are pointed by two pointers. Furthermore, each node is stored by a tuple.



1376 X. Wang et al.

1 3

In what follows, we will analyze the time complexity of Algorithm N2SMain as 
follows. In lines 1 ∼ 3 of Algorithm N2SMain, it takes constant time to construct 
the required node-disjoint paths. In lines 4 ∼ 5 of Algorithm N2SMain, it takes 
O(1) time to compute i (resp. � , � , � , and s′ ). In lines 9, 12, and 33 of Algorithm 
N2SMain, it takes O(n) time to construct the required path from u to v using the 
��������(Cn, u, v) function in Cn [20]. In lines 4, 11, 16, 19, 28, 35, 41, 45, and 49 
of Algorithm N2SMain, it takes O(n) time to compute D1 (resp. D2 , D3 , D4 , � , D5 , 
and D′).

We use U(s, D, n) to denote the time of finding n + 1 node-to-set disjoint paths 
between s and D in Cn . Furthermore, we assume that n is sufficiently large. Let

Accordingly, we have T(2) = O(1) . We can claim the following discussions with 
respect to n for n ≥ 3 . In lines 7 ∼ 13 , 16 ∼ 17 , 25 ∼ 30 , and 32 ∼ 33 of Algorithm 
N2SMain, we have

In lines 45 ∼ 47 of Algorithm N2SMain, we have

In lines 19 ∼ 20 , 35 ∼ 42 , and 49 ∼ 52 of Algorithm N2SMain, we have

Thus, based on Eqs. (3.1)∼(3.4) and Definition 1, we have

where N = 2n . Therefore, according to Eq. (3.5), under the worst case, the time 
complexity of algorithm N2SMain is T(n) ≤ O(Nlog2N) , where n ≤ 2 and N = 2n 
is the node number of Cn.

(3.1)T(n) = max{U(s,D, n)|{s},D ⊂ V(Cn) and s ∉ D}.

(3.2)T(n) ≤ T(n − 1) + O(n).

(3.3)T(n) ≤ T(n − 1) + O(n2).

(3.4)T(n) ≤ 2T(n − 1) + O(n2).

(3.5)

T(n) ≤ max{2T(n − 1) + O(n2), T(n − 1) + O(n2), T(n − 1) + O(n)}

≤ max{O(n22n),O(n3),O(n2)}

≤ O(n22n)

= O(Nlog2N).



1377

1 3

Node-to-set disjoint paths problem in cross-cubes  

3.3  Evaluation of algorithm N2SMain

In this subsection, we use simulations to evaluate the performance of Algorithm 
N2SMain. The Algorithm N2SMain was implemented by using the programming 
language Python under version 3.8.1 with libraries include Networkx, Matplotlib, 
NumPy, Cython, etc. The program was run on a Lenovo notebook computer with 
Intel 1.61GHz CPU, 16GB DRAM, and 512GB hard disk.

In our simulations, A set of n + 1 destination nodes D = {d1, d2,… , dn+1} are 
selected randomly. Then, a source node s randomly was selected with s ∉ D . Fur-
thermore, we applied Algorithm N2SMain and measured the execution time and 
the path length. The results were obtained by at least 10000 simulation runs.

Given a n-dimensional cross-cube, Cn , we use M(n) and D(n) to denote the maxi-
mal length of disjoint paths constructed by Algorithm N2SMain and diameter of Cn , 
respectively. In the following, a comparison of M(n) and D(n) is shown in Fig. 12. 
In the experiment, we can find that the maximal length of node-to-set disjoint paths 
gotten by our algorithm is much closer to the diameter of Cn.

4  Conclusions

Cross-cubes have been proposed as significant variations of hypercubes, which have 
higher fault-tolerant capability and smaller diameter than hypercubes at the same 
dimension. In this paper, we construct node-to-set disjoint paths of an n-dimensional 
cross-cube, Cn , whose maximum length is limited by 2n − 3 . Furthermore, we pro-
pose an O(Nlog2N) algorithm for finding node-to-set disjoint paths of Cn , where N is 
the node number of Cn . Then, we give the simulation results of the maximal length 
of disjoint paths obtained by our algorithm. Last but not least, as approaching to the 
end of this paper, further research issues on the cross-cubes are suggested. Some of 
them are fairly intriguing and still open for cross-cubes, e.g., set-to-set disjoint paths 
[21, 22], disjoint path covers [23, 24], completely independent spanning trees [25], 
and fault-tolerant routing [26].



1378 X. Wang et al.

1 3

2
3

4
5

6
7

8
9

10
11

12
13

C
ro
ss
-c
ub

e
D
im

en
si
on

(n
)

2468101214

PathLength

M
(n
)

D
(n
)

Fi
g.

 1
2 

 A
 c

om
pa

ris
on

 o
f M

(n
) a

nd
 D

(n
) i

n 
C
n



1379

1 3

Node-to-set disjoint paths problem in cross-cubes  

Acknowledgements This paper was supported by the National Natural Science Foundation of China 
(Nos. 61702351 and 61572337), the Joint Found of the National Natural Science Foundation of China 
(No. U1905211), the Natural Science Foundation of Jiangsu Province (No. BK20180209), the Natu-
ral Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJD520004), the 
Jiangsu Planned Projects for Postdoctoral Research Funds (No 1701172B), the Fundamental Research 
Funds for the Central Universities of Jilin University (No 93K172020K25), and the Qing Lan Project of 
Jiangsu Province.

References

 1. Fu H, Liao J, Yang J et al (2016) The sunway TaihuLight supercomputer: system and applications. 
Sci China Inform Sci 59(7):072001

 2. Harary F, Hayes JP, Wu H-J (1988) A survey of the theory of hypercube graphs. Comput Math Appl 
15(4):277–289

 3. Haq E (1991) Cross-cube: a new fault tolerant hypercube-based network. In: Proceedings of fifth 
international parallel processing symposium, pp 471–474

 4. Efe K (1992) The crossed cube architecture for parallel computation. IEEE Comput Archit Lette 
3(05):513–524

 5. Cull P, Larson SM (1995) The Möbius cubes. IEEE Trans Comput 44(5):647–659
 6. Zhou W, Fan J, Jia X, Zhang S (2011) The spined cube: a new hypercube variant with smaller diam-

eter. Inform Process Lett 111(12):561–567
 7. Wang X, Fan J, Jia X, Lin C-K (2016) An efficient algorithm to construct disjoint path covers of 

DCell networks. Theor Comput Sci 609(1):197–210
 8. Wang X, Fan J, Lin C-K, Jia X (2016) Vertex-disjoint paths in DCell networks. J Parall Distrib 

Comput 96:38–44
 9. Kaneko K, Bossard A (2017) A set-to-set disjoint paths routing algorithm in tori. Int J Netw Com-

put 7(2):173–186
 10. Bossard A, Kaneko K (2014) Time optimal node-to-set disjoint paths routing in hypercubes. J 

Inform Sci Eng 30(4):1087–1093
 11. Kocik D, Hirai Y, Kaneko K (2016) Node-to-set disjoint paths problem in a Möbius cube. IEICE 

Trans Inform Syst 99(3):708–713
 12. Gu Q, Peng S (1997) Node-to-set disjoint paths problem in star graphs. Inform Process Lett 

62(4):201–207
 13. Kaneko K, Suzuki Y (2003) Node-to-set disjoint paths problem in pancake graphs. IEICE Trans 

Inform Syst 86(9):1628–1633
 14. Kaneko K (2003) An algorithm for node-to-set disjoint paths problem in burnt pancake graphs. 

IEICE Trans Inform Syst 86(12):2588–2594
 15. Bossard A, Kaneko K (2012) Node-to-set disjoint-path routing in hierarchical cubic networks. Com-

put J 55(12):1440–1446
 16. Bossard A, Kaneko K, Peng S (2011) A new node-to-set disjoint-path algorithm in perfect hierarchi-

cal hypercubes. Comput J 54(8):1372–1381
 17. Bossard A, Kaneko K, Peng S (2011) Node-to-set disjoint-path routing in perfect hierarchical hyper-

cubes. Procedia Comput Sci 4:442–451
 18. Ling S, Chen W (2013) Node-to-set disjoint paths in biswapped networks. Comput J 57(7):953–967
 19. Diestel R (2012) Graph theory, 4th edn, vol 173. In: Graduate texts in mathematics. Springer
 20. Wang X, He F, Zhang S (2018) A restricted fault-free unicast algorithm in cross-cubes. J Southwest 

China Norm Univ 43(9):57–65 in Chinese
 21. Bossard A, Kaneko K (2012) The set-to-set disjoint-path problem in perfect hierarchical hyper-

cubes. Comput J 55(6):769–775
 22. Bossard A, Kaneko K (2016) Set-to-set disjoint paths routing in torus-connected cycles. IEICE 

Trans Inform Syst 99(11):2821–2823
 23. Lü H (2019) Paired many-to-many two-disjoint path cover of balanced hypercubes with faulty 

edges. J Supercomput 75(1):400–424



1380 X. Wang et al.

1 3

 24. Park J-H, Kim J-H, Lim H-S (2019) Disjoint path covers joining prescribed source and sink sets in 
interval graphs. Theor Comput Sci 776:125–137

 25. Cheng B, Wang D, Fan J (2017) Constructing completely independent spanning trees in crossed 
cubes. Disc Appl Math 219:100–109

 26. Fan J, Jia X, Cheng B, Yu J (2011) An efficient fault-tolerant routing algorithm in bijective connec-
tion networks with restricted faulty edges. Theor Comput Sci 412(29):3440–3450

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Node-to-set disjoint paths problem in cross-cubes
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	3.1 Node-to-set disjoint paths in cross-cubes
	3.2 A Constructive Node-to-set Algorithm of Cross-cubes
	3.3 Evaluation of algorithm N2SMain

	4 Conclusions
	Acknowledgements 
	References




