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Abstract
Remote health monitoring is an important aspect especially for remote locations 
where standard medical facilities are not available. Smart cities use a similar con-
cept to provide health facilities even when physicians are unavailable. Lung cancer 
remains to be one of the most critical types of cancer with a 5-year survival rate 
of only 18%. Efficient computer-aided diagnostic systems are required to diagnose 
lung cancer before time for better treatment planning. The variety of lung nodules 
and their visual similarity with surrounding regions make their detection difficult. 
Traditional image processing and machine learning methods usually lack the ability 
to handle all types of nodules with a single method. In this study, we propose an effi-
cient end-to-end segmentation algorithm with an improved feature learning mech-
anism based on densely connected dilated convolutions. We applied dense feature 
extraction and incorporated multi-dilated context learning by using dilated convolu-
tions at different rates for better nodule segmentation. First, lung ROIs are extracted 
from the CT scans using k-mean clustering and morphological operators to reduce 
the model’s search space instead of using full CT scan images or nodule patches. 
These ROIs are then used by our proposed architecture for nodule segmentation and 
efficiently handles different types of lung nodules. The performance of the proposed 
algorithm is evaluated on a publicly available dataset LIDC-IDRI and achieved a 
dice score of 81.1% and a Jaccard score of 72.5%.
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1  Introduction

Smart cities utilize a concept to collect data using sensors and cameras. It also 
helps to provide a framework for smart health monitoring. It is usually difficult 
to handle critical diseases in the absence of hardware or physicians. Lung nodule 
detection is one of those critical and life-threatening types of cancer with a five-
year survival rate of only around 18% [1]. In the last decade, there has been a 
lot of attention given to design efficient CAD systems with the advancements in 
computer vision and deep learning techniques [2–4]. However, CAD systems for 
lung nodule detection still need a lot of attention for better results. The computed 
tomography (CT) images are generally used for early diagnosis, monitoring, and 
treatment planning of lung nodules [5]. A generic CAD system for lung nodule 
detection consists of lung nodule classification, localization, and segmentation. 
Therefore, accurate lung nodule segmentation remains to be one of the important 
aspects of these systems. There is a growing need to design fully automated CAD 
systems for lung nodules as manual identification and nodule segmentation take 
time and expert knowledge [6].

Automated nodule detection and segmentation have a complex problem due to 
their heterogeneous nature [7–9]. The most challenging issue in nodule segmenta-
tion is the visual and shape similarity of nodules with their surroundings. However, 
the main challenge here is to identify and detect different types of nodules with a 
single method for efficient lung nodule detection. There are nodule types like jux-
tapleural which are visually very similar to lung walls and affect the segmentation 
performance of conventional methods. The other types of nodules also face similar 
issues like insignificant contrast difference with surrounding blood vessels or low 
contrast with the background. These problems make it difficult for traditional thresh-
old or morphological-based algorithms to segment nodules efficiently. The juxta-
vascular nodules are also difficult to segment due to their low contrast as compared 
to their surroundings. The major cause of low contrast is lung parenchyma in which 
juxta-vascular nodules are attached to blood vessels. Ground-glass nodules are also 
difficult to segment out due to the exhibition of the same behavior of juxta-vascular 
nodules. Simple thresholding-based techniques are not useful because of the very 
low contrast among surrounding regions. To solve these issues, OTSU-based seg-
mentation technique is employed to segment the nodules, but this technique faces 
limitations to handles adhesion-type nodules which include juxta-vascular and jux-
tapleural. The cavitary lung nodules have a cavity inside them which is an impor-
tant indication for their detection. Malignant nodules are greater than 5 mm in size 
with a shape similar to round air-like low-density shadows. Further, the size of these 
small nodules is comparable to surrounding noise. Such small nodules affect the 
network’s downsampling capabilities which means deeper semantic features are dif-
ficult to detect. This creates a major problem for feature extraction of large-sized 
nodules. The traditional segmentation algorithms may suit any particular nodule but 
lack the generalizability for other nodule types [10].

Previously, many traditional approaches have been used for lung nodule detec-
tion which includes intensity-based morphological operations [9, 11, 12] and 
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region growing. Further, energy optimization-based level set [8] and graph cut 
methods [13] have also been used for this purpose. However, these methods are 
not much useful for small nodules with less than 6  mm diameter. Generally, it 
is difficult to design adaptive templates in morphological operations [9]. Some 
semi-supervised methods proved effective but these methods require human inter-
vention [14]. The rule-based heuristic approaches also proved efficient but fail 
to handle irregular shapes due to rule violations [15]. The limitations of existing 
segmentation methods emphasize to design of better algorithms for nodule detec-
tion. The recent advancements in deep learning and its use in computer vision 
make it a better choice for CAD systems [16–21]. The performance of deep learn-
ing algorithms generally improves with an increase in data. The most important 
aspect of deep learning is automatic feature learning where manual and hand-
picked feature extraction is not required. The deep learning architecture automati-
cally learns features and patterns from the data and uses it for further processing. 
The deep learning architectures have also been widely used in medical imaging 
and proved effective [22–24]. However, the complex nature of lung nodules is 
problematic because of intensity, irregular shape, contrast, and visual similarity. 
Due to all these factors, already existing models require a lot of further improve-
ments. These problems make lung nodules detection an open research problem 
that needs attention.

From this line of research, we propose an efficient semantic segmentation-
based algorithm for lung nodule segmentation. The proposed work uses an effi-
cient architecture for nodule localization and segmentation. As in most previous 
researches [25, 26], algorithms are trained on whole CT scan images or different 
patches of nodules extracted by patch-based techniques. In this research, ROI-
based technique is used to train the algorithm for improved performance. In the 
first step, lung ROIs are extracted from a complete CT scan with the help of pre-
processing steps. These preprocessing steps include some standard operations, 
noise removal filters, and k-means clustering. The segmented images returned 
by k-means clustering are further improved by morphological operations which 
proved helpful in removing similar objects from surroundings. After that, the lung 
ROIs and their ground truth images are used to train the algorithm. The main aim 
of extracting lung ROI is to remove extra organs and objects from the whole CT 
scan. It also makes the training of algorithms easier due to reduced search space. 
The proposed algorithm is based on densely connected dilated (DCD) convolu-
tion blocks. The use of dense connections helps extract dense features by concat-
enating the extracted features from the previous layer to every next layer and also 
to improve feature usability. The convolution layers in DCD blocks are based on 
dilated convolutions which are capable of extracting wider information of con-
text due to their dilated filters. Different convolutions consist of different dilation 
rates to empower the multi-dilated context learning of the algorithm. Moreover, 
the proposed work is evaluated over a publicly available dataset LIDC-IDRI. The 
results are computed by using sensitivity, dice score, and Jaccard score. The pub-
lished work shows improvement in the segmentation of lung nodules over exist-
ing methods and also on standard U-Net proposed by Ronneberger et  al. [27]. 
This study has the following contributions:
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•	 We propose an end-to-end efficient automated method for lung nodule segmenta-
tion.

•	 We incorporated DCD blocks to improve the feature learning process in our 
architecture which are based on densely connected dilated convolutions

•	 Dilated convolutions of different rates enable multi-dilated context learning in 
algorithm to capture wider information for different types of nodules

The rest of the paper is organized as follows; Sect. 2 presents related work, the 
methodology is explained in Sect. 3, and results are presented in Sect. 4 followed by 
a conclusion and future work.

2 � Related work

In the last decade, there has been a lot of research done in the field of lung nod-
ule cancer detection. The methods used for this purpose include region growing, 
morphological methods, energy-based optimization, and machine learning-based 
methods. In morphological operations, lung nodules are highlighted, and blood ves-
sels are removed using different morphological operations for nodule detection and 
isolation [28]. To improve this technique and remove the wall from juxtapleural 
nodules, the shape hypothesis was included with morphological operators [29, 30]. 
However, lung nodule detection is a difficult task to be handled by morphological 
operators. The region-growing techniques lack the ability to handle all nodule types 
with a single method, especially the small nodules. This limitation was handled by 
introducing different rules based on intensity, distance, and fuzzy connectivity. Even 
though this method used various rules but still faced issues to handle irregular nod-
ules because it is difficult to design rules for such nodules. Researchers [31–33] also 
converted segmentation tasks into energy optimization tasks for processing. Level 
set functions were used to process the image, and optimization energy reaches a 
minimum value when segmentation contours match nodule boundary. Farag et  al. 
[8] proposed a similar approach for lung segmentation shape prior hypotheses. Fur-
thermore, the lung nodule detection problem was also formulated as a maximum 
flow problem [34] using the graph cut method. However, these methods lack the 
ability to handle all nodule types simultaneously. The machine learning methods 
require manual feature extraction and selection for nodule segmentation and voxel 
classification [35, 36]. Lu et al. [37] proposed a method based on translational and 
rotational invariant features for segmentation. Wu et al. proposed a method based on 
texture and shape features extraction using conditional random fields. Hu et al. [38] 
proposed a method and first performed lung extraction. Later, they have used the 
Hessian matrix for vascular feature extraction. They used artificial neural networks 
for the classification of nodules. Jung et al. [39] proposed deformable asymmetric 
multi-phase models for ground-glass nodule detection. A 3D multiscale lung nodule 
segmentation was also proposed for lung nodule detection by Gonçalves et al.[40].

CNN is a deep learning architecture and extracts features directly from the 
data and learns underlying patterns between raw data and labels. This category of 
algorithms also performs voxel classification for segmentation just like machine 
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learning techniques. Wang et al. proposed a multi-view CNN which consists of three 
branches, one for each view axial, coronal and sagittal. Later, Wang et al. proposed 
a center-focused semi-automatic CNN, however, this architecture lacks the ability to 
detect small nodules. Zhao et al. [41] proposed a pyramid deconvolution neural net-
work for lung nodule detection. The architecture efficiently extracted high-level and 
low-level features and combined them for classification. Huang et al. [42] designed 
a fully automated architecture that consisted of four steps: lung candidate detection, 
merging, false-positive reduction, and segmentation. A fully connected convolution 
neural network has also been used for this purpose like 2D and 3D U-Net architec-
tures. Moreover, in recent work, Cao et al. [43] proposed a dual branch residual net-
work for the segmentation of lung nodules. In their work, they combined the inten-
sity and deep features. They trained their algorithm by first extracting the patches 
of nodules using a weighted sampling strategy. Later on, Ali et  al. [44] proposed 
CNN based on transferable texture to increase the performance of classifying pul-
monary nodules. The texture features in CNN were extracted by introducing energy 
layer (EL) in the network instead of using pooling layers. Jiang et al.[45] proposed 
a multiple resolution residually connected network (MRRN) for the segmentation of 
lung nodules. The feature across multiple resolutions of images was combined with 
the features extracted through residual connections. Liu et  al. [46] used an object 
detection-based approach of Mask-RCNN for the detection of lung nodules. They 
fine-tuned the model trained on the COCO dataset for lung nodule detection. Keetha 
et al. [26] modified the original U-Net by incorporating a bidirectional feature net-
work (Bi-FPN) for the segmentation of lung nodules. They trained their algorithm 
on full CT scan images with data augmentation. During feature fusion, the addi-
tional weight is incorporated by Bi-FPN with each input. This helped and allowed 
the network to learn the importance of a particular input feature. Pezzano et al. [25] 
proposed context-learning-based CNN combined with an adaptive loss for accurate 
segmentation of nodules. They also extracted the patches from the CT scan and used 
them for training their network. Furthermore, Tang et al. [47] proposed an algorithm 
named Nodule-Net which was based on 3D deep CNN. It performed nodule detec-
tion, segmentation, and false-positive reduction jointly in single stage as multi-task 
fashion.

3 � Proposed methodology

The main architecture of the proposed methodology is presented in Fig. 1. The first 
step is dataset labeling, and then, preprocessing is done on extracted images to get 
lungs ROI. The lungs ROI images and their corresponding annotations are used to 
train the model and acquired the results of lungs nodules segmentation.

3.1 � Dataset labeling

This dataset contains the DICOM files for all patients with their corresponding 
XML annotations files. A Pylidc Python package is used for labeling the dataset as 



1607

1 3

An efficient U‑Net framework for lung nodule detection using…

recommended. This package helps in extracting the ground truth masks images of 
lung nodules.

3.2 � Dataset preprocessing

Generally, medical imaging datasets contain unnecessary objects which are not in 
the region of interest. Usually, the data need preprocessing for further experimen-
tation and better quality. So, in order to reduce the search space of our model, we 
extract a particular region of interest from the whole CT scan image where nodules 
are present. We follow the following sequence of steps to extract a lung’s ROI. The 
complete preprocessing procedure is also shown in Fig. 2.

Fig. 1   Schematic overview of the proposed methodology

Fig. 2   Steps of preprocessing on LIDC dataset
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3.2.1 � Standard operations

The basics of image processing operations can be beneficial in achieving simple 
tasks. Here, we first applied standard mean and deviation on the original image and 
then subtracted the image from standard mean and deviation. The image cropping is 
done followed by taking a mean of that cropped region. Further, the maximum and 
minimum values of the original slice image are replaced by the mean of the cropped 
region.

3.2.2 � Noise removal filters

In this study, we used two different noise removal filters for noise reduction. The 
first one is the median filter which performs excellently on images to reduce noise 
by working on its spatial domain and preserves image edges. A small matrix called 
kernel is used to scan an image, and the value of the central pixel is recalculated by 
taking the median of matrix values. Here, we used a kernel size of 3*3 to apply a 
median filter on the resulting image. After applying the median filter, an anisotropic 
diffusion filter has been applied. It is a non-linear filter known as Perona–Malik dif-
fusion which removes noise without blurring the edges and corners of the nodule 
boundary. The value of the gamma coefficient is 0.1 which controls the speed of 
diffusion, while the value kappa coefficient is 50. This advantage of anisotropic dif-
fusion filter is that it removes noise without blurring the edges of nodules.

3.2.3 � K‑means clustering

There are many different types of research conducted for image segmentation using 
different clustering methods. K-means algorithm is one of the popular cluster-
ing methods based on unsupervised learning and segment out the required region 
of interest from the image background. After preprocessing, K-means clustering 
is performed with k = 2 on resulting images to segment the lung regions from the 
image followed by thresholding. At first, the algorithm picks a random point which 
is the center point for grouping followed by calculating distance among all image 
pixels. After this, a new mean or centroid point is calculated and updated. This algo-
rithm continuously performs iterations until there is no change found in the mean or 
centroid point. The similarity and dissimilarity measures in clustering methods are 
based upon the Euclidian distance as shown in Eq. (1) in which D(x, y) represents 
the image and x and y are pixel coordinates of images.

3.2.4 � Morphological operations

Morphological operations are used to remove the imperfections and distortions pre-
sent in an image using different structuring elements. These structuring elements 
are simply pre-defined kernels that are applied to an image. The image we get from 

(1)D(x, y) =

√

∑

xiyi
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the previous step is a binary image and this binary image contains different types of 
imperfections. So, to remove these, we first apply an erosion operation on images 
followed by dilation on an image. The object boundaries are smooth, and all small 
objects in the foreground are removed by erosion while dilation repairs intrusions by 
enlarging objects and reducing gaps. This erosion followed by dilation is also called 
opening an image I(x, y) which is a binary image. Here, we used a box structuring 
element of (4, 4) in erosion operation and (10, 10) in dilation. The equation of mor-
phological opening operation is defined below.

In the above equation, structuring element s is applied on image I to form an 
opening operation denoted by Iөs in which erosion and dilation are denoted by ө and 
⨁, respectively.

3.2.5 � Extracting lungs ROI

In this step, the ROIs of the lungs from the CT scan image are extracted. The results 
of the morphological opening operation are further used for labeling of resulting 
image based on pixel intensities. The connection between two pixels exists when 
they are neighboring pixels and have a similar value. In this way, all connected 
regions are assigned the same integer value. Then, the properties and attributes of 
each labeled region are accessed using bounding boxes. The bounding box covers all 
pixels belonging to one region. With the help of these bounding box parameters, a 
lung mask is extracted. We further perform another dilation operation on the result-
ing lung mask with a structuring element of size (10, 10). In the end, a lung mask is 
multiplied with a slice image to get our required ROI.

3.3 � Lung nodule segmentation

U-Net architecture is a widely used framework that has emerged in deep learning 
over the last few years especially in biomedical image segmentation. The U-Net 
framework was first developed by Ronneberger et  al.[27] in the year 2015. Since 
then, many researchers have exploited this architecture in the field of medical imag-
ing. We use the concept of the U-Net model to design our model for lung nodules 
segmentation and later on, we also made a comparison between our model and 
U-Net. Figure 3 shows our proposed architecture.

3.3.1 � Downsampling Layers

The U-Net model generally consists of an encoder path, and this path is also referred 
to as the contracting and downsampling path which consists of downsampling lay-
ers. In our proposed architecture, the downsampling layers consist of densely con-
nected dilated convolution blocks (DCD) as shown in Fig.  3. After every DCD 
block, a max-pool layer of size 2*2 is applied on an input image to downscale it and 
it can be defined in Eq. (3):

(2)
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In above Eq. (3), on downsampling layer at a position of (k,w) , a yi
k.w

 neuron is pre-
sent in ith output map, whereas xi denotes the ith input map, in which region p × p is 
assigned with neuron value of yi

k.w
 . After that, the dropout layer of rate 0.05 is used 

after every max-pool layer. This step is performed to avoid overfitting issues due to 
the random deactivation of neurons found inside hidden layers. In the DCD block, the 
input is first given to 3*3 convolution with a dilation rate of 1*1. After that, the batch 
normalization [48] and ReLu [49] activation function are applied to the input image. 
In DCD blocks, the dilated convolutions of different rates are strong enough to capture 
wider information at different scales. It can be defined as to first consider a 2D signal 
at the input which is lung ROI in our case and the feature map which is represented by 
x . The kernel that is applied on an input image is denoted by w to get output y on each 
location i which is calculated as Eq. (4).

In Eq. (4), the given 2D signal at the input is sampled by r, while r shows the value 
of stride. This sampling operation is similar to conventional convolution operation on 
input x with kernels w. These kernels are useful to up-sampled the image along each 
spatial dimension. But in dilated convolutions, this can be done by adding r − 1 zeros 
between consecutive kernel values. The dilated convolutions assist in getting a large 
receptive field [50]. These dilated convolutions are able to extract larger contexts due 
to dilated filters of different rates. In this way, we get multi-dilated context informa-
tion from the image. Further, there are four different DCD blocks in the downsampling 
path, and each DCD block consists of convolution of kernel size 3*3. The dilation rate 
of each of four convolutions in DCD blocks is 1*1, 2*2, 3*3, and 4*4, respectively. All 
these convolutions in each DCD block are densely connected [51]. Here, the feature 
maps of the previous convolution layer are concatenated to the next convolution layer 
and increase the chance of getting dense features as shown in Fig. 4. Therefore, the fea-
ture maps of lungs ROI in all previous layers y0toyn−1 are given to every next nth layer 
as input:

(3)yi
k.w

= max
0≤a,b≤p

(

xik×p+a,w×p+b
)

(4)y[i] =
∑

k

x[i + r ⋅ k]w[k]

(5)yn = Hn

([

y0, y1,… , yn−1
])

Fig. 3   Architecture of proposed algorithm
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The concatenation of feature map’s generated from layers 0… n − 1 is referred 
by 

([

y0, y1,… , yn−1
])

 in Eq. (5). For example, if we have three layers named as y0, y1 
and y2 , then the input of layer y2 is the concatenation of features maps extracted 
by layer the y0 and y1 . From Fig. 4, it is illustrated that how the input of different 
dilated convolutions is extracted which results in dense, wider, and multi-dilated fea-
tures of lung nodules. Furthermore, there is the use of batch normalization [48] and 
Relu [49] activation after every convolution layer in DCD blocks as shown in Fig. 4. 
Batch normalization after each convolutional layer over the downsampling path is 
very important. This is because it enhances the process of training as inputs to each 
layer are normalized by obtaining zero mean and variance. All values being passed 
into activation get regulated by batch normalization which eventually speeds up the 
calculations during the forward pass. Weight initialization also becomes conveni-
ent while designing deeper networks which improves the performance of the model. 
Therefore, it can be said that a batch having N separate examples, where every 
example is of D-dimensional vector is passed to the batch of normalization layer. All 
inputs of lungs ROI are given by a matrix as X ∈ RN∗D where each of the examples 
is described by row xi . Every individual example xi of lungs ROI is normalized with 
the help of the equation given below in Eq. (6):

where ϵ is the small constant for numerical stability, and �, and �2 represent the 
mean and variance, respectively, and can be calculated by Eq. (7) and Eq. (8):

In above Eqs.  (7) and (8), N represents the total number of lungs ROI images 
in the current batch, while xi represents the one single ROI example in the batch. 

(6)x̂i =
xi − �
√

�2 + �

(7)� =
1

N

∑

i

xi

(8)�2 =
1

N

∑

i(xi − �)2

Fig. 4   Internal architecture of DCD blocks



1612	 Z. Ali et al.

1 3

Initially, the total number of filters present over the first DCD block is 16. This num-
ber is found to be doubled over further blocks which are 32, 64, and eventually 128 
over the last DCD block. More specifically, on the downsampling path, the lung ROI 
is passed as an input to the first DCD block, which produced feature maps of dimen-
sions 256*256*16. Afterward, the input is passed through max-pool operation to 
reduce the spatial dimensions of feature maps. This process is repeated three more 
times as shown in Fig. 4, and the dimension of feature maps produces each time is 
128*128*32, 64*64*64, and 32*32*128, respectively. Moreover, all the filters are 
initialized by “he normal” [52] weight initialization and it is defined by Eq. (9):

In Eq. (9), n represents the total number of inputs in the node, while G denotes a 
random number with Gaussian probability distribution. Furthermore, the standard 
deviation is calculated by 

√

2

n
 , while the mean is 0.0. These filters are applied in 

lungs ROI to extract nodule features. The main aim of the downsampling layers is to 
extract features and semantics out of an image as well as to depict image context in 
an efficient way. By the end of this step, the proposed model can learn the different 
kinds of information found in the image by using extracted features. This is done by 
downsampling the image with the help of convolution and pooling layers.

3.3.2 � Bottleneck layer

The bottleneck layer consists of a DCD block which consists of densely connected 
dilated convolution shown in Fig. 3. The max-pool layer after the last DCD block in 
the downsampling layer is given as an input to the bottleneck layer which is the first 
layer of the DCD block. Then, the output produced by the bottleneck is given to the 
first upsampling layer which is a transposed convolution layer. The dimensions of 
the feature map produce in the bottleneck layer are 16*16*256.

3.3.3 � Upsampling layers

The upsampling layers structurally comprised of four DCD blocks after every 
transposed convolution of size 3*3 and stride value of 2 as shown in Fig. 3. A 
transposed convolution is used at this stage as a deconvolution layer. The trans-
posed convolution layer (Conv2DTranspose) is complicated as compared to tra-
ditional upsampling and refers to the inverse of the convolution operation. This 
implies that in the training phase, it works by the upsampling image with suitable 
learning of how to fill up the details. Meanwhile, the traditional upsampling layer 
has no weights, and it just doubles the dimensions of the input image. Transposed 
convolution is also referred to as fractionally stride convolutions. Suppose if a 
convolution given by kernel w is applied with unit stride and without padding, 
while inputs and outputs from left to right are unrolled into vectors then this con-
volution can be represented as a matrix called sparse matrix C . In this matrix, 
wi,j denotes the non-zero elements of the kernel. By making use of this matrix, 

(9)W ∼ G(0,

√

2

n
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a backward pass is conveniently attained if transpose of C matrix is obtained. 
Furthermore, the loss is multiplied by transpose of C , and then, error is back-
propagated. A kernel w that defines a convolution consists of the forward and 
backward pass is computed by multiplying a sparse matrix C and the transpose of 
sparse matrix CT . Similarly, a kernel w also defines a fractionally strided convo-
lution (transposed convolution) in which both backward and forward passes are 
computed by multiplying C and 

(

CT
)T , respectively. Followed by each transposed 

convolution layer, concatenation is carried out from the contracting path with 
consequent feature maps. The filter size over four DCD blocks in upsampling lay-
ers is 128, 64, 32, and 16. In the end, a convolution of size 1*1 followed by a 
sigmoid activation function is employed as shown in Fig.  3. More specifically, 
the input from the DCD block of the bottleneck layer is given as an input to first 
transpose the convolution layer. After that, the output that comes from transposed 
convolution layer is concatenated with the last DCD block of downsampling lay-
ers. The dimension of output feature maps of the first DCD block in the upsam-
pling layer is 32*32*128. Similarly, the output that comes from the second con-
volution transposed convolution layer is concatenated with the second last DCD 
block in the downsampling path. The dimension of output feature maps of the 
second DCD block in the upsampling path is 64*64*64. This process is repeated 
two more times in the same pattern. So, the output feature maps in last two DCD 
block are 128*128*32 and 256*256*16.

The main aim of the upsampling layers is to up-sample the image to restore as 
well as capture spatial information. This also restores location information out of 
feature map size which was lost at the encoder path. All the contextual data from the 
downsampling layers are transferred to the upsampling layers with the help of skip 
connections. Skip connections comprised of concatenating intermediate encoder 
outputs to decoder layers at the required position. This step serves in merging locali-
zation data from the decoder path with contextual data from the encoder path.

3.3.4 � Training details and hyperparameters

The proposed model is trained on the LIDC-IDRI dataset. For training the model, 
input images with their ground truth mask are used. The loss function used here 
is binary cross-entropy and the model runs for 150 epochs with an input batch 
size of 4. The model is trained using an adaptive learning optimization algorithm 
called “Adam” optimizer with a learning rate of 0.001. Adam optimizer merges the 
momentum term along with stochastic gradient descent and RMSprop. The equation 
used for weight update of Adam optimizer is mentioned as under:

In the above-mentioned equation, W shows proposed model weights and � shows 
step size. The value of � directly depends on iteration. The values of m̂t and v̂t are 
estimated using equations mentioned below:

(10)Wt = Wt−1 − 𝜂
m̂t

√

v̂t + 𝜖
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In the above-mentioned equations, �1 and �2 are hyperparameters of the algorithm 
having default values 0.9 and 0.999, respectively. While the network is being trained, 
errors among actual values and predicted values are calculated with the help of the 
binary cross-entropy loss function. It is mentioned below:

In the above-mentioned equation, BCE stands for binary cross-entropy. yi refers to 
the predicted class of pixel in model output. P

(

yi
)

 represents probability predicted by 
the trained model for all pixels being background or belong to nodules.

4 � Experimentation and results

4.1 � Dataset details

The dataset used for this research is a public dataset of lung nodules from the Lung 
Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) 
[53]. In this dataset, there are 986 nodules samples labeled by four different expert radi-
ologists. In this research study, we have randomly partitioned 986 nodules into subsets 
of training and testing with an 80–20 ratio of split.

4.2 � Evaluation metrics

For the assessment of the proposed algorithm in segmenting lung nodules, differ-
ent types of evaluation metrics are used which include dice score, Jaccard score, the 
symmetric volumetric difference (SVD), and sensitivity [54]. The dice score gives an 
overlap score between actual and predicted results of the model, while the difference 
between actual and predicted mask is measured by SVD. Moreover, the Jaccard anal-
ysis helps in measuring similarity and diversity among two samples. Equations from 
(13) to (16) describe the mathematical formulation of these scores:

(11)m̂t =
mt

1 − 𝛽 t
1

and v̂t =
vt

1 − 𝛽 t
2

(12)BCE =
−1

N

N
∑

i=1

yi ∗ log
(

P
(

yi
))

+
(

1 − yi
)

∗ log
(

1 − p
(

yi
))

(13)DSC =
2.TP

2.TP + FP + FN

(14)SVD = 1 − DSC

(15)SVN =
TP

TP + FN
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where ‘‘TP’’ represents the true positive, FP represents the false positive, and FN 
represents the false negative in the results of the model.

4.3 � Results and discussions

In this study, we present an efficient and improved feature learning-based segmenta-
tion algorithm for the segmentation of different types of nodules. Our methodology 
starts with preprocessing of the data that is used to train the algorithm. So, due to 
the different natures of lung nodules, shapes and similarity with surrounding regions 
require preprocessing step. Therefore, images are enhanced for easy extraction of 
ROIs and the required objects. The results are presented in the second row of Fig. 5 
where final ROI regions are presented against each corresponding actual CT scan 
image. As mentioned before, the original CT scan contains many objects and arti-
facts which are visually similar to nodules. Therefore, segmenting nodules directly 
from the CT scan without any preprocessing are very challenging. Noise removal 
and image enhancement filters improve the image quality, and then, these improved 
images are used for ROI extraction. Then, we used k-mean clustering to extract the 
ROI from the CT scan which is our requirement so that further working can be done 
to extract lung nodules. However, the extracted lungs also contain various other sim-
ilar objects which are detected as false positives. These false positives are consid-
ered as one of the main problems faced in medical imaging because these objects 
need to be removed by a domain expert as a post-processing step. This false-positive 
reduction step requires manual intervention and makes this process of the human 
dependent. In this work, we used morphological operators, erosion, and dilation to 
remove such objects. The quality of the extracted ROIs is very good as shown in 
Fig. 5 and is then used for further analysis.

After preparing the data, the lung’s ROI and their corresponding ground truth 
images are used to train the algorithm. The proposed method segments out lung 

(16)JACCARD =
TP

TP + FP + FN

Fig. 5   CT scans from the dataset and their corresponding lungs ROI
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nodules very efficiently. The segmentation and localization of the lungs nodule are 
an important part of semantic segmentation. The results for nodule segmentation 
are presented in Fig. 6 where column (A) shows ROI images containing lungs, the 
second column (B) shows its corresponding actual mask provided by radiologists, 
the third column (C) contains actual overlay image, the fourth column (D) shows 
the predicted mask by the model and the last column (E) presents predicted overlay 
image. From Fig. 6, it is observed that the model efficiently handles different types 
of nodules. The results for juxta-vascular nodules, partially solid nodules, solid nod-
ules attached with the lung wall, irregular shape nodules, and results for tiny nodules 
attached to lung walls are presented in first, second, third, fourth, fifth, and sixth 
rows, respectively. It is observed that our model fails to segment very tiny nodules 
because the model is unable to extract features of tiny nodules as they are just 1–3 
pixels (Table 1).

On the other hands, the model is able to segment all other nodule types. The 
results presented in terms of images are also very promising. Moreover, the CAD 
systems are required to both identify the nodules and then segment out these nodules 

Fig. 6   a Original image b actual mask c actual overlay image d predicted mask e predicted overlay
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to assist physicians more effectively. The proposed work performed both these tasks 
efficiently. The test images include different types of nodules which include tiny, 
solid, partially solid, irregular shapes, and cavity-based nodules. Furthermore, in 
terms of different evaluation metrics, the proposed system segments out these nod-
ules properly and the dice score achieved for lungs nodules is 81.1% and the Jaccard 
score of 72.5% is achieved. The overall performance of the proposed work is very 
good as presented in Table  1. The comparison with the original U-Net proposed 
by Ronneberger et al. [27] is also drawn, and results are also shown in Table 1. Our 
proposed algorithm achieves a 10.1% improvement in dice score over U-Net, while 
the 11.8% improvement was found in the Jaccard score. There is also significant 
improvement found on other scores which includes sensitivity and SVD. The sen-
sitivity of our proposed algorithm is 82% and SVD of 0.19 which is very small. On 
the other hands, the sensitivity comes with U-Net is 70.2% and SVD of 0.29. The 
training and testing division of data are the same for both U-Net and the proposed 
model.

Further, the accuracy and loss graphs of the proposed model and U-Net are also 
presented in Figs. 7, 8, respectively. In Figs. 7 and 8, the x-axis shows the number of 
epochs, while the y-axis shows the accuracy and loss values of both U-Net and the 

Table 1   Performance evaluation for lungs nodule detection method

Authors Dice score (%) Jaccard (%) Sensitivity (%) SVD Year

U-Net [27] 71.0 62.8 70.2 0.29 2015
Proposed 81.1 72.5 82 0.19 2021

Fig. 7   Graph plotted to determine model loss
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proposed algorithm. The reason for high accuracy is a class imbalance because the 
background pixels are more than nodules pixels. The accuracy does not much tell 
about the segmentation model so we evaluate the model on popular segmentation 
metric which includes dice and Jaccard score and it is evident from these scores and 
results that the performance of the proposed method is very good.

Moreover, feature activation maps extracted by our proposed algorithms are 
shown in Fig. 9. Each layer output different activation maps. These activation maps 

Fig. 8   Graph plotted to determine model accuracy

Fig. 9   Activation maps result on intermediate layers
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help get information that how the model depicts and encodes the contextual informa-
tion of the given image. In the above figure, activation maps of different layers are 
shown. The above activation maps show that at starting layers, the model detects and 
finds small and fine-grained details and on subsequent layers, more high-level fea-
tures are extracted. It is observed that the model pays attention to lung areas which 
indicate and show that the model learns effective features from the image context. 
For example, the last image present in the last row of above Fig. 9 shows that model 
is very near to extract nodules as features are represented by yellow color.

A detailed comparative analysis is also drawn of our proposed model with exist-
ing methods and techniques for segmentation of lungs nodules which is shown in 
Table 2. In previous years, it is evident from the literature and observed that our pro-
posed achieved the highest dice score value. Shen et al. [55] achieved a dice score of 
78.55% in their experiments. In their work, they first extracted nodule patches and 
given them as an input to the multi-crop convolutional neural network (MC-CNN) 
in which a multi-crop pooling strategy was used. This dice score value is further 
improved in the work of Huang et al. [56] in which they proposed 3D convolutional 
neural networks whose input is nodule candidates generated by the local geometric 
model filter. Similarly, Wang, S. et al [41] proposed a central focused convolutional 
neural network (CF-CNN) which is based on a data-driven model and achieved a 
dice score of 77.67%. Later, the proposed study of Wu et al. [57] produces results 
that were not encouraging enough. In their work, multi-task CNN based on joint 
learning technique was proposed. In the same way, Jiang et al. [45] have also pro-
posed another technique that did not perform well with a DSC value of 68%. They 
proposed multiple resolutions and residual connection-based networks and trained 
their network on 160*160 patches of nodules. If the Jaccard score is compared, Han-
cock et  al. [58] and Huang et  al. [42] achieved 71.85% and 70.24%, respectively. 
Hancock et al. [58] used the concept of a level set machine learning, while Huang 
et al. [42] proposed faster-regional CNN (RCNN) for candidate detection of nodules 
followed by false-positive reduction stage and nodule segmentation. Similarly, Qian 
et al. [59] proposed pyramid convolutional neural networks and achieved a Jaccard 
score of 71.93% (Table 2).

Table 2   Comparative analysis 
with the existing methods

Sr. No Method Dice score Jaccard score Year

1 Wang, S. et. al [41] 77.67 – 2017
2 Jiang et. al [45] 68% – 2019
3 Huang et. al [56] 80.52 2017
4 Qian et. al [59] 62.8 71.93 2019
5 Hancock et. al [58] – 71.85 2019
6 Huang et. al[42] 70.24 2019
7 Wu et. al [57] 74.05 58 2018
8 Shen et. al [55] 78.55 – 2016

U-Net [27] 71.0 62.8 2015
Proposed Method 81.1 72.5 2021
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It is clear from Table 2 and above discussion that our proposed approach is bet-
ter than the existing and standard U-Net. The reason behind this improvement over 
U-Net is the improved feature learning. We extract dense multi-dilated features for 
nodules segmentation. Our model follows dense connections between dilated con-
volutions of different dilated filters. The dense connections concatenate the feature 
maps extracted by the current layer to every next layer. Moreover, the multi-dilated 
filters extract wider information about context at different rates. The features are 
propagated more efficiently in dense structures, and it also overcomes the problem 
of vanishing gradients. Another big advantage of dense connections is feature reus-
ability which reduces the calculation of different number parameters. Furthermore, 
the other factor of improved results is the reduced search space of the model. In 
most of the previous approaches, the algorithm is trained on full CT scan images. 
Most of the researchers extract patches from CT scans and perform training on those 
patches. The patch-based techniques usually required some time to first extract a lot 
of patches and usually face a class imbalance problem. In comparison, our approach 
followed an end-to-end mechanism to segment nodules.

5 � Conclusion

Lung cancer remains one of the critical and common types of cancer, and its early 
diagnosis is required to improve its treatment. In this work, we propose an efficient 
algorithm to segment lung nodules. The proposed architecture extracts an improved 
set of features with the help of densely connected dilated convolution blocks. More-
over, to increase the performance, the CT scan image is passed through some basic 
preprocessing steps to lungs ROI which is further used to train the network. Com-
parative analysis shows that our proposed method outperformed existing approaches 
and standard U-Net and achieved a dice score of 81.1% and 72.5% Jaccard score 
on the LIDC-IRDI. Proposed work significantly addressed and segment different 
types of nodules present, e.g, juxta-vascular, solid, partially solid, and irregular 
shape nodules. In the future, we will design a more effective feature learning process 
combined with attention gates that is able to segment tiny nodules. Moreover, we 
will also embed another module in the algorithm which sends feedback about diag-
nosis results in real-time and based on that feedback we optimize our algorithm to 
improve its performance in segmenting lung nodules.
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