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Abstract
The Internet of things (IoT) is emerging as a prime area of research in the mod-
ern era. The significance of IoT in the daily life is increasing due to the increase in 
objects or things connected to the internet. In this paper, routing protocol for low 
power and lossy networks (RPL) is examined on the Contiki operating system. This 
paper used RPL attack framework to simulate three RPL attacks, namely hello-flood, 
decreased-rank and increased-version. These attacks are simulated in a separate and 
simultaneous manner. The focus remained on the detection of these attacks through 
artificial neural network (ANN)-based supervised machine learning approach. The 
accurate detection of the malicious nodes prevents the network from the severe 
effects of the attack. The accuracy of the proposed model is computed with hold-
out approach and tenfold cross-validation technique. The hyperparameters have been 
optimized through parameter tuning. The model presented in this paper detected the 
aforesaid attacks simultaneously as well as individually with 100% accuracy. This 
work also investigated other performance measures like precision, recall, F1-score 
and Mathews correlation coefficient (MCC).

Keywords IoT · Security · RPL attacks · ANN · MCC · Validation · Accuracy

1 Introduction

The recent advances in IoT led to the development of a huge number of intelligent 
objects or things linked with each other via internet. These intelligent IoT devices 
use sensors to gather different types of data. Many devices utilize actuators to per-
form some action to control the environment. There have been substantial growths 
in IoT applications adaptable worldwide. IoT has applications in the numerous fields 
[1, 2] like smart cities and home automation, smart lightning or smart metering, 
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healthcare domain and ambient-assisted living [3]. In addition, IoT has been realized 
in the areas of industrial automation, traffic monitoring and controlling, smart logis-
tics, environmental monitoring, military target tracking, and surveillance [4]. Wire-
less sensor networks (WSN) are considered as the backbone of IoT. Many research 
works [5–10] have been reported in the literature for the improvement of WSN. 
It is expected that the usage of sensor-based IoT networks and their applications 
will flourish their horizon in the upcoming era. With this expansion, the security 
issues for the information breach lead to additional challenges in IoT domain [11]. 
The prior recognition of a malicious node can indirectly enhance the performance 
parameters like a lifetime, energy efficiency, accuracy, trustworthiness, availability, 
stability, scalability, security in the network. On the other hand, machine learning 
algorithms can be used in various scenarios like identification of voice and images 
and detection of fraud, etc. The huge amount of data generated by the IoT objects 
and their diversity add more issues for traditional data processing techniques. 
Machine learning can be treated as a significant computational paradigm to coun-
ter security concerns in IoT networks [60]. The data produced in the IoT networks 
may be provided as an input to a machine learning model to infer various relation-
ships like behavior, patterns, anomalies, etc., on the consistent pattern, the behavior 
of the attackers can also be identified with such techniques. This lead to smarter 
network enabled with automatic recognition and handling of the malicious objects. 
This research work focus on the detection of three well-known security attacks on 
RPL through an ANN-based supervised machine learning approach. The main con-
tributions of this paper includes: (i) Examining the proposed supervised machine 
learning model for detection of three RPL attacks in four scenarios. (ii) The pro-
posed model recognized the fraudulent nodes on three attacks (iii) The accuracy of 
the model has been enhanced up to the maximum possible value, i.e., 100% with 
the optimized value of hyperparameters (iv) The accuracy of the model has been 
authenticated with two validation methods, namely hold-out and tenfold cross-vali-
dation method (v) Overfitting of the model has been avoided through tenfold cross-
validation (vi) The hyperparameters (namely batch size, number of epochs and the 
optimizer) have been optimized via parameter tuning.

Rest of the paper is organized as follows: Section 2 outlines the present growth 
in IoT domain, RPL and machine learning. Section 3 presents the essential con-
cepts of RPL and artificial neural networks (ANN). Section  4 depicts the pro-
posed model, and Sect. 5 describes the simulation scenario. Section 6 illustrates 
the results, and conclusion is presented in Sect. 7.

2  Related work in IoT, RPL and machine learning

IoT and machine learning are among the most stimulating domains in the present 
scenario. RPL is used as a key protocol for routing in IoT networks and prone 
to numerous attacks. Many attack detection and prevention schemes have been 
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illustrated in the literature. This section classifies the related work into three sub-
sections as below:

2.1  Surveys

Many efforts have been reported in context of the IoT security by the researchers. 
The following works have been presented by the different authors for IoT security. 
Gaddour et al. [12] illustrated a review on RPL including design objectives and rout-
ing specifications of the protocol. The performance has been investigated on energy 
consumption, latency and loss associated with this protocol. Pongle et al. [13] pro-
vided a summary of attacks applicable to RPL along with numerous intrusion detec-
tion systems or mitigation schemes. Biljana et al. [14] highlighted the gap among the 
current smart home utilities and their incorporation to IoT networks. Also, a com-
prehensive model has been suggested for different smart objects within a cloud-ori-
ented IoT scenario. Mahdavinejad et al. [15] explained the machine learning (ML) 
algorithms for IoT data analysis. The different ML schemes have been examined for 
smart cities to resolve data related issues in IoT. The strength and weaknesses of ML 
schemes for analyzing IoT data have been elucidated. Zarpelao et al. [16] explained 
a survey on intrusion detection in IoT focusing on key tendencies, open challenges 
and upcoming research opportunities. Khan et al. [17] demonstrated an analysis on 
security issues in IoT architecture. The specifications for the security requirements 
and challenges, safety issues and block chain support have been elaborated. Costa 
et  al. [18] presented an appraisal on machine learning-based IDS approaches for 
attacks identification in IoT. This review covered a wide range of safety issues in 
the IoT scenario. Sengupta et al. [19] classified the attacks on the basis of objects 
vulnerability along with different levels of generalized IoT architecture. Verma et al. 
[20] presented investigations on the RPL attacks focusing on resources, topology 
and traffic. Specifically, the countermeasures for RPL-based network layer have been 
elucidated comprehensively. Avila et al. [21] presented a structured review of differ-
ent mitigation schemes on RPL attacks. This analysis has focused on supervising 
networks, parent node selection and authentication. Almusaylim et al. [22] presented 
a study on RPL in context of resources, topology, traffic and different attacks. Simha 
et al. [23] focused on RPL and Contiki operating system for investigation over des-
tination-oriented directed acyclic graph (DODAG) construction. The aspects related 
to suitability of Contiki and Cooja for RPL implementation have been explained.

2.2  Attacks and mitigation schemes

The major efforts by the researchers on attacks and mitigation schemes have been 
discussed as follows. Wallgren et al. [24] demonstrated various security attacks for 
mitigation schemes in the RPL based IoT networks. A lightweight heartbeat protocol 
has also been presented to prevent from different attacks. Sehgal et al. [25] exam-
ined the DODAG inconsistency attacks and elaborated its consequences. Mayzaud 
et al. [26] focused on the DODAG version system and examined the impact of pos-
sible attacks. Results revealed that the attacks impact the rise in overhead by 18%, 



13760 S. Sharma, V. K. Verma 

1 3

doubled the latency and reduced the delivery ratio by 30%. Mayzaud et  al. [27] 
worked for the improvement of a mitigation scheme for topological inconsistency 
attacks. Mayzaud et  al.[28] elucidated the nomenclature of RPL attacks and rela-
tive investigation for each of the attacks along with remedial measures. Ahmed et al. 
[29] reported a two-step process for avoiding the blackhole attack. Thanigaivelan 
et al. [30] presented a summary of a distributed internal anomaly detection scheme 
for IoTAlso, network fingerprinting has been used by the system for identifying any 
topological changes. Aris et  al. [31] investigated version number attacks in RPL-
based IoT networks and focused on static and mobile nodes with different cardinali-
ties. Diro et al. [32] represented the utility of deep learning for attacks identification 
and compared with traditional schemes. Perazzo et  al. [33] examined a wormhole 
attack in IEEE 802.15.4 based sensor networks to highlight the efficacy of the 
attack. Jyothisree et al. [34] reported the two specific attacks, namely blackhole and 
version number. The relative detection and prevention scheme for identifying both 
types of attacks have been elaborated. Ahutu et  al. [35] proposed a media access 
control (MAC) centralized routing protocol (MCRP) for the detection of the worm-
hole attack in WSN. Sahay et al. [36] illustrated the increased version attacks using 
sky motes and observed the average energy consumption by ordinary and fraudulent 
nodes. Pu et al. [37] presented the analysis on the Sybil attack in RPL-based IoT net-
works and suggested the remedial measure to avoid the Sybil attack.

2.3  Intrusion detection systems

Several intrusion detection systems (IDS) have been proposed by researchers in 
the past. Raza et al. [38] presented a novel approach SVELTE to detect instruction 
detection for RPL attacks. The attacks recognized through these IDS are the spoof-
ing, sinkhole and selective forwarding routing attacks. However, the attacks have 
not detected 100% accuracy. Enhanced IDS for sensing a denial-of-service attack 
in 6LoWPAN-based networks was proposed in reference [39, 40]. Kasinathan et al. 
[39] constructed the IDS through ebbits network model and verified it via a penetra-
tion testing system. However, Rghioui et al. [40] provided the significant statistics 
for problems concerning the kind of detection method, features and deployed agents. 
Pongle et al. [41] presented a real-time intrusion and wormhole attack detection in 
IoT. This model sensed the wormhole attack and attacker using the neighbor infor-
mation of the node. The presented model is energy efficient and uses only a fixed 
number of UDP packets for recognizing the attack. Sheikhan et al. [42] explained a 
hybrid IDS for IoT incorporating the MapReduce policy. The anomaly oriented and 
misuse-based identification has been achieved through mediator agents. The inter-
nal attacks are identified by unsupervised optimum path forest (OPF) scheme. Le 
et  al. [43] proposed a specification-based IDS for detecting attacks. This IDS has 
been influenced by a profiling method generating a high-level abstract of network 
operations to validate node activities. The simulation result depicted the recognition 
of the RPL topological attacks with the presented IDS. Jarrah et al. [44] discussed 
a semi-supervised multilayered clustering model (SMLC) for intrusion detection. 
The SMLC highlighted the learning from partially labeled data, and its performance 
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has been compared with tri-training, random forest, bagging and AdaboostM1 mod-
els. SMLC outperformed tri-training facilitating equivalent detection accuracy with 
80% labeled training data. Lee et al. [45] examined the competence of four types of 
ANN models and compared these models with the multinomial logit model (MNL) 
for prediction performance. The prediction accuracy of four ANNs has been evalu-
ated through hold-out and tenfold cross-validation methods along with sensitivity 
analysis. Anitha et al. [46] examined ANN (artificial neural network)-based intru-
sion detection system for IoT networks named ANNIDS through multilayer percep-
tron (MLP). These IDS focused on identifying the DIS attack and the version attack. 
Bhosale et al. [47] proposed the IDS for recognizing the wormhole attacks in RPL-
based IoT using the key parameter RSSI (received signal strength indicator). This 
mitigation scheme has been used for avoiding the wormhole attack and considered 
the benefits of centralized and distributed approaches. The attack has been detected 
with 90% accuracy. Kfoury et al. [48] presented a self-organizing map (SOM)-based 
IDS for three well-known RPL attacks. SOM has been used as an unsupervised 
machine learning method in categorical problems. The anticipated IDS categorized 
the distinct RPL attacks by a graphical map depiction. Sharma et al. [49] simulated 
four dissimilar RPL attacks for investigating the impact on cyber-physical systems. 
The offered model predicted and categorized the four attacks with 99.33% accuracy 
via a random forest classifier. Qureshi et al. [50] presented a new architecture using 
two segments, namely threshold modulation and attack detection. The deployed 
architecture identifies four types of RPL attacks successfully. The simulations con-
ducted revealed a higher delivery rate with diminished delay and packet loss.

3  RPL, security attacks and artificial neural networks (ANN)

This section explains the RPL, security attacks and artificial neural networks (ANN) 
in context of IoT.

3.1  Routing protocol for low power and lossy networks (RPL)

RPL is a key routing protocol generating destination-oriented directed acyclic 
graphs (DODAG) to skip loops. RPL uses three forms of message transfer labeled 
as multipoint to point (MP2P), point to multipoint (P2MP), and point to point (P2P), 
respectively [51]. MP2P supply message transfer from non-root nodes to the root 
node of the DODAG. P2MP facilitates the transmission of messages from the root 
node to all other non-root nodes. P2P supports communication among individual 
nodes. In addition, RPL facilitates four different modes of operation (MOP) called 
MOP0, MOP 1, MOP 2 and MOP 3. MOP0 uses MP2P communication and MOP1 
improves MOP0 by incorporating P2P communication managed through the root 
node. In this case, the individual root node possesses the routing table. MOP2 
improves the MOP1 by allowing the non-root nodes to store routing tables. Also, 
MOP2 allows P2P message transfer as managed by the non-root node. MOP3 boosts 
MOP2 by linking P2MP message transfer. RPL possesses four types of control 
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messages labeled as DODAG information solicitation (DIS), DODAG information 
object (DIO), DODAG advertisement object (DAO) and DAO acknowledgment 
(DAO-ACK). DIS message is used for finding the currently available DODAG. DIO 
message provides the announcement for acquainting other nodes regarding avail-
able DODAG. DAO message facilitates for connection with the presently available 
DODAG. DAO-ACK shows the DAO message indicating the acceptance or rejec-
tion of the call for connecting DODAG. An ordinary node decides its parent through 
an objective function. This objective function analyzes the rank of the competitor 
neighbor nodes and elects one node as the parent. Various services demand optimi-
zation based on their specific requirement, like healthcare services demand mini-
mum delay. Similarly, smart city applications demand minimum power expenditure. 
Therefore, dissimilar objective functions are required for different circumstances. 
RPL possesses two standard objective functions labeled as objective function zero 
(OF0) [52] and minimum rank with hysteresis objective function (MRHOF) [53].

3.2  Security attacks on RPL

Many security attacks may occur in RPL. Three major attacks, namely hello flood, 
decreased rank and increased version attack have been used in this paper.

3.2.1  Hello flood attack

This attack creates a lot of traffic in the network and causes the unavailability of 
resources in the worst case. The fraudulent node increases the number of DIS mes-
sages to be communicated at multiple places in the network. To achieve this objec-
tive, malicious node reduces the period among two sequential DIS messages labeled 
as RPL_CONF_ DIS_INTERVAL and RPL_CONF_DIS_START_DELAY.

During the solitary DIS message transmission, a bunch of DIS messages are 
transferred. The fraudulent node transmits numerous DIS messages lead to rise in 
traffic of the IoT network. Thus, the adjacent nodes getting DIS messages response 
with the DIO messages. This leads to the transmission of a bunch of DIO messages 
results in the further rise in traffic. Therefore, a huge share of substantial energy is 
misused, particularly by the adjacent nodes of the malicious node. Consequently, 
significant parameters like lifetime, availability, stability, energy efficiency of the 
network are severely affected.

3.2.2  Increased version attack

The RPL protocol generates DODAGs for skipping loops and DIO control pack-
ets Each DIO control packet has a version number associated with it. This version 
number is initialized by the root and remains constant throughout the traversal. The 
root node can alter this version number only when the DODAG is reconstructed. 
This phenomenon referred as global repair. The fraudulent nodes intentionally mod-
ify the version number of the DIO control packet and transfer the modified DIO 
message to neighbors. On receiving the modified DIO message, the neighbors show 
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their exclusion in the new DODAG. This causes the needless reconstruction of cur-
rently available DODAG. Frequent reconstruction raises the traffic in the network 
and affects the key parameters of the network like lifetime, availability, energy effi-
ciency, etc.

3.2.3  Decreased rank attack

During DODAGs generation, the RPL protocol assigns rank to each node in the net-
work. The ordinary nodes elect their parent by analyzing the ranks of the competitor 
neighbor nodes. The fraudulent node announces its forged rank to adjacent neigh-
bors. This led to the election of a fraudulent node as the parent of adjacent neighbor 
nodes. This makes other nodes to pass their messages through fraudulent node. In 
RPL, this objective is accomplished by firstly, assigning zero value to two constants 
labeled as RPL_CONF_MIN_HOPRANKINC and RPL_MAX_RANKINC. Fur-
ther, the constant INFINITE_RANK is assigned to a relatively low value. For keep-
ing the links with the higher rank nodes, the function call for re-evaluating ranks is 
skipped. Consequently, the fraudulent node announces its predecessor’s rank as its 
rank to cheat other nodes. This attack raises the traffic only at the fraudulent node 
and can be used for spying the downward nodes in the DODAG.

3.3  Artificial neural networks (ANN)

The notion of an artificial neural network (ANN) enables us to automate the learning 
process [54]. ANN represents the working of the human brain and remains essential 
for a group of processing units. These units collaborate to behave like a human brain 
where each unit pretends like a biological neuron. The processing units are organ-
ized in a sequence of layers to form the ANN capable of learning through instances. 
This learning process empowers the ANN to predict the output for the correspond-
ing set of inputs. Each ANN must have at least two layers, namely input layer and 
output layer. Depending on the nature of the problem, one or more hidden layers 
can also be incorporated between the input and output layer. The number of units in 
the input layer represents the number of features in the dataset used as independent 
variables in the ANN. Similarly, the number of units in the output layer denotes the 

Fig. 1  Basic architecture of artificial neural networks



13764 S. Sharma, V. K. Verma 

1 3

number of desired categories required to classify the dataset instances. The number 
of hidden layers and the number of units in each hidden layer can vary from problem 
to problem. Each link among the units is assigned a specific weight. This weight 
defines the impact of the source unit. Figure 1 represents the basic architecture of an 
artificial neural network where p number of input features from a dataset is required 
to be fed into the ANN to get r number of desired outputs. Let x1, x2, x3, …… xp are 
the p input features and w1, w2, w3, …… wp are the p number of weights. Here, w1 is 
assigned to link with x1, w2 is assigned to link with x2 and so on. The basic architec-
ture of each processing unit is represented in Fig. 2.

Let z be the output and b be the overall bias value. Let f denotes the activation 
function and k ϵ (1, p). The output of each unit is represented by Eq. (1).

If the bias value is zero, the output is denoted by Eq. (2)

Inputs and relative outputs are required to train the ANN. The weights are attuned 
during the training phase to minimize the error. After training, this trained ANN is 
used further to test the dataset.

4  Proposed ANN‑based IDS for RPL attacks in IoT networks

This section describes the proposed ANN-based system to detect three security 
attacks as shown in Fig. 3. Initially, the Contiki [55] operating system is equipped 
with the Cooja [56] simulator. Next, the RPL attacks framework [57] is used to 
implement the three security attacks labeled as hello flood, increased version and 
decreased rank attack. The power tracker module of the Cooja simulator is used 
for estimating the energy consumption of all nodes. Each node utilizes power in 
four ways, i.e., ON (powered on and idle), TX (transmission), RX (reception) 
and INT (interference). All these four metrics are scaled for the alive state of the 
node. This is done to compute the percentage energy consumption of each node. 
The RPL attacks framework produces the DODAG graphs, power consumption 
graphs and the packet capture files during simulation. All these outputs of the 

(1)z = f

(

p
∑

k=1

wkxk + b

)

(2)z = f

(

p
∑

k=1

wkxk

)

Fig. 2  Basic architecture of each 
processing unit inANN
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RPL attacks framework reflects the behavior of the network in the presence or 
absence of the attack. Firstly, Cooja simulations are performed for each of the 
three attacks separately. Next, the simulation is made with all the attacks imple-
mented in parallel. After performing the required simulations, the packet capture 
files (pcap) are converted into the comma-separated values (csv) using Wireshark 
tool. These csv files are then fetched as a Python dataframe through the Spyder 
tool. Afterward, the python data frame is preprocessed for the training and test-
ing phase through the ANN. The preprocessing includes dealing with the missing 
data, extracting the required features and normalizing the data. Further, the ANN 
model is trained and tested through the dataset to detect the attacks. The training 
uses the alteration of weights through back propagation to improve the resultant 
model. The testing involves the validation of the resultant trained model to detect 

Contiki OS

RPL Attack 
Framework

Cooja Simulator

Simulation 
Scripts

Power Tracker

DODAG 
Graphs

Power 
Consumption 

Graphs

Packet 
Capture

WiresharkSpyderPreprocessing

Security Attacks

Increased Version Hello Flood Decreased Rank

Resultant 
model to 

detect the 
attacks

K-Fold cross 
validation

Parameter 
tuning

Feature 
Extraction

Normalization

Hold-out
validation

Fig. 3  Proposed system for sensing RPL attacks in IoT networks



13766 S. Sharma, V. K. Verma 

1 3

the attacks with the appropriate accuracy. The correctness of the anticipated 
model is evaluated with a hold-out method and a k-fold cross-validation method.

The hyperparameters for ANN learning are optimized through parameter tun-
ing. The ANN used in Fig. 3 assumes p, q and r number of units available in the 
input, hidden and output layer, respectively. This indicates the fact that the num-
ber of units in each layer may be different.

4.1  Algorithm for proposed ANN‑based IDS

This algorithm uses RPL attacks framework as an input to perform the Cooja simula-
tions and provides the resultant model as an output to detect the RPL attacks.

Step 1: Contiki operating system downloading and installation.
Step 2: Configure the Cooja simulator and RPL attacks framework within the Con-

tiki operating system.
Step 3: Implement the three security attacks.
Step 4: Develop the simulation scenario and perform the simulations for each attack 

separately and simultaneously.
Step 5: Examine the power consumption graphs and DODAG graphs to analyze the 

behavior of the network in the presence of different attacks.
Step 6: Access the packet capture (pcap) files through the Wireshark tool and con-

vert the data into comma-separated values (csv).
Step 7: Import the comma-separated values (csv) file into the Python dataframe 

through the Spyder tool.
Step 8: Perform preprocessing to deal with the missing values, extracting the 

required features and normalization.
Step 9: Split the dataset into the training set and testing set.
Step 10: Classify the fraudulent and ordinary packets through the ANN.
Step 11: Generate the resultant model to detect the attacks.
Step 12: Optimize the hyperparameters through parameter tuning.
Step13: Validate the accuracy of the model through hold-out and k-fold cross-vali-

dation methods.
This algorithm is implemented to generate the resultant model predicting the attacks 

individually and simultaneously. The performance of the model is evaluated in terms of 
accuracy and loss. The accuracy of the model may be referred as the ratio of the total 
number of correct predictions to the total number of predictions. Similarly, the loss of 
the model is calculated through the cross-entropy function. It remained directly pro-
portional to the deviation among the probabilities of predicted and actual values. The 
higher the deviation larger can be the loss. The aim remains on the better performance 
of the model through accuracy maximization and loss minimization.

Few other performance measures like precision, recall and f1-score have also 
been investigated. Let TP, TN, FP and FN represent the true positives, true nega-
tives, false positives and false negatives from the confusion matrix, respectively. 
Equations (3), (4) and (5) determine the values of precision, recall and F1-score, 
respectively.
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The Mathews correlation coefficient (MCC) of the model is also computed from 
the confusion matrix as given by Eq. (6).

5  Simulation setup

The three well-known security attacks have been implemented using the proposed 
model. Table  1 illustrates the simulation parameters with focus on four types of 
simulation scenarios. Three simulation scenarios used three attacks individually and 
fourth simulation scenario implements the three attacks simultaneously. These sce-
narios serve as the building blocks incorporating malicious sensors for investiga-
tions. All four scenarios incorporate a 200 m × 200 m simulation area with execu-
tion time equal to two minutes. In addition, other parameters like interference and 
transmission range, minimum and maximum distance from the root node, number 
of normal and root nodes, and number of simulation epochs have been evaluated in 
these scenarios. The transmission range remained up to 50 m and the interference 
range lies between 50 to 100 m. The transmission range is depicted by the green cir-
cle around the node and the interference range is shown by the gray concentric ring 
around the green circle. The minimum and maximum distance of a node from the 
root node is 20 m and 200 m, respectively. Each of the nodes used in the simulation 
is based on the Zolertia Z1 [58] platform. All the scenarios have one root node and 
ten normal nodes. Out of the four simulation scenarios, root mote type and sensor 
mote type are selected as a dummy in scenarios 1 and 2. However, scenario 3 and 4 
have used both root mote type and sensor mote type as an echo. Out of quadrants and 
grid algorithms, the quadrants algorithm has been used for the generation of simu-
lated sensor-based IoT networks. The number of simulation repetitions has been kept 
as one in all the simulations. In each of the simulations, the root and normal nodes 
have been represented in green and yellow colors, respectively. The node number (or 
ID) for the root node in all simulation is zero. However, the normal node identifiers 
belong to the (1, 10) domain. The malicious node is depicted in pink color and has 
ID 11. In the first three simulation scenarios, the three attacks were implemented 
separately. In the fourth scenario, all the three attacks have been implemented simul-
taneously along with three malicious nodes. The malicious node for decreased rank, 
increased version and hello flood attack has been shown in pink, light yellow and 
light blue colors, respectively. The ID for the malicious node corresponding to the 

(3)Precision = (TP)∕(TP + FP)

(4)Recall = (TP)∕(TP + FN)

(5)F1 − score = 2 × (Recall × Precision) ∕ (Recall + Precision)

(6)MCC =
(TP × TN) − (FP × FN)

2
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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decreased rank, increased version and hello flood attack remained 11, 12 and 13, 
respectively.

6  Results and discussions

This section depicts the results and outcomes for the deployed four simulation sce-
narios. Let the simulation scenario for individual hello flood attack be called sce-
nario 1. Similarly, the simulation scenarios dedicated to increased version and 
decreased rank attacks are called scenario 2 and scenario 3, respectively. Likewise, 
the simulation scenario where all the 3 attacks were implemented simultaneously 
was named as scenario 4. Figure 4a, b, c, d shows the network configuration used in 
a scenario 1, 2, 3 and 4, respectively. The Cooja simulation generates the DODAG 
graphs, power expenditure graphs and the pcap files to trace the message transfer. 
The DODAG graphs generated for each scenario are shown in Fig. 5. Figure 5a, b, 
c, d represents the DODAG graphs for scenario 1, 2, 3 and 4, respectively. Figure 5 

Fig. 4  Network configuration for all the four scenarios
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shows that the DODAG graphs for scenarios 2, 3 and 4 and impact of the mali-
cious nodes in the downward direction. This is due to the downward nodes directing 
the traffic through the fraudulent node. The fraudulent node 11 affects the DODAG 
in scenarios 2 and 3. Similarly in scenario 4, the malicious node that affects the 
DODAG is node 12.

However, the other malicious nodes, namely node 11 and 13, do not affect the 
DODAG graph in scenario 4. The malicious node in scenario 1 does not affect the 
DODAG. The power consumption graphs created for each scenario are shown in 
Fig. 6. Figure 6a, b, c, d denotes the power expenditure per mote occurred in sce-
nario 1, 2, 3 and 4. Here, the energy expenditure is evaluated as INT (interference), 
ON (powered on and idle), TX (transmission) and RX (reception) times.

Figure  6a shows that the malicious node for hello flood attack consumes the 
maximum power among all nodes. It increases the power consumption of its adja-
cent neighbors. Similarly, Fig. 6b shows that the fraudulent node in scenario 2 pro-
vokes other nodes in the network to consume more power. However, Fig. 6c reflects 
that the fraudulent node does not affect the power consumption of any node in 
the network in scenario 3. Figure 6d shows that the power consumption of all the 
nodes is affected when all the attacks are implemented simultaneously. The pcap 
file provides the information about the following parameters, namely ‘Number’, 
‘Time’, ‘Source’, ‘Destination’, ‘Protocol’, ‘Length’ and ‘Info’. The first parameter 
‘Number’ represents the serial number of the packet and used as an index for pre-
processing the dataframe. ‘Time’ and ‘Length’ parameters are considered as the 
quantitative independent variables representing the time and length of the packet. 

Fig. 5  DODAG graphs generated in each scenario
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However, the remaining four features are considered as the qualitative independent 
variables. The ‘Source’ and ‘Destination’ features specify the source and destina-
tion IP address, respectively. The ‘Protocol’ column shows the relative protocol and 
the ‘Info’ parameter represents the metadata. An output-dependent variable is verti-
cally appended to the dataset which classifies the fraudulent and ordinary packets. 
It is observed that during preprocessing each of the categorical variables possess-
ing c categories is represented with ‘c-1′ dummy variables with one exception. This 
is done to get rid of the dummy variable trap. However, the exceptional case is of 
the dependent variable in scenario 4. Here, the dependent variable is represented 
with all ‘c’ categories to provide sufficient information for the proposed model. The 
remaining categories have been detected efficiently, even with the ‘c-1′ dummy vari-
ables. To allow the proposed model to detect all ‘c’ categories optimally in scenario 
4, the output dependent variable is represented with ‘c’ dummy variables. In each of 
the scenarios, the pcap file is imported into a Python dataframe through Wireshark 
and Spyder tools. Next, these dataframes have been preprocessed to generate the bar 
plots. These bar plots illustrate the packet counts generated by each node in different 
scenarios. Figure 7 represents these bar plots, where Figs. 7a, b, c, d depicts results 
for scenarios 1, 2, 3 and 4, respectively.

Figure 7  shows that the fraudulent nodes for the hello flood attack generate the 
maximum number of packets in the network. This is due to the fact that the mali-
cious node generates a bunch of DIS messages instead of one. However, the mali-
cious nodes that belong to the increased version attack incite other nodes to gener-
ate more number of packets. This occurs because the deceitful node provokes other 

Fig. 6  Power consumption per mote in each scenario
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Fig. 7  Bar plots for packet count 
in each scenario
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nodes to repeatedly invoke the global DODAG repairs. The duplicitous node of a 
decreased rank attack produces the least number of packets among all the mali-
cious nodes. It is due to the reason that the decreased rank attack does not harm 
the network. It can be used for spying the communication of downward nodes in 
the DODAG. Figure 7 shows that 38,365, 50,414, 28,376 and 53,684 packets were 
generated by all the nodes in scenarios 1, 2, 3 and 4, respectively. It is noticed that 
the ACK packets present in the packet capture are ignored due to lag of any source 
or destination information. It is observed from Fig. 7 that in scenarios 1, 2 and 3, 
the malicious nodes generate 15,508, 2672 and 630 packets respectively. However, 
in scenario 4, the fraudulent nodes for hello flood, increased version and decreased 
rank attack generate 12,790, 3559 and 2342 packets individually. Table 2 depicts the 
packets generated in different scenarios.

The preprocessed data have been fed to the ANN. The proposed ANN used three 
layers including a hidden layer, an input layer and an output layer. Here, only one 
hidden layer has been used as the adding of more hidden layers does not upgrade 
the performance of the model. The output layer has only one unit in the first three 
scenarios due to the reason that two possible outcomes indicating the fraudulent and 
ordinary packets. However, in scenario 4, there are four possible resultants. Three 
of these have been dedicated to each attack and the fourth one corresponds to the 
absence of the attack. Therefore, the output layer has 4 units in scenario 4. Similarly, 
the number of units in the input layer for each scenario has been optimized. Like in 
scenario 1, the ‘Protocol’ feature has a single possible value. Consequently, it has 
been dropped from the dataset and only three categorical variables have been left. 
These features namely: ‘Source’, ‘Destination’ and ‘Info’ have observed 12, 9 and 
3 distinct possible values, respectively. Therefore, 12 + 9 + 3 = 24 dummy variables 
are required to represent the three aforesaid categorical variables. But to avoid the 
dummy variable trap, it is required to drop one dummy variable per category. Thus, 
11 + 8 + 2 = 21 dummy variables are required to represent the three aforementioned 
categorical variables. In addition, there are two numerical variables, namely Time 
and Length. Consequently, in total, 21 + 2 = 23 units are required for the input layer 
of the proposed ANN model. Hence, the input layer consists of 23 units in scenario 
1. Likewise, the input layer for scenarios 2, 3 and 4 is optimized to possess 22, 32, 
and 28 units, respectively. There is no thumb rule to select the optimized number 
of nodes in the hidden layer. This can also be achieved through parameter tuning. 
But, this paper has been focused on taking the average sum of the number of units 
in input and output layers to select the number of nodes in the hidden layer. Thus, 

Table 2  Number of packets 
generated

Scenario Total packets (except 
ACK packets)

Malicious packets

1 38,365 15,508
2 50,414 2672
3 28,376 630
4 53,684 12,790 + 3559 + 2342 = 18,691
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the number of units selected for the hidden layer of the proposed model for each sce-
nario is represented by Eq. (7).

Therefore, the hidden layer has (23 + 1)/2 = 12 units in scenario 1. Similarly, 
the hidden layer for scenarios 2, 3 and 4 possess 11, 16 and 15 units, respectively. 
Table 3 depicts the number of units used in each layer of the proposed model. The 
activation function used in the output layer of the first three scenarios is ’sigmoid’ 
and the ‘softmax’ activation function is used in the output layer of scenario 4. The 
‘relu’ activation function is used for the hidden layer in all the scenarios. Similarly, 
the loss function has been used in the first three scenarios to update the weights is 
’binary_crossentropy.’ The ‘categorical_crossentropy’ has been used as a loss func-
tion in scenario 4. The performance of the model has been investigated with two 
types of validation methods, namely hold-out and tenfold cross-validation. The sto-
chastic gradient descent algorithms have been used in both the validation methods 
’adam’ and ‘rmsprop.’

6.1  Hold‑out validation

In this method, the total dataset is fragmented into an 80% and 20% ratio. This 80% 
of the dataset is used to train the ANN. However, the remaining 20% is used for 
testing the ANN. The accuracy and loss of the model corresponding to each epoch 
obtained in the hold-out method through training and testing fragments are shown 
in Fig.  8. This hold-out method used the batch size = 5000 and the number of 
epochs = 120 in all the scenarios.

Figure 8a, b, c, d are denoted in scenarios 1, 2, 3 and 4, respectively. Each of 
these figures has two subparts representing the accuracy and loss of the model. Fig-
ure 8a shows two subparts, namely Figure 8a1, a2. Similarly, Fig. 8b, c, d also shows 
their own two subparts. There are four legends used in each of these figures denoting 
the scenario and optimizer used during training and testing. Like Fig. 8a has four 
legends namely ‘S1_a_trn,’ ‘S1_a_tst,’ ‘S1_r_trn’ and ‘S1_r_tst.’ Likewise, Fig. 8b, 
c, d also have their own four legends. Here, ‘S’ means scenario, ‘a’ denotes ‘adam’ 
optimizer, ‘r’ depicts ‘rmsprop’ optimizer, ‘trn’ represents training and ‘tst’ denotes 
testing. The legend ‘S1_a_trn’ represents the accuracy or loss for scenario 1 during 
training using ‘adam’ optimizer. Similarly, ‘S2_r_tst’ depicts the accuracy or loss 
for scenario 2 during testing using ‘rmsprop’ optimizer, and so on. It is evident from 

(7)
No of hidden units = (Sum of no. of units in the input layer and output layer)∕2

Table 3  Number of units used 
in each layer of the model

Scenario Input layer Hidden layer Output layer

1 23 12 1
2 22 11 1
3 32 16 1
4 28 15 4
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Fig. 8  Accuracy and loss in all the scenarios through hold-out validation
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Fig. 8 that all four scenarios show maximum accuracy and minimum loss with the 
rise in the number of epochs. Generally, the accuracy increases and loss decreases 
with the rise in the number of epochs. Figure 8 shows that the ’rmsprop’ optimizer 
performed better than the ’adam’ optimizer as it requires less number of epochs to 
raise the accuracy to maximum. It is noticed that in Fig. 8, the accuracy and loss 
trends of testing data follow training data behavior in all the scenarios. This infers 
the successful training of the model. The classification report for each scenario is 
given in Table  4. This classification report illustrates the accuracy of the model 
through different performance metrics. Table  4 shows that the precision, recall 
and F1-score performance metrics possess the maximum values in each scenario. 
Besides, the support in a classification report denotes the total number of correct 
predictions for each class in a classification problem.

The MCC has been considered as a more reliable performance measure than 
accuracy and F1-score in a binary classification problem [59]. As a result, the 
MCC value has been computed for all the scenarios. The MCC evaluated by Eq. (6) 
applies to only binary classification problems. Therefore, the first three scenarios 
representing the binary classification problem possess maximum value for MCC. 
Scenario 4 representing the multi-classification problem possesses 0 values in the 
non-diagonal elements of the confusion matrix. All the FP and FN values are con-
sidered as zero and all the diagonal elements of the confusion matrix represent the 
correct predictions of different classes. Thus, the MCC value for scenario 4 is also 
evaluated as 1 according to Eq. (6). Moreover, the confusion matrix and Mathews 
correlation coefficient (MCC) for each scenario are illustrated in Table 5. Table 5 
shows that both of the aforesaid performance measures reflect 100% accuracy. This 
is because the confusion matrix in each scenario has the total number of correct 
predictions equal to the total number of predictions. Also, the MCC computed for all 
the scenarios also possesses the maximum value.

Table 4  Classification report Scenario Classes Precision Recall F1-score Support

1 0 1 1 1 4525
1 1 1 1 3148

2 0 1 1 1 9533
1 1 1 1 550

3 0 1 1 1 5546
1 1 1 1 130

4 0 1 1 1 7032
1 1 1 1 449
2 1 1 1 747
3 1 1 1 2509
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Table 5  Parameter tuning and confusion matrix

Scenario To get 100% accuracy through tenfold cross-validation Hold-out validation

Optimizer Batch Size Num-
ber of 
Epochs

Accuracy Mean Variance Confusion 
Matrix

Mathews 
correlation 
coefficient 
(MCC)

1 adam 500 16 100% 1 0
[

4525 0

0 3148

]

1

1000 34
1500 49
2000 63
2500 73
3000 91
3500 110
4000 128
4500 129
5000 147

rmsprop 500 9
1000 17
1500 24
2000 32
2500 39
3000 45
3500 56
4000 62
4500 63
5000 75
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Table 5  (continued)

Scenario To get 100% accuracy through tenfold cross-validation Hold-out validation

Optimizer Batch Size Num-
ber of 
Epochs

Accuracy Mean Variance Confusion 
Matrix

Mathews 
correlation 
coefficient 
(MCC)

2 adam 500 6 100% 1 0
[

9533 0

0 550

]

1

1000 10

1500 13

2000 18

2500 24

3000 31

3500 41

4000 43

4500 44

5000 45

rmsprop 500 6

1000 12

1500 17

2000 25

2500 29

3000 37

3500 41

4000 42

4500 43

5000 46
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Table 5  (continued)

Scenario To get 100% accuracy through tenfold cross-validation Hold-out validation

Optimizer Batch Size Num-
ber of 
Epochs

Accuracy Mean Variance Confusion 
Matrix

Mathews 
correlation 
coefficient 
(MCC)

3 adam 500 6 100% 1 0
[

5546 0

0 130

]

1

1000 14

1500 18

2000 25

2500 29

3000 32

3500 38

4000 43

4500 48

5000 51

rmsprop 500 8

1000 14

1500 19

2000 26

2500 28

3000 30

3500 37

4000 41

4500 45

5000 47
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6.2  K‑fold cross‑validation

The accuracy of the model in each scenario has also been validated through the 
k-fold cross-validation method to avoid overfitting. The value of k is taken as 10 
for this work. The tenfold cross-validation method divides the training dataset into 
ten subsections. Out of which, nine have been collectively used for training and the 
remaining one has used for testing. The ANN is trained with any nine subsections 
and tested with the remaining subsection. Each time a different subsection has been 
used for testing. The model is trained and tested repeatedly until all the subsections 

Table 5  (continued)

Scenario To get 100% accuracy through tenfold cross-validation Hold-out validation

Optimizer Batch Size Num-
ber of 
Epochs

Accuracy Mean Variance Confusion 
Matrix

Mathews 
correlation 
coefficient 
(MCC)

4 adam 500 14 100% 1 0
⎡

⎢

⎢

⎢

⎣

7032 0 0 0

0 449 0 0

0 0 747 0

0 0 0 2509

⎤

⎥

⎥

⎥

⎦

1

1000 23

1500 31

2000 41

2500 48

3000 53

3500 72

4000 85

4500 93

5000 123

rmsprop 500 8

1000 14

1500 20

2000 23

2500 37

3000 42

3500 45

4000 55

4500 56

5000 64
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are used once for testing. Thus, the proposed model has been trained and tested ten 
times with the mentioned number of epochs. The average accuracy of all the ten 
trials have been evaluated for the validation of the model. The relevant accuracy of 
any supervised learning model can be obtained by getting low bias and low variance 
value in the bias-variance tradeoff to prevent that model from overfitting. Therefore, 
the accuracy of the proposed model is enhanced until the accuracy reaches its maxi-
mum value in all the ten trials. The optimized value for the hyperparameters in each 
scenario is obtained through parameter tuning. The hyperparameters are considered 
to have optimized value at the instant when all the ten trails reach maximum accu-
racy. At this instant, the mean accuracy value for all the ten subsections is 100%, 
and the variance value is zero. This value corresponds to the lowest variance and 
the maximum accuracy (or minimum bias) in the bias-variance tradeoff. It prevents 
the model from overfitting. In this work, the parameter tuning is accomplished in 
Table 5. Here, the value of hyperparameters have been varied to find the optimum 
result, i.e., 100% accuracy. Like, the hyperparameter ‘Batch Size’ is varied as [500, 
1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000]. Similarly, the hyperpa-
rameter ‘Optimizer’ has been varied as [‘adam’, ‘rmsprop’]. The best number of 
’epochs’ that are found for each combination of ’batch_size’, and ’optimizer’ are 
mentioned in Table 5. These epochs achieve maximum accuracy in all trails of ten-
fold cross-validation method. The mean and variance value for each case is 1 and 0, 
respectively. Figure 9 depicts the relationship among various aforementioned hyper-
parameters for attaining 100% accuracy through tenfold cross-validation. In Fig. 9, 
each legend is named according to the convention where “S" depicts the scenario. 
The ‘adam’ and ‘rmsprop’ are the stochastic gradient descent algorithms or opti-
mizers used in the ANN. The legend ‘S1_adam’ represents the number of epochs 
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required in scenario 1 using ‘adam’ algorithm to achieve 100% accuracy. Similarly, 
‘S2_rmsprop’ denotes the epochs required in scenario 2 using ‘rmsprop’ algorithm, 
and so on.

It is evident from Table 5 and Fig. 9 that with the increase in batch size, more 
number of epochs are required to achieve 100% accuracy through tenfold cross-val-
idation. Scenario 1 used the maximum number of epochs among all the scenarios to 
reach maximum accuracy. Scenario 4 deployed the second largest number of epochs 
for 100% accurate detection of dissimilar attacks. In scenario 1 and 4, ‘rmsprop’ out-
performs ‘adam’ in each batch size as relatively less number of epochs are required 
to get the best accuracy. Scenario 2 and 3 required a relatively less number of epochs 
to get trained optimally. Also, the performances of both the optimizers in scenarios 2 
and 3 have been observed.

6.3  Comparison between hold‑out validation and K‑fold cross‑validation

The minimum number of epochs obtained in both the validation schemes reached 
100% accuracy as shown in Table 6. Here, the batch size = 5000, Epochs (H) and 
Epochs (K) represent the minimum number of epochs obtained in hold-out and 
k-fold cross-validation respectively. Table  6 shows that the hold-out method rela-
tively takes less number of epochs to reach 100% accuracy. However, comparatively 
k times more complex process of k-fold cross validation makes it compute-intensive 
but more reliable. Analyzing both the validation schemes, it is recommended that 
the hold-out method is suitable for relatively quick and less computing analysis. 
However, k-fold cross-validation is suggested for thorough, computation-intensive 
and more reliable investigation. The hold-out validation method may lead to over-
fitting. The k-fold cross-validation method helps in avoiding the overfitting of the 
model.

6.4  Comparison of the proposed work with other research works

Diro et al. [32] used a deep learning approach to detect the attacks. This research 
work has not achieved 100% attack detection accuracy even by using comparatively 
more number of layers, input and hidden units. Le et  al. [43] detected the RPL 

Table 6  Minimum number of 
epochs required to reach 100% 
accuracy

Scenario Optimizer Epochs(H) Epochs(K)

1 adam 119 147
rmsprop 62 75

2 adam 21 45
rmsprop 15 46

3 adam 28 51
rmsprop 13 47

4 adam 82 123
rmsprop 55 64
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attacks through a specification based IDS which took more time to recognize the 
attacks perfectly. However, this work uses an ANN model that identified the RPL 
attacks with 100% accuracy in less than 2  min. Lee et  al. [45] also validated the 
ANN through hold-out and tenfold cross-validation methods. Authors in [45] used 
60%—40% ratio for training and testing respectively in the hold-out method. How-
ever, this work used 80%—20% ratio for the same. This work used 21 neurons in 
ANN model and focused on Eq. (7) for using the hidden neurons. Authors in refer-
ence [45] claimed 80% prediction accuracy for the ANN model. Similarly, Bhosale 
et al. [47] detected attacks using RSSI in RPL-based IoT networks with 90% accu-
racy. However, the proposed ANN model achieved 100% prediction accuracy for 
the optimized value of hyperparameters. Anitha et al. [46] detected the version and 
DIS attack collectively through the ANN model. Authors in [46] used comparatively 
more number of layers and input units. The ANN model is not capable of distin-
guishing between both the aforesaid attacks. However, the proposed model is able 
to detect and differentiate between the rank, hello flood and version attacks. Kfoury 
et  al. [48] recognized the RPL attacks through an unsupervised SOM approach. 
Similarly, Qureshi et  al. [50] detected the RPL attacks through threshold modula-
tion. However, this work identified the RPL attacks using a supervised ANN-based 
approach. Sharma et al. [49] detected four types of RPL attacks, but separately. They 
have not implemented the simulation scenario with all four types of malicious nodes 
to occur simultaneously. However, this work implemented and detected the three 
RPL attacks separately as well as simultaneously. Sharma et al. [49] used standard 
classifiers like J48, Naïve Bayes, and Random Forest. Out of which they have got 
the maximum accuracy = 99.33% with the random forest classifier. Even the preci-
sion and recall values are comparatively less. Moreover, this work has not used any 
validation method. This work built its own classifier and got the maximum values 
for accuracy, precision, recall and F1-score. The presented work also got the max-
imum value for MCC which is considered as a more reliable performance meas-
ure than accuracy and F1-score [59]. The accuracy of the proposed work has been 
validated through two validation methods. The presented model has been prevented 
from overfitting through tenfold cross-validation method. Therefore, the proposed 
work is more robust and reliable.

7  Conclusion

This research work has investigated and applied a supervised machine learning 
technique for sensing the three well-known security attacks, namely hello flood, 
increased version and decreased rank. The proposed machine learning approach 
has been used in this work along with artificial neural networks. This paper imple-
mented the three security attacks in four different scenarios. The first three simu-
lation scenarios implemented the three attacks separately. The fourth simulation 
scenario has been applied to all the attacks simultaneously. An observable effect of 
the security attacks on the DODAG graph, energy consumption and traffic genera-
tion has been exposed by the performed simulations. The results disclosed that the 
malicious node for the hello flood attack produces the maximum number of packets 
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among all the nodes in the network. Therefore, it raises the energy expenditure of 
neighbors and does not affect the DODAG construction. Similarly, the fraudulent 
node for the increased version attack affects the DODAG and power consumption 
of other nodes in the network. This occurred due to the reason that other node in the 
network produces more number of packets. The fraudulent node for the decreased 
rank attack produces the least number of packets among all the malicious nodes. It 
is very effective for spying purposes and affects DODAG in the downward direc-
tion. The proposed ANN-based model recognized the attacks in each scenario with 
100% accuracy. The other performance measures like precision, recall, F1-score 
and Mathew’s correlation coefficient (MCC) have attained maximum values with 
the proposed model. The hyperparameters such as batch size, number of epochs and 
the optimizer have been optimized through parameter tuning. The proposed model 
has been validated through the hold-out and tenfold cross-validation method. It is 
notice through parameter tuning that for achieving 100% accuracy the proposed 
model requires more training for larger batch size. Scenario 1 required maximum 
training among all scenarios. However, scenario 2 and 3 required the least train-
ing to optimally detect the attacks. The optimizer ‘rmsprop’ performed better than 
‘adam’ in scenarios 1 and 4 via tenfold cross-validation. However, ‘rmsprop’ did 
relatively well in all scenarios through hold-out validation. Moreover, the hold-out 
method is found relatively quicker for validation with less overhead. However, k-fold 
cross-validation is comparatively complex, time-consuming, computation-intensive 
but more reliable. Overfitting of the model has also been avoided through the tenfold 
cross-validation method. Furthermore, the proposed model is capable of identify-
ing the attacks simultaneously as well as distinctly. The correct prior recognition of 
the attack averts the network from its adverse impact. This results in the increased 
security of the network. The increased security automatically enhances other per-
formance metrics of the network such as energy efficiency, network lifetime, scal-
ability and trustworthiness. The research work may be further enhanced via integrat-
ing classes for other security attacks occurred in IoT networks. Moreover, various 
machine learning schemes may be explored for suggesting novel intrusion detection 
systems for identifying different security attacks in IoT.
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