
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:13584–13600
https://doi.org/10.1007/s11227-021-03823-3

1 3

Multilevel parallelism optimization of stencil computations
on SIMDlized NUMA architectures

Kaifang Zhang1 · Huayou Su1 · Yong Dou1

Accepted: 17 April 2021 / Published online: 28 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Stencil computations within a single core or multicores of an SMP node have been
over-investigated. However, the demands on HPC’s higher performance and the
rapidly increasing number of cores in modern processors pose new challenges for
program developers. These cores are typically organized as several NUMA nodes,
which are characterized by remote memory across nodes and local memory with
uniform memory access within each node. In this paper, we conducted experiments
of stencil computations on NUMA systems based on the two most typical proces-
sors, ARM and Intel Xeon E5. We leverage a hybrid programming approach by
combining MPI and OpenMP to exploit the potential benefits among NUMA nodes
and within a NUMA node. Optimizations of the two selected 3D stencil compu-
tations involve four-level parallelism: block decomposition for NUMA nodes and
processes, thread-level parallelism within a NUMA node, and data-level parallelism
within a thread based on SIMD extension. Experimental results show that we obtain
a maximum speedup of 7.27× compared to the pure OpenMP implementations on
the ARM platform and 11.68× on the Intel platform.

Keywords  Stencil computation · Parallelism optimization · Hybrid programming ·
NUMA

 *	 Kaifang Zhang
	 zhangkaifang18@nudt.edu.cn

	 Huayou Su
	 shyou@nudt.edu.cn

	 Yong Dou
	 yongdou@nudt.edu.cn

1	 College of Computer, National University of Defense Technology, Changsha, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03823-3&domain=pdf

13585

1 3

Multilevel parallelism optimization of stencil computations…

1  Introduction

Modern processors’ great tendency is the increasing number of cores integrated
on chips, which avoids the ascends of clock frequency and power. Large numbers
of HPC systems on the TOP-500 list [1] are composed of such processors that
provide high performance. Ideally, the performance should scale with the number
of cores built in. The basis of such a composition block is the multicore chips
sharing memory within a single node. Programming for such parallel architec-
tures consisting of NUMA (nonuniform memory access) [2] nodes is hugely chal-
lenging for the programmers have to explicitly control the memory accesses to
take full advantage of the memory access characteristics. On the other hand, the
enormous amount of cores is an immense potential for thread-level parallelism.

Practically, the programmers are apt to ignore the hybrid memory system and
utilize a naive OpenMP or MPI (Message Passing Interface) implementations
for convenience. However, the former strategy tends to behave poorly due to its
applicability to SMPs (Symmetric Multi-Processing). It is advisable for the MPI
model since most MPI libraries take advantage of the shared memory within a
node and optimize the inter-node communications.

Nonetheless, in this paper, we leverage both MPI and OpenMP to investigate
the multicore scaling, which is a hybrid programming model for the NUMA
architectures. It is not the first time that this approach has been utilized for paral-
lel optimizations of applications. However, we employ a core grouping strategy
to excavate the CPU affinity. We also propose an outermost dimension decom-
position scheme to integrate the data-level parallelism scheme—SIMD (Single
Instruction Multiple Data)—into the multicore scaling to exploit the best whole
platform performance.

Our main contributions can be summarized as follows:

–	 Proposing a four-level parallelism scheme, including NUMA node decomposi-
tion, block decomposition, thread-level parallelism, and data-level parallelism,
to exploit the potential benefits of the multicore systems.

–	 Implementing the above techniques using a hybrid MPI+OpenMP program-
ming model on two SIMDlized NUMA systems with SIMD intrinsics sup-
ported by each specific architecture, one ARM NEON Extension and the other
Intel AVX.

–	 Evaluating the proposed multilevel parallelism scheme on two NUMA platforms
with two typical 3D stencil computations. Comparisons to naive implementa-
tions of OpenMP show that it obtains a better performance as well as scalability.

The rest of the paper is organized as follows: Sect. 2 is a brief introduction of
OpenMP and MPI models, NUMA architecture, and our motivation for the hybrid
programming method. Section 3 illustrates our multilevel parallelism scheme we
propose. Experimental evaluations of our proposed scheme are conducted and
demonstrated in Sect. 4. Section 5 describes some related work. Finally, we con-
clude the whole paper in Sect. 6 and provide with some future work hints.

13586	 K. Zhang et al.

1 3

2 � Background and motivation

Some preliminary basis about OpenMP, MPI, and NUMA architecture and our
hybrid programming approach is described in this section. We also illustrate the
motivation for hybrid programming.

2.1 � OpenMP programming model

OpenMP is detailedly discussed in [3], and much latest features about it can be found
at https://​www.​openmp.​org/. It is characterized by its compiler directives as well as
enormous library calls. As a portable approach for parallel programming, the high-
level abstraction of the parallel description provided by OpenMP reduces the diffi-
culty and complexity of parallel programming so that programmers can devote more
energy to the parallel algorithm itself, rather than its specific implementation details.
For multithreaded programming based on data diversity, OpenMP is generally the
right choice. Simultaneously, the use of OpenMP also provides greater flexibility,
and it can quickly adapt to different parallel system configurations. Thread granular-
ity and load balancing are challenging problems in traditional multi-threaded pro-
gramming, but in OpenMP, the OpenMP library takes over part of these two aspects
of work from programmers. However, as a high-level abstraction, OpenMP is not
suitable for situations that require complex synchronizations and mutual exclusion
between threads. Another disadvantage of OpenMP is that it cannot be used on non-
shared memory systems (such as computer clusters), where MPI is utilized much
more.

2.2 � MPI programming model

MPI is further described in [4], and [5]. As a de facto standard for parallel pro-
gramming on the distributed memory systems, it has two advantages: achievable
performance and portability. Specifically, it improves communication efficiency by
measures, including avoiding multiple repeated copies from memory to memory,
allowing overlap of calculation and communication. The standard API and libraries
contribute to the portability. All in all, MPI provides a language and platform-inde-
pendent standard that can be widely used to write message-passing programs. It is
practical, portable, efficient, and flexible and has not much change from the current
existing implementation when ported from one machine to another. Challenges also
exist. Carefully thought-out strategies are required when programming. The data
portions and correlated communications have to be considered seriously. Other chal-
lenges include memory requirements and fault tolerance [6].

2.3 � Hybrid programming approach

For the appearance of large numbers of multicore platforms with shared mem-
ory nodes or clusters, it is quite natural to combine those mentioned above two
parallel programming models together, which is a kind of hybrid programming

https://www.openmp.org/

13587

1 3

Multilevel parallelism optimization of stencil computations…

approach [7]. This model can leverage the advantages of MPI among nodes with
distributed memory systems and OpenMP within a node. In other words, we
distinguish between the memory hierarchies and can maintain cross-node per-
formance with MPI and reduce the number of processes needed simultaneously.
The OpenMP is then in charge of the inner-node performance optimization with
thread-level and other level parallelisms.

2.4 � NUMA architecture

NUMA architecture is a shared memory architecture that describes the placement
of main memory modules with respect to processors in a multiprocessor system
[8]. Like almost every other processor architectural feature, ignorance of NUMA
can result in a sub-par application memory performance. In the NUMA shared
memory architecture, each processor has the local memory module that it can
access directly with a distinctive performance advantage. At the same time, it can
also access any memory module belonging to another processor using a shared
bus [8]. However, the two various memory accesses’ costs are distinctly shown in
Table 1 for the ARM platform we work on. A NUMA-node always has a distance
of 10 to itself, which is the lowest possible value. In contrast to UMA, which pro-
vides a centralized memory pool, it has to traverse the interconnect and connect
to the remote memory controller if a memory controller accesses remote memory.
Thus, accessing remote memory adds additional latency overheads to local mem-
ory access. Because of the different memory locations, a NUMA system experi-
ences nonuniform memory access time.

There exist two critical notions in managing performance within the NUMA
shared memory architecture: processor affinity and data placement [8]. It is based
on the NUMA distances listed in Table 1 that we can deduce the following core
grouping of the eight NUMA nodes in Table 2. Further, we conduct the multi-
core scaling based on the core grouping. For instance, we would prefer to deploy
nodes 0, 1, 3, 5 rather than 0, 1, 2, 3, when four NUMA nodes are required for the
former scheme has a better memory access behavior.

Table 1   NUMA node distances
(ARM)

Node 0 1 2 3 4 5 6 7

0 10 20 40 30 20 30 50 40
1 20 10 30 20 30 20 40 30
2 40 30 10 20 50 40 20 30
3 30 20 20 10 40 30 30 20
4 20 30 50 40 10 20 40 30
5 30 20 40 30 20 10 30 20
6 50 40 20 30 40 30 10 20
7 40 30 30 20 30 20 20 10

13588	 K. Zhang et al.

1 3

2.5 � Motivation

We demonstrate a simple example in this section to illustrate the necessity of the hybrid
programming model. Table 3 is the performance scalability for a 3D-7pt stencil compu-
tation on one of our experimental platforms. The platform has eight NUMA nodes, with
each consisting of eight cores, and we only utilize OpenMP for the multicore scalability.
It can be observed that within a node when the cores utilized is less than 8, approximate
linear scalability is presented. However, when much more cores across multi-NUMA
nodes are utilized, no further performance benefits are obtained. A performance regres-
sion phenomenon even occurs due to the memory bandwidth competitions.

3 � Multilevel parallelism scheme

In this section, we demonstrate the proposed four-level parallelism scheme in detail.
The overview of our suggested parallel scheme is illustrated in Fig. 1.

To be specific, the first two levels of parallelisms are the block decomposition of
the original data grid according to the number of NUMA nodes and the processes

Table 2   Core grouping
according to node distances
(ARM)

Node/dis. 20 30 40 50

0 1, 4 3, 5 2, 7 6
1 0, 3, 5 2, 4, 7 6 - -
2 3, 6 1, 7 0, 5 4
3 1, 2, 7 0, 5, 6 4 –
4 0, 5 1, 7 3, 6 2
5 1, 4, 7 0, 3, 6 2 –
6 2, 7 3, 5 1, 4 0
7 3, 5, 6 1, 2, 4 0 –

Table 3   Performance scaling
using only OpenMP (ARM)

#Cores GFlops Speedup Ideal speedup

1 0.52 1.00× 1.00×
2 0.95 1.83× 2.00×
3 1.40 2.69× 3.00×
4 1.87 3.60× 4.00×
5 2.36 4.54× 5.00×
6 2.81 5.40× 6.00×
7 3.28 6.31× 7.00×
8 3.53 6.79× 8.00×
16 4.35 8.37× 16.00×
32 2.57 4.94× 32.00×
64 2.68 5.15× 64.00×

13589

1 3

Multilevel parallelism optimization of stencil computations…

utilized. Figure 1a shows the decomposition along z-dimension without cutting the
other two dimensions. When it comes to Fig. 1b, we depict the third-level paral-
lelism—thread-level parallelism—a further decomposition among threads within a
NUMA node along the outer two dimensions. Finally, Fig. 1c is the last-level par-
allelism we study the data-level parallelism-which is usually implemented through
SIMD ISAs. We provide much more details of the techniques mentioned above in
the remaining section, respectively.

3.1 � Block decomposition

As is depicted in Fig. 2, the first two levels of parallelisms are the block decomposi-
tion among NUMA nodes and processes. We conduct the block composition among
NUMA nodes and processes along the outermost z-dimension, for it has a longer
reuse distance compared to the two inner dimensions. For instance, for an Nz×Ny×Nx
input grid, the reuse distance of the 3D-27pt stencil computation along the innermost

Fig. 1   Overview of the four level parallelisms we utilize

(a) (b)

Fig. 2   The first two level parallelisms—block decomposition

13590	 K. Zhang et al.

1 3

x-dimension is 1. However, the reuse distances along y- and z-dimension are Nx and
Nx×Ny separately, which are more extensive than that of the x-dimension. We utilize
such a decomposition scheme to avoid the ruins of data locality.

The halo areas for exchanges and asynchronous communications are also
colored in Fig. 2. It is an illustration for a 2D stencil computation input grid, and
we cut along the outermost y-dimension correspondingly. Based on the decom-
position scheme mentioned above, we have to do the halo exchanges of diverse
blocks for the next time step updates represented by the red double arrows. Three
kinds of points exist in the scheme: the boundary points, the interior points, and
the halo area points. The two former kinds of points are without necessities for
exchanges, while the third kind of points has to do the asynchronous exchanges.

What is worth noting is that our outermost dimension splitting scheme in
Fig. 2b spends less time for halo exchanges compared to the naive cross splits
along both dimensions. Generally speaking, for an input grid of size Nx×Ny ,
and a decomposition scheme of Bx×By of the naive implementation, a total
number of exchanges of 2[(Nx∕Bx − 1)×Ny∕By + (Ny∕By − 1)×Nx∕Bx] are
required. Meanwhile, for our scheme, the number of exchanges necessary is
2[NxNy∕(BxBy) − 1] for the same number of blocks. The difference between the
two numbers is:

In practice, we have (Nx∕Bx − 1) > 0 and (Ny∕By − 1) > 0 and as a result we have
𝛥 > 0 . Consider the two schemes in Fig. 2: four blocks are decomposed from the orig-
inal input data grid. Eight exchanges are required for the four decomposition bounda-
ries for each block has to receive and send at the same time for the naive decomposi-
tion. As to our decomposition scheme, only three decomposition boundaries exist, and
a total number of six exchanges are necessary for the same number of blocks.

Besides, we evaluate the communication overheads for the two schemes above,
and the results are listed in Table 4. The problem size is 5123 and time steps =
100. The left column x-y-z represents various block decomposition schemes (eight
blocks in total), and the total time column the corresponding total time including
the halo exchange overheads. We also list the percentage of exchange overheads. It
can be observed that our outermost splitting scheme 1-1-8 has a minimum overhead
of 1.70s, and it accounts for 8.60% of the total time, while the innermost decompo-
sition scheme 8-1-1 has a maximum overhead of 10.05s and a percentage of 21.88
of its overall time. Other block decomposition scheme overheads are between them.

3.2 � Thread‑level parallelism

For the third-level parallelism, we refer to the thread-level parallelism within a
NUMA node. The parallel scheme is outlined in Algorithm 1. For the original

(1)
� = 2

[

(

Nx

Bx
− 1

)Ny

By
+

(

Ny

By
− 1

)

Nx

Bx

]

− 2

(

Nx

Bx

Ny

By
− 1

)

= 2

(

Nx

Bx
− 1

)

(

Ny

By
− 1

)

13591

1 3

Multilevel parallelism optimization of stencil computations…

stencil computation depicted in Line 8, there exist three nested loops. The origi-
nal input array is referred as old, while the new updated one as new. The kernel
update formulation is in Line 8, in which 26 neighbor elements and the center
element itself are weighted by their separate coefficients.

To parallel the code, we add the parallel directive to it in Line 1. Line 2 is the
workload scheduling approach supported by OpenMP. In Line 3, we assign the
parallelism granularity by setting the threads utilized. Line 4 is the parallel depth.
We set it as 2 by combining the outer two dimensions and leave the innermost
dimension for data-level parallelism described in the next section.

3.3 � Data‑level parallelism

The last-level parallelism we investigate is the data-level parallelism, which is the SIMD
extension supported on each platform. We omit the specific principles and regulations

Table 4   Halo exchanges
overheads for diverse
decomposition schemes

x-y-z Exchange time
(sec.)

Total time (sec.) Overhead
percentage
(%)

2-2-2 2.72 24.85 10.95
1-1-8 1.70 19.77 8.60
1-8-1 1.74 17.50 9.94
8-1-1 10.05 45.93 21.88
1-2-4 1.88 17.67 10.64
1-4-2 1.92 18.34 10.47
2-4-1 2.88 21.98 13.10
2-1-4 3.02 24.33 12.41
4-1-2 5.34 28.44 18.78
4-2-1 5.30 31.25 16.96

13592	 K. Zhang et al.

1 3

for much has been discussed in [9–13], and [14]. We make use of a 1D-3pt stencil, for
instance, to demonstrate the SIMD intrinsic implementations on the two platforms. Two
diverse implementations of the two specific platforms are listed in Fig. 3 briefly:

For the ARM platform, the NEON extension has a 128-bit vector length, and
the V corresponding to it is 2 for double precision. The Intel platform supports a
vector length of 256-bit, and its V equals 4. It can be observed that they have a
similar implementation pattern. Note that the data types of old and new are cor-
responding SIMD data types on separate platforms rather than double precision.

3.4 � Put it all together

Taking all the aforementioned techniques into consideration, the pseudocode for
the kernel combining both MPI and OpenMP would be in Algorithm 2:

(a)

(b)

Fig. 3   Two Intrinsic Implementations using SIMD Extension

13593

1 3

Multilevel parallelism optimization of stencil computations…

The first two-level parallelisms are initially conducted before the time step
iterations in Lines 1-2. Note that for the MPI instances of multiprocesses in Line
5, we add parallel to indicate that they are performing concurrently. It also con-
tains the halo exchanges and asynchronous communications mentioned earlier,
which we omit in the pseudocode. Line 5 is the OpenMP parallel region men-
tioned above. In Line 9, we express the kernel updates of SIMD implementations
in brief.

4 � Performance evaluation

4.1 � Experimental test bed

Details about the core, socket, system, and programming of the experimental plat-
forms are in Table 5. The experimental ARM processor integrates 64 ARMv8
instruction set compatible processor cores and adopts a parallel system on chip
(PSoC) architecture. The NEON extension of the platform supports a 128-bit length
vector length, with double precision support. The 64 cores are divided into eight
NUMA nodes, each with eight cores. As to the Intel platform, it is formerly the
products of Broadwell. The SIMD extension of it has a vector length of 256-bit
with double precision supported. Its 20 cores are grouped into two NUMA nodes
evenly. Both platforms have multilevel memory hierarchies and support hardware
prefetching mechanism. Other specific architectural parameters are in Table 5. All
benchmarks are evaluated using -O3 compiler options with no other unique options
deployed.

4.2 � Stencil overview

One of the benchmarks we work on is shown in Fig. 4. In this paper, we take two
typical 3D stencils, for instance, to evaluate the platforms’ performance. Some gen-
eral characteristics of the stencils can be found in Table 6.

The 27-pt stencil loads twenty-seven points first and then does the update before
writing the updated value into another 3D array, which means that two separate 3D
arrays are required. To be specific, the 27 points are portioned into one central point,
six face points, eight corner points, and 12 edge points according to their locations
and distances from the center point. The 125-pt stencil has a similar memory access-
ing behavior. Besides, we assume that each point has a diverse coefficient for the
two stencils.

4.3 � Architectural specific exceptions

Due to the hardware infrastructures and software compiler configurations, not all the
benchmarks are evaluated under the same parameters. For the ARM platform, we
only have 16 GB main memory, and the input grid size of 10243 failed as a result.

13594	 K. Zhang et al.

1 3

Table 5   Architectural summary of experimental platforms

Type Superscalar out-of-order Superscalar out-of-order

 Core architecture
SIMD NEON AVX
Threads/core 1 1
Clock (GHz) 2.2–2.4 2.4
DP (GFlops) 8.8 19.2
L1 data cache 32KB 32KB
 Socket architecture
Cores/socket 4 10
L2 data cache 2 MB/4 cores 256KB
Shared L3 data cache – 25MB
 primary memory parallelism

paradigm
HW prefetch HW prefetch

 System architecture
Sockets/SMP 2 1
DP (GFlops) 563.2 @ 2.2 GHz 384
DRAM BW (GB/s) 204.8 68.3
DP flop: cyte ratio 2.75 5.62
DRAM capacity (GB) 16 64
DRAM type DDR4-2666 DDR4-2133
System power (W) 100 90
Threading MPI + OpenMP MPI + OpenMP
Compiler gcc 8.3 gcc4.8

Fig. 4   3D-27pt stencil computation we concern

13595

1 3

Multilevel parallelism optimization of stencil computations…

Besides, we only have GCC (GNU Compiler Collection) on the platform, the NEON
and other related options for the ARM compiler are neglected. For the Intel plat-
form with only two NUMA nodes, the scalability experiments are not like that on
the ARM platform with eight NUMA nodes. However, it does have a broader range
of problem sizes with a 64 GB main memory. Besides, we conduct single-preci-
sion experiments on the ARM platform and double-precision ones on the Intel plat-
form separately for the NEON and AVX vector length difference. Other differences
include the OpenMP scalability within a node for one of them has eight cores in a
NUMA node and the other ten.

4.4 � Results and analysis

We conduct the experiments according to the aforementioned configurations.
Results for the ARM and Intel platforms are demonstrated in Figs. 5 and 6, respec-
tively. We demonstrate three versions of the two stencil computations under diverse
input grid sizes: the pure OpenMP version OMP, the hybrid MPI + OpenMP ver-
sion MPI+OMP, and the SIMDlized version MPI + OMP + NEON + /AVX. The
speedup is illustrating the effectiveness of the SIMD Extensions on each platform
and is calculated between the MPI+OMP version and the MPI+OMP+NEON/AVX
version.

4.4.1 � ARM platform

Experimental results of the ARM platform present the scalability of the NUMA
nodes. What can be observed is that the OMP version utilizing only OpenMP can
only scale with cores within a NUMA node. Meanwhile, the MPI+OMP version
presents scalability both within and among NUMA nodes. The best performance for
the 3D-27pt stencil is 123.41 GFlops and the 125-pt one 117.89 GFlops. The NEON
speedup for the two benchmarks is also prominent with an average improvement of
1.40× and a maximum of 2.00× for the 27-pt stencil and 2.04× and 2.38× for the
125-pt one, respectively.

To be specific, the two stencils of diverse sizes show the same conclusion. For
the processes utilized from 1, 2, 4, 8, and 16 to 32, the MPI+OMP version out-
performs the OMP version with better performance, while the OMP version per-
forms no scalability. It is specially obvious when the processor cores used are
among diverse NUMA nodes. For the ARM platform, one NUMA node consists
of eight processor cores. Taking the 27-pt stencil of size 128 in Fig. 5a for exam-
ple, the OMP version performance almost has no change from 16 cores to 32

Table 6   Average stencil
characteristics (ARM and Intel)

Stencil Total points Read Write Flops per
iteration

AI (DP)

27-pt 28 27 1 53 0.237
125-pt 126 125 1 249 0.247

13596	 K. Zhang et al.

1 3

cores. The MPI+OMP version has a speedup of about 2.0 with all the other con-
figurations the same.

4.4.2 � Intel platform

We also obtain good scalability for the two NUMA nodes and within a NUMA node
by combining OpenMP and MPI for the Intel platform. We obtain the best perfor-
mance for the 3D-27pt stencil at 113.06 GFlops and 159.26 GFlops for the 3D-125pt
one, 29.44% and 41.47%, respectively, of the peak performance of the platform. The
AVX speedup for all the benchmarks and input grid sizes behaves well with an aver-
age speedup of 1.97× and a maximum speedup of 2.17× for the 27-pt stencil and
3.51× and 4.17× for the 125-pt one, respectively.

(a) (b)

(c) (d)

(e) (f)

Fig. 5   Experimental results for ARM

13597

1 3

Multilevel parallelism optimization of stencil computations…

Similar results occur on the Intel platform. For the Intel platform, one NUMA
node consists of ten processor cores. Taking the 27-pt stencil of size 128 in Fig. 6a
for example, the OMP version performance almost has no change from ten cores to
15, and 20 cores. The MPI+OMP version has a speedup of about 2.0 with all the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6   Experimental results for Intel

13598	 K. Zhang et al.

1 3

other configurations the same. These results show the effectiveness of our proposed
multilevel parallelism optimization scheme.

5 � Related work

To our knowledge, some correlated work was conducted. [15], and [16] proposed a
DSL-based framework that automatically generates parallel high-performance sten-
cil codes with both productivity and performance benefits within the ORWL para-
digm, which is an intertask synchronization model for iterative data-oriented par-
allel and distributed algorithms that uses strict FIFO ordering for the access to all
resources. Experiments were based on Grid’5000 [17], which is a large-scale and
flexible test bed for experiment-driven research. [18] researched a multilevel auto-
tuning framework that includes data allocation, domain decomposition, low level,
and autotuning techniques. Some of their strategies, especially the decomposition
schemes, are similar to ours. However, their experiments are conducted on SMP
platforms using Pthreads. [19] discussed the motivation of combining OpenMP
and MPI, and coarse-grained OpenMP parallelism is used to facilitate overlapping
MPI communication and computation for stencil-based grid programs on an IBM
SP. [20], and [21] studied the data movement strategies for heterogeneous architec-
tures with distributed memory with the Polyhedral model on an AMD CPU and an
NVIDIA GPU, which immensely reduced the volumes of communication between
computing devices. [22] investigated on the hybrid MPI/OpenMP parallel pro-
gramming on clusters of multicore SMP nodes. Specific cases for pure MPI, pure
OpenMP, or hybrid programming model of MPI + OpenMP are analyzed separately.
[6] demonstrated the benefits of the hybrid approach for performance and resource
usage on three multicore-based parallel systems, including one IBM, and two SGI
Altix systems, with two real-world applications. It is the first time we fuse the hybrid
programming model and multilevel parallelisms on NUMA and SIMDlized archi-
tectures. We make full use of the whole platform’s potential benefits, including the
core, socket, and system-level architectural characterizes. Putting all the considera-
tions together, we evaluate two commonly utilized stencil computations and exploit
their best performances.

6 � Conclusions and future work

We propose and implement as well as evaluate a multilevel parallelism scheme for
stencil computation optimizations on NUMA architectural multicore platforms with
SIMD supported. It is motivated by the fact that the systems we work on are organ-
ized by diverse memory systems, including local memory and remote memory.
A hybrid programming approach of MPI and OpenMP is employed. We utilize a
four-level parallelism optimization strategy including the block decomposition for
NUMA nodes and processes combined with MPI, the thread-level parallelism using
OpenMP, and the data-level parallelism based on SIMD Extensions. Experimental

13599

1 3

Multilevel parallelism optimization of stencil computations…

results of two ubiquitous 3D stencil computations demonstrate the effectiveness of
our proposed scheme. Future work may include the extensions of many more hard-
ware platforms as well as stencil computations. Multinode or clusters of proces-
sors should also be considered for the performance scalability. Other optimizations
including cache blocking [23–25], and [26], register blocking as well as instruction-
level parallelism [18] could also be integrated into our scheme to better improve the
performances.

Acknowledgements  The work is supported by National Key Research and Development Program of
China (2018YFB0204301) and Open Fund of PDL (6142110190201). We would also like to thank Chao-
run Liu (NUDT), Peng Zhang (CAEP), Song Liu (XJTU), and the reviewers for their remarkable com-
ments on the work.

References

	 1.	 The top-500 list of supercomputer sites. Available from: http://​www.​top500.​org/​lists/
	 2.	 Lameter C (2006) Local and remote memory: memory in a Linux or NUMA System. Linux

symposium
	 3.	 Chandra R, Menon R, Dagum L, Kohr D, Maydan D, McDonald J (2000) Parallel Programming in

OpenMP. Morgan Kaufman, San Francisco
	 4.	 Pacheco PS (1997) Parallel Programming with MPI. Morgan Kaufman, San Francisco
	 5.	 Gropp W, Lusk E, Skjellum A (1994) Using MPI: Portable Parallel Programming with the Message-

Passing Interface. MPI Press, Cambridge
	 6.	 Jin Haoqiang, Jespersen Dennis, Mehrotra Piyush, Biswas Rupak, Huang Lei, Chapman Barbara

(2011) High performance computing using MPI and OpenMP on multi-core parallel systems. Paral-
lel Comput. 37:562–575. https://​doi.​org/​10.​1016/j.​parco.​2011.​02.​002

	 7.	 Uday Bondhugula (2013) Compiling affine loop nests for distributed-memory parallel architectures.
International Conference for High Performance Computing, Networking, Storage and Analysis, SC.
https://doi.org/10.1145-2503210.2503289

	 8.	 Optimizing applications for NUMA. Development topics and technologies, Intel. Published:
11/02/2011, Last Updated: 11/02/2011. https://​softw​are.​intel.​com/​conte​nt/​www/​us/​en/​devel​op/​artic​
les/​optim​izing-​appli​catio​ns-​for-​numa.​html

	 9.	 Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, Katherine A (2009)
Yelick: optimization and performance modeling of stencil computations on modern microproces-
sors. SIAM Rev. 51(1):129–159

	10.	 Henretty T, Veras R, Franchetti F, Pouchet L-N, Ramanujam J, Sadayappan P (2013) A sten-
cil compiler for short-vector SIMD architectures. In: Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing (ICS’13). Association for Computing
Machinery, New York, NY, USA, pp 13–24. https://​doi.​org/​10.​1145/​24649​96.​24672​68

	11.	 Tom Henretty (2014) Performance optimization of stencil computations on modern SIMD
architectures[Ph.D]

	12.	 Armejach Adriá, Caminal Helena, Cebrian Juan, Langarita Rubėn, González-Alberquilla Rekai,
Adeniyi-Jones Chris, Valero Mateo, Casas Marc, Miquel Moreto (2019) Using Arm’s scalable vec-
tor extension on stencil codes. J Supercomput. https://​doi.​org/​10.​1007/​s11227-​019-​02842-5

	13.	 Jang M, Kim K, Kim K (2011) The performance analysis of ARM NEON technology for mobile
platforms. In: RACS’11: Proceedings of the 2011 ACM symposium on research in applied compu-
tation, pp 104–106. https://​doi.​org/​10.​1145/​21033​80.​21034​01

	14.	 Elena L, Arseny T, Dmitry N, Vladimir A (2020) Fast implementation of morphological filtering
using ARM NEON extension. arXiv:​2002.​09474

	15.	 Mariem Saied (2016) Jens Gustedt. Automatic Code Generation for Iterative Multi-dimensional
Stencil Computations. HiPC, Gilles Muller, pp 280–289

	16.	 Saied, Mariem (2018) Automatic code generation and optimization of multi-dimensional stencil
computations on distributed-memory architectures

http://www.top500.org/lists/
https://doi.org/10.1016/j.parco.2011.02.002
https://software.intel.com/content/www/us/en/develop/articles/optimizing-applications-for-numa.html
https://software.intel.com/content/www/us/en/develop/articles/optimizing-applications-for-numa.html
https://doi.org/10.1145/2464996.2467268
https://doi.org/10.1007/s11227-019-02842-5
https://doi.org/10.1145/2103380.2103401
https://arxiv.org/abs/2002.09474

13600	 K. Zhang et al.

1 3

	17.	 Grid5000. Available from: https://​www.​grid5​000.​fr/
	18.	 Kaushik Datta, Samuel Williams, Vasily Volkov, et al (2009) Auto-tuning the 27-point stencil for

multicore[J]. Proc Iwapt the Fourth International Workshop on Automatic Performance Tuning
	19.	 Kaiser Timothy, Baden Scott (2001) Overlapping communication and computation with OpenMP

and MPI. Sci. Programm. 9:73–81. https://​doi.​org/​10.​1155/​2001/​712152
	20.	 Dathathri Roshan, Reddy Chandan, Ramashekar Thejas, Bondhugula Uday (2013) Generating effi-

cient data movement code for heterogeneous architectures with distributed-memory. Parallel Archi-
tectures and Compilation Techniques-Conference Proceedings, PACT. 375–386. https://​doi.​org/​10.​
1109/​PACT.​2013.​66188​33

	21.	 Bondhugula Uday, Baskaran Muthu, Krishnamo Orthy Sriram, Ramanujam J., Rountev Atanas, and
Sadayappan Ponnuswamy (2008) Automatic Transformations for Communication-Minimized Paral-
lelization and Locality Optimization in the Polyhedral Model. International Conference on Compiler
Construction. 4959. 132-146

	22.	 Rabenseifner Rolf, Hager Georg, and Jost Gabriele (2009) Hybrid MPI/OpenMP parallel program-
ming on clusters of multi-core SMP nodes. Euromicro International Conference on Parallel, Distrib-
uted and Network-based Processing 427-436

	23.	 Kamil DK et al (2009) Optimization and performance modeling of stencil computations on modern
microprocessors. SIAM Rev 51(1):129–159

	24.	 Bandishti V., Pananilath I., Bondhugula Uday (2012) Tiling stencil computations to maximize
parallelism[C]∕∕ International Conference on High Performance Computing. IEEE Computer Soci-
ety Press

	25.	 Wellein G., Hager G., Zeiser T., et al (2009) Efficient temporal blocking for stencil computations by
multicore-aware wavefront parallelization[C]∕∕ IEEE International Computer Software and Appli-
cations Conference. IEEE

	26.	 Datta K, Murphy M, Volkov V et al (2008) Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures. In: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (SC’08). IEEE Press, Article 4, pp 1–12

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.grid5000.fr/
https://doi.org/10.1155/2001/712152
https://doi.org/10.1109/PACT.2013.6618833
https://doi.org/10.1109/PACT.2013.6618833

	Multilevel parallelism optimization of stencil computations on SIMDlized NUMA architectures
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 OpenMP programming model
	2.2 MPI programming model
	2.3 Hybrid programming approach
	2.4 NUMA architecture
	2.5 Motivation

	3 Multilevel parallelism scheme
	3.1 Block decomposition
	3.2 Thread-level parallelism
	3.3 Data-level parallelism
	3.4 Put it all together

	4 Performance evaluation
	4.1 Experimental test bed
	4.2 Stencil overview
	4.3 Architectural specific exceptions
	4.4 Results and analysis
	4.4.1 ARM platform
	4.4.2 Intel platform

	5 Related work
	6 Conclusions and future work
	Acknowledgements
	References

