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Abstract
Nowadays, GPU clusters are available in almost every data processing center. Their 
GPUs are typically shared by different applications that might have different process-
ing needs and/or different levels of priority. In this scenario, concurrent kernel execu-
tion can leverage the use of devices by co-executing kernels having a different or 
complementary resource utilization profile. A paramount issue in concurrent kernel 
execution on GPU is to obtain a suitable distribution of streaming multiproccessor 
(SM) resources among co-executing kernels to fulfill different scheduling aims. In 
this work, we present a software scheduler, named FlexSched, that employs a run-
time mechanism with low overhead to perform intra-SM cooperative thread arrays 
(a.k.a. thread block) allocation of co-executing kernels. It also implements a produc-
tive online profiling mechanism that allows dynamically changing kernels resource 
assignation attending to the instant performance achieved for co-running kernels. An 
important characteristic of our approach is that off-line kernel analysis to establish 
the best resource assignment of co-located kernels is not required. Thus, it can run 
in any system where new applications must be immediately scheduled. Using a set 
of nine applications (13 kernels), we show our approach improves the co-execution 
performance of recent slicing methods. Moreover, our approach obtains a co-execu-
tion speedup of 1.40× while slicing method just achieves 1.29× . In addition, we test 
FlexSched in a real scheduling scenario where new applications are launched as soon 
as GPU resources become available. In this scenario, FlexSched reduces the average 
overall execution time by a factor of 1.25× with respect to the time obtained when 
proprietary hardware (HyperQ) is employed. Finally, FlexSched is also used to imple-
ment scheduling policies that guarantee maximum turnaround time for latency sensi-
tive applications while achieving high resource use through kernel co-execution.
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1  Introduction

GPUs are broadly used in multitask environments, such as data centers, where 
applications running on CPUs offload specific functions to GPUs in order to take 
advantage of the device performance. In these environments, it is likely to have 
several independent kernels ready to run concurrently on a GPU. In this context, 
several works have been published that try to improve the way kernels are sched-
uled on GPUs. They pursue different aims such as reducing the makespan of a 
set of kernels taking advantage of concurrent kernel execution capabilities avail-
able in devices [1, 2], improving time-sharing execution [3] or providing priority-
based kernel execution developing soft-real time schedulers [4]. As it has been 
pointed out by several previous works [5–10], many GPU kernels do not scale 
well because some hardware resources become saturated. This way, they have 
tried to increase GPU utilization applying a concurrent kernel execution scheme, 
running simultaneously in the device kernels with complementary resource 
needs.

Concurrent kernel execution (CKE) can be exploited using software queues 
(called streams in the Compute Unified Device Architecture Software Develop-
ment Kit (CUDA SDK) [11]) which allow programmers to launch independent 
kernels. These software queues are mapped onto hardware queues from which 
kernels are scheduled. The kernel scheduling unit in these devices is called Coop-
erative Thread Array (CTA), also known as thread block, and the CTA hardware 
scheduler allocates CTAs to streaming multiprocessors (SM). However, no API 
is supplied to perform a precise CTA allocation. In fact, the hardware scheduler 
follows a FIFO order [12] to schedule CTAs. In the case the number of CTAs of a 
kernel exceeds the capability of the GPU (a very common situation), CTAs of the 
following kernel has to wait until previous kernel start to free resources. Conse-
quently, most of the time the first kernel run alone and only at the end of its exe-
cution some CTAs of the second kernel can be concurrently executed. Another 
drawback of the CTA hardware scheduler is it does not guarantee a specific map-
ping of CTAs onto SMs. Thus, although two o more kernels with a small number 
of CTAs could be concurrently executed, the attained performance could be low 
as it strongly depends on the CTA allocation mapping [3, 8]. Therefore, all gen-
eral software solutions for CKE require to add some software support into the 
kernel code, typically some simple modifications in either source or PTX (Paral-
lel Thread Execution) code [3, 6, 8, 9], to allow concurrent execution even when 
kernels launch many CTAs, and to set a specific CTA allocation on SMs.

Schedulers can benefit of a CKE implementation to, for example, deal with dif-
ferent types of kernels like batch or priority kernels. For batch kernels, the sched-
uling policy aim could be to improve GPU utilization to increase kernel execu-
tion rate [5, 7], while for priority kernels, more sophisticated scheduling policies 
could be implemented to simultaneously guarantee Quality of Service (QoS) and 
GPU utilization. Besides, a preemption technique should be included to provide 
QoS. There are some research proposals of hardware-based preemption mecha-
nisms, [13, 14], but they are not available in current GPUs. More recently, other 
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works have proposed the use of software-based preemption mechanisms like [10, 
15]. The former proposes a preemption mechanism that requires the modification 
of kernel source code and it is restricted to the execution of just one kernel in the 
GPU. The latter also introduces a co-execution scheme where CTAs on a SM can 
be partially preempted. However, optimum resource assignment to kernels is not 
discussed, which limits the performance achieved by the scheduler.

These scheduling policies could benefit of a CKE model that provided some guid-
ance on how GPU resources should be assigned to the concurrent kernels because, 
as it was previously indicated, the performance achieved depends largely on the dis-
tribution of these resources and the interference among co-executing kernels. Some 
works have proposed performance models that requires exhaustive off-line profiling 
before kernel co-location [6, 8, 16, 17], but this approach has a limited utility in a 
data center where new applications are constantly scheduled. Other works schedule 
kernels taking into account a resources reservation policy [9] but, without a corre-
spondence between assigned resources and achieved throughput, the scheduler can-
not take performance-oriented decisions.

In this work, we propose a flexible mechanism to co-execute kernels on GPUs. 
Our mechanism can carry out a specific allocation of CTAs to SMs and can take 
online decisions to modify current assignation in order to increase the global per-
formance of batch applications and/or fulfill QoS requirements of latency sensitive 
(LS) applications co-located with batch kernels. Thus, the main contributions of this 
study are the following:

•	 A kernel launcher that performs an efficient co-location scheme of CTAs belong-
ing to different kernels on SMs. We have called it rtSMK as it is a run-time 
mechanism inspired in the simultaneous multikernel (SMK) approach [18], 
which proposes a hardware based fine-grain dynamic sharing mechanism that 
fully utilizes resources within a SM by exploiting heterogeneity of different ker-
nels.

•	 A performance model based on a productive online profiler that finds the best 
resource assignment for any pair of concurrent kernels without the need for an 
off-line kernel analysis.

•	 A scheduler, named FlexSched, that employs the performance model to dynam-
ically change GPU resources assignation with low overhead. The scheduler is 
able to manage an arbitrary number of applications and takes CTA re-mapping 
decisions each time a new kernel must be launched.

Our approach is tested using 13 kernels belonging to 9 applications. Firstly, rtSMK 
is favorably compared to cCUDA, the most recent slicing method for kernel co-exe-
cution [17]. Secondly, FlexSched is tested in two scenarios.

In the first scenario, we consider that all applications are part of the same batch 
and they must be scheduled to obtain the best kernel throughput, that is, the sched-
uler policy is aimed to obtain the lowest overall execution time. As all applications 
belong to the same batch, they can be executed concurrently and we can test the 
behavior of the scheduler when new kernels must be launched and co-executed with 
kernels already running on the GPU. In the second scenario, there are some LS 
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applications running concurrently with an arbitrary number of batch applications. In 
this case, the objective of the scheduler is to fulfill the execution time requirements 
of the LS applications, while the remaining available resources are used efficiently 
to concurrently execute other batch applications. The rest of the paper is organized 
as follows. Sect. 2 introduces basic CKE features in modern GPUs and presents a 
motivating example with the foremost features of our scheduler. Section 3 presents 
the main modules that constitute our software approach. Then, Sect. 4 focuses on 
the necessary implementation details to develop an efficient software scheduler that 
takes advantage of kernel co-location. Extensive experiments of our proposal are 
conducted in Sect. 5, which show the role of the profiling process in the achieved 
performance. In Sect. 6, the key elements of previous works that propose both soft-
ware and hardware kernel co-execution techniques are reviewed, and the main dif-
ferences with our proposal are also pointed out. Finally, the main conclusions are 
presented in Sect. 7.

2 � Background and motivation

The execution of kernels on a GPU may not scale well due to some architecture con-
straints. For instance, memory bound kernels can saturate the global memory band-
width long before all possible CTAs are allocated to SMs. There are other causes 
for resources saturation, like pipeline stalls on Read After Write (RAW) dependen-
cies (in compute bound kernels) or L1-cache trashing (in L1-cache sensitive kernels) 
[19]. One way to deal with this problem is to reduce the number of CTAs of the 
saturating kernels assigned to SMs and, to maintain high GPU utilization, schedule 
concurrently CTAs from another kernel with different resource needs.

Independent kernels can be scheduled to execute concurrently on a GPU using 
current APIs. The hardware CTA scheduler is responsible for launching the kernels 
but is not very flexible because it follows a leftover policy [5]. Thus, if a kernel cre-
ates more CTAs than those that can be simultaneously allocated on the GPU, no 
concurrent execution can be performed with the next scheduled kernel until the last 
finishing CTAs of the running kernel free up GPU resources. On the other hand, 
if two kernels have a small number of CTAs, the hardware scheduler is able to co-
execute them, but the programmer cannot control their allocation mapping, which 
makes it difficult to develop fine-grained policies that exploit the available heteroge-
neity of the kernels. Alternatives to the current hardware scheduler policy have been 
studied employing simulators [18–22]. These works provide more precise control 
for CTA allocation, but cannot be used in a real system.

Some previous works have implemented CKE using a software approach, but 
this requires to modify the kernel original source code [5–10]. Nevertheless, they 
have also shown that the overhead introduced by these modifications is low and is 
compensated by the performance increase obtained by co-execution. More modern 
implementations also include a preemption mechanism that can be used for resource 
re-assignment. However, they typically model the co-execution performance carry-
ing out an off-line profiling of the isolated execution of kernels [6, 8], predicting 
kernels Instructions Per Cycle (IPC) using demanding Markov chain models [23], 
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or just taking into account the number of CTAs assigned to each co-located kernel 
[9], but ignoring the impact in performance that the interference between co-running 
kernels competing for similar resources can produce. This way, all these approaches 
cannot be efficiently applied on a GPU server, where new and unknown applications 
are constantly scheduled.

In contrast, we have developed a CKE scheduler that can be employed on a GPU 
server where independent kernels are simultaneously ready to be launched. Our 
scheduler includes an online productive profiling method that helps to establish the 
best SM partitioning when concurrent execution starts, using a flexible mechanism 
that is able to manage partial kernel eviction and launching. For the sake of clarity, 
most frequent terminology employed in the paper is shown in Table 1.

Figure 1 shows a motivating example of our proposal where kernel co-execution 
is exploited by a scheduler implementing policies oriented to both high throughput 
and low latency. The figure displays the temporal schedule of four kernels and the 
relative distribution of GPU resources among them, i.e., the number of allocated 
CTAs for each kernel. Three of them are kernels belonging to a batch, that is, we 
assume they have the same priority and the objective is to co-execute them as fast as 
possible to obtain a high overall throughput, and the remaining one is a LS kernel 
that must be executed with some specific temporal constraints on turnaround time. 
Initially, only batch kernels are ready to run. The scheduler selects K1 and K2 ker-
nels for co-execution and tries to maximize the co-execution performance to achieve 
a high kernels execution rate. The scheduler could have some basic kernel informa-
tion, e.g., if kernels are either memory or compute bound, to help it to choose a pair 
of kernels but also a random selection could be carried out. Either way, the sched-
uler starts a profiling phase to obtain a good GPU resources partitioning between 
the two kernels. This phase is shown with a vertical shaded box starting a time t1 . 
During this phase, the performance of the co-execution is evaluated and, if required, 

Table 1   Meaning of terms frequently used in the paper

Term Meaning

Cooperative thread array (CTA​) Any group of threads that concurrently execute a task (also 
known as Thread Block)

Streaming multiprocessor (SM) GPU physical component where CTAs are allocated for being 
executed

Basic scheduling unit (BSU) Smaller launching unit managed by FlexSched consisting of 
persistent CTAs

Task Computation performed by original CTA before kernel 
transformation

Simultaneous multikernel (SMK) Co-execution mapping where CTAs of different kernels are 
co-located in the same SM. The same co-location scheme is 
replicated in all SMs

Co-execution configuration space (CCS) All possible CTA co-location schemes of two co-running 
kernels in FlexSched. Each scheme exhausts at least one SM 
resource so that no more CTAs can be co-located

Co-execution configuration (CC) Any of the possible co-location schemes of a CCS
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the resources distribution is changed. Notice that no specific CTA assignation is 
depicted during this phase because it varies over time. Once a good distribution is 
found, the profiling phase finishes and kernels continue their execution until one of 
them finishes. The height of the box representing each kernel indicates the relative 
proportion of assigned resources. At time t2 , K1 ends and the scheduler selects and 
launches K3. Once again, a profiling phase starts to find a good resource partitioning 
between k2 and k3. Then, k2 and k3 run until, at time t3 , a LS kernel, K4, becomes 
ready. Due to this event, the scheduler evicts one of the running kernels, K2 in this 
example, and launches K4. A new profiling phase starts but now the scheduler aim 
is to fulfill QoS requirements for K4 and, as a side effect, less resources are assigned 
to K3. Once an adequate assignment is found, the profiling phase ends and kernels 
continue running until next event.

As far as we know, our proposal is the first GPU kernel scheduler that imple-
ments an online productive profiling to find suitable co-execution configuration 
according to the required scheduling policy. In addition, as the profiling phase can 
be performed at any time, it can be also employed to change the current CTA alloca-
tion when new kernels are ready to be executed. This way, an arbitrary number of 
kernels can be efficiently scheduled by adapting CTA allocation to the requirements 
of running kernels.

3 � Overview of FlexSched

FlexSched is a software approach, running on a host, that can schedule a set of 
GPU applications applying both performance and QoS oriented criteria. From 
simple modifications in the kernel original source code, it develops flexible mech-
anisms to run concurrent kernels including partial kernel eviction and launch-
ing. Also, an online productive profiler is implemented to obtain information of 

Fig. 1   Timeline showing an overview of the proposed approach for kernel co-execution. When a new 
kernel is scheduled, a phase of productive profiling starts to establish the best SM partition (shadow 
boxes). As it can be seen, the method is applied on the fly to an arbitrary number of new kernels that 
arrive with different scheduling aims
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co-executing kernels on the fly. This way, the scheduler can establish a suitable 
SM partitioning for concurrent kernels.

Profiling analysis and scheduling decisions are based on information collected 
during co-execution. In order to provide a flexible CKE scheme, the original ker-
nel grid is transformed into a new grid formed by persistent CTAs [8]. Addition-
ally, these CTAs are further grouped into Basic Scheduling Units (BSU), which 
are the smallest scheduling entities managed by our scheduler. The use of BSUs 
allows controlling precise CTA distribution on SMs during profiling and avoids 
costly kernel eviction and relaunching operations involving all pending CTAs as 
the number of running CTAS on a BSU is limited to one per SM. Figure 2 depicts 
a scheme of this approach. It can be observed that several BSUs of two kernels 
are running on the GPU, while rtSMK, scheduler and profiler modules are run-
ning on the CPU. The main features of these modules are the following:

•	 Profiler module: during profiling, the number of executed tasks of running ker-
nels is constantly sampled through the bus connecting the host to the device, 
and an instantaneous task execution rate is calculated. Notice that BSUs belong-
ing to the same kernel collaborate to increment the number of executed tasks of 
this kernel. Then, the calculated value is sent to the scheduling module so that 
changes in the current BSUs mapping can take place, if required.

•	 Scheduler module: using information from the performance model, which could 
be different depending on the scheduling aim, the scheduler instructs rtSMK to 
launch BSUs belonging to co-located kernels, monitors their progress and, in 
case of deviation with respect to the model prediction, makes a decision on CTA 
re-assignment. When a co-executing kernel finishes, this module also selects the 
new kernel to be launched and performs resource re-assignment if necessary. 
Notice that re-assignment is performed by evicting and (re-)launching BSUs. 

Fig. 2   Overview of the proposal. FlexSched consists of a BSU launcher (rtSMK), a Scheduler and a Pro-
filer, which run on the CPU. An example of three BSUs ( BSU1

1
 , BSU2

1
 and BSU3

1
 ) from kernel 1 and 1 

BSU ( BSU1

2
 ) from kernel 2, running on the GPU, is also shown. The arrows connecting the CPU with 

the GPU represent launch and evict commands initiated by the launcher and the scheduler, respectively, 
while data transfer commands are managed by the profiler to obtain the instantaneous number of tasks 
executed per kernel. The profiler passes this information to the scheduler which assesses whether the cur-
rent BSUs configuration is suitable
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Thus, any running kernel is always progressing, except when all kernel BSUs are 
evicted.

•	 rtSMK organizes the kernel computation using BSUs and carries out BSUs 
launching according to scheduler commands.

4 � Implementation details

In this section the four key elements of FlexSched implementation are explained. 
First, we show the modifications that must be applied to kernel original source code 
before it can be used by our scheduler. Next, the mechanism used to allocate CTAs 
to SMs , that is rtSMK, is introduced. Then, the set of possible CTA allocation con-
figurations for two co-located kernels is discussed and, finally, the metric used dur-
ing profiling phase is presented.

4.1 � Kernel transformation

The implementation of the preemption mechanism requires a source to source 
transformation of original kernels, but this modification can be easily automatized 
as explained in [15, 16]. Firstly, the original kernel grid is modified to execute the 
kernel using persistent CTAs. Thus, our scheme can launch a number of CTAs that 
is equal or lower than max(CTASM) ⋅ numSMs , where max(CTASM) is the maximum 
number of CTAs that can be simultaneous allocated in a SM and numSMs is the 
total number of SMs in the device. This transformation can be done automatically 
by a compiler, as a previous work [10] has shown.

The proposed transformation has two advantages regarding the preemption mech-
anism. On one hand, persistent CTAs typically execute several iterations where, 
in each iteration, the work of a single CTA of the original grid is computed. Each 
iteration is called a task. Thus, eviction can take place at the end of each iteration 
(task) and, when a previously evicted kernel is relaunched, each CTA would just 
resume the execution from the last completed iteration. On the other hand, the evic-
tion mechanism works faster as, for most common grid sizes, only tens (at most a 
few hundreds in a modern Volta architecture) of persistent CTAs are active instead 
of several thousands.

A flexible mechanism for load distribution among CTAs has also been developed. 
Instead of assigning a specific computation to each CTA with a fixed mapping (like 
in [6]), CTAs obtain workload by atomically updating a common global memory 
variable at the start of each iteration, as it is also done in [8]. This global mem-
ory variable acts as a counter (starting from zero) that increments a tasks index and 
plays an important role during online profiling. This tasks execution ordering does 
not affect original kernel execution and benefits the preemption mechanism because 
only the index of the last executed task must be saved when a kernel is evicted. In 
this paper we use the term task to name the basic unit of work and it is given by the 
amount of computation done by one CTA during one iteration. 
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In Listing 1, the key kernel changes are indicated. As it can be observed, two new 
global memory variables are required for each kernel (line 2). One of these vari-
ables, named State, keeps the state of the GPU kernel and it can take three possible 
values: Ready, Running or Evicted. When a kernel has solved all its data dependen-
cies, and its input data has been transferred from the host to the device, it takes the 
Ready state. Just before a kernel is launched, it is set to the Running state. The other 
memory variable, named TaskCont, contains the index of the next available task 
(initially set to 0). In addition, there is a new parameter, MaxNumTask (also in 
line 2), that contains the total number of tasks to execute and it is checked by GPU 
threads to terminate when all tasks have been computed.

Listing 1 also shows the code for the eviction mechanism and the task distribu-
tion strategy. The original CTA computation is enclosed within a while loop (line 3) 
that finishes when either an eviction command is sent by the CPU scheduler thread 
or no more pending tasks are available (line 14). At the beginning of each while 
loop iteration the CTA thread with id 0 reads the State variable (line 6). If the state 
has changed to Evicted, then a variable mapped in shared memory, called blockId, 
is set to -1 (line 7). This variable is also used to store the task id when the kernel 
is running (line 9). As it can be also observed in line 9, new values of task id are 
obtained by thread 0 at each CTA iteration by executing an AtomicAdd instruction 
on TaskCont variable while the remaining block threads wait at a block synchro-
nization instruction (line 12). After this barrier, all block threads read blockId and 
check (line 14) termination condition (all kernel tasks have been computed or State 
content has changed to Evicted). If condition is not fulfilled, CTA computes a new 
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task with the current blockId value. An additional modification must be also applied 
to the original code to change the indexation employed during computation. In ker-
nels source code this indexation is typically implemented using CTA indexes while 
now the blockId content must be used. Anyway, these transformations can be auto-
matically applied as shown in [15, 16].

4.2 � Basic scheduling units

rtSMK is the FlexSched module in charge of scheduling kernels to execute concur-
rently using a software-based mechanism to distribute available GPU resources. 
Since our scheduler is forced to employ the CTA hardware scheduler, we take 
advantage of the round-robin CTA allocation policy it follows [6] to implement an 
intra-SM CTA allocation scheme, where CTAs of different kernels are allocated in 
the same SM. Thus, our approach defines a Basic Scheduling Unit (BSU) as a set of 
as many CTAs as the number of SMs in the GPU. This way, when a BSU is launched 
on an idle GPU, one CTA will be assigned to each SM. If another BSU is launched, 
a new CTA will be running in each SM provided there are enough resources for 
them. As a result, two CTAs, which belong to different BSUs, will be executing at 
each SM. Notice the use of BSU leads to a CTA distribution scheme similar to SMK 
[7, 18], which exploits kernel heterogeneity allowing fine-grain sharing by multiple 
kernels within each SM.

Figure 3 shows an example where three BSUs belonging to two kernels are sched-
uled on a GPU with four SMs. In that figure, BSUk identifies a BSU of kernel k. 
BSUs that belong to the same kernel collaborate with each other to perform kernel 
computation, since they share the counter TasksId (see Listing 1). This is the case 
for the two instances of BSU1 in Fig. 3. However, they can be evicted independently 
because each BSU has its own variable State. Therefore, an efficient and responsive 
dynamic CTA allocation can be carried out since an evicted BSU can leave room for 
BSUs from another kernel, as long as the new BSUs can be executed with resources 
released by the just evicted BSU.

We define the granularity of a BSU as the number of CTAs that will be launched at 
each SM. Thus, a BSU with a granularity value of one, as those represented in Fig. 3, 
will launch numSMs CTAs, where numSMs is the number of streaming multiproces-
sors in the device. Nevertheless, granularity can be higher than one to reduce BSUs 

Fig. 3   Result of launching three BSUs on a GPU with four SMs. When a BSU is launched, a CTA is allo-
cated at each SM as indicated by dotted box. BSU

1
 and BSU

2
 identifies BSUs belonging to kernel k1 and 

k2, respectively. Thus, two BSUs of k1 and one BSU of k2 are running
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management overhead in kernels with a high number of persistent CTAs per SM. Thus, 
the granularity of a BSU can range from 1 to the maximum number of persistent CTAs 
per multiprocessor. Our scheduler is able to manage BSUs with different granularity 
attending to runtime decisions.

The use of BSU allows the distribution of kernel CTAs into independent schedul-
ing units (streams in CUDA terminology). Thus, when kernel resource assignment 
must be reduced, not all the running CTAs of a kernel need to be evicted but just only 
those belonging to a BSU. This way, eviction delay is reduced. Similarly, when more 
resources must be assigned to a kernel, running BSUs can be kept and only the new 
required ones are launched.

The use of BSU allows the kernel CTAs to be distributed into independent sched-
uling units (streams in CUDA terminology). Thus, when kernel resource assignment 
needs to be reduced, it is not necessary to evict all running CTAs from a kernel, but just 
only those belonging to a BSU. This way, eviction delay is reduced. Similarly, when 
more resources must be allocated to a kernel, currently running BSUs can be kept and 
only the new ones that are required are launched.

4.3 � Co‑execution configuration space

A major issue that must be solved to obtain benefits from concurrent execution is to 
establish a good GPU resource partitioning for co-running kernels. As a result of this 
partitioning, CTAs belonging to different kernels are co-executed on the device. Our 
CTA allocation approach follows a SMK scheme, thus intra-SM co-execution is per-
formed and all SMs have identical allocation layout. However, as CTAs of a sched-
uled BSU must be persistent, resource occupancy requirements must be checked before 
launching a new BSU to ensure new CTAs can be correctly assigned to the SMs. Valid 
numbers of scheduled BSUs from different kernels can be calculated in advance know-
ing the following features regarding CTAs of concurrent kernels: number of threads per 
CTA, number of required registers per thread and shared memory space per CTA. All 
these values are known at the code compilation stage. Thus, using these features and 
taking into account the GPU architecture capability, it is straightforward to establish 
a valid co-execution configuration, that is, the number of BSUs of co-running kernels 
that can be launched. More precisely, a valid configuration must fulfill two conditions: 
all CTAs must be persistent and no more CTAs can be allocated. The latter condition 
guarantees that a valid configuration must exhaust at least one of the SM resources so 
that no more CTAs can be allocated. We name the set of valid co-execution configura-
tions as co-execution configuration space, CCS. This space is composed of an ordered 
set of tuples that indicates the number of CTAs that are co-executed on each SM for 
two kernels, as follows:

where K1 and K2 are the concurrent kernels and |BSUj

i
| indicates the number of 

launched BSUs of kernel Ki in the jth co-execution configuration. To facilitate the 
search of a good configuration, the set of configurations is sorted by increasing val-
ues of |BSUj

1
| , that is, |BSUj

1
| takes the lowest value of concurrent CTAs per SM of 

(1)CCS(K1,K2) = {(|BSU1

1
|, |BSU1

2
|),… , (|BSUn

1
|, |BSUn

2
|)},
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K1 for configuration 1. The number of CTAs increases as we move to higher con-
figuration indexes. Thus, |BSUn

1
| represents the highest number of CTAs per SM of 

kernel K1 than can be executed concurrently with CTAs of K2 . It is easy to deduce 
that the values taken by |BSUj

2
| have just the opposite behavior, that is, they decrease 

as the configuration index increases. An example is presented to illustrate all these 
concepts. Let us assume the resources needed by each kernel permit allocating a 
maximum of 8 CTAs per SM for each kernel. However, when they are executed con-
currently, the SM resources must be shared, resulting in seven possible configura-
tions, CCS = {(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1)} . For instance, in the first 
configuration one BSU of the first kernel and seven BSUs of the second kernel can 
be executed concurrently.

4.4 � Co‑execution profiling and scheduling

The fourth key element in FlexSched implementation is the profiling phase. During 
this phase, the CCS of two kernels is explored to find the best co-execution configu-
ration attending to some specific scheduling policy. More precisely, a profiler deter-
mines the task execution rate, TER , achieved by the running BSUs of a kernel. TER 
value of kernel i is calculated using the following expression:

where TaskConti is the task counter shared by all BSUs of kernel Ki , and Ti is the 
time elapsed since kernel started to run.

Using TER value, the scheduler can apply a throughput-oriented policy to com-
pare the performance achieved by two configurations of the CCS. This is done by 
calculating the weighted speedup, WSTER , between TER values of kernels K1 and K2 
for two different configurations, as follows:

where TER(|BSUj

1
|) and TER(|BSUj

2
|) indicate the task execution rates of kernel K1 

and K2 when a specific number of BSUs, given by the expression |BSUj

1
| , of K1 are 

concurrently executed with |BSUj

2
| ones of K2 . Taking into account that the values in 

the numerator and denominator correspond to two different co-execution configura-
tions, k and j, the previous expression defines a metric that compares the speedup 
between them. Therefore, if the resulting value for WSTER is higher than one, config-
uration j achieves a better global TER than configuration k. Similarly, if WSTER < 1 , 
configuration k obtains a better tasks execution rate. Thus, different co-execution 
configurations of a CCS can be compared to find the best one using a hill climbing 
approach as it will be shown in next section.

In conclusion, our proposal uses an online productive profiling to find the best co-
execution configuration instead of previous software-based CKE schedulers, which 
are based on co-execution models that only considers GPU resource partitions for 
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kernel co-location [5, 9]. Furthermore, these works ignore the interference between 
kernels produced during co-execution, thus they are not able to establish a good 
CTA mapping that meets performance optimization criteria or turnaround time 
constrains.

5 � Experimental results

Experiments have been conducted using different applications containing one or sev-
eral kernels belonging to CUDA SDK [11], Rodinia [24], and Chai [25] benchmark 
suites. With these applications, we pursuit to build a real workload where compute 
and memory bound kernels can be tested. All experiments have been run on a server 
with two Xeon(R) E5-2620 CPUs and one Nvidia Titan X Pascal. The interconnect-
ing bus is a PCIe 3.0.

Table 2 shows the list of applications that we have used. Most of the applications 
have only one kernel, but two of them, namely Separable Convolution and Canny, 
are composed by two and four kernels, respectively. Kernels of both applications are 
executed in a pipeline fashion since the output of one kernel is the input to the next 
kernel.

As it has been shown in previous works [3, 7], the co-execution of kernels obtains 
good performance results when co-executing kernels make use of complementary 
resources. This way, if several kernels are ready to be launched, it is advisable to 
conduct a study in order to find suitable kernel pairings. Several authors [17, 26] 
have proposed different approaches for kernel classification. In this work, we use the 
Kernel Mix Intensity (KMI) value to represent the operational intensity of a GPU 
kernel. This value is obtained by dividing the number of computation and mem-
ory instructions executed by a kernel. Then, attending to the resulting KMI value, 
a kernel is classified as compute-bound (CB) or memory-bound (MB). The CUPTI 

Table 2   Applications used 
in the experiments. Most 
applications consist of one 
kernel, although Separable 
Convolution and Canny are 
composed of two and four 
kernels, respectively. The third 
column shows the execution 
time of each kernel. The fourth 
and fifth columns indicate the 
most utilized resource per kernel 
and the category to which it 
belongs, respectively

Kernel Acronym Application Exec time (ms) Category

HST256 Histogram 4.18 MB
BS Black Scholes 4.47 MB
VA Vector Addition 7.24 MB
SPMV Sparse MV Mult. 10.60 MB
RED Reduction 5.05 MB
CCONV Separable 1.60 MB
RCONV Convolution 1.45 MB
GCEDD Canny 5.26 CB
SCEDD 9.65 CB
NCEDD 7.10 CB
HCEDD 2.15 CB
PF Path Finder 6.77 CB
MM Matrix Mult. 10.38 CB
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library [27] is employed to obtain the number of these instructions by profiling dif-
ferent metrics. Concretely, we have used the Metric API of this library to calculate 
the number of integer and floating point instructions (half, single and double preci-
sion). In addition, we also get the number of dram memory transactions for both 
read and write instructions. Thus, the final expression for KMI is given by:

The right-most column of Table 2 shows the category each kernel belongs to.

5.1 � Kernel transformation overhead

The implementation of FlexSched that provides both BSU-based kernel execution 
and software-based preemption support, requires the transformation of the kernel 
original source code as explained in Sect. 4.1. This transformation can lead to an 
increase in overhead that we will measure with the following experiment. Let Tt and 
To be the total execution time of the transformed and original kernels, respectively. 
Then, the overhead incurred by this transformation can be computed by the next 
expression, Ot =

Tt

To
 . Second column in Table 3 shows the values of Ot obtained for 

the 13 kernels.
Attending to the expression of the overhead, values higher than one are expected 

since the kernel transformation, as explained in Sect.  4.1, increases the number 
of instructions executed by the kernel. However, there are cases where values are 
lower than one. These results can be explained by the fact that kernel transformation 
also implies a modification in the number and granularity of CTAs. For instance, 
original kernel of RED performs two different operations. First, each CTA thread 

(4)KMI =
#integer + #half_float + #single_float + #double_float

#dram_read_trans + #dram_write_trans

Table 3   Analysis of kernel code 
transformation. Second column 
indicates the overhead incurred 
by kernel modification, with 
respect to the original code. 
Third column shows the average 
(Avg) and standard deviation 
(SD) values, in microseconds, 
of the preemption mechanism 
delay for each kernel, assuming 
that data transfers do not 
occur concurrently with kernel 
execution

Kernel Transformation Overhead Eviction Delay 
Avg ± SD (��)

MM 0.96 72 ± 1

BS 1.00 81 ± 1

VA 1.00 76 ± 3

SPMV 1.06 71 ± 10

RED 0.90 28 ± 1

PF 1.00 90 ± 7

RCONV 1.01 45 ± 2

CCONV 1.00 23 ± 1

GCEDD 1.05 45 ± 3

SCEDD 1.05 38 ± 1

NCEDD 0.97 33 ± 2

HCEDD 1.04 32 ± 1

HST256 0.91 85 ± 3

Average 0.99 51
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accumulates data content read from global memory, and then a reduction at CTA 
level is performed. As the transformed kernel has a lower number of CTAs, the 
reduction takes less time. HST256 overhead value can be explained in a similar way 
since there is also a final reduction. Focusing on kernels with overhead higher than 
one we can see that the execution time increases, at most, by 5%. Finally, the aver-
age overhead is 0.99, indicating that, globally, the overhead is negligible.

5.2 � Eviction delay

A key aspect of any preemption implementation is its responsiveness to eviction 
commands. In our implementation, the scheduler evicts a kernel by asynchronously 
writing in the variable State of the BSU. This variable is allocated on GPU global 
memory as it was explained in Sect.  4.1. Any CTA in the BSU reads this varia-
ble before the execution of a new task and, attending to its content, computes the 
whole task or finishes. Consequently, there is a delay between the submission of the 
eviction command and the termination of the running kernel. This delay is directly 
related to how frequently a CTA reads the variable State. Thus, a reduction of the 
eviction delay requires more frequent memory reads which, however, increase the 
overhead of the atomic operation to update the variable TaskCont. As we are inter-
ested in keeping code modification as simple as possible, the minimum granularity 
is given by the computation enclosed within a CTA of the original kernel (see List-
ing 1). Nevertheless, this granularity could be increased if necessary by applying a 
coarsening technique to the CTA code.

We have measured the eviction delay of each kernel as in [10]. Eviction com-
mands are sent at different times of the kernel execution, and the elapsed time until 
kernel stops is measured. This experiment have been repeated 50 times, and average 
and standard deviation values have been computed. Third column in Table 3 shows 
these values. All kernels have an eviction delay lower that 100 � s and small standard 
deviation values. Finally, the average eviction delay for all kernels is around 51 � s. 
This value allows developing scheduling policies requiring short eviction intervals.

5.3 � Performance of CTA allocation scheme

As it was indicated in Fig. 2, FlexSched consists of three modules. In this section we 
are interested in evaluating the performance achieved by just one of the modules, 
rtSMK, which focuses on allocating CTAs on SMs following a SMK scheme. As 
rtSMK is the mechanism used by our approach to launch CTAs belonging to differ-
ent kernels on GPU SMs, it can be compared with other recent method with similar 
functionality as cCUDA [17]. cCUDA presents an approach to kernel co-execution 
based on kernel slicing [3]. They employ two streams to launch multiples slices of 
both co-located kernels. This way, slices of both kernels can be concurrently exe-
cuted as long as no slice exhausts all SMs resources. Notice that this technique also 
requires kernel modification as CTA index rectification must be applied to ensure 
correct kernel behavior. Also, original dimension of kernel grid must be passed as 
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a parameter. Kernel slicing incurs in an overhead caused by multiple launching of 
kernel slices. This overhead can be reduced by applying CTA coarsening.

As computation time of each co-executing kernel differs, the concurrent execu-
tion time, TCO , considers only computation performed when both kernels execute 
simultaneously. Thus, in rtSMK, the number of tasks executed by the longest last-
ing kernel is annotated when the shortest one finishes. Then, the sequential execu-
tion time, TSE , is calculated by launching sequentially that pair of kernels using the 
same number of tasks, that is, all the tasks for the shortest kernel and the annotated 
number of tasks for the longest one. Similarly, for cCUDA, we count the number of 
CTAs executed by both kernels when they are co-running, and the sequential execu-
tion time is calculated launching all CTAs of the shortest kernel and the annotated 
number of CTAs for the longest one. Notice that sequential kernel execution is car-
ried out using different streams for each kernel. This way, kernel overlapping can 
still take place. The speedup achieved by two kernels, K1 and K2, when they are 
executed concurrently is given by the following expression:

In Fig. 4a, a graph bar is used to represent the best speedup values achieved by pairs 
of memory-bound and computed-bound kernels for both methods. Speedup val-
ues are calculated exploring all CCS for each pair of kernels using a brute-force 

(5)S(K1,K2) =
TSE

(K1,K2)

TCO(K1,K2)

Fig. 4   Top graph shows the maximum speedups achieved by the best CC when CB and MB kernel 
pairs are co-executed using both our CTA co-location scheme, rtSMK, and the slicing method based on 
cCUDA. It can be observed that our technique is able to obtain better scores in most cases. Thus, the 
average speedup obtained by rtSMK is 1.40 while cCUDA just gets 1.29. The bottom graph displays the 
slowdown with respect to the best speedup when the CC configuration obtaining the lower speedup is 
used. The average slowdown for both methods is around 29% which indicates that the selection of a good 
CC is paramount to obtain a good performance



59

1 3

FlexSched: Efficient scheduling techniques for concurrent…

approach and the co-execution configuration (CC) with the highest score is taken. 
In order to perform a fair comparison, the same values for CTA coarsening are 
employed in both methods.

It can be observed from Fig. 4a that our proposed CTA allocation scheme, rtSMK, 
obtains speedups ranging from 1.1 to 2.1, which confirms the advantages of kernel 
co-execution. Comparing maximum speedup values of rtSMK and cCUDA, we can 
see that most times our approach improves cCUDA results. Three are the issues that 
explains this behavior:

–	 cCUDA incurs in an overhead each time a new slice is launched. Thus, if slice 
execution time is short and the number of launched slices is high, the overhead is 
not negligible. An example of this behavior can be observed during the co-exe-
cution of RED and HCEDD. The co-execution time of a RED slice is just 12�s 
while slice launching time is 7�s . Thus, the execution overhead of this kernel 
is high and just a speedup of 0.95 is achieved. Notice that rtSMK only launches 
BSUs once so it is not affected by this overhead, obtaining a speedup of 1.23.

–	 cCUDA also presents efficiency problems when slices finish. As successive slices 
of a kernel are launched into the same stream, a new slice has to wait for the total 
completion of the previous slice before starting to run. However, during slice 
finalization phase, GPU resources are wasted since some slice CTAs are still run-
ning while others have already finished.

–	 cCUDA dynamically assigns CTAs to SMs using a greedy approach that can lead 
to less efficient mappings while rtSMK constantly monitors and controls CTAs 
assignment.

As a result, if we calculate the average speedup for all kernels pairings, rtSMK 
obtains a score of 1.40 while cCUDA achieves 1.29. Thus, rtSMK is competitive 
when compared with techniques based on kernel slicing. However, the most impor-
tant advantage of our method lies in the included preemption mechanism, which 
allows it to find the best co-execution configuration during a productive profiling 
phase, as already explained in Sect. 4.4. On the contrary, cCUDA launches the exe-
cution commands for kernel slices in a row and they are stored in a hardware com-
mand queue associated to the corresponding stream. In this queue, slices are sequen-
tially executed until all commands have finished using a non-preemptive scheduling.

Figure  4b points out the importance of finding the best CC. In this graph, the 
slowdown of the worst CC with respect to the best one is calculated using the fol-
lowing expression:

where SM(K1,K2) and Sm(K1,K2) are the maximum (M) and minimum (m) speed-
ups obtained by the best and worst CC, respectively. Slowdown values range from 
6% to 60% in rtSMK and from 10% to 40% in cCUDA. The average slowdown fac-
tor for rtSMK and cCUDA is around 29%. These results show that low performance 
values can be obtained if CC is not adequate. In the following section we show how 

(6)SD(K1,K2) =
SM(K1,K2) − Sm(K1,K2)

SM(K1,K2)
⋅ 100,
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FlexSched is able to localize the best or close to the best CC for any co-executing 
kernels.

5.4 � FlexSched performance‑oriented scheduling

We have developed FlexSched, a scheduler that can execute concurrently a set of 
applications while increasing the throughput. In this section, we explain in detail 
the heuristics used by FlexSched during the profiling phase to find the co-execution 
configuration that achieves the best performance. Next, the heuristic is validated in a 
real scenario where several applications are executed, and the results are compared 
with those obtained by the GPU hardware scheduler (HyperQ).

5.4.1 � Profiling phase

During the first stage of FlexSched profiling phase, the CCS of co-executing kernels 
is obtained. This information can be gathered off-line, since it only requires details 
about kernels resources usage which are setup during kernel compilation. More pre-
cisely, this information consists of the number of threads per CTA, the use of shared 
memory per CTA, and the number of registers used per thread. Therefore, any valid 
configuration in CCS is characterized by the maximum number of persistent blocks 
that can be scheduled concurrently on a SM for both co-executing kernels, taking 
into account the previous information.

Once the CCS is obtained, FlexSched can look for a suitable configuration 
as shown in the example in Fig.  5, where a VA/RCONV kernel pair is analyzed. 
The CCS of this pairing consists of seven co-execution configurations, specifically 
CCS = {(1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1)} , where the first and second ele-
ment in each configuration indicate the number of VA and RCONV BSUs, respec-
tively. FlexSched goes through this CCS, launching each configuration to obtain 
TER values, and compares consecutive configurations using the weighted speedup, 

Fig. 5   Left plot shows weighted speedups for different co-execution configurations of VA and RCONV. 
Dotted green line corresponds to going through CCS from left to right, while dashed blue line represents 
going in the opposite direction. Right diagram shows the profiling phase until the best configuration is 
found. First, one VA BSU and seven RCONV BSUs are launched at time t

0
 . Then, a RCONV BSU is 

evicted and a new VA BSU is launched at time t
1
 . This procedure continues until the best configuration is 

found
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WSTER , calculated using Eq. 3. For clarity, all the WSTER values going through CCS 
from left to right (green dotted line) and in the opposite direction (blue dashed line) 
are shown in the left plot in Fig. 5. For instance, the leftmost point in the green dot-
ted line indicates that TER when going from configuration (1, 7) to configuration (2, 
6) is 1.38. As explained in Sect. 4.4, a value of TER greater that one means that TER 
value for configuration (3, 5) is better than the corresponding one of configuration 
(2, 6), which in turn is better than TER of configuration (1, 7). However, TER of 
configuration (4, 4) is worse than TER of configuration (3, 5), and the following con-
figurations also have WSTER values below one, therefore the best configuration for 
VA/RCONV is (3, 5). Notice that the same conclusion can be obtained when going 
through CCS in the opposite direction. Thus, the best configuration can be found by 
looking for the last tuple with a WSTER value higher that one, as it obtains the great-
est TER value of all CCS tuples.

FlexSched does not need to obtain all the WSTER values in both directions. Instead, 
it goes through CCS computing on the fly the values it needs until the one mark is 
crossed. In the example in Fig. 5, FlexSched, following the green dotted line, takes 
the first configuration in CCS, (1, 7), and launches one BSU of VA and seven BSUs 
of RCONV at time t0 . After a sampling time, TER values for each kernel are read 
and their WSTER is computed. Then, FlexSched tests the performance of configura-
tion (2, 6) by evicting one RCONV BSU and launching a new VA BSU at time t1 . 
This process is repeated until configuration (4, 4) is reached because WSTER drops 
below 1. Afterward, FlexSched evicts a RCONV BSU and launches a VA BSU to go 
back to (3, 5) configuration at time t4 , terminating the profiling phase. This configu-
ration is kept until one of the two kernels finishes. In the worst case for this simple 
search method, the profile should evaluate nconf − 1 configurations, being nconf the 
number of tuples within CCS. However, computational complexity could be further 
reduced using a divide-and-conquer approach for the search process.

Figure 6 shows the situation when RCONV finishes at instant t5 . When FlexSched 
detects the finalization of RCONV, it selects another kernel, MM in this example, 
and obtains the CCS for this pairing. This CCS already has a configuration with three 
BSUs of VA, (5, 3), so FlexSched launches five BSUs of MM at time t5 . Then, at 
time t6 , calculates TER values for this co-executing configuration, and launches the 

Fig. 6   Profiling phase when RCONV finishes. Our scheduler selects MM and launches 5 BSUs to fill the 
room left by RCONV. Then, the profiler goes through the new CCS to find the best co-execution configu-
ration for VA and MM
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next configuration. There are two options, configuration (4, 4) or configuration (6, 
2). Let us suppose configuration (6, 2) is selected, thus one VA BSU is evicted and a 
new MM BSU is launched. TER values are computed at time t7 , and WSTER between 
configurations (5, 3) and (6, 2) is calculated. It has a value greater than 1, concretely 
1.07, thus (6, 2) is better and the next configuration, (7, 1), can be checked. At time 
t8 , WSTER is computed, obtaining a value below 1 (0.96), so the previous configura-
tion is re-established and maintained until one of the two kernels finishes. At time t6 
FlexSched could have chosen configuration (4, 4), but then at time t7 it would have 
obtained WSTER = 0.91 . As it is below 1, FlexSched would discard this direction and 
select configuration (6, 2) (it evicts two VA BSUs and launches two MM BSUs). 
Then, the search process continues in a similar way as it was previously indicated.

For some kernel pairs the WSTER plots can be very different from the previous 
examples, with values always above or below one. For instance, Fig. 7 shows the 
values obtained for PF/SPMV pair. From left to right they are always above 1 and, 
consequently, from right to left are below 1. Thus, if FlexSched starts searching 
from the left, configuration (1, 14); then, it will launch all configurations until reach-
ing the last configuration. On the other hand, if FlexSched starts searching from the 
right, configuration (7, 2), then it will stop searching after checking that the next 
configuration, (6, 4), has a WSTER value below 1 (0.69).

We have conducted an experiment to show that the configuration obtained with 
this heuristic is optimal or near-optimal in all cases. First, we have obtained the 
optimal configurations for all pairings using the brute-force method introduced in 
Sect.  5.3. Then, performance results for these optimal configurations have been 
compared with the performance results of the configurations selected by FlexSched. 
The average relative difference is below 1% , that is, FlexSched can find most of time 
the best, or close to the best, configuration. The highest differences are obtained 
for co-execution configurations with low performance. For example, the maximum 
error reaches 6% when RCONV and RED are co-located. Both kernels are memory 
bound and the best co-execution configuration obtains a speedup of only 1.0 w.r.t. 
sequential execution while FlexSched finds a configuration that reaches 0.94.

Fig. 7   WS
TER

 values taken for the CCS of PF/SPMV. All values in the left to right direction are higher 
that one



63

1 3

FlexSched: Efficient scheduling techniques for concurrent…

5.4.2 � Profiling overhead

During the profiling phase, FlexSched dynamically changes the BSU mapping in 
order to find a co-execution configuration with the highest performance. However, 
the flexibility offered by the online profiling scheme has a temporal cost as it must 
be applied every time a CC must be evaluated. In this section, the overhead of this 
profiling phase is evaluated.

Let Tprof (K1,K2) be the time taken by the profiling phase for a specific kernel pair 
( K1 , K2 ). It depends on the number of configurations that must be evaluated before 
reaching the best one. In addition, the time taken for each configuration requires to 
evict several BSUs and launch new ones. Furthermore, as it was shown in Table 3, 
the eviction time is different for each kernel. Consequently, a precise evaluation of 
the profiling overhead requires to evaluate all possible kernel pairs.

Since this profiling phase is employed to find a good co-execution configuration 
that improves the kernels sequential execution, the overhead can be computed by 
comparing Tprof (K1,K2) with the sequential execution of kernels, computing the 
same number of tasks per kernel as those executed during profiling. That is, the pro-
filing overhead Oprof (K1,K2) is given by

where Ts(Ki ∣ taski) is the time taken by kernel Ki to execute taski tasks sequentially, 
and task1 and task2 are the number of tasks executed during the profiling phase by 
kernels K1 and K2 , respectively.

Left side in Fig. 8 shows, using a boxplot, the statistical distribution of Oprof  for 
all possible pairs of kernels (78 values have been collected). It can be observed that, 
although some kernel pairs obtain values greater than one, most of them are below 
that value. Thus, in most cases, the time taken during the profiling phase is less than 
the time taken by the sequential execution of a similar number of tasks. In fact, the 

(7)Oprof (K1,K2) =

Tprof (K1,K2)

Ts(K1 ∣ task1) + Ts(K2 ∣ task2)
,

Fig. 8   Left: boxplot of profiling phase overhead for all possible pairs of kernels. Overhead is computed 
with respect to the sequential execution of the same number of tasks. Right: average speedups of the total 
execution time using FlexSched with respect to HyperQ, by first launching each of the 13 kernels
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average and the median values for Oprof  are 0.913 and 0.926, respectively. An impor-
tant conclusion that can be extracted from this experiment is that, during the profil-
ing phase, despite the partial BSUs eviction and launch operations, the overhead of 
these operations is hidden thanks to the concurrent execution of others BSUs, which 
results in a execution time that is typically shorter than the equivalent computation 
performed by the sequential execution of kernels.

5.4.3 � Concurrent execution of applications

In the next experiment we compare FlexSched with the native hardware schedul-
ing mechanism provided by Nvidia (HyperQ). As we are interested in analyzing the 
behavior of our scheduler in a real scenario, the experiments execute the 9 applica-
tions (13 kernels) indicated in Table 2. Notice that other works, as [8, 9], only run 
two kernels. We also assume all applications are ready to run (all required input data 
have been transferred from host to device) before scheduling starts.

In this experiment FlexSched begins by selecting one of the 13 kernels, then it 
examines its category as indicated in Table 2, and selects randomly a partner among 
the kernels in the other categories. Next, during the profiling phase, it looks for a 
good co-execution configuration as explained in Sect. 5.4.2. When either of the two 
kernels ends, a new kernel that belongs to another category is selected, if available. 
Otherwise, a kernel from the same category is chosen. Any new kernel schedule 
involves a profiling phase to look for a good configuration. This process continues 
until all applications are finished. The selection of co-executing kernels is random, 
therefore we run the experiment 1000 times to perform a statistical analysis of the 
scheduler behavior. Furthermore, we repeat this experiment using each of the 13 
kernels as the first kernel to account for differences.

The same experiment has been executed using HyperQ, a feature in modern GPUs 
since Kepler architecture, where several hardware-managed queues can schedule 
kernel commands from different streams. Thus, each application is launched at the 
same time in a different stream. In order to make a fair comparison, each experiment 
is run 1000 times again, and the streams are launched in the same order in which 
the applications were executed in the corresponding experiment with FlexSched. For 
each run, we have computed the speedup of the total execution time using FlexSched 
with respect to HyperQ. Right side in Fig. 8 shows the average of these values when 
using each kernel as the first kernel, and a horizontal line is drawn to indicate the 
total average. The heuristic in FlexSched obtains different speedups depending on 
the first kernel as different co-execution pairs are chosen, but it exploits the concur-
rent execution capabilities of the GPU much better than HyperQ, achieving an aver-
age speedup of 1.224. HyperQ always obtains worst performance, since it can only 
overlap the execution of a new kernel when the previous one is finishing.

5.5 � FlexSched latency‑oriented scheduling

In a data processing center, applications can have different requirements; for exam-
ple, there can be, at the same time, a batch of throughput-oriented applications 
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together with latency-sensitive (LS) applications which must be executed within a 
maximum response time. A naive strategy to schedule one of these applications is to 
evict all the currently running kernels and then launch the LS application. However, 
this approach will waste GPU resources that could be used to co-execute other ker-
nels while the LS application temporal restrictions are fulfilled.

FlexSched can be extended to support co-execution of LS applications with a 
batch of throughput-oriented applications. Different from [9], that can only impose 
restrictions regarding the number of CTAs assigned to LS applications, we can 
employ a more useful temporal constraint based on the minimum value of TER 
allowed. Thus, when an LS application is co-executed with other kernels, FlexSched 
looks, during the profiling phase, for configurations that ensure this value of TER . 
More specifically, FlexSched begins by selecting the configuration in CCS which 
assigns more BSUs to the LS application. Then, it computes its TER value and, if 
it is greater than the minimum allowed, the next configuration in CCS is selected. 
When the task rate restriction is not fulfilled, the previous configuration is restored 
and the profiling phase finishes.

The experiment to test the behavior of FlexSched with LS applications consists in 
executing concurrently a kernel with temporal constraints with a batch kernel. We 
define several slowdown factors of the concurrent TER with respect to the sequential 
TER of that application when running alone. These factors vary from 0.5 to 0.1, in 
steps of 0.1. For instance, a slowdown factor of 0.5 means that the minimum allowed 
value of TER of the LS application must be at least half of value of TER when run-
ning alone. Furthermore, we have selected CEDD as the LS application, and we 
have executed it concurrently with other kernels. In case, the other kernels finish 
before the LS application, they are launched again. Table 4 shows the results when 
CEDD is executed concurrently with several memory-bound or compute-bound 
kernels. For each slowdown factor, we record the percentage of CTAs that belong 
to the other kernel that can be co-executed with the CEDD kernel while fulfilling 
the LS performance requirements. Thus, when MM is run concurrently with CEDD 
imposing a maximum slowdown factor of 0.5, the 31% of CTAs running on the 
GPU belong to MM. Average values for CTAs percentage are also shown for each 
slowdown factor. As expected, when the slowdown factor decreases, the number of 
the other kernel CTAs that can be co-executed with CEDD decreases since more 

Table 4   Percentage of CTAs 
per SM used by non-latency 
sensitive kernels with respect 
to the total available CTAs 
for concurrent execution with 
CEDD kernel

Slowdown factor

0.5 0.4 0.3 0.2 0.1

Kernel MM 31 23 13 11 1
VA 28 21 12 7 1
BS 18 12 7 1 1
RED 37 28 23 12 1
PF 40 33 22 12 1
HST256 33 22 18 12 1
Average 31 23 16 9 1
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resources must be assigned to the LS application. However, even for small slow-
down values, our scheduler is able to assign resources to the other kernel. In con-
clusion, FlexSched can be used to schedule applications that must meet strict QoS 
requirements and, in addition, launch other kernels to achieve high use of resources.

6 � Related work

Modern GPUs, starting with NVIDIA Fermi devices, have hardware support for 
concurrent kernel execution. This hardware support allows the use of software 
queues, called streams in CUDA terminology, to launch independent kernels that 
could be concurrently executed on the GPU. However, there is no software-level 
mechanism to select how kernel CTAs are distributed on the GPU. In fact, if a ker-
nel requires to execute more CTAs than the maximum number of persistent thread 
blocks, it cannot run concurrently with other kernel except when it is finishing and 
resources become available (leftover policy). Thus, to take a real advantage, con-
current execution using a software approach typically requires to modify the PTX 
source code. Other authors have proposed CKE hardware-based approaches employ-
ing a simulator, typically GPUSim [28], to add hardware mechanisms to perform 
specific CTA allocation mappings and to support co-located kernel scheduling. As 
we are presenting a software approach, we will focus on previous works developing 
software techniques. However, we also show the most relevant papers that propose 
hardware modifications.

6.1 � Software approaches for kernel co‑execution

Many researches have proposed run-time support to take advantage of CKE for 
improving the GPU hardware utilization and to develop different co-scheduling 
polices. Thus, an early work, [5], proposed to transform kernels into elastics ones. 
This way, the number of CTAs required by the original kernel is reduced and 
kept below the maximum number of resident CTAs per SM. Consequently, GPU 
resources could be made available for CTAs of other elastic kernels and kernels 
could be spatially co-executed. One important problem of this technique is it cannot 
be applied to kernels using shared memory. In addition, several CTA assignation 
policies were defined but all of them are static and based on models that only takes 
into account the use of GPU resources extracted during kernel compilation instead 
of information obtained from kernel co-execution. Consequently, the real achieved 
performance could be low. Other approach, [3, 17] proposed a solution to improve 
time-sharing execution by slicing kernels. Each slice computes a small number of 
blocks and, this way, it can co-execute with a slice of other kernel. The main prob-
lem of this approach is that large kernels can lead to severe launch overhead as ker-
nels must be divided into many slices.

The use of co-scheduling has been also explored when priority aware policies 
are implemented. Thus, in [7], they propose the co-execution of applications kernels 
taking into account priorities. Since this work does not implement kernel preemption 
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techniques, the scheduler only can schedule a higher priority kernel when a lower 
one has finished. Thus, this scheme can have slow response time when long kernels 
are executing.

Other authors have proposed the building of macrokernels to execute kernels con-
currently [6]. This macrokernel combines the code of two kernels and requires the 
utilization of additional memory arrays that identify the schedule pattern to orches-
trate kernel execution and the index for the identification of CTAs and threads. 
Authors also employ an heuristic to establish the best order to execute a set of ker-
nels. This heuristic needs to know the execution time of kernels with exclusive GPU 
access and co-executes different number CTA kernels with dummy CTAs. Thus, the 
proposed scheme of kernels combination is not flexible and it cannot be applied on-
the-fly because the profiling needed is very costly.

Another work [8], has used SM-Centric kernel code transformation so that two 
kernels can be co-scheduled on GPU. Those kernels are allocated in different SMs 
using a filling-retreating scheme. Nevertheless, the best SM partition is found during 
an off-line stage which consists of two phases where many co-execution combina-
tions must be tried. In addition, the method can evict CTAs of co-running kernels 
but it does not implement any method to re-start evicted CTAs. Other paper [15], 
focuses on the development of an efficient preemption mechanism. Thus, apply-
ing spatial preemption, kernel co-location can take place. However, the developed 
scheduler only considers the execution of two kernels with different priorities. In 
[9], physical SM are conceptually divided into small capacity slices where kernel 
CTAs are executed. Slices are further grouped in a software entity called CapSM. 
Thus, a CapSM can group CTAs running on different SMs. The proposed sched-
uler is based on resource reservation alone, that is, the number of CTAs a kernel 
will launch. Furthermore, co-execution kernel interference is no taken into account, 
which hampers the development of precise dynamic scheduling policies based on 
either performance or QoS. In addition, due to the way CapSM are organized (CTAs 
of a CapSM could be located in different SMs) a precise co-executing model cannot 
be developed.

Other recent work, [16], implements QoS policy, without using a preemp-
tion mechanism, by developing a model to predict the performance degradation of 
latency sensitive applications on accelerators due to application co-location. The 
model requires exhaustive off-line profiling which restricts the utilization of the 
model in real situations.

6.2 � Hardware approaches for kernel co‑execution

One of the earliest works proposing hardware modifications to support CKE com-
pares spatial multitasking, that is, kernel co-location, with cooperative multitask-
ing, that is, temporal multitasking, and shows the advantages of the former one [29]. 
Later, [19] proposes an intra-SM CTA allocation policy for CKE. This work focus 
on reducing the resource fragmentation when CTAs of different kernels are allo-
cated in a SM and also proposes a resource partitioning method that maximizes the 
throughput. However, it requires an off-line phase to take IPC values for each kernel 
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varying the number of CTAs per SM, which can take a long number of cycles. In 
order to save time, they propose to carry out these measurements with several ker-
nels executing concurrently. In [18], a similar CTA allocation strategy is proposed 
but preemption is added. This way a new arriving kernel can be allocated by pre-
viously evicting CTAs belonging to the running kernel. Thanks to the preemption 
mechanism, the paper implements strategies for improving overall throughput while 
being fair to co-executing kernels. In [20], a productive mechanism to establish the 
best CTA mapping for two concurrent kernels is proposed. In order to explore in 
a fast way all possible configurations, it proposes a heuristic where different CTA 
mappings are assigned to different groups of SMs. Analyzing IPC values of SMs, 
a iterative process gradually finds the best co-location configuration. To reduce the 
overhead produced by the process of finding the best solution, in [22] a trained pre-
dictor of slowdown for co-located kernels is proposed. The predictor collects sta-
tistics of hardware events of two co-running kernels and estimates their slowdown. 
Also, other works [21, 30], have focused on the memory subsystem to increase the 
performance of co-located kernels. The former tries to avoid starvation of compute-
intensive applications when they run together with memory-intensive ones. They 
observed that, in this configuration, the latency of global memory accesses of com-
pute-intensive kernels grows as their memory requests are queued behind many pre-
vious requests emitted by memory-intensive kernels. Then, they develop methods to 
rein the memory accesses for memory-intensive kernels. The latter work increases 
system throughput and fairness using a metric that takes into account both DRAM 
bandwidth and cache miss rates. Finally, a recent work [31] employs an inter-SM 
(also called simultaneous multithreading) CTA mapping for kernel co-execution. 
The paper shows a method to classify kernels (memory bound or compute bound) 
while kernels are co-running using GPU counters for both the number of memory 
accesses and DRAM row buffer hits. In addition, an estimation of single kernel per-
formance can be carried out which permits evaluating co-execution performance 
with respect to sequential execution.

7 � Conclusion

In this work, we have presented FlexSched, a software scheduler for GPU applica-
tions that takes advantage of CKE to implement scheduling policies aimed at maxi-
mizing application execution throughput or meeting QoS application requirements 
such as maximum turnaround time. An important feature of FlexSched, which 
makes it different from software schedulers proposed in previous works, is the use 
of a productive on-line profiling. During profiling, our scheduler employs a heuristic 
that compares different co-execution configurations to find a suitable CTA alloca-
tion scheme that fulfills the scheduling requirements: throughput or QoS. Thanks 
to this flexible schedule scheme, FlexSched can be applied to real situations where 
unknown applications must be immediately executed on a GPU, in contrast with pre-
vious works that need to perform costly off-line profiling.

Extensive experiments have been conducted to test FlexSched using 9 applica-
tions with 13 kernels in total. First, to compare our proposal with other approaches 
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for kernel co-execution, we have tested rtSMK, the FlexSched CTA launcher, and a 
recent slicing method, cCUDA. Results show that our approach obtains a co-exe-
cution speedup of 1.40× while the slicing method just achieves 1.29. Also we have 
conducted an experiment that shows the speedup achieved by kernel co-execution 
strongly depends on the chosen co-execution configuration. Then, we have shown 
that the heuristic employed by the FlexSched scheduler is able to find co-execution 
configurations that achieve the highest performance in most cases. Moreover, the 
average performance loss with respect to the best possible configuration is less 
than 1% . FlexSched has been also compared with the hardware scheduler using 
HyperQ. The experiment, in contrast to other works where only a specific co-exe-
cution configuration was used, simultaneously considers all applications. Thus, dur-
ing the experiment, FlexSched has looked for suitable co-execution configurations 
as new kernels were launched besides executing them. Nevertheless, FlexSched has 
improved kernel throughput by a factor of 1.22 with respect to HyperQ. In addition, 
experiments have been carried out with latency sensitive applications that require 
a strict turnaround time. In this case, FlexSched has calculated how many GPU 
resources could be assigned to batch applications while meeting the requirements 
of latency sensitive application subject to different slowdown factors. Thus, experi-
ments with slowdown factors of 0.5× , 0.6× , 0.7× and 0.8× show that batch kernels 
have still available the 31%, 23%, 16% and 9%, respectively, of GPU resources for 
co-execution. Once again, we have demonstrated that the productive profiling pro-
cess is crucial to leverage the use of resources in the GPU while QoS constrains are 
fulfilled.

In future work, we plan to add GPU hardware support to FlexSched to make 
unnecessary the current kernel transformation, to efficiently implement the requited 
CTA mapping, and to include mechanisms to automatically find the best co-execu-
tion configuration.
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