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Abstract
Predictive maintenance is an invaluable tool to preserve the health of mission criti-
cal assets while minimizing the operational costs of scheduled intervention. Artifi-
cial intelligence techniques have been shown to be effective at treating large volumes 
of data, such as the ones collected by the sensors typically present in equipment. In 
this work, we aim to identify and summarize existing publications in the field of 
predictive maintenance that explore machine learning and deep learning algorithms 
to improve the performance of failure classification and detection. We show a sig-
nificant upward trend in the use of deep learning methods of sensor data collected 
by mission critical assets for early failure detection to assist predictive maintenance 
schedules. We also identify aspects that require further investigation in future works, 
regarding exploration of life support systems for supercomputing assets and stand-
ardization of performance metrics.

Keywords Predictive maintenance · High-performance computing · HPC · Artificial 
intelligence · Deep learning

1 Introduction

As cloud services grew in popularity, a great part of data processing formerly per-
formed on desktops or local servers moved toward large data centers, with thousands 
of interconnected computers. There is a steady growth in the demand for computing 
nodes of high-performance computing (HPC) environments, especially for computer 
modeling and simulations. Such tasks require high computational power to obtain 
results quickly enough to support companies in strategic decision-making.
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In such complex large-scale environments, multiple servers are interconnected by 
network layers and many assets rely on different configuration parameters. It is evi-
dent that failures will happen.

According to [15], data centers and cloud-based computing systems are very 
dynamic in nature, because of the modularity of their components, which allow 
addition, removal and repair of nodes without interrupting the service. To support 
system managers, proactive failure management techniques are paramount to charac-
terize behaviors, detect anomalies and foresee failure dynamics, therefore becoming 
an effective approach to improve the reliability of the system. To preserve the avail-
ability of these complex environments, a promptly available redundant infrastructure 
is required for incidents or emergency situations to prevent the fault and failure of 
these devices. As an immediate consequence, both energy consumption and oper-
ation costs grow, especially when the environment in question is mission critical, 
composed of redundant powered devices available 24 h a day, 7 days a week.

However, for a supercomputing environment with electronic devices, cooling 
equipment such as water pumps, heat exchangers, chillers and energy supply units 
such as power generators, the maintenance management must carry regular perfor-
mance and health checks with a systematically structured maintenance program. It 
is possible to say that the maintenance of a mission critical supercomputing environ-
ment is analogous to the one of an industrial facility, where the continuous produc-
tive cycles requires devices to work reliably and uninterruptedly.

As seen in [29], in industry 4.0, the use of intelligent sensors offers a reliable 
solution for the real-time monitoring of systems, especially when the data collected 
are applied to predictive maintenance. This way, maintenance tasks may be planned 
more efficiently to minimize operation downtime while preserving the health of the 
entire system. In the context of supercomputing, many factors degrade the perfor-
mance and health of a system, from literal wear and tears of parts to operational 
failures from high demand of nodes. Applications may even enter in unwanted states 
because of incorrect configurations. For this reason the large numbers of sensors 
available in a high-performance computing system may be used to monitor and infer 
the health status of both main and support devices. However, manipulating this large 
volume of data in order to identify problems is a difficult task for system managers 
and operators [2].

Thus, predictive maintenance becomes an interesting approach to be applied in 
mission critical environments, in order to predict real working conditions based 
on historical data. This maintenance can identify possible problems early on when 
those are still just potential defects, which allows the team to fix them before grow-
ing in severity and eventually becoming a failure.

Very large amounts of data and logs are obtained with constant monitoring in a 
high-performance supercomputing environment. For this reason, it is not possible 
for a single operator to identify, sort and categorize the entirety of the data to obtain 
any meaningful information. A human operator, overwhelmed by multiple logs from 
thousands of sensors is very likely to carelessly discard data that would otherwise be 
helpful in detecting critical behavior. Events like this may interfere negatively in the 
prediction of the system status.
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Traditional approaches in mission critical environments may rely on alarm thresh-
olds to handle potential failures within a reasonable time frame. However, during 
the lifetime of a process, critical thresholds may be exceeded several times without 
necessarily incurring in failures. Also, some failures may evolve too quickly, leav-
ing virtually no response time available for human operators to fix the problem. The 
ability to capture failures in an initial stage is often preferable, and for this task, 
automated algorithms perform better than humans.

Prediction of failures using collected historical data of system status becomes 
then a valuable approach to plan for resource allocation, system reconfiguration and 
equipment maintenance. This helps minimizing the costs of operation and to maxi-
mize service availability.

In this context, predictive maintenance allied to artificial intelligence techniques 
may offer a solution for the problem of large databases of sensor data. Recent lit-
erature features a wide range of algorithms specialized in detection and prediction 
of patterns over large databases (also known as Big Data). These techniques could 
be successfully applied to infer and forecast behavior of such mission critical super-
computing devices with much greater performance than a human could obtain. 
These results may offer support in decision making to guide corrective actions for 
potential problems, improving system reliability, availability and productivity as 
well.

In this study, we verify the contributions of the research literature and summa-
rize evidences of artificial intelligence applied to predictive maintenance. Our goal 
is to identify the newest techniques in published research works that cover predictive 
maintenance with either machine learning (ML) or deep learning (DL) techniques. 
Through a systematic literature review, this work offers a useful basis on ML and DL 
techniques, their performance, their results and it offers support for future investiga-
tions in the field of predictive maintenance applied to mission critical supercomput-
ing environments. The next sections of this work are organized as following: Sect. 2 
describes the types of maintenance and the advantages of predictive maintenance; 
Sect.  3 briefly describes artificial intelligence and deep learning; Sect.  4 provides 
the planning and execution of the systematic literature review; Sect. 5 presents the 
results and discussions about the findings; finally, Sect. 6, concludes the document, 
stresses the contributions of this paper and lists possible future works.

2  Types of maintenance

According to [33], there are four main methods of industrial maintenance: correc-
tive, preventive, proactive and predictive.

Corrective maintenance (run-to-failure) is applied only in the circumstance of a 
failure. This is the most common and the simplest approach; however, it is the least 
effective, as the costs of intervening and the inactive period of the systems far out-
weigh the costs of preventive measures [32, 36].

Preventive maintenance, on the other hand, is based on a planned course of action 
that considers the time iterations of devices in order to prevent failures. However, 
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this approach is not yet ideal because of unneeded interventions being carried out 
periodically causing inefficient resource utilization and raise operational costs [32].

According to [36], as these two traditional approaches become less capable of 
answering the growing demands of efficiency, reliability and safety, more and more 
intelligent techniques have been receiving attention. As a result of this scenario, pre-
dictive maintenance has become another important method to provide early failure 
detection.

Predictive maintenance is an efficient and promising solution when compared to 
corrective and preventive maintenance, because it allows the evaluation of the health 
status of an equipment from its previously collected field registries with the goal 
of predicting the best moment to intervene in a system before failure happens, thus 
avoiding system failures and non-planned stops.

In a mission critical environment, predictive maintenance allied to periodic moni-
toring of the critical asset can reduce uncertainties and downtime while providing a 
cost reduction for management teams, especially in the following topics:

– Increased useful life of assets by preventing damage.
– Optimized operation process and technical support.
– Increased availability and reliability of the asset.
– Reduced number of corrective and preventive maintenances.

3  Artificial intelligence (AI)

Artificial intelligence goals are focused on the execution of cognitive tasks, espe-
cially those which humans are used to execute well, using paradigms/algorithms 
learned by machines. An AI system is capable of representing, reasoning and learn-
ing through experience [16]. Deep learning is a specific sub-field from the machine 
learning area which handles with stacked learning layers using increasingly signifi-
cant representational data. Therefore, in the processing and correlation of a great 
volume of collected data, this technique enables the learning of complex concepts 
through some simpler ones using many steps, i.e., the human operator can formally 
specify all the desired knowledge that the machine needs, storing a concept hierar-
chy [14].

Deep learning methods are becoming one of the most popular topics in diagno-
sis and prognosis oriented techniques for machinery. Mainly due to their ability for 
allowing the extraction and automated building of useful information from complex 
data pre-processing and knowledge [29].

Succinctly, this process consists in a sequence of representational layers of the 
input data, which are processed by a neural network architecture. The depth of the 
model can be understood as the number of layers that were used. Usually, the output 
of a layer is used as an input for the next one and each iteration of the model will 
help with the adjustment of the parameters for the next iteration, executing feedback 
process [11].

According to [10], DL offers the following advantages for applications of man-
agement and monitoring equipment’s health:
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– Automatic process large amounts of monitoring data;
– Automatic extraction of useful features from heterogeneous and high-dimen-

sional data;
– Learning of functional and temporal relationships between and within the time 

series of conditional monitoring signals;
– Transfer of knowledge between different operational conditions and units.

In the recent literature, a large number of publications have adopted deep learn-
ing techniques focused on the identification and prediction of failures in industrial 
devices and machines. The usage of long short-term memory (LSTM) networks 
stands out for the treatment of time series [7, 35, 37]. These networks have the abil-
ity to reproduce and predict data with precision because of their architecture, and 
they are able to store changes in sequential states, as the ones that usually happen in 
time series [17].

The use of convolution neural networks for regression and classification problems 
in the context of system health prognosis has also intensified. These networks are 
based on convolution operations through the input signal and for that reason they 
are particularly efficient in the detection of features that are present in sub-regions of 
the input signal. Being initially popular in the image pattern recognition area, some 
authors have used these architectures in time series and sensor data as well [40].

Among the advantages of the deep learning techniques in the context of failure 
detection, we highlight the ability to quickly process large amounts of data quickly 
and to build relationships on it so as to predict or classify the input signal behavior 
with precision greater than that of a human operator.

4  Methodology

This study was conducted as a systematic review of the literature based on original 
directives as mentioned by [19, 23]. In this case, the objectives of this review are: to 
identify works that offer solutions developed with artificial intelligence algorithms 
to predict failures in mission critical environments for supercomputing and that use 
deep learning techniques; to identify research methodologies used in equivalent con-
texts and their results, in addition to map the essential requirements to better define 
the machine learning technique to predict multivariate time series applied to com-
puting equipment. The stages of the systematic review of the literature are docu-
mented below.

4.1  Research process

First, the following questions were defined for the survey of relevant publications: 

Q 1 Are there studies on predictive maintenance applied to mission critical supercom-
puting environment using deep learning techniques?
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Q 2 Are there deep learning algorithms to predict failures on supercomputing environ-
ments?

Q 3 Which requirements are essential to better define the correlation technique of the 
collected data?

Q 4 Which requirements are essential to better define the machine learning technique 
to predict failures in time series applied to mission critical environments?

Q 5 Can the proposed techniques be used in a supercomputing environment?

After this definition, we began the process of automatic search through the crea-
tion of filters in our bibliographic research tools using the different combination of 
the descriptors or keywords: high-performance computing, predictive maintenance, 
artificial intelligence and deep learning.

4.2  Inclusion and exclusion criteria

Studies available in journals or conferences between 2010 and 2021 and written in 
English were defined as the inclusion criteria. Publications that did not fit these cat-
egories, without a focus on industrial environments, HPC, cluster, or datacenter, as 
well as, reviews, bibliographies, editorials, and reports, were not considered in this 
survey.

The quality evaluation for the inclusion of the works was also based on the fol-
lowing questions: 

Q 1 Was the deep learning technique proposed for correlating the collected data tested 
in a high-performance computing environment, clusters or data centers?

Q 2 Was the study evaluation/method presented?
Q 3 Were the form and the frequency of the data presented? Are they available on the 

same time basis?
Q 4 Are the collected data labeled with alarm/failure events?
Q 5 Was the deep learning technique used during the process of training of the neural 

network?
Q 6 Are the conclusions of the study made clear through the use of statistical metrics?

5  Results and discussion

The research was carried out on 2020 July, seventh, and reevaluated in 2021 April, 
fifth using the descriptors defined in Sect. 4.1 and applying the criteria for inclusion, 
exclusion, and quality, defined in Sect 4.2. At the end of the search, 32 papers were 
selected because of their proximity to the context of the questions that guide this 
review.

Figure 1 presents the distribution of publications by database; of those, 47% (15 
papers) were published in IEEE Xplore, 22% (seven papers) in Science Direct and 
16% (four papers) in Springer, the remaining 15% (five papers) were distributed as 
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two papers from ACM, and 1 paper from each of the respective publishers Research 
Gate, AA AI and Proceedings of Science.

Figure 2 describes the period when the papers were published between 2011 and 
2020. Notice how there is a growing interest in the field of predictive maintenance 
with artificial intelligence from 2017, the average number of publications between 
2011 and 2016 was one and one tenth, and between 2017 and 2019 it rose to eight.

According to [5], the growing demands for data generation and storage in indus-
trial equipment and the recent advances in machine learning algorithms seem to cor-
relate with the number of publications in this field.

In Fig. 3, we present the number of publications and their distribution by con-
ference from multiple fields, such as reliability engineering, intelligent systems, 
Big Data, artificial intelligence, computer networks, information technology, 
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high-performance computing, cloud computing, parallel computing, software engi-
neering, electronics, electrical engineering, distributed computing and automation.

Figure 4 presents the number of publications by specialized journal with a focus 
on Transactions on Industrial Informatics and Reliability Engineering & System 
Safety, both with two publications. The former is held by IEEE directed toward 
industrial automation, and the latter is published by Elsevier in association with the 
European Safety and Reliability Association and the Safety Engineering and Risk 
Analysis Division, directed toward the development and application of methods for 
increased safety and reliability of complex technological systems.

Thus, it is possible to observe the growing interest in artificial intelligence meth-
ods applied to failure prediction in critical equipment where uninterrupted availabil-
ity is required.

In the study carried out in [18], a two-stage method for failure prediction was 
executed in a semiconductor plant. The authors used a common log based data col-
lection. A backpropagation neural network was then trained on the data. In the fol-
lowing step, the authors employed a genetic algorithm (GA) in circumstances where 
backpropagation was unable to escape from local minima. The authors showed that 
the evolutive approach performs better than traditional backpropagation techniques 
at finding global minimum zones.

Genetic algorithm is used in [25] as well. In this work, a neural network archi-
tecture is developed with hyper-parameters optimized with the help of a genetic 
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algorithm aiming at a data regression for an aircraft rotor dataset. The authors 
report two main contributions from this approach in the context of predictive 
maintenance: the developed model helps the migration from current condition-
based preventive maintenance to predictive maintenance; And the overall accu-
racy of the GA optimized network achieved a value of 95%.

A method for predictive maintenance using multiple classifiers is adopted in 
[33] and tested in a benchmark dataset of a semiconductor plant. The technique 
was able to handle multidimensional data for multiple prediction horizons. The 
algorithm was tested together with two popular methods in the literature, support 
vector machines (SVM) and k-nearest neighbors (kNN). Both methods provided 
an accuracy of approximately 98.5%, but the authors suggest that even better 
results could be obtained with the use of relevance vector machines to treat the 
high dimensionality of the used data.

The studies presented in [21] and [39] used recurrent networks based on 
low short-term memory (LSTM) to train data and improve the performance of 
predictions.

Study [21] proposed a compromise solution between model interpretativity 
and prediction of the useful life of a machine component using variational Bayes-
ian inferences. The technique was tested against the turbofan dataset of aircraft 
rotors. The result achieved a superior performance to traditional machine learn-
ing approaches, especially when the Bayesian inferences were applied together 
with an LSTM network, achieving an improvement of 37.12% in error scores 
when compared to random forest. This method also achieved reasonable degrees 
of interpretativity, which allowed for empirical tests of the model, the authors 
observe that dropout models offered no particular advantage when used with this 
approach, and future investigations can be carried out on how to benefit from this 
type of regularization in this circumstance.
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To improve the precision and the performance of its prediction model, study 
[39] proposed a technique for feature extraction for time-lagged correlations. This 
approach has been shown to be capable of reducing the training time of a network 
while preserving the precision of predicted values. The model was tested against 
three machine learning models (rule-based, d-LSTM and dp-LSTM); however, the 
best results were achieved by the vanilla LSTM network with an average recall of 
85.6% and precision of 78%.

A deep learning 2D convolutional-LSTM (ConvLSTM) autoencoder model was 
proposed by [9] to predict the velocity of a smart manufacturing machine in an 
intelligent manufactory process. Sensor data were gathered from an industrial plant 
of metal packing products. The 2D ConvLSTM autoencoder model surpassed the 
benchmark statistic models (persistence model and autoregressive integrated mov-
ing average), as well as the models RSNet, deep LSTM encoder–decoder and CNN-
LSTM encoder–decoder. When compared to a CNN-LSTM model, it obtained 26% 
better scores on average for the Root-Mean-Squared-Error(RMSE), Mean-Absolute-
Error(MAE), and Symmetric Mean Absolute Percentage Error(sMAPE) metrics. To 
this end, an input sequence was restructured and univariate projection was applied 
with a multistep time series. The use of the autoencoder technique for dimensional-
ity reduction also improved the time required to train the model in approximately 
23% compared to the hybrid CNN-LSTM.

A comparative study on the performance of ten machine leaning algorithms was 
carried out by [26] with the objective of predicting the remaining useful life (RUL) 
of an aircraft motor from the turbofan datasets using a supervised learning model. 
Each dataset contains data from 100 to 250 motors with 21 different sensors each. 
The results were compared using the RMSE between the actual and the predicted 
RUL values. The random forest (RF) algorithm presented the best results for aver-
age RMSE of the datasets (29.73) capturing the variance from many input variables 
and at the same time allowing a great number of observations to join the prediction. 
The resulting algorithms that closely followed the lead of RF were gradient boost 
(32.97), ada boost (33.18) and decision tree (34.17).

Study [30], used machine learning-based models on graphics processing units 
(GPU) input data for software error prediction in a large-scale high-performance 
computing center. The large datasets consisted of relationships between power, tem-
perature, type of workload, and single bit error (SBE) distributions. A two-stage pre-
diction method was provided, in which in the first stage the samples are checked to 
identify in which nodes the SBE occur. The samples are passed to a second stage in 
the positive case; this way the size of the actual failure data is reduced. Compared 
against this approach, many machine learning models were tested, including logis-
tic regression (LR), gradient boost decision tree (GBDT), support vector machines 
(SVM) and a neural network (NN). The LR technique required the least amount 
of time to train over the data (4.81 s) compared to GBDT (49.53 s); however, F1 
score of GBDT (0.81) was superior to LR’s (0.67), achieving a better prediction 
performance.

The DESH framework [7] presents a solution for failure prediction in com-
puting nodes on a supercomputing environment. Based on LSTM networks and 
using system logs as data, the technique is implemented in three stages: first, the 
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authors perform process of the log texts to provide work patterns for recogni-
tion, and then the word strings are then grouped and sent to an LSTM classifier 
network. The next stage consists in predicting the events based on the failure pat-
terns obtained from word strings; here, field annotations are added to the pre-
processed word strings and sent to a new LSTM. Finally, the data are validated in 
a subset of failure strings reserved for this stage. The results provide accuracy of 
83% and recall of 85% up to 3 min of lead time.

The study carried out by [28] presents the development of classification 
schemes for data mining to predict compute node failures in a high-performance 
computing system by collecting and analyzing system logs. The methodology 
combines system usage and system failure logs of a computing node. Later, a 
predictive model is applied to predict whether the failure will occur within 1 hour 
from the current time in the HPC system. Finally, the performance of a binary 
classification is evaluated using evolution metrics. The experiments were tested 
against 11 classification methods, and among them random forests presented the 
best metrics: 73.9% precision, 81.3% recall, 77.4% F-measure and 0.95 ROC area.

The study in [29] provided a framework for predictive maintenance based on 
sensor data. The authors carry out a system prognosis by using a recurrent neural 
network oriented to the needs of the system operator. For the probability distribu-
tion of the remaining useful life, the first LSTM layer classifies the data intervals. 
The authors argue that this method offers advantages over other approaches that 
exclusively perform regression, as these techniques degrade with longer predic-
tion horizons. The confusion matrix for these classification metrics is presented 
in the study and average accuracy by label is over 90%.

Convolutional networks are applied in [22] to obtain system prognosis and 
health management of systems using a data oriented approach. The network 
architecture is composed of 4 convolutional layers to identify data features. A 
fifth convolutional layer is applied with a single filter to combine the feature map. 
Finally, the output of these layers is forwarded to a single multilayer perceptron 
for the final result. The C-MAPSS dataset is used to compute the benchmark for 
the proposed technique, which achieved average RMSE of 12.61 and standard 
deviation of 0.19.

The concept of convolutional networks for failure diagnosis in a pump system 
is also carried out in work [40]. A previous classification of equipment work pro-
files is carried out with sensor data and dynamometers. The dataset consists of real 
data obtained from Chinese oil wells provided especially to this research. Next, the 
data are tested against two CNN architectures developed by the authors. The first 
one uses 2D convolutions treating the sensor data as images, and the second con-
siders 1D convolutions over time series data. The results are tested against KNN 
and random forest. The metrics for performance evaluation are precision, recall and 
F1-score. The authors point to the superior performance of the 2D Convolution net-
work, in relation to the other methods.

A model based on automatized logs for IT systems is adopted in [38]. To group 
and parse the logs, traditional text mining techniques are used (topic modeling, bag 
of words). Next, clustering and tokenization (log clustering tree) are carried out in 
the pattern recognition step. The final step of failure prediction is carried out by an 
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LSTM network where each input string generated a failure probability for the next 
70 min. The model obtained recall of 90% against the benchmark with test datasets.

The model proposed by [13] offers a study of different machine learning models 
such as multilayer perceptron, XGBoost, KNN and random forest, to process data 
belonging to Storage Resource Managers from the Italian Research Center (IFNF-
CNAF). The authors point to a few challenges during the study; for example, con-
stant and frequent updates of this large database, data organization is also severely 
lacking. Feature filtering was performed to predict system health with a frequency of 
15 min. The authors do not specify the performance metrics for each method.

The experiment developed in [1] presents a model based on LSTM networks, 
capable of verifying the state of each component in a high data processing machine. 
This verification evaluates each component separately in order to obtain an individ-
ual alert for any component requiring a replacement. The model was trained and 
tested on an open-source engine dataset provided by NASA. Accuracy of 85% was 
obtained with the model, thus confirming the expectations of recurrent networks for 
this use case.

Work [24] points to how features that represent failures tend to weaken with per-
turbations from noisy data. For this reason, the authors observed the need to identify 
and filter these external dynamic properties affecting the data. To this end, a neural 
model based on sensor signal processing is employed together with a dynamic sys-
tem. The neural model consisted in a set of autoencoders organized in a process-
ing stack combined with a backpropagation neural network. With this approach, the 
authors obtained the rate at which the equipment health degraded. The best accuracy 
performance was 98.1% with a set of 5 autoencoders.

With the goal of solving imbalanced classification during the training process 
caused by large amounts of data generated by machinery and overcoming challenges 
such as reducing unwanted noise from oversampling, [41] proposes a new algorithm 
for failure prediction using generative adversarial networks (GAN). The method was 
developed in three modules; the first one used infoGAN to generate synthetic sam-
ples for failure and non-failure status, the second module trained a network for infer-
ence by sharing weights of the first layer with the GAN discriminator, and lastly the 
third module trained a second GAN to reinforce the consistency of the first module 
and the data labels generated by inference. This algorithm was experimented with 
industrial datasets used as benchmarks for predictive maintenance: 1 dataset belong-
ing to an air pressure system for truck braking systems and 4 TURBOFAN datasets 
NASA’s CMAPSS aircraft propellers. The GAN for failure prediction was compared 
against 4 classifiers, deep neural network, support vector machine, random forest 
and Decision Tree in 4 different sampling configurations (undersampling, weighted 
loss, SMOTE oversampling and ADASYN oversampling). The GAN for failure pre-
diction obtained better results than all the machine learning techniques tested against 
for the AUC (area under curve) and F1 score metrics.

Few studies in the field of computer vision aimed at predictive maintenance pro-
vide good accuracy results when the data are evaluated as images, as done in [4]. In 
this experiment, it was possible to build a model based on convolutional networks 
capable of analyzing the axis of rotating machines through the rotor orbit shape. 
This model was capable of classifying the state of rotors and predicting their useful 
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life. An accuracy of 99.9% was obtained, with early error detection to minimize 
maintenance costs and predicting accidents.

Mission critical supercomputing environments are directly related to an infra-
structure of uninterruptedly powered equipment to reduce the risks of service una-
vailability and by consequence to reduce the operation costs [10]. Papers published 
recently handle such environments, aiming to devise solutions for automated pattern 
detection and failure prediction to support decision-making and an effective system 
management [23].

Anomaly detection in high-performance computers brings significative advan-
tages for system administrators, mainly because these systems tend to be very large, 
with many integrated components, and prone to unwanted behaviors, failure condi-
tions and faults. Thus, the use of failure detection mechanisms as early as possible 
reduces the costs of corrective measures and service interruptions of HPC systems 
[12]. For system administrators, system logs help understanding the state of the sys-
tem and significant events making it easier to debug the causes. For this reason, sys-
tem logs are excellent sources of data to perform online monitoring and anomaly 
detection [8].

The work presented in [2] developed a solution for anomaly detection in a super-
computer using semi-supervised learning. Thus, by using machine learning tech-
niques with an autoencoder, the algorithm is able to identify the normal behavior 
of computing nodes, which minimizes the training reconstruction error for anomaly 
detection. After the first training stage, the autoencoder receives new unseen data to 
evaluate the error of its inference phase. In further experiments, historical data from 
a real supercomputer was tested. The results show that this approach obtained an 
anomaly detection rate between 88 and 96%. A similar autoencoder approach was 
applied in a supercomputing production environment using error injection tests and 
frequency configuration, by [3]. The authors obtained detection rates between 87 
and 98%.

To predict failures in large-scale storage systems in data center environments, 
[42] used a fully connected neural network with backpropagation, configured with 
three layers with 19, 30 and 1 neurons, respectively. This solution obtained detec-
tion rate of up to 95% against standard SMART tools for self-monitoring and fail-
ure analysis, typically these storage management tools are only able to obtain rates 
between 50 and 60%.

A case study in Google clusters was developed by [6] to evaluate the use of neu-
ral networks for the failure prediction of jobs. The authors used a recurrent neural 
network architecture to process the data by job. The experiments show a true posi-
tive rate of 84% and a false positive rate of 20%. Estimations suggest that between 
6% and 10% of computing resources were preserved with the proposed approach.

A machine learning framework for divergence diagnosis of HPC environments 
was presented in [34]. Resource utilization data are processed by random forest clas-
sifiers and evaluated according to the F1-score metric in two different environments, 
obtaining the minimum value of 0.97. A similar method for performance anomaly 
and variation detection in apps is used in [20]. Descriptive statistics and supervised 
machine learning methods are used to create a prediction model from computing 
nodes monitored data. The random forest classifier is applied over the data with two 
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classes: normal and critical. Results for a 30 min window frame show a precision 
of 98% and a recall of 91%. However, during the validation process in a production 
environment this method presented a high number of false positives, achieving up to 
79% failure detection rates. The authors do not recommend relying on this method 
only for anomaly detection because of the low precision scores, and for this reason 
additional diagnosis are required.

The DeepLog framework developed by [8] uses LSTM networks for online 
anomaly detection in system logs. The training process uses only log entries consid-
ered normal by the system, and new entries may be streamed using a mechanism of 
user feedback, especially if the detection is a false positive, that is, if a normal log 
entry is incorrectly classified as an anomaly. This way, DeepLog uses this reinforced 
method to dynamically adjust weights online, and adapt to new execution patterns. 
The method presented results of 99% precision for anomaly detection.

In the work published by [27], the authors carry out experiments for failure pre-
diction of a virtualized hardware stack for cloud computing. Data from a series of 
system components were collected for a total of five years between 2001 and 2006. 
The failure events labeled in the final time-series presented five possible origins, 
software error, hardware error, human mistake, network error and undefined. The 
data were submitted tested against a set of machine learning algorithms, random for-
ests, linear discriminant analysis, support vector machine, K-nearest-neighbor, and 
classification and regression trees. Conclusive results points toward support vector 
machines as being the superior alternative in this case, with the highest accuracy of 
91% and the lowest RMSE of 0.1718.

The technique presented in [31] applies deep learning methods for failure diag-
nosis and classification over two publicly available databases of industrial rotating 
machinery. The method, built upon convolution neural networks, was able to clas-
sify the rotating patterns of the equipment and advise operators when maintenance 
was needed. Sensor data from each equipment were converted to the frequency 
domain with the fast Fourier transform technique, and inputted to the deep learning 
model. When tested against the public datasets, MaFaulDa and CWRU, the model 
presented accuracy of 99.58% and 97.3%, respectively.

Predictive maintenance allows minimizing the maintenance costs of equipment, 
maximizes operation time and preserves system integrity by reducing the risks of 
failure, thus allowing preventive measures to avoid asset loss.

Considering the results of machine learning models for event prediction in time 
series and the continuous monitoring of mission critical equipment, the use of neural 
networks and deep learning provides a promising path for this application domain. 
[10, 22]. However, for the successful application of these models it is important to 
overcome the implementation challenges in these environments that arise from the 
set of equipment involved in the system. These challenges also require alignment 
among stakeholders to sponsor the collaboration for the development of adequate 
business models in favor of all involved partners [23].

Error reports and sensor data collected by field teams or tools are frequently 
enough to predict the behavior of mission critical equipment. This way, the auto-
mation and standardization of the data collection as a preparatory stage for data 
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treatment and quality becomes important to potentialize deep learning techniques, 
since these methods have shown promising results in prognosis and health manage-
ment of industrial equipment [5, 10, 23].

Table  1 presents the publications that employed machine learning techniques 
with the goal of predictive maintenance of equipment.

Finally, we have observed a growing interest in the previous years of research 
works aimed toward predictive maintenance in many fields using artificial intelli-
gence, in special with machine learning and deep learning methods. It is possible to 
verify that LSTM, CNN and hybrid (CNN+LSTM) architectures have been largely 
applied because of their positive results in the prediction of time series. The increase 
in computing power of commodity hardware is to be considered one of the reasons 
behind this growth, since robust AI techniques historically require large datasets 
(Big Data) and computing power to be executed effectively.

6  Final remarks

This work shows an in depth literature review on deep learning techniques allied 
to failure prediction, with promising results performing better than previous human 
based solutions. We have also identified the high popularity of convolutional net-
works and recurrent networks in the context of failure prediction and classification.

Moreover, in the context of predictive maintenance, we have observed a grow-
ing trend in the use of machine learning and deep learning techniques in industrial 
assets. The introduction of Industry 4.0 and the development of modern equipment 
with sensors provide a viable way of integrating data storage and processing with 
computing clusters. For this reason, it becomes feasible to project and validate a pre-
dictive maintenance strategy for mission critical HPC systems.

The research questions described in the planning protocol of this paper allowed 
the mapping of the main publications in the field of predictive maintenance with 
artificial intelligence in supercomputing systems. We have verified that this is still 
an environment with open problems and very few publications, and many of them 
solely focus on log data generated by these computing systems to detect localized 
problems such as node failure, for example. To better devise an efficient predic-
tive maintenance program, besides log data, it is important to consider sensor data 
from support equipment (such as power and cooling devices) as well. The inclu-
sion of historical data of preventive and corrective maintenance is another valuable 
piece of information that once integrated in a sensor data processing pipeline, could 
help diagnose early failures; however, none of the papers found in this review fol-
lowed this approach. In addition, we identified a lack of publications addressing the 
remaining useful life of HPC systems, thus characterizing another gap in this field.

Finally, in a mission critical environment there are still aspects that require fur-
ther investigation, especially regarding the accuracy of results. A human opera-
tor supported by an automated anomaly detection system must be aware of pre-
diction and classification parameters such as precision and recall to minimize the 
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misinterpretation of results. This field would benefit from future works that compare 
multiple deep learning techniques with the inclusion of multiple sensors belong-
ing to a same supercomputing environment and the experimentation of newer deep 
learning methods, besides convolutional neural networks and recurrent neural 
networks.
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