
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:13358–13384
https://doi.org/10.1007/s11227-021-03808-2

1 3

Scalable balanced training of conditional generative 
adversarial neural networks on image data

Massimiliano Lupo Pasini1   · Vittorio Gabbi2 · Junqi Yin3 · Simona Perotto4 · 
Nouamane Laanait5

Accepted: 9 April 2021 / Published online: 26 April 2021 
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection 
may apply 2021

Abstract
We propose a distributed approach to train deep convolutional generative adversarial 
neural network (DC-CGANs) models. Our method reduces the imbalance between 
generator and discriminator by partitioning the training data according to data labels, 
and enhances scalability by performing a parallel training where multiple generators 
are concurrently trained, each one of them focusing on a single data label. Perfor-
mance is assessed in terms of inception score, Fréchet inception distance, and image 
quality on MNIST, CIFAR10, CIFAR100, and ImageNet1k datasets, showing a sig-
nificant improvement in comparison to state-of-the-art techniques to training DC-
CGANs. Weak scaling is attained on all the four datasets using up to 1000 processes 
and 2000 NVIDIA V100 GPUs on the OLCF supercomputer Summit.

Keywords  Generative adversarial neural networks · Deep learning · 
Supercomputing · Computer vision

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the US Department of Energy (DOE). The US government retains and the 
publisher, by accepting the article for publication, acknowledges that the US government retains a 
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form 
of this manuscript, or allow others to do so, for US government purposes. DOE will provide public 
access to these results of federally sponsored research in accordance with the DOE Public Access 
Plan (http://​energy.​gov/​downl​oads/​doe-​public-​access-​plan).

 *	 Massimiliano Lupo Pasini 
	 lupopasinim@ornl.gov

1	 Oak Ridge National Laboratory, 1 Bethel Valley Road, Computational Sciences and Engineering 
Division, Bldg. 5700, Rm F119, Mail Stop 6085, P.O. Box 2008, Oak Ridge, TN 37831, USA

2	 Department of Automation and Control Engineering, Milan, MI 20133, Italy
3	 Oak Ridge National Laboratory, 1 Bethel Valley Road, National Center for Computational 

Sciences, Oak Ridge, TN 37831, USA
4	 Department of Mathematics, Milan, MI 20133, Italy
5	 Anthem, Inc., Atlanta, GA 30326, USA

http://orcid.org/0000-0002-4980-6924
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03808-2&domain=pdf
http://energy.gov/downloads/doe-public-access-plan


13359

1 3

Scalable balanced training of conditional generative…

1  Introduction

Generative adversarial neural networks (GANs) [1–4] are deep learning (DL) 
models whereby a dataset is used by an agent, called the generator, to sample 
white noise from a latent space and simulate a data distribution to create new 
(fake) data that resemble the original data it has been trained on. Another agent, 
called the discriminator, has to correctly discern between the original data (pro-
vided by the external environment for training) and the fake data (produced by 
the generator). The generator prevails over the discriminator if the latter does not 
succeed in distinguishing anymore the original from the fake. The discriminator 
prevails over the generator if the fake data created by the generator is categorized 
as fake, and the original data is still categorized as original. An illustration that 
describes a GANs model is shown in Fig.  1. Originally, GANs have been used 
on image data to improve the generalizability of DL models for object recogni-
tion. In particular, the goal was to use GANs for data augmentation to generate 
new data (similar to the original data), and use the augmented dataset to improve 
the accuracy of the object classifier. Since GANs was originally introduced, the 
scope of applications that rely on GANs to overcome computational limitations 
has broadened. For instance, recent applications of GANs are related to video 
synthesis [5] to improve the resolution of videos generated through videocam-
eras, and face image alteration [6] to help national security agencies identify fugi-
tive criminals that undergo mild facial surgeries.

The training of GANs is driven by the values of the cost functions associ-
ated with the agents [7]. The cost functions used to evaluate the performance of 
the discriminator and the generator are related to the number of false positives 
(original images identified by the discriminator as fake) and false negatives (fake 
images identified by the discriminator as original). The task of the discrimina-
tor is relatively simple in that it only has to assign a Boolean value to an image, 
according to whether the image is predicted as original or fake. On the contrary, 
the generator needs to map white noise sampled from the latent space into newly 

Fig. 1   The GAN framework pits two adversaries against each other in a game. Each player is represented 
by a differentiable function controlled by a set of parameters. Typically these functions are implemented 
as deep neural networks. Training examples are randomly sampled from the training set and used as input 
for the first player, the discriminator. The goal of the discriminator is to output the probability that its 
input is real rather than fake, under the assumption that half of the inputs it is ever shown are real and 
half are fake. Image from https://​sthal​les.​github.​io/​intro-​to-​gans/

https://sthalles.github.io/intro-to-gans/


13360	 M. Lupo Pasini et al.

1 3

created images, and the images created must reproduce relevant features that 
belong to each data category represented in the training data.

This imbalance between the difficulty of the computational tasks of discrimina-
tor and generator is natural in GANs and cost functions currently used to measure 
the performance of the generator do not retain information about the disparity in 
computational tasks between discriminator and generator. As a result, the precision 
attained by the discriminator in performing its tasks (saying if an image is fake or 
original) is always higher than the precision with which the generator performs its 
own (create a whole set of fake images from white noise). Recent game theoretic 
results show that the unbalanced training of GANs can cause the generator to cycle 
[8] or converge to a (potentially bad) local optimum [9], which causes the generator 
to get stuck reproducing only one specific data point (this phenomenon is known in 
the DL literature as mode collapse). It is thus important to balance the training of 
GANs models in order to improve the performance of the generator and obtain fake 
images with similar features to the ones contained in the original data, but this task 
is challenging [10–14].

Some recent approaches have tackled the imbalance of the two agents by chang-
ing the numerical optimization used to train the GANs model. [15] Other recent 
approaches have tackled the challenge of imbalance between discriminator and gen-
erator by improving the complexity of the GANs model [16–24]. However, datasets 
with a large number of categories still pose a non-trivial challenge that prevents the 
generator from attaining a good performance in creating new fake images still due to 
a large variability between classes.

In addition, all the existing approaches to train GANs are characterized by a 
limited parallelizability, in that existing parallel techniques for GANs are based on 
data parallelization that distributes large-scale data to multiple replicas of the same 
model via ensemble learning, and do not further enhance the scalability of GANs 
by attempting any model parallelization [11]. Therefore, state-of-the-art GANs 
approaches do not fully leverage high-performance computing (HPC) facilities to 
attain a better performance.

We propose a novel distributed approach to train CGANs through a nonzero-
sum game formulation that uses data categories to address the performance dispar-
ity between discriminator and generator and improve the scalability of the CGANs 
training via model parallelization. We use the labels to split the data and process 
each class independently, using a generator for each class. Our distributed approach 
relies on a factorization of the data distribution where each factor is associated with 
a single data category. The factorization of the probability distribution makes our 
approach differ from standard CGANs, where the joint data probability is never 
decomposed into simpler factors and a single generator is still assigned with the 
task of creating new images that span all the data categories. The data splitting per-
formed according to the labels removes the variability between classes and thus 
corrects the imbalance of standard GANs training. Because of the independence of 
each generator from the others, the generators can be trained concurrently and this 
enhances scalability.



13361

1 3

Scalable balanced training of conditional generative…

2 � Related work

Some approaches presented in the literature address the imbalance of the two agents 
by changing the numerical optimization used to train the GANs model. An example 
is the Competitive Gradient Descent method (CGD) [15], which recasts the GANs 
training as a zero-sum game, whereby the discriminator and the generator compete 
against each other, and the goal is to identify an equilibrium between the agents. 
However, the zero-sum formulation does not reflect well the interaction between 
generator and discriminator during the GANs training, since the loss of one agent 
does not directly translate into the gain of the other agent, as it is indeed assumed 
in a zero-sum game. Other recent approaches have tackled the challenge of imbal-
ance between discriminator and generator by improving the complexity of the GANs 
model [16–24]. Among these approaches, Conditional GANs (CGANs) [25–30] pro-
ceed by expanding the latent space used as input for the generator by adding infor-
mation about the data categories. The role of CGAN models is to reconstruct a joint 
data distribution defined on the expanded latent space that combines the image data 
with the corresponding labels. The inclusion of data labels as an additional latent 
space variable facilitates the generator in discerning relevant features that make an 
image more likely to belong to a data category than to another. However, datasets 
with a large number of categories still pose a non-trivial challenge that prevents the 
generator from attaining a good performance in creating new fake images still due to 
a large variability between classes.

Other approaches presented in the literature aim at improving the scalability 
of the training, such as ensemble learning [11]. Ensemble learning methods com-
bine several machine learning models into one predictive model to decrease vari-
ance, bias, or improve predictions. In the context of GANs, one main advantage 
provided by ensemble learning is data parallelization, which accelerates the pro-
cessing of large data by distributing it across different model replicas. Different 
model replicas exchange the portions of data in a round-robin fashion throughout 
consecutive iterations to ensure that the entire dataset is visited by each model 
replica. Moreover, the updates of the model parameters computed locally are 
exchanged between the model replicas at a tunable frequency to guarantee con-
sistency between different replicas of the model.

3 � Background on conditional generative adversarial neural 
networks

We first define the following input and output spaces, each with an associated 
probability distribution:

–	 Z is a noise space used to seed the generative model. Z = ℝ
dZ , where dZ is a 

hyperparameter. Values � ∈ Z are sampled from a noise distribution p
�
(�) . In 

our experiments p
�
 is a white noise model.



13362	 M. Lupo Pasini et al.

1 3

–	 Y is an embedding space used to condition the generative model on additional 
external information, drawn from the training data. Y = ℝ

dY , where dY is a hyper-
parameter. Using conditional information provided in the training data, we define 
a density model p

�
(�).

–	 X is the data space which represents an image output from the generator or 
input to the discriminator. Values are normalized pixel values: X = [0, 1]W × C , 
where W represents the resolution of the input images, and C is the set of distinct 
color channels in the input images. Using the images in the training data and 
their associated conditional data, we can define a density model pdata(�) of face 
images. This is exactly the density model we wish to replicate with the overall 
model in this paper.

We now define two functions:

–	 G ∶ Z × Y → X is the conditional generative model (or generator), which accepts 
noise data � ∈ Z and produces an image � ∈ X conditional to the external infor-
mation � ∈ Y .

–	 D ∶ X → [0, 1] is the discriminative model (or discriminator), which accepts an 
image � and condition � and predicts the probability under condition � that � 
came from the empirical data distribution rather than from the generative model.

The goal of CGANs is to provide a model that estimates the probability distribution 
pmodel(�,�, �) , parameterized by parameters � that describes the DL model. We then 
refer to the likelihood as the probability that the model assigns to the training data: 
Πm

i=1
pmodel(�i,�, �) , for a dataset containing m training samples �i . Among the differ-

ent types of generative models, GANs is a type of model that works via the principle 
of maximum likelihood. The principle of maximum likelihood aims at choosing the 
parameters � for the DL model that maximize the likelihood of the training data

Using condition information provided in the training data, we define a density 
model p

�
(�) . CGANs use the Bayes theorem to combine the conditional prob-

ability pmodel(�|�) and the density model p
�
(�) to yield the joint model probability 

pmodel(�, �):

While (2) cannot be expressed in closed analytical form, CGANs can be trained 
without needing to explicitly define a density function, because this type of gen-
erative model offers a way to train the model while interacting only indirectly with 
pmodel(�,�, �) , usually by sampling from it.

The two players in the game are represented by two functions. The discriminator is 
defined by a function D that takes � as input and uses �(D) as parameters. The generator 
is defined by a function G that takes � as input and uses �(G) as parameters. Both players 
have cost functions that are defined in terms of both players’ parameters. A consensus 

(1)�
∗ = argmax

�

(pmodel(�,�, �))

(2)pmodel(�,�, �) = pmodel(�,�|�)p�(�).



13363

1 3

Scalable balanced training of conditional generative…

has been reached in the literature about which cost functions fully describe the per-
formance of the discriminator due to the simplicity of the discriminator’s task [1, 31], 
whereas the complexity of the computational task of the generator still keeps different 
options open as to the cost function that better describes the generator’s performance. 
In the zero-sum game formulation, the discriminator minimizes a cross-entropy and the 
generator maximizes the same cross-entropy. The generator’s gradient tends to vanish 
when the discriminator successfully rejects the generator’s samples with high confi-
dence, but vanishing gradients reduce the effectiveness of the updates computed during 
the training. To avoid vanishing gradients, an approach widely used in the literature is 
to transform the GANs training into a nonzero-sum game. In the context of nonzero-
sum games, the generator maximizes the log-probability of the discriminator being 
mistaken instead of having the generator minimize the log-probability of the discrimi-
nator being correct. Following the nonzero sum game formulation, the cost used for the 
discriminator is

The cost function we choose for the generator is

This cost function J(G)(�(D),�(G)) quantitatively describes the ability of the genera-
tor in tricking the discriminator so that the discriminator confuses fake images as 
real. This choice of J(G)(�(D),�(G)) better reflects the goal of the generator as an indi-
vidual agent, with respect to other alternatives that force a strong dependence of 
J(G)(�(D),�(G)) on J(D)(�(D),�(G)) , such as, for instance, in the zero-sum game for-
mulation where J(G)(�(D),�(G)) = −J(D)(�(D),�(G)) . The definition in (4) ignores the 
false positive, because the original images are not a product of the generator (only 
fake images are).

The discriminator wishes to minimize J(D)(�(D),�(G)) and must do so while control-
ling only �(D) . The generator wishes to maximize J(G)(�(D),�(G)) and must do so while 
controlling only �(G) . The solution of this mini-max game is a Nash equilibrium. Here, 
we use the terminology of local differential Nash equilibria [32]. In this context, a Nash 
equilibrium is a tuple (�(D),�(G)) that is a local minimum of J(D) with respect to �(D) 
and a local maximum of J(G) with respect to �(G).

The training process consists of a numerical optimization scheme that iteratively 
updates �(D) and �(G) [11]. On each step, two minibatches are sampled: a minibatch 
of � values from the dataset and a minibatch of � values drawn from the model’s prior 
over latent variables. The standard choice of a numerical optimization algorithm used 
to update �(D) and �(G) is a gradient-based optimization algorithm called Adam [33].

(3)J(D)(�(D),�(G)) = −
1

2
�
�∼pdata

logD(�) −
1

2
�
�
log(1 − D(G(�)))

(4)J(G)(�(D),�(G)) =
1

2
�
�
logD(G(�)).



13364	 M. Lupo Pasini et al.

1 3

4 � Distributed conditional generative adversarial neural networks

Our novel approach aims at implementing a distributed version of CGANs as a 
nonzero-sum game. Figure 2 describes how our approach relates to the other gen-
erative models presented in the literature. Our distributed approach to train CGANs 
relies on the equality

to distribute the computation of each term pmodel(�, �k) by training K distributed 
CGANs, each one per class, and then we combine the results at the end of each train-
ing to yield pmodel(�) . The numerical examples presented in this paper are character-
ized by a one-to-one mapping between �k and the labels in the image dataset. The 
splitting of the total probability performed in (5) is possible only under the assump-
tion that the input data contains labels, which is used to perform the splitting. The 
advantage of our approach consists in the fact that all the K distributed CGANs can 
be trained concurrently and independently of each other, thus exposing the model 
to a higher level of parallelism. If the complexity representation of the objects in 
each category is comparable, the training time for each distributed CGANs model 
is approximately the same, which in turn translates into promising performance in 
terms of weak scalability (the time-to-solution is constant for an increasing number 
of processors used to solve problems of increasing size so that the computational 
workload per processor is unchanged). An illustration that describes the distribution 
of CGANs is provided in Fig. 3.

The parameters � for each distributed CGANs are independent. Therefore, they 
are updated independently using Adam on each separate generator–discriminator 
pair. When the trained model is deployed for production, a random number gen-
erator provides the white noise and the label of the object whose image has to be 
generated. The randomly selected label determines which GANs pair to call, and 

(5)pmodel(�,�) =

K∑

k=1

pmodel(�,�|�k)p�(�k)

Fig. 2   Scheme representing the relationship between the generative models currently developed in the 
deep learning community



13365

1 3

Scalable balanced training of conditional generative…

the white noise is passed to the selected GANs pair to generate a new fake image 
for the specific object category associated with the label. The fact that our approach 
never enforces an exchange of updates across different agent pairs makes it differ 
from ensemble learning, where the different model replicas continuously exchange 
local updates of �(D) and �(G) between each other to guarantee global consistency of 
the parameters. Ensemble learning mainly resorts to parallelization as a means to 
stabilize the training of GANs, and to accelerate the processing of large datasets. 
However, this stable training and faster data processing do not necessarily result in 
faster convergence. In fact, ensemble learning requires each model replica to span 
the entire dataset in a round-robin fashion, and this means that each model replica is 
required to reconstruct the data distribution associated with the entire dataset, mean-
ing that the difficulty of the modeling task has not been addressed. Our distributed 
approach confines each model replica to be trained on data associated with a sin-
gle label, thereby resulting into an accelerated training, because the number of data 
batches processed by each GANs pair is significantly reduced. The partition of the 
data according to the classes facilitates our approach to scale, as confirmed by the 
weak scaling tests presented at the end of numerical section.

Our approach can be changed so that one generator handles multiple classes alto-
gether, and create fake images associated with multiple data classes. This variation 
of our approach would allow the code to run on small clusters (where there are not 
enough resources to instantiate several generators that can work independently). 
However, this would defeat the statistical motivation behind the way we split the 
data. In fact, we remind the reader that our distributed approach aims at reducing 
the variability in the portion of data that is handled by each generator separately. 
In situations like the ones described in this paper, the variability between classes is 
much larger than the variability between data of the same class. When multiple data 

Fig. 3   Illustration of distributed CGANs



13366	 M. Lupo Pasini et al.

1 3

classes are simultaneously handled by the same generator, the variability of the data 
portion still remains large, and this hinders the generator from thoroughly exploring 
the data space. Because of the lack of benefit in grouping multiple classes under 
the same generator, our distributed approach (with one generator per data class) is 
designed to work on large scale computers, because it inherently assumes that the 
number of processors available must be at least equal to the total number of data 
classes.

In terms of neural network architectures to model the agents, our distributed 
approach aims at leveraging the parallelization of the training to enhance the predic-
tive performance of simple (and thus faster to train) neural networks as opposed to 
state-of-the-art GANs that focus on building more complex (and thus more expen-
sive to train) neural networks. To this goal, the numerical results presented in Sect. 5 
focus on using our distributed training to improve the performance of DC-CGANs, 
a relatively small and simple neural network architecture with respect to larger and 
more complex ones that have been recently proposed to improve the accuracy [19, 
20, 22, 34].

5 � Numerical results

In this section, we present numerical tests where we compare the performance of 
standard deep convolutional GANs [2] (DC-GANs) with deep convolutional condi-
tional GANs (DC-CGANs) [35] and our distributed approach to train DC-CGANs 
on image data. Image data are represented as pixels in a Cartesian structure. For 
each pixel, a set of values called channels are assigned to describe the local graphic 
properties. The channels per pixel are only one for black and white images, and 
colored images have three channels (red, green and blue). In general, the graphic 
variability between classes is more pronounced than the graphic variability within 
a specific class, because objects of the same type generally resemble more than 
objects of different nature. The benchmark datasets we consider are characterized 
by labels that clearly separate images according to their category, and the category is 
related to the type of object represented in the image.

The comparison between standard DC-GANs, standard DC-CGANs and our 
novel method for distributed DC-CGANs is performed on a quantitative level by 
measuring the Inception Score (IS) [36] and the Fréchet Inception Distance (FID) 
[37]. The IS takes a list of images and returns a single floating point number, the 
score. The score is a measure of how realistic a GAN’s output is. IS is an automatic 
alternative to having humans grade the quality of images. The score measures two 
things simultaneously: the image variety (e.g., each image is a different breed of 
dog), and whether each image distinctly looks like a real object. If both things are 
true, the score will be high. If either or both are false, the score will be low. A higher 
score describes better performance for GANs, as it means that the GAN model can 
generate many different distinct and realistic images. The lowest score possible is 
zero. Mathematically the highest possible score is infinity, although in practice there 
will probably emerge a finite ceiling. FID is another metric used to assess the qual-
ity of images created by the generator of a generative adversarial network (GAN). 



13367

1 3

Scalable balanced training of conditional generative…

Unlike IS, which evaluates only the distribution of generated images, the FID com-
pares the distribution of generated images with the distribution of real images that 
were used to train the generator. Lower values of FID correspond to the distribution 
of generated images approaching the distribution of real images, and this is inter-
preted as an improvement of the generator in creating more realistic images .

In DC-GANs, the input of the generator has size 100 (size of the white noise) and 
the output of the generator has one channel for black–white images and three chan-
nels for colored images. The specifics of the architectures for generator and discrim-
inator used to build DC-GANs models are described in Tables 1 and 2. DC-CGANs 
differ from DC-GANs because they use additional information about the labels to 
improve the training of the generative model. In DC-CGANs, the input of the gen-
erator has size 100 + K (100 is the size of the white noise and K is the number of 
data classes) and the output of the generator has two channels (one channel for the 
color and one for label) for black–white images and four channels (three channel for 
the color and one for the label) for colored images. The specifics of the architectures 
for generator and discriminator used to build DC-CGANs models are described in 
Tables 3 and 4. The architecture of generator and discriminator for our approach that 
implements distributed DC-CGANs are the same as for DC-GANs, because each 
generator–discriminator pair focuses only on one data class, so the conditional infor-
mation about the data label is inherently retained in the selection of the data portion 
used for training. The training is performed using the optimizer Adam and a learn-
ing rate of 2e − 4 , and a total number of 1,000 epochs for all the types of GANs we 
consider on each dataset.

In order to support our claim that the variability of the feature between image 
classes is much larger than the variability of the features between images of the 
same class, we run the Analysis of Variance (ANOVA) test [38] on each dataset. 
ANOVA is a procedure to measure the “variation” among and between groups, and 

Table 1   Architecture of the generator in DC-GANs

Generator
Layer Input dim Output dim Activation Kernel size Stride Padding
Input 100 8192 ReLU / / /
Resizing
Batch normalization (epsilon = 1e-5, momentum = 0.1)
Upsample (scalefactor = 2)
Convolution1 128 128 / 3 1 1
Batch normalization (epsilon = 0.8, momentum = 0.1)
leakyReLU (slope = 0.2, inplace=True)
Upsample (scalefactor = 2)
Convolution2 128 64 / 3 1 1
Batch normalization (epsilon = 0.8, momentum = 0.1)
leakyReLU(slope = 0.2, inplace=True)
Convolution3 64 1 or 3 / 3 1 1
Tanh



13368	 M. Lupo Pasini et al.

1 3

it is used to analyze the differences among means. ANOVA is based on the law of 
total variance, where the observed variance in a particular variable is partitioned 
into components attributable to different sources of variation. In its simplest form, 
ANOVA provides a statistical test of whether two or more population means are 

Table 2   Architecture of the discriminator in DC-GANs

Discriminator
Layer Input dim Output dim Activation Kernel size Stride Padding
Convolution1 1 or 3 16 / 3 2 1
leakyReLU(slope = 0.2, inplace=True)
Dropout (0.25)
Convolution2 16 32 / 3 2 1
leakyReLU(slope = 0.2, inplace=True)
Dropout (0.25)
Batch normalization (epsilon = 0.8, momentum = 0.1)
Convolution3 32 64 / 3 2 1
leakyReLU(slope = 0.2, inplace=True)
Dropout (0.25)
Batch normalization (epsilon = 0.8, momentum = 0.1)
Convolution4 64 128 / 3 2 1
leakyReLU(slope = 0.2, inplace=True)
Dropout (0.25)
Batch normalization (epsilon = 0.8, momentum = 0.1)
Output 2048 1 Sigmoid / / /

Table 3   Architecture of the generator in DC-CGANs. The letter K indicates the number of classes in the 
dataset

Generator
Layer Input dim Output dim Activation Kernel size Stride Padding
Input 100 + K 8192 ReLU / / /
Resizing
Batch normalization (epsilon = 1e-5, momentum = 0.1)
Upsample (scalefactor = 2)
Convolution1 128 128 / 3 1 1
Batch normalization (epsilon = 0.8, momentum = 0.1)
leakyReLU (slope = 0.2, inplace=True)
Upsample (scalefactor = 2)
Convolution2 128 64 / 3 1 1
Batch normalization (epsilon = 0.8, momentum = 0.1)
leakyReLU (slope = 0.2, inplace=True)
Convolution3 64 1 or 3 / 3 1 1
Tanh



13369

1 3

Scalable balanced training of conditional generative…

equal. The null hypothesis of the ANOVA test assumes that the means of all the 
groups of the population are equal, whereas the alternative hypothesis assumes that 
at least one group of the population has mean different from all the others.

The test statistic used in the hypothesis test is the F-statistic, which is distributed 
as a Fisher distribution. High values of the F-statistic correspond to small p values 
(i.e., p values lower than 0.05) of the ANOVA test, and this results into statistical 
evidence to reject the null hypothesis and accept the alternative hypothesis, meaning 
that the variability between groups is much larger than the variability within groups. 
Statistical evidence to reject the null hypothesis is used as supporting argument that 
different classes can be treated separately.

5.1 � Hardware description

The numerical experiments are performed using Summit [39], a supercomputer 
at the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National 
Laboratory. Summit has a hybrid architecture, and each node contains two IBM 
POWER9 CPUs and six NVIDIA Volta GPUs all connected together with NVID-
IA’s high-speed NVLink. Each node has over half a terabyte of coherent memory 
(high bandwidth memory + DDR4) addressable by all CPUs and GPUs plus 1.6 
TB of non-volatile memory (NVMe) storage that can be used as a burst buffer or 
as extended memory. To provide a high rate of communication and I/O throughput, 
the nodes are connected in a non-blocking fat-tree using a dual-rail Mellanox EDR 
InfiniBand interconnect.

Table 4   Architecture of the discriminator in DC-CGANs

Discriminator
Layer Input dim Output dim Activation Kernel size Stride Padding
Convolution1 2 or 4 16 / 3 2 1
leakyReLU (slope = 0.2, inplace=True)
Dropout (0.25)
Convolution2 16 32 / 3 2 1
leakyReLU (slope = 0.2, inplace=True)
Dropout (0.25)
Batch normalization (epsilon = 0.8, momentum = 0.1)
Convolution3 32 64 / 3 2 1
leakyReLU (slope = 0.2, inplace=True)
Dropout (0.25)
Batch normalization (epsilon = 0.8, momentum = 0.1)
Convolution4 64 128 / 3 2 1
leakyReLU (slope = 0.2, inplace=True)
Dropout (0.25)
Batch normalization (epsilon = 0.8, momentum = 0.1)
Output 2048 1 Sigmoid / / /



13370	 M. Lupo Pasini et al.

1 3

5.2 � Software description

The numerical experiments are performed using Python3.7 with PyTorch 
v1.3.1 package [40] for autodifferentiation to train the DL models with the use of 
GPUs, and the mpi4py v3.0.2 tool is used for distributed computing.

As for the DC-GANs and the DC-CGANs approach, generator and discriminator 
are mapped to the same MPI processes. As for the distributed DC-CGANs, there 
are multiple discriminator–generator pairs, each one associated with a specific data 
class, and every discriminator–generator pair is mapped to an MPI process. Each 
MPI process instantiated in the distributed DC-CGANs is linked to two GPUs, one 
dedicated to training the discriminator and one dedicated to training the generator. 
Therefore, the total number of GPUs used with distributed DC-CGANs amounts to 
twice the number of MPI processes instantiated.

5.3 � MNIST [41]

The ANOVA test run on the MNIST dataset produces a value for the F-statistic equal 
to 38.78, which leads to a p value close to zero. This indicates that there is strong 
statistical evidence to claim that the variability between images of different classes 
is larger than the variability between images of the same class. The wall-clock com-
putational time is reported in Table 5, and it shows our distributed approach outper-
forming the standard DC-GANs and DC-CGANs by an order of magnitude. This is 
in line with what expected because our distributed approach processes the 10 por-
tions of data that are associated with the 10 classes concurrently, whereas the stand-
ard DC-GANs and the standard DC-CGANs process the total dataset sequentially. 
The IS obtained with all the three GANs models is shown in Table 6 and the FID 
score is shown in Table 7. The results show a similar performance for DC-GANs, 
DC-CGANs and distributed DC-CGANs, with a slight improvement using the latter 
over the other two. Samples of fake images generated by the generator of DC-GANs, 

Table 5   Wall-clock 
computational time measured 
in seconds for the training of 
DC-GANs, DC-CGANs, and 
Distributed DC-CGANs on 
MNIST

Wall-clock 
Time (sec-
onds)

DC-GANs 89,020
DC-CGANs 92,020
Distributed DC-CGANs 10,011

Table 6   Inception score 
associated with fake images 
generated by DC-GANs, 
DC-CGANs and distributed 
DC-CGANs trained on MNIST 
dataset. The inception score 
is calculated using 10 splits to 
collect statistics

Mean Standard 
devia-
tion

DC-GANs 2.54 0.54
DC-CGANs 2.62 0.03
Distributed DC-CGANs 2.71 0.04



13371

1 3

Scalable balanced training of conditional generative…

DC-CGANs and distributed DC-CGANs trained on MNIST are shown in Tables 8, 
9 and 10, respectively. The performance of DC-CGANs is very similar to the one 
of DC-GANs, because some of the digits are still written in a wobbly manner, pre-
venting a clear understanding of what is the actual digit represented. This happens 

Table 7   Fréchet Inception 
Distance associated with fake 
images generated by DC-GANs, 
DC-CGANs and distributed 
DC-CGANs trained on MNIST 
dataset

FID

DC-GANs 75.11
DC-CGANs 69.72
Distributed DC-CGANs 65.12

Table 8   Fake images generated by DC-GANs trained on MNIST dataset

Table 9   Fake images generated by DC-CGANs trained on MNIST dataset



13372	 M. Lupo Pasini et al.

1 3

in situations where multiple digits resemble very much (the shape of a 3 is very sim-
ilar to the shape of an 8). The distributed DC-CGANs instead has a more consistent 
and clearer representation of all the digits.

5.4 � CIFAR10 [42]

The ANOVA test run on the CIFAR10 dataset produces a value for the F-statistic 
equal to 22.12 for the red channel, 103.20 for the green channel, and 400.47 for 
the blue channel, which lead to p values close to zero. Also in this case, there is 
strong statistical evidence to claim that the variability between images of differ-
ent classes is larger than the variability between images of the same class. The 
computational time measured in wall-clock time is reported in Table 11, and it 
shows our distributed approach outperforming the standard DC-GANs and DC-
CGANs by an order of magnitude. The IS obtained with all the three GANs mod-
els is shown in Table 12 and the FID score is shown in Table 13. The distributed 
approach for DC-CGANs improves the performance of the generator, as it is also 
shown by a comparison between samples of fake images generated by DC-GANs, 
DC-CGANs and distributed DC-CGANs models in Tables 14, 15 and 16, respec-
tively. It can be noticed that the images produced with distributed DC-CGANs are 

Table 10   Fake images generated by distributed DC-CGANs trained on MNIST dataset

Table 11   Wall-clock 
computational time measured 
in seconds for the training of 
DC-GANs, DC-CGANs, and 
Distributed DC-CGANs on 
CIFAR10

Wall-clock 
Time (sec-
onds)

DC-GANs 375,520
DC-CGANs 393,100
Distributed DC-CGANs 39,011



13373

1 3

Scalable balanced training of conditional generative…

more realistic than the ones produced by DC-GANs and standard DC-CGANs, 
as they represent objects that are easier to recognize as real. In particular, our 
distributed approach is the only one of the three methods to generate images that 
look like cars, trucks, and boats. These objects are more complex to reproduce 
because of the many components they are made of, and the standard GANs do not 

Table 12   Inception score 
associated with images 
generated by DC-GANs, 
DC-CGANs and distributed 
DC-CGANs trained on 
CIFAR10 dataset. The inception 
score is calculated using 10 
splits to collect statistics

Mean Standard 
devia-
tion

DC-GANs 4.39 0.28
DC-CGANs 5.69 0.31
Distributed DC-CGANs 6.43 0.25

Table 13   Fréchet Inception 
Distance associated with fake 
images generated by DC-GANs, 
DC-CGANs and distributed 
DC-CGANs trained on 
CIFAR10 dataset

FID

DC-GANs 14.13
DC-CGANs 11.12
Distributed DC-CGANs 9.41

Table 14   Fake images generated by DC-GANs trained on CIFAR10 dataset



13374	 M. Lupo Pasini et al.

1 3

succeed in refining the training to properly capture important features, such as the 
wheels of a vehicle.

5.5 � CIFAR100 [43]

The ANOVA test run on the CIFAR100 produces a value for the F-statistic equal to 
37.43 for the red channel, 23.74 for the green channel, and 26.08 for the blue chan-
nel, which lead to p values close to zero. Also in this case, the variability between 
images of different classes is larger than the variability between images of the same 
class. The computational time measured in wall-clock time is reported in Table 17. 
Our distributed approach still outperforms the standard DC-GANs and DC-CGANs 
by almost two orders of magnitude. The IS obtained with all the three GANs mod-
els is shown in Table 18 and the FID score is shown in Table 19. The results con-
firm an improved performance using DC-CGANs instead of DC-GANs, which is 
further improved by our distributed approach to train DC-CGANs. Samples of fake 
images generated by the generator of DC-GANs, DC-CGANs and distributed DC-
CGANs trained on CIFAR100 are shown in Tables  20, 21 and 22, respectively, 
and the results still show distributed DC-CGANs generating more realistic pictures 
that can better be recognized as real objects. Our distributed approach is the only 
approach able to clearly captures relevant feature that characterize objects, such as 

Table 15   Fake images generated by DC-CGANs trained on CIFAR10 dataset



13375

1 3

Scalable balanced training of conditional generative…

cans, bottles, clocks, sunflowers, fish, trees, faces of human beings, chairs and land-
scapes. In particular, our distributed approach still exhibits the same quality already 
shown in CIFAR10 to accurately capture complex features like wheels that charac-
terize vehicles.

Table 16   Fake images generated by distributed DC-CGANs trained on CIFAR10 dataset

Table 17   Wall-clock 
computational time measured 
in seconds for the training of 
DC-GANs, DC-CGANs, and 
Distributed DC-CGANs on 
CIFAR100

Wall-clock 
Time (sec-
onds)

DC-GANs 475,520
DC-CGANs 493,100
Distributed DC-CGANs 4,201

Table 18   Inception score 
associated with fake images 
generated by DC-GANs, 
DC-CGANs and distributed 
DC-CGANs trained on 
CIFAR100 dataset. The 
inception score is calculated 
using 10 splits to collect 
statistics

Mean Standard 
devia-
tion

DC-GANs 4.59 0.28
DC-CGANs 5.62 0.23
Distributed DC-CGANs 6.61 0.21



13376	 M. Lupo Pasini et al.

1 3

5.6 � ImageNet1k [44]

The ANOVA test run on the ImageNet1k produces a value for the F-statistic equal 
to 57.43 for the red channel, 43.74 for the green channel, and 56.08 for the blue 
channel, which lead to p values close to zero. The variability between images of 
different classes is larger than the variability between images of the same class, and 
this justifies a distributed training for GANs as we propose. The computational time 
measured in wall-clock time is reported in Table 23. Our distributed approach out-
performs the standard DC-GANs and DC-CGANs by completing the task almost 25 
times faster. The IS obtained with all the three GANs models is shown in Table 24 
and the FID score is shown in Table 25. The results confirm an improved perfor-
mance using DC-CGANs instead of DC-GANs, which is further improved by our 
distributed approach to train DC-CGANs. Samples of fake images generated by the 

Table 19   Fréchet Inception 
Distance associated with fake 
images generated by DC-GANs, 
DC-CGANs and distributed 
DC-CGANs trained on 
CIFAR100 dataset

FID

DC-GANs 9.49
DC-CGANs 9.28
Distributed DC-CGANs 9.23

Table 20   Fake images generated by DC-GANs trained on CIFAR100



13377

1 3

Scalable balanced training of conditional generative…

generator of DC-GANs, DC-CGANs and distributed DC-CGANs trained on Image-
Net1k are shown in Tables 26, 27 and 28, respectively. Our distributed approach is 
the only one that effectively captures relevant features to reproduce landscapes, key-
boards, houses, birds, vehicles, boats, and geisers, thus showing a better precision 
obtained by our approach.

5.7 � Scaling performance of distributed DC‑CGANs

We tested the scalability of our distributed approach to train DC-CGANs by run-
ning experiments on OLCF supercomputer Summit. We measured the wall-clock 
time needed by the distributed DC-CGANs to complete the training as a function 
of the number of data classes (and thus MPI processes). The parameters for the 
numerical optimization are the same as discussed before. The training of the model 
has been performed by distributing the computation through a one-to-one mapping 
between the MPI process and the data classes. Each MPI process was mapped to 
two NVIDIA V100 GPUs, so that the neural networks for discriminator and gen-
erator for each data class would be trained on separate GPUs. For the MNIST and 
CIFAR10 datasets, the number of MPI processes spans the range from 1 to 10, 
whereas the number of MPI processes, for the CIFAR100 dataset was set to 10, 20, 
40, 80 and 100, and for the ImageNet1k dataset was set to 100, 200, 400, 800 and 

Table 21   Fake images generated by DC-CGANs trained on CIFAR100



13378	 M. Lupo Pasini et al.

1 3

1000. The results for the scalability tests are shown in Fig. 4 by reporting the runt-
ime of the slowest processor. The trend of the wall-clock time shows that the com-
putational time to complete the training is not affected by the increasing number 
of data classes, as long as the computational workload for each MPI process stays 

Table 22   Fake images generated by distributed DC-CGANs trained on CIFAR100

Table 23   Wall-clock 
computational time measured 
in seconds for the training of 
DC-GANs, DC-CGANs, and 
Distributed DC-CGANs on 
ImageNet1k

Wall-clock 
Time (sec-
onds)

DC-GANs 1,075,520
DC-CGANs 1,293,100
Distributed DC-CGANs 42,011

Table 24   Inception score 
associated with fake images 
generated by DC-GANs, 
DC-CGANs and distributed 
DC-CGANs trained on 
ImageNet1k dataset. The 
inception score is calculated 
using 10 splits to collect 
statistics

Mean Standard 
devia-
tion

DC-GANs 7.24 0.78
DC-CGANs 8.91 0.85
Distributed DC-CGANs 11.61 1.12



13379

1 3

Scalable balanced training of conditional generative…

fixed, thus showing that weak scaling is obtained by the training of distributed DC-
CGANs on all four datasets.

The average GPU usage computed across all the GPUs engaged in the computa-
tion is 70% and the GPU memory occupation is around 31% for every numerical test 
performed.

Table 25   Fréchet Inception 
Distance associated with fake 
images generated by DC-GANs, 
DC-CGANs and distributed 
DC-CGANs trained on 
ImageNet1k dataset

FID

DC-GANs 6.23
DC-CGANs 6.04
Distributed DC-CGANs 5.91

Table 26   Fake images generated by DC-GANs trained on ImageNet1k



13380	 M. Lupo Pasini et al.

1 3

6 � Conclusions and future developments

We presented a distributed approach to train DC-CGANs models which reduces 
the imbalance between the computational tasks of the discriminator and the gen-
erator. The distribution of the task is based on partitioning the data in classes 
and it is justified by the variability of features between data classes that pre-
vails over the variability of features within data points of the same class. The 
reduced imbalance results in better images generated by the trained DC-CGANs 
compared to state-of-the-art approaches. In particular, our numerical results 
show that our distributed approach can significantly improve the performance of 
simple neural network architectures, such as DC-GANs and DC-CGANs, with-
out necessarily using larger, more complex (and thus more expensive to train) 

Table 27   Fake images generated by DC-CGANs trained on ImageNet1k



13381

1 3

Scalable balanced training of conditional generative…

models as other state-of-the-art require. The results have also shown an almost 
ideal weak scaling.

Our future work aims at extending the study performed in this work to more 
complex but also more accurate neural network architectures, such as auxiliary 
classifier GANs (AC-GANs) [19], residual neural networks (ResNet) [20], self-
attention generative adversarial neural networks (SAGANs) [22], and Wasserstein 
generative adversarial networks (WGANs) [34].

Table 28   Fake images generated by distributed DC-CGANs trained on ImageNet1k



13382	 M. Lupo Pasini et al.

1 3

Acknowledgements  Massimiliano Lupo Pasini thanks Dr. Vladimir Protopopescu for his valuable feed-
back in the preparation of this manuscript.

Research completed through the Artificial Intelligence Initiative sponsored by the Laboratory Directed 
Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, 
for the U. S. Department of Energy.

This work used resources of the Oak Ridge Leadership Computing Facility, which is supported by the 
Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of interest.

References

	 1.	 Goodfellow Ian J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio 
Y (2014) Generative Adversarial Networks. arXiv:​1406.​2661 [cs,stat]

	 2.	 Radford A, Metz L, Chintala S (2016) Unsupervised Representation Learning with Deep Convolu-
tional Generative Adversarial Networks. arXiv:​1511.​06434 [cs]

	 3.	 Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved Techniques 
for Training GANs. arXiv:​1606.​03498 [cs]

	 4.	 Bertsekas D (2019) Multiagent Rollout Algorithms and Reinforcement Learning. arXiv:​1910.​00120 
[cs]. version: 1

	 5.	 Liu M-Y, Huang X, Yu J, Wang T-C, Mallya A (2020) Generative Adversarial Networks for Image 
and Video Synthesis: Algorithms and Applications. arxiv.​org/​abs/​2008.​02793 [cs.CV]

Fig. 4   Results of weak scaling tests for MNIST, CIFAR10, CIFAR100, and ImageNet1k by measurement 
of the wall-clock time

http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1910.00120
http://arxiv.org/abs/org/abs/2008.02793


13383

1 3

Scalable balanced training of conditional generative…

	 6.	 He Z, Zuo W, Kan M, Shan S, Chen X (2017) AttGAN: Facial Attribute Editing by Only Changing 
What You Want. arXiv:​1711.​10678 [cs.CV]

	 7.	 Goodfellow Ian J (April 2017) NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv:​1701.​
00160 [cs]

	 8.	 Mertikopoulos P, Papadimitriou C, Piliouras G (2017) Cycles in Adversarial Regularized Learning. 
Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms

	 9.	 Elad Hazan, Karan Singh, Cyril Zhang (2017) Learning linear dynamical systems via spectral filter-
ing. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds) 
Advances in neural information processing systems. Curran Associates Inc, USA

	10.	 Dauphin Yann N, de Vries Harm, Bengio Y (2015) Equilibrated Adaptive Learning Rates for Non-
convex Optimization. arXiv:​1502.​04390 [cs]. version: 1

	11.	 Ruder S (2017) An Overview of Gradient Descent Optimization Algorithms. arXiv:​1609.​04747 [cs]
	12.	 Duchi J, Hazan E, Singer Y. Adaptive Subgradient Methods for Online Learning and Stochastic 

Optimization. page 39
	13.	 Ward R, Wu X, Bottou L (2018) AdaGrad stepsizes: Sharp Convergence over Nonconvex Land-

scapes, from any Initialization. arXiv:​1806.​01811 [cs, stat]. arXiv:​ 1806.​01811 version: 1
	14.	 Zhao Y, Li C, Yu P, Gao J, Chen C (2020) Feature Quantization Improves GAN Training. In 

Hal Daumé III and Aarti S, editors, Proceedings of the 37th International Conference on Machine 
Learning, volume 119 of Proceedings of Machine Learning Research, pages 11376–11386. PMLR, 
13–18

	15.	 Schäfer F, Anandkumar A (2020) Competitive Gradient Descent. arXiv:​1905.​12103 [cs, math]
	16.	 Pascanu R, Gulcehre C, Cho K, Bengio Y (December 2013) How to Construct Deep Recurrent Neu-

ral Networks
	17.	 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A 

(2014). Going Deeper with Convolutions. arXiv:​1409.​4842 [cs]
	18.	 Sreekumaran H, Hota A R, Liu Andrew L, Uhan Nelson A, Sundaram S (July 2015) Multi-Agent 

Decentralized Network Interdiction Games. arXiv:​1503.​01100 [math]
	19.	 Odena A, Olah C, Shlens J (Aug 2017) Conditional Image Synthesis with Auxiliary Classifier 

GANs. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 2642–
2651, International Convention Centre, Sydney, Australia, 06–11. PMLR

	20.	 Wang M, Li H, Li Fang (2017) Generative Adversarial Network based on Resnet for Conditional 
Image Restoration. ArXiv, abs/1707.04881

	21.	 Karras T, Aila T, Laine S, Lehtinen J (February 2018) Progressive Growing of GANs for Improved 
Quality, Stability, and Variation. arXiv:​1710.​10196 [cs, stat]

	22.	 Zhang H, Goodfellow I, Metaxas D, Odena A (Jun 2019) Self-attention Generative Adversarial Net-
works. In Kamalika C and Ruslan S, editors, Proceedings of the 36th International Conference on 
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 7354–7363. 
PMLR, 09–15

	23.	 Andrew B, Jeff D, Karen S (2019) Large Scale GAN Training for High Fidelity Natural Image 
synthesis

	24.	 Zhao S, Liu Z, Lin J, Jun-Yan Z, Han S (2020) Differentiable Augmentation for Data-Efficient GAN 
Training. arXiv:​ 2006.​10738

	25.	 Mirza M, Osindero S (November 2014) Conditional Generative Adversarial Nets. arXiv:​1411.​1784 
[cs, stat]

	26.	 Miyato T, Koyama M (2018) CGANs with Projection Discriminator
	27.	 Kavalerov I, Czaja W, Chellappa R (2019) cGANs with Multi-Hinge Loss. CoRR, abs/1912.04216
	28.	 Zhang He, Sindagi Vishwanath, Pate Vishal M (2020) Image de-raining using a conditional genera-

tive adversarial network. IEEE Trans Circuits Syst Video Technol. https://​doi.​org/​10.​1109/​TCSVT.​
2019.​29204​07

	29.	 Yang D, Hong S, Jang Y, Zhao T, Lee H (2019) Diversity-Sensitive Conditional Generative Adver-
sarial Networks

	30.	 Zhou P, Xie L, Zhang X, Ni B, Tian Q (2020) Searching towards Class-Aware Generators for Con-
ditional Generative Adversarial Networks. arXiv:​2006.​14208 [cs.CV, cs.LG]

	31.	 Lucic M, Kurach K, Bousquet O, Gelly S (2018) Are GANs Created Equal? A Large-Scale Study. 
arXiv:​1711.​10337 [stat.ML]

http://arxiv.org/abs/1711.10678
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1502.04390
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1806.01811
http://arxiv.org/abs/1806.01811
http://arxiv.org/abs/1905.12103
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1503.01100
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/2006.10738
http://arxiv.org/abs/1411.1784
https://doi.org/10.1109/TCSVT.2019.2920407
https://doi.org/10.1109/TCSVT.2019.2920407
http://arxiv.org/abs/2006.14208
http://arxiv.org/abs/1711.10337


13384	 M. Lupo Pasini et al.

1 3

	32.	 Ratliff LJ, Burden SA, Sastry SS (2013) Characterization and Computation of Local Nash equilibria 
in Continuous Games. In 2013 51st Annual Allerton Conference on Communication, Control, and 
Computing (Allerton), pages 917–924

	33.	 Kingma Diederik P, Ba J(2017) Adam: A Method for Stochastic Optimization. arXiv:​1412.​6980 
[cs]

	34.	 Arjovsky M, Chintala S, Bottou Léon (2017) Wasserstein Generative Adversarial Networks. In 
Doina Precup and Yee  Whye Teh, editors, Proceedings of the 34th International Conference on 
Machine Learning, volume  70 of Proceedings of Machine Learning Research, pages 214–223, 
International Convention Centre, Sydney, Australia, 06–11. PMLR

	35.	 Gauthier J (2015) Conditional Generative Adversarial Nets for Convolutional Face Generation - 
Technical report, Stanford University

	36.	 Barratt S, Sharma R (2018) A Note on the Inception Score. arXiv:​1801.​01973 [cs, stat]
	37.	 Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) GANs Trained by a Two 

Time-Scale Update Rule Converge to a Local Nash Equilibrium. arXiv:​1706.​08500 [cs.CV, cs.LG]
	38.	 Casella G, Berger R (2001) Statistical Inference. Duxbury Resource Center
	39.	 Summit - Oak Ridge National Laboratory’s 200 petaflop supercomputer https://​www.​olcf.​ornl.​gov/​

olcf-​resou​rces/​compu​te-​syste​ms/​summit/
	40.	 ...Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, 

Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner 
B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style, high-performance deep learning 
library. In: Wallach H, Larochelle H, Beygelzimer A, Alché-Buc F, Fox E, Garnett R (eds) Advances 
in neural information processing systems. Curran Associates Inc, USA

	41.	 The MNIST database of handwritten digits. http://​yann.​lecun.​com/​exdb/​mnist/l
	42.	 The CIFAR-10 dataset. https://​www.​cs.​toron​to.​edu/​~kriz/​cifar.​html
	43.	 The CIFAR-100 dataset. https://​www.​cs.​toron​to.​edu/​~kriz/​cifar.​html
	44.	 ImageNet. http://​image-​net.​org/

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1801.01973
http://arxiv.org/abs/1706.08500
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
http://yann.lecun.com/exdb/mnist/l
https://www.cs.toronto.edu/%7ekriz/cifar.html
https://www.cs.toronto.edu/%7ekriz/cifar.html
http://image-net.org/

	Scalable balanced training of conditional generative adversarial neural networks on image data
	Abstract
	1 Introduction
	2 Related work
	3 Background on conditional generative adversarial neural networks
	4 Distributed conditional generative adversarial neural networks
	5 Numerical results
	5.1 Hardware description
	5.2 Software description
	5.3 MNIST [41]
	5.4 CIFAR10 [42]
	5.5 CIFAR100 [43]
	5.6 ImageNet1k [44]
	5.7 Scaling performance of distributed DC-CGANs

	6 Conclusions and future developments
	Acknowledgements 
	References




