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Abstract
The 3-ary n-cube network is widely used in large-scale multi-processor paral-
lel computers. It is an important issue to design high-performance communication 
technology with fault tolerance. In this paper, we study the fault-tolerant routing of 
3-ary n-cube without desired intersection. Firstly, we propose a fully adaptive rout-
ing algorithm for 3-ary n-cube network based on the new virtual network partition 
technology. The virtual channel allocation of the algorithm is given and its dead-
lock free property is proved. Secondly, we propose a construction of disjoint paths 
in 3-ary n-cube networks under the fault model. Finally, we propose a novel fault-
tolerant routing algorithm for 3-ary n-cube networks based on the disjoint path with 
structure faults. The simulation results show that the proposed fault-tolerant routing 
algorithm outperforms the previous fault-tolerant routing algorithm in many situa-
tions, which has a 19–21 percent increase in throughput and the injection rate.
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1 Introduction

With the rapid development of information society, high performance computing 
(HPC) has been the third pillar of scientific research following theoretical sci-
ences and experimental sciences. In the research of HPC, improving operation 
efficiency has always been the primary goal of its development.

Parallel computing is an effective means to improve the computing speed of 
the systems. Interconnection networks take vital roles in parallel computing sys-
tems, the selection of an interconnection network is crucial as it can greatly affect 
communication performance, hardware costs and fault tolerant capabilities. The 
topology of interconnection network defines the connections between the pro-
cessors of the parallel computing system. Numerous interconnection networks 
have been proposed, such as hypercubes [1], crossed cubes [2], exchanged hyper-
cubes[3], DCell networks [4], k-ary n-cubes [5].

With the expansion of network scale and increase in complexity, the reliability 
and stability of the network have become more and more urgent. Ensuring the 
efficient and safe operation of the network has become very important. Reliabil-
ity of interconnection networks is crucial for evaluating the network performance 
[6]. It is necessary to consider the reliability for running distributed systems, 
and the fault tolerance of interconnection networks has been extensively studied 
[7–9]. There are many types of failures: single node failures, link failures, and 
fault domains where two types of failures are connected. In reality, processors 
that are linked could affect each other, and the neighbors of a faulty processer 
might have a higher probability of becoming faulty later. It should be noted that 
rapid development of technology in nowadays, networks and subnetworks are 
made into chips [10]. That means if any node/nodes on the chip become faulty, 
the whole chip can be considered to be faulty. This reason motivated the research 
on the effect caused by some structures or subgraphs becoming faulty, instead of 
considering the effect of nodes or edges becoming faulty [11].

Q3
n
 network is an on-chip network structure widely used in multi-processor par-

allel computers   [12]. Performance and fault tolerance are the two main prob-
lems facing the design of large-scale multi-processor systems. Because of this, 
high-performance communication technology with fault tolerance has become a 
very challenging problem. However, fault tolerance is massively parallel process-
ing. The most basic requirements of the device. On the one hand, although mod-
ern routers are becoming more and more robust, due to the long-term operation 
of the components, the probability of errors will increase [13]. Meanwhile, the 
scale of parallelism and multi-processors become larger, and the probability of 
failure chains will also increase. On the other hand, routing algorithms originally 
designed for fault-free networks fail under the influence of faulty nodes or faulty 
chains. If the message is mistransmitted, the entire network will cause conges-
tion or even deadlock. For example, for deterministic routing algorithms, such as 
DOR routing algorithms, since there is only one alternative path, when this only 
path is caused by a failure when blocked, the message will be blocked [14–16]. 
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Therefore, it is critical to design a multi-processor parallel routing fault-tolerant 
mechanism, especially for the Q3

n
 network.

Fault-tolerant routing is a common fault-tolerant mechanism for solving multi-
processor parallel computers. A good fault-tolerant routing algorithm needs to well 
alleviate possible routing congestion to achieve load balancing, and it also needs 
to consider the quality of service, that is, to select the shortest routing path and 
minimize communication delay as much as possible [17]. Data transmission can be 
effectively guaranteed by finding parallel paths (disjoint paths) between the vertices 
of the network. The problem of disjoint paths can generally be divided into three 
categories: one-to-one disjoint paths, one-to-many disjoint paths and many-to-many 
disjoint paths [18]. One-to-one disjoint path refers to a disjoint path connecting two 
different vertices. One-to-many disjoint path considers the disjoint path ( k ≥ 2 ) con-
necting a vertex s and k vertices t1, t2,… tk . A many-to-many disjoint path refers 
to a disjoint path connecting k vertices s1, s2,… , sk and k vertices t1, t2,… tk . Dis-
joint multi-path routing is an effective strategy to achieve robustness to forward data 
along multiple links or disjoint paths of nodes in the network.

The avoidance of deadlock is very important in the implementing an adap-
tive fault-tolerant routing algorithm. A common method is to divide each physi-
cal channel into a certain number of virtual channels to avoid deadlock. The 
resources (such as cache, bandwidth) on the physical channel will be allocated to 
each virtual channel [19]. Therefore, the number of virtual channels required in 
the deadlock avoidance mechanism will affect the efficiency of resource utiliza-
tion in the routing mechanism. Under the condition of relatively limited physical 
resources, how to use fewer virtual channels so that each virtual channel is allo-
cated more resources. However, using fewer virtual channels increases the diffi-
culty of the deadlock avoidance mechanism.

In this paper, we focus on the construction of disjoint paths and fault-tolerant 
routing of Q3

n
 with structure faults. The main contributions of this paper are listed 

as follows: 

1. We propose an O(n2) algorithm to give the disjoint path between any two distinct 
nodes in Q3

n
 . And after analysis, the maximum length of n-disjoint paths between 

any two distinct nodes in Q3
n
 is no more than 2n − 1.

2. We give a disjoint path based fault-tolerant routing algorithm DPFR, which can 
tolerate the number of faulty nodes not exceeding the size of connectivity.

3. We analyse the time complexity of the algorithm DPFR is O(n) and four modes 
are implemented to evaluate the performance of the proposed algorithm in terms 
of injection rate, throughput, average delay, and buffer utilization.

The remaining of this paper is organized as below. Section 2 introduces the related 
work of disjoint paths and fault-tolerant routing. Section 3 provides the preliminar-
ies used throughout this paper and gives the formal definition and properties of Q3

n
 , 

and proposes an algorithm for finding n-disjoint paths between any two distinct 
nodes of Q3

n
 . A fault-tolerant routing algorithm for Q3

n
 are given in Sect. 4. Simula-

tion and experiment results are presented in Sect. 5. Section 6 concludes the paper.
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2  Related works

The algorithm in the interconnection network needs to consider the following fac-
tors when designing: avoiding deadlock, resource allocation, self-adaptation and 
fault tolerance. There are two main solutions to avoid deadlock in network transmis-
sion of data packets [20]. One is to use virtual channels to divide the network into 
several virtual sub-networks. Another method is to limit the turn of routing mes-
sages in certain situations. To realize the efficient allocation of resources, it is neces-
sary to make the number of virtual channels as small as possible. Meanwhile, it also 
needs to be adaptive to the algorithm and restrict certain turns. Fault-tolerant routing 
requires the support of an effective fault model, while deadlock avoidance and high 
self-adaptation are also necessary conditions for fault tolerance.

The routing algorithm determines the path that the data will go through in the 
switch fabric, so the quality of the routing algorithm has a great impact on the sys-
tem performance [21]. Ren et al. [22] proposed a traffic balancing forgetting routing 
algorithm in 2-D grids and tori. In addition, they also provide two different granu-
larity fault detection and analysis schemes, and ensure orderly packet delivery by 
assigning a unique path to each process. Zhao et al. [23] proposed a fault-tolerant 
minimum routing algorithm for two-dimensional grids. By calculating the fault-tol-
erant Manhattan path from each node to the source node or the target node, it marks 
these nodes as nodes with lower time complexity. In the process of path counting, 
no available nodes will be sacrificed under any fault distribution. Compared with 
the work based on fault block model, this method is not affected by fault distribution 
and has low computational complexity.

Zhao et  al. [24] proposed a general fault-tolerant minimum routing of the grid 
structure. Habibian et al. [25] proposed a fault-tolerant routing algorithm for hyper-
cube and CCC (Cube Connected Cycles) networks of any fault size and type based 
on the best priority search and backtracking strategy. Dong et  al. [26] studied the 
paths and cycles embedding into 3-ary n-cubes with faulty nodes and links. Li 
et al. [27] studied the embedding of paths and cycles into 3-ary n-cubes with path 
restrictions. Francalanci et al. proposed a deadlock-free multicast routing algorithm 
(DFMR) for k-ary n-cube networks, which prevents deadlock by allowing nodes to 
send flit immediately when the link between nodes is available for transmission. 
Zhang et al. [28] studied the structure connectivity and substructure connectivity of 
bubble-sort star graph, furthermore, Zhang et al. [29] proved the structure connec-
tivity and substructure connectivity of k-ary n-cubes.

Multi-path fault-tolerant routing means that there are multiple paths to choose 
from between the source and the destination. When one of the paths is interrupted 
due to a node failure, the other path is quickly and randomly selected with prob-
ability, so multi-path fault-tolerant routing has good fault tolerance. The disjoint 
path refers to a path that does not share any common nodes except for the two ends. 
Disjoint paths are fundamental and essential for parallel computing, fault-tolerance, 
and load balancing of a network [9]. Disjoint paths can ensure the stable and safe 
transmission of data in the network. At present, there have been a lot of researches 
on disjoint paths of well-known networks. Wang et al.  [30] designed an algorithm 
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to construct at least �1(G) disjoint paths based on any two distinct nodes in general-
ized hypercube under the 1-restricted connectivity. Then, Wang et al.  [31] designed 
an algorithm to give disjoint paths between any two distinct nodes of exchanged 
generalized hypercube. Lai  [32] studied the optimal construction of all shortest dis-
joint paths in the hypercube with applications. Wang et al. [33] constructed n + k − 1 
disjoint paths between every two distinct nodes of the k-dimensional DCell net-
work and propose an algorithm for finding a one-to-one r-disjoint path cover in Dk,n 
for any integer 1 ≤ r ≤ n + k − 1 [33]. Guo et al. [34] give an O(�(G)2) algorithm 
BuildPathSet(u, v) to get a set of �(G) disjoint paths between arbitrary distinct nodes 
u and v in BCube.

Krishnan et  al. [35] proposed a fault-tolerant routing algorithm with minimum 
delay for grid architecture. The algorithm can find fault-tolerant paths from source 
to target at the minimum Manhattan distance. Otake et al. [36] proposed two meth-
ods for fault-tolerant routing in the crossed cube. Aspnes et al. [20] given the fault-
tolerant routing in P2P systems, and considered the problem of designing an overlay 
network and routing mechanism that permits finding resources efficiently in a peer-
to-peer system. Xiang et al. [37] proposed a deadlock-free unicast scheme based on 
minus-first routing for Dragonfly networks. Minus-first routing is a partially adap-
tive routing scheme in dragonfly networks without virtual channels. Furthermore, 
Xiang et al. [38] proposed a new deadlock-free adaptive fault-tolerant routing algo-
rithm based on two-tier security information model. The new fault-tolerant routing 
algorithm can not only tolerate static and dynamic failures, but also avoid dead-zone 
and aimless error routing by using the new security information model. When a 
faulty block is encountered in the process of sending a message from the source 
node to the destination node, the number of virtual channels will be increased in 
order to avoid deadlock. In fact, some well-known deterministic strategies (XY rout-
ing, turn models, etc.) are good ways to avoid deadlock. They all send data packets 
through the same fixed path between each source and target pair. However, if the 
traffic is concentrated in the same area, congestion may occur, and multi-path rout-
ing will cause the load to concentrate on the boundary of the faulty area. Therefore, 
this will have a negative impact on performance and reduce the throughput of the 
routing algorithm.

3  System model

3.1  Preliminaries

In this section, we will give some definitions used in this paper. Interconnection net-
works are generally modeled with a graph G = (V ,E) , where the vertex set V repre-
sents processors and the edge set E represents communication links between proces-
sors. A path in G is a sequence of distinct nodes, P = (x0, x1,… , xk−1, xk) , in which 
any two consecutive nodes xi and xi+1 are adjacent for any integer 0 ≤ i ≤ k . We 
denoted the path P by x0 ∼ xk and an edge (ai, ai+1) in P by xi → xi+1 . Let P − ak to 
denote the path (a0, a1,… , ak−1) . The length of a path P is the number of edges in P.
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A path P is called fault- free if all nodes in P are non-faulty. Suppose P and 
P′ are the two paths from node x to node y, if the other nodes are distinct except 
for nodes x and y, then we say P and P′ are disjoint. The distance between nodes 
x and y is written as dist(x, y), which is the minimum value of all path lengths 
from x to y. The diameter of G is the maximum distance between any two dis-
tinct nodes in G, denoted as max{dist(x, y) ∣ x, y ∈ V(G) and x ≠ y} . Let G be a 
graph and F(G) be the faulty set of G. We refer to an edge (x, y) ∈ E(G) where 
x ∉ V(F(G)) and y ∉ V(F(G)) , as a safe crossing-edge.

The 3-ary n-cube Q3
n
 ( n ≥ 1 ) has N = 3n vertices, each vertex can be denoted 

by x = xn−1 … x1x0 , where 0 ≤ xi ≤ 2 for every 0 ≤ i ≤ n − 1 . As shown in Fig. 1, 
two vertices x = xn−1 … x1x0 and y = yn−1 … y1y0 are adjacent if and only if there 
exists an integer j with 0 ≤ j ≤ n − 1 , such that xj = (yj ± 1) mod 3 and xi = yi for 
i ∈ {0, 1, 2,… , n − 1} − {j} . Furthermore, the i-th position, from the right to the 
left, of the n-bit string x is called the i-dimension. For any two vertices x and y, 
if and only if they are different in the j-dimension, then the edge (x, y) is called 
a j-dimensional edge or simply a j-edge. A vertex incident to a j-edge is called a 
j-dimensional vertex.

(a)

(b)

(c)

Fig. 1  a The 3-ary 1-cube Q3

1
 , b the 3-ary 2-cube Q3

2
 , c the 3-ary 3-cube Q3

3
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3.2  Fault information model

In this section, We first classify the types of structural failures and extract the com-
monality of such failures. Then, we construct disjoint paths for such structural fail-
ure models.

In a 3-ary n-cube network, failures are random. According to statistics [15], the 
following types of failure models are common in the network, and different failure 
domains and failure cycles can be formed at the same time. As shown in Fig. 2a, 
when the faulty server has a small affect on the area, the faulty structures could be 
K1 , K1,1 , and K1,2 . While when the effect of the faulty server on the area is becom-
ing larger, the faulty structure could be K1,M with M ≥ 3 . In the convex fault model, 
there are a total of 12 types of node locations on the fault. They are: (1) North, (2) 
South, (3) West, (4) East, (5) North-east outer corner, (6) North-west outer corner, 
(7) South-east outer corner, (8) South-west outer corner, (9) South-east inner corner, 
(10) South-west inner corner, (11) North-east inner corner, (12) North-west inner 
corner. Figure 2b shows the specific locations of different fault nodes on the fault 
model. The faults of the K1,M series can be further restricted to the CM fault model. 
For this type of structural failure, we uniformly represent them as a convex failure 
model.

We define the following five types of messages as follows.
where (u0, u1) , (a0, a1) and (v0, v1) represent the source node, the current node and 

the destination node in the 3-ary n-cube network, respectively.
Generally, the packets that have just been injected into the network can be divided 

into four types, as shown in Table 1, which only belong to Dim0+, Dim0−, Dim1+ 
and Dim1−. Dim0+ and Dim0− messages will become Dim1+ or Dim1− messages 

(a) (b)

Fig. 2  a Structure faulty elements in a mesh-based supercomputer, b faults model
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after completing X-dimensional routing. For Horizon0− packets, it is a kind of pack-
ets after the first four packets are blocked by faults and then rerouted.

Due to the Dimension Order Routing (DOR) routing algorithm [39], there is only 
one alternative route, so when this only route is blocked by a fault, the message will 
be blocked. Traditional DOR is very simple and efficient, but it can only be used in 
regular 2D mesh. Since the 3-ary n-cube network itself has surrounding channels, 
under the principle of the shortest route, it enables resource circulation applications 
among channel resources of each dimension. There may occur deadlock while using 
the DOR algorithm in 3-ary n-cube networks.

The virtual channel can solve the deadlock problem caused by information 
exchange in the network. Applying DOR routing in a 3-ary n-cube network can 
avoid deadlock through virtual channels. In the network, a total of two virtual chan-
nels need to be used, called V0 and V1 , respectively. The following are the rules for 
the use of these two virtual channels: V0 is used for routing by all packets that have 
not passed the wrap-around pass. If a message is routed on a certain dimension 
and needs to use a surround channel, it must pass through the V1 virtual channel. 
At the same time, in the future routing process, the message will always use V1 on 
this dimension. Meanwhile, the virtual channels V0 in the same dimension will no 
longer have resource recycling applications between each other. Therefore, based 
on the DOR algorithm, we design a multi-path routing algorithm for 3-ary n-cube 
networks. First, we describe the routing process of the west-bound preferential turn 
model under the restricted convex fault model. The Dim0+, Dim0−, Dim1+ and 
Dim1− messages are applied.

Lemma 3.1 For Dim0+ packets, before being blocked by the fault, the packets 
always use the DOR dimension sequence routing algorithm. If the route on the 
X-dimension is completed, it will either reach the destination node or become one of 
Dim1+ or Dim1−.

Proof We prove it according to the following two cases.
Case 1 There is no obstruction by the fault model in the routing process. Dim0+ 

packets are routed to the right according to the DOR dimension sequence, and 
finally Dim0+ packets will successfully complete the X-dimensional routing, either 
directly reach the destination node, or become Dim1+ packets or Dim1− message.

Case 2 There is failure model occurred during the routing process. When the 
message is routed along the X-dimension in the DOR dimension, it is blocked by the 
faulty node. In the fault model used in this article, the message is blocked only when 

Table 1  Symbols and notations
Dim0+ 0 < v

0
− u

0
<

1

2
⋅ 3

n

2 , or v
0
− u

0
≤ −

1

2
⋅ 3

n

2;
Dim0− −

1

2
⋅ 3

n

2 < v
0
− u

0
< 0 , or v

0
− u

0
≥

1

2
⋅ 3

n

2;
Dim1+

v
0
= u

0
 and 0 < v

1
− u

1
<

1

2
⋅ 3

n

2 , or v
1
− s

1
≤ −

1

2
⋅ 3

n

2;
Dim1−

v
0
= u

0
 and − 1

2
⋅ 3

n

2 < v
1
− u

1
< 0, or v

1
− u

1
≥

1

2
⋅ 3

n

2;
Horizon0− a

1
= v

1
 and a0 > v

0;
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it encounters a ring node of the west location type. At this point, the message will 
start to use the Westbound Priority Turning Model algorithm for detouring. Until 
the Dim0+ message reaches the node on the ring whose position type is noth-west 
outer corner or south-west outer corner. Subsequently, the message stops detouring 
on the faulty ring, but re-dos the DOR dimension sequence routing. If it is hindered 
by the next fault in the subsequent routing, it can be solved by a similar method, and 
finally the routing on the X-dimension is completed. See Fig. 3a.

Case 3 For Dim0+ messages, when the message regains the dimension order 
routing resource or reaches the north-west outer comer or south-west outer comer 
node of the structural failure model, the detour of this message will end. The similar 
case to Dim0−.   ◻

Lemma 3.2 For Dim1+ and Dim1− messages, before being blocked by the fault, 
the message always uses the DOR dimension sequence routing algorithm. If the 
routing on the Y-dimension is completed, it either directly reaches the destination 
node or becomes a Horizon0− message.

Proof We have the following two cases to prove.
Case 1 There is no fault model in the routing process. When Dim1+ and Dim1− 

messages are routed in DOR dimension on the Y- dimension, no fault is encoun-
tered. The message will successfully complete the Y-dimensional routing and 
directly reach the destination node.

Case 2 There is failure model occurred during the routing process. When Dim1− 
message is routed south-ward in the DOR dimension on the Y-dimension, it is 
blocked by the faulty node. In the fault model we use, the message is blocked only 
when it encounters a node on the ring whose location type is north or north inner 
corner. At this time, the message will start to use the westbound priority turning 

(a) (b)

Fig. 3  Routing characteristics of turn model for Dim0+, Dim1+ and Dim1− messages under structural 
fault model
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model algorithm to make a clockwise detour. If the message does not become a 
Horizon0− message before reaching the easternmost node of the fault ring, it will 
be passed southward until it becomes a Horizon0− message. If it is hindered by the 
next fault in the subsequent routing, it can be solved by a similar method, and finally 
the routing on the Y-dimension is completed. The routing of Dim1+ packets is simi-
lar to Dim1− packets. The difference is that the detour direction on the fault ring is 
counterclockwise. And when it reaches the east-most node of the fault ring, it will 
be transmitted to the north until it becomes a Horizon0− message. See Fig. 3b.   ◻

Lemma 3.3 For Dim1+ and Dim1− messages, before being blocked by the fault, 
the message always uses the DOR dimension sequence routing algorithm. If the 
routing on the Y-dimension is completed, it either directly reaches the destination 
node or becomes a Horizon0− message.

Proof We have the following two cases to prove.
Case 1 There is no fault model in the routing process. Dim0−The message is 

routed to the left according to the DOR dimension sequence. Finally, the Dim0− 
message will successfully complete the X-dimensional routing, and will either reach 
the destination node or become one of Dim1+ or Dim1− messages.

Case 2 There is failure model occurred during the routing process. When the 
message is routed along the X-dimensional DOR dimension, it is blocked by the 
faulty node.

In the fault model we used, only when the nodes on the ring of the east, north cor-
ner and south inner comer location types are encountered, the message is blocked. 
At this time, the Dim0− message will start to detour on the ring. If the node on the 
ring is east, the message will select its neighboring node to the north or south as the 
next hop node for detouring. If YoffsetY (dimension offset)>0, select the neighbor-
ing node to the north, and this message will be routed according to the routing pro-
cess of Diml+ message. If Yoffset<0, the neighboring node in the south is selected, 
and the route will be detoured according to the routing process of Dim1− message. 
Eventually, the detoured Dim0− message will become Horizon0− messages. If the 
node on the ring is the northeast inner corner or the southeast inner corner, the rout-
ing algorithm provides 180 turns. The message can also be converted into Dim1+ 
message or Dim1− message for detouring. If it is in the subsequent routing, it will 
be blocked by the next failure. It can be solved by a similar method, and finally 
becomes Horizon0− message. See Fig. 4a.   ◻

Summarizing the above lemmas, we can draw the following conclusions. 
Through DOR dimension sequence routing and west-bound priority turn model 
fault-tolerant routing, Dim1− and Dim1+ messages will reach the destination 
node if they do not encounter failures when they are routed in the Y-dimension. 
Otherwise, it will be routed through Horizon0− message and finally reach the 
destination node. For Dim0+ messages, regardless of whether it encounters a fail-
ure during the dimension sequence routing on the X-dimension, the X -dimension 
routing will be completed. If the destination node has not been reached at this 
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time, it will be routed through Dim1− or Dim1+ packets, and finally reach the 
destination node. For Dim0− messages, if X-dimensional routing is completed, 
Dim1− or Dim1+ messages can reach the destination node. Otherwise, it will 
be routed through Horizon0− message and finally reach the destination node. 
Then, if the Horizon0− message can reach the destination node smoothly when 
it encounters a failure, all the messages will reach the destination node smoothly. 
Horizon0− messages are Dim0+, Dim0−, Dim1+ and Dim1− messages. The 
message is blocked by a fault during the routing process, or will eventually 
become a message type.

Lemma 3.4 For Horizon0− message, the eastward priority turn model can be used 
to make a detour, and finally reach the destination node.

Proof We have the following two cases to prove.
Case 1 There is no fault model in the routing process. The DOR dimension 

sequence route can be used by Horizon0− messages to complete the route on the X 
dimension and reach the destination node.

Case 2 There is failure model occurred during the routing process. Horizon0-
message will be routed clockwise or counterclockwise along the fault ring on the 
faulty node. If a similar situation occurs in the subsequent routing process, it can be 
solved by a similar method, and the destination node will eventually be successfully 
reached. See Fig. 4b.   ◻

We can draw the following conclusion: for all packets injected into 3-ary 
n-cube network, no matter which one of the four packets belongs to, they can 
reach the destination node successfully under these two turning model algorithms.

(a) (b)

Fig. 4  Routing characteristics of turn model for Dim0− and Horizon0− messages under structural fault 
model
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3.3  Construction of disjoint paths

In this section, we will an algorithm for constructing disjoint paths between any 
two distinct nodes u and v in Q3

n
 . Let P present a path between a and b where 

u = (xnxn−1 ⋅ ⋅ ⋅ x1;s) and v = (ynyn−1 ⋅ ⋅ ⋅ y1;t) . According to the definition of Q3
n
 , we 

can construct disjoint paths which end nodes are u and v.
The multi-path with disjoint links cannot be calculated by simply using the multi-

pass Flody function [40]. We will illustrate this point through an example of the 
shortest path with two paths. As shown in Fig. 5a, this is a complete graph between 
four nodes, and the path length graph has been marked. Simply call the Flody 
algorithm (or other similar shortest path method) to find the disjoint shortest path 
between a and d. The process is as follows: Find the first path a − b − c − d as the 
shortest single path, and the path length is 3. Since the paths do not intersect, the 
length of the second path a − d is 8 and the total length of the multipath is 11. But 
this solution is not optimal.

In order to effectively solve this problem, we use the following methods to opti-
mize. On the premise of finding the first path a − b − c − d , the first path is reversed, 
that is, only the reverse path is allowed, as shown in Fig. 5b.

At this time, call the Flody function to find the correct second shortest path, 
where a − c − b − d path length is 7 less than a − d length 8 path. After find-
ing the two paths, the two paths need to be integrated and optimized to obtain 
the correct shortest path of disjoint multipath. The two paths at this time are 
a − b − c − d and a − c − b − d . Obviously, the b − c path in the middle has both 
forward and reverse paths. According to the principle of cyclic cancellation, the 
final shortest double paths can be obtained as a − c − d and a − b − d . And the 
total length of the multi-path is 8, which is the optimal solution (as shown in 
Fig.  5). The principle of finding the shortest path of the multipath with more 
than 2 paths is exactly the same. It is only necessary to reverse all the shortest 
paths of the two paths found, and then call the Flody function on the new graph 
to find the third shortest path. Combining the previous two paths and integrating 
and optimizing them through the principle of circular cancellation, the shortest 
path of the multi-path can be obtained. The idea of the above algorithm comes 

(a) (b)

Fig. 5  a Complete graph with 4 vertices, b complete graph after reverse optimization
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from the calculation algorithm of network flow. First, consider multiple disjoint 
paths as a network flow from the source node to the terminal node. Then the 
algorithm of network flow is modified to calculate disjoint paths.

In the following disjoint path algorithms, a sub-algorithm Find_Paths is 
used repeatedly. This algorithm is used to get a shortest path from s to si where 
s = (xnxn−1 ⋅ ⋅ ⋅ x1;u) and si = (xnxn−1 ⋅ ⋅ ⋅ xi ⋅ ⋅ ⋅ x1;i) . For convenience, we first 
give the sub-algorithm Generate_Paths as follows.

The first situation is that nodes s and t are adjacent in the same 
clique. Therefore, nodes s and t satisfy the following two conditions: (1) 
xnxn−1 ⋅ ⋅ ⋅ x1 = ynyn−1 ⋅ ⋅ ⋅ y1 and (2) u ≠ v . Therefore, we propose an algorithm 
DP_con to construct n-disjoint paths between s and t.

The following lemma will prove that the n paths constructed by the algorithm 
DP_con are disjoint, and the maximum length of the constructed path is 9.

Lemma 3.5 Algorithm DP_con can construct n-disjoint paths with a maximum 
length of 9 between nodes s and t, where s and t are adjacent in the same clique.

Proof Since the nodes s and t are adjacent in the same clique, we let 
s = (xnxn−1 ⋅ ⋅ ⋅ x1;a) and t = (xnxn−1 ⋅ ⋅ ⋅ x1;b) . Through the algorithm DP_con, we 
know that lines 4–5 construct a path from s to t through the external-neighbor of 
node s, lines 6–7 construct a path (s,  t) and lines 8–9 construct n − 2 paths from 
s to t through nodes (xnxn−1 ⋅ ⋅ ⋅ x1;i) where i ∈ ⟨n⟩�{a, b} is (s, (xnxn−1 ⋅ ⋅ ⋅ x1;i), t) . 
We know that the nodes s, t and (xnxn−1 ⋅ ⋅ ⋅ x1;i) are in the same clique. Thus, these 
n − 2 paths are disjoint. In summary, the n paths from s to t constructed by algo-
rithm DP_con are disjoint. Next, we analyze the maximum length of the path con-
structed by the algorithm DP_con. Obviously, among the paths constructed by the 
algorithm DP_con, the length of the path constructed from lines 4–5 is the longest 
and its length is 9. In summary, the algorithm DP_con obtains n-disjoint paths from 
s to t, and the length of the path does not exceed 9.   ◻
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4  Fault‑tolerant routing algorithm

In this section, a fault-tolerant routing algorithm DPFR is proposed for the pres-
ence of faulty node in the network.

Let F be a faulty node set of Q3
n
 . This algorithm can obtain a fault-free path 

between any two distinct fault-free nodes s and t in Q3
n
 when the faulty node set 

|F| ≤ 2n − 1 . Then the time complexity of the algorithm is analyzed and the maxi-
mal length of the fault-free paths constructed by the algorithm. An n-dimensional 
Q3

n
 can be divided into three subgraphs of the same size according to whether the 

i-th bit is 0, 1 or 2, and denote these three subgraphs as Si=0
n−1

 (0-subgraph), Si=1
n−1

 
(1-subgraph), and Si=1

n−1
 (2-subgraph), respectively.

Theorem  4.1 There exists an O(n) algorithm for finding a fault-free path P 
between any two distinct fault-free nodes in Q3

n
 with a faulty node set F ⊂ V(Q3

n
) with 

|F| ≤ 2n − 1.

Proof Given two nodes s and t in Q3
n
− F with a faulty node set F ⊂ V(Q3

n
) with 

|F| ≤ 2n − 1 , we propose an algorithm DPFR. In the algorithm DPFR, we will use 
the algorithm DPFR and its sub-algorithm DP_con. The sub-algorithm DP_con uses 
a loop to find the addresses of different bits in the coordinate representation of any 
two nodes, and stores these addresses in a list L in turn. The time complexity of 
sub-algorithm DPG is O(n). In the following, we use DP_con(s, t) to represent the 
obtained list Q between nodes s and t, and H(s, t) to represent the Hamming distance 
between nodes s and t. Next, we propose the algorithm DPFR.  ◻
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And then, the time complexity of algorithm DPFR is analyzed. At the beginning 



13105

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

of the algorithm, the Hamming distance d between nodes s and t needs to be calcu-
lated. Then, obtain a list L which contains the different bit between nodes s and t. 
The time complexity are both O(n). We know that the sub-algorithm Construct_d 
can be computed in constant time, and the core part of the algorithm DPFR is a sub-
algorithm Fault-freeP, which divide Q3

n
 into three subgraphs Si=0

2n−1
 , Si=1

2n−1
 and Si=2

2n−1
 

such that s ∈ Si=0
2n−1

 , t ∈ Si=1
2n−1

 and t ∈ Si=1
2n−1

 . Assume that Si=1
2n−1

 contains at most n−1
2

 
faulty nodes of F, then obtain a fault-free path from node a to node s(1) ∈ Si=1

2n−1
 . 

Next, regard s(1) as s, and repeat the above method to find a fault-free path from 
nodes s to t in the subgraph Si=1

2n−1
 . Assume that the fault-free path constructed by 

algorithm DPFR is as follows: s ∼ t = s ∼ s(1) ∼ ⋅ ⋅ ⋅ ∼ s(i) ∼ s(i+1) ∼ ⋅ ⋅ ⋅ ∼ s� ∼ t . 
Since there are at most 2n − 1 faulty nodes, a fault-free path of length at most 4 can 
be found from node s to some node s(1) ∈ Si=1

2n−1
 . Then find a fault-free path from 

node s(1) to node t in Si=1
2n−1

 . Repeat the above process, find a fault-free path of length 
at most 4 from node s(i) to node a(i+1) ∈ Si=1

2n−(i+1)
 , until s(i+1) = t or s(i+1) and t are 

divide into a fault-free subgraph. Since |F ∩ Si=1
2n−(i+1)

| ≤ |F ∩ Si=1
n−i

| ⧵ 2 and 
|F| ≤ 2n − 1 , it can get a subgraph Sn−[log(n−1)] which satisfy F ∩ Sn−[log(n−1)] = � , 
node s([log(n−1)]) is denoted as s′ and t ∈ Sn−[log(n−1)] . Then use the shortest path algo-
rithm DP_con to find a path from s′ to t, and it takes O(n) time. It is clearly that rout-
ing s(i) to the opposite subgraph cost O( n

3i
) time since there are at most n

3i
 nodes need 

to be explore. Therefore, the total time complexity for finding the fault-free path 
from s to t in Q3

n
 is

  ◻

Multi-path routing has better performance because it does not use the optimal 
path, but uses multiple sub-optimal paths. Compared to using a few sub-optimal 
paths, using multiple sub-optimal paths does not cause much performance degrada-
tion. Compared with the shortest path routing, multi-path routing can usually pro-
vide a better routing scheme for multiple parties participating in the game in the 
network. According to the network flow theory [41], the proposed disjoint paths can 
provide larger network flow than partially disjoint paths. Therefore, routing based 
on disjoint paths has better network load balancing, which is more conducive to 
improving the overall utilization of the network.

5  Simulation and performance evaluation

In this section, simulation experiments were carried out to compare the perfor-
mance of the proposed DPFR with the two most representatives of the existing rout-
ing schemes, e.g., Minimal routing (Min) [42], Tree-based routing (Tree) [43] and 

T(n) = O(n) + O(n) + O(n) + O(

log∑

i=0

n
n

3i
)

= 3O(n) + O(n +
n

3
+ ⋅ ⋅ ⋅ +

n

3logn
)

= O(n).
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DPFR. The minimal routing means that if a data packet can only jump from a node 
to a connected node when the movement corrects an inconsistent bit. The tree-based 
routing algorithm uses all header files to route along the tree. Multi-destination mes-
sages use all header flits in the message to route through the network at each inter-
mediate node along the path of the multi-destination message. The scale of network 
is 8 ∗ 8 ∗ 8 , including 512 nodes. Each Switch is connected to four IP cores through 
a local port, and the number of IP cores is 256. Min and Tree adopt XYZ routing and 
DPFR adopt E-cube routing.

5.1  Simulation environment

The flit-level simulator [44] was used to evaluate the proposed fault-tolerant routing 
algorithm. The simulator uses wormhole routing mechanism. The network param-
eters of the flit-level simulator are set as below: the number of virtual channels in 
each physical channel is set to 4, and the size of each virtual channel is set to store 
4 flits. The message length is set to 190 bytes and chip length is set to 150 bits. 
The simulation experiment runs 20,000 clock cycles each time, and the preheating 
period is set to the first 10% of the clock. In order to make the simulation results 
more accurate, the simulator runs 20 times under the same parameter configuration, 
and takes the arithmetic average as the output value of the simulation results.

In the flit-level simulator, the calculation methods for evaluating network per-
formance parameters such as throughput, average delay and buffer utilization. The 
throughput refers to the maximum throughput of a given topology under the ideal 
flow control and routing mechanism. The delay is the average value of the routing 
delay between all communication node pairs in the whole network, assuming no 
congestion occurs in the routing process. The buffer utilization means that the cache 
is in the maximum allowable space, and the number of caches used to store micro-
chips in the switching nodes and IP cores accounts for the proportion of the entire 
network cache.

5.2  Simulation results and discussion

The following four modes were used to carry out experiments: Random mode, Local 
mode, Hoptspot mode and Bitreversal mode. The generation of messages obeys 
exponential distribution. Under the random mode, the network traffic is randomly 
distributed, and the probability of each node receiving data packets is equal. Under 
local load mode, 60% of the traffic is limited to four IP cores in the cluster, 30% to 
six nodes with Manhattan distance of 1, and 10% of the traffic is sent to other nodes 
in a random distribution. Under the hotspot load mode, this paper considers the case 
of 300% single hotspot (hotspot receives 300% more traffic than other nodes). Min 
chooses the network center node as the hotspot, and (1, 1, 1) is chosen as the hotspot 
for the 4 ∗ 4 ∗ 4 Min routing. Because of the symmetry of DPFR, a node 141 is 
chosen arbitrarily as the hot spot. Under the four flow modes, the DPFR algorithm 
is simulated in the presence of structural failures, and the average delay, average 
throughput, and cache utilization under different packet injection rates are recorded.
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Figure 6 shows the average delay and injection rate of DPFR and Min under dif-
ferent modes. As shown in Fig. 6a, the delay of both structures is very low when the 
injection rate is less than 0.51 under random load mode. While the injection rate 
is greater than 0.51, the delay of Min increases rapidly. While the injection rate is 
greater than 0.46, the DPFR delay also increases, but the increase is smaller than 
that of Min. This is because DPFRs have shorter diameters than Min.

Figure  6b shows the delay comparison under local mode. As shown in figure, 
the delay growth of DPFR is flat, and when the injection rate is greater than 0.4, 
the delay growth begins to accelerate. DPFR have smaller buffer utilization in local 
mode than in random load mode, so DPFR has shorter average delay in local load 
mode than in random load mode. For Min, when the injection rate is small, the delay 
under local load is smaller than that under random load, which is also due to the 
smaller buffer utilization. While the injection rate is greater than 0.41, the average 
delay of Min in local mode increases sharply. This is because there are fewer adja-
cent nodes on the six outermost planes of Min. While the injection rate increases, 
a large number of communication gathers in fewer points, which are more prone to 
blocking, resulting in a significant increase in the delay of data packets waiting to be 

(a) (b)

(c) (d)

Fig. 6  Performance evaluation of average latency in different modes: a random mode, b local mode, c 
hotspot mode, d bitreversal mode



13108 Y. Zhang et al.

1 3

processed. In this case, the delay due to blocking is much larger than the delay due 
to the shortening of the buffer utilization. Therefore, when the injection rate is high, 
the average delay of Min under local mode is larger than that under random mode. 
The delay of both algorithms is low when the injection rate is small, and the average 
delay of DPFR is slightly less than that of Min. While the injection rate is high, the 
average delay of DPFR is much smaller than Min.

Figure 6c shows the average delay comparison in hotspot mode. While the injec-
tion rate is higher than 0.55, the average delay of both structures increases. Thereaf-
ter, at the same injection rate, the average delay of DPFR is always lower than that 
of Min. In addition, because congestion is easy to occur in hot spots, and determin-
istic routing algorithm is adopted in both structures, the algorithm will not adjust the 
routing according to the load. Therefore, some packets will wait a long time to apply 
for hotspot resources, so the delay of hotspot load mode increases obviously at low 
injection rate.

Figure  6d shows the relationship between average delay and injection rate of 
three algorithms under bitreversal load mode. Under bitreversal load mode and low 
injection rate, the average delay of DPFR and Min is lower. With the increase in 
data packet injection rate, the average delay of DPFR and Min also increases. While 
the injection rate is less than 0.52, the average delay growth of the DPFR is slightly 
larger than that of the Min. While the injection rate is greater than 0.55, the average 
delay of Min increases more than that of DPFR. This is because the node degree of 
the outermost node of Min is small. While the injection rate increases, these nodes 
are more likely to block, so the waiting time for processing data packets increases 
significantly. Compared with the random load mode, the average delay of the three 
topologies in the local load mode is larger when the injection rate is higher. This is 
because the increase time caused by network congestion is much longer than the 
decrease time caused by the shortening of buffer utilization. The average delay of 
the DPFR is 18.5% lower than that of the Min while the injection rate is 0.76. The 
average delay of the DPFR is 19.1% lower than that of the Min while the injection 
rate is 0.52.

Figure 7 shows the average throughput and injection rate of DPFR and Min under 
different load modes. As shown in Fig. 7a, in the case of random load mode, when 
the injection rate is less than 0.15, there is no congestion in the network. Under the 
same injection rate, the network throughput is basically the same. As the packet 
injection rate continues to increase, the network becomes busy and the throughput 
finally reaches saturation. For a DPFR, when the injection rate is higher than 0.2, the 
saturated throughput of the network is 0.27. In Min routing, when the injection rate 
is 0.16, the saturated throughput of the network is 0.19. The saturated throughput of 
DPFR is 43.2% higher than that of Min routing.

Figure 7b shows the throughput and injection rate under local mode. While the 
injection rate is higher than 0.6, Min reaches saturation and saturation throughput is 
0.13. The saturated throughput of DPFR is 0.35, which is 16.77% higher than that of 
Tree routing.

Figure 7c shows the relationship between throughput and injection rate under hot-
spot mode. While the injection rate is higher than 0.7, these three algorithms tend 
to be saturated and the throughput difference is small. The overall throughput of 
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DPFR is slightly higher than that of Min routing. It can be seen that the single hot 
spot mode is more saturated than the other two modes, and the single hot spot is the 
bottleneck of the whole network. Meanwhile, the network throughput has little rela-
tionship with the topology.

Figure 7d shows the throughput and injection rate of the three topologies. The 
experimental data of network throughput of DPFR and Min are obtained by simula-
tion under Bitreversal load mode. While the injection rate is less than 0.19, there is 
no congestion in the network. At the same injection rate, the network throughput 
is basically the same. With the increase of data packet injection rate, the network 
becomes busy gradually. The DPFR will reach saturation state. For DPFR, when 
the injection rate reaches 0.21, the network reaches saturation, and the throughput at 
saturation is 0.17. For Min algorithm, when the DPFR network reaches saturation, 
the throughput of Min is 0.21. When the DPFR is saturated, the throughput is 7.7% 
lower than that of the Min.

As shown in Fig. 8a, the total number of data packets increases continuously 
until the network reaches saturation state with the gradual increase of injection 
rate under the random mode. When the network reaches saturation state, the 

(a) (b)

(c) (d)

Fig. 7  Performance evaluation of average throughput in different modes: a random mode, b hotspot 
mode, c transpose mode, d bitreversal mode
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difference between the buffer utilization of DPFR and Min is small. The buffer 
utilization of DPFR is 12.8% less than that of Min. As shown in Fig.  8b, the 
buffer utilization of DPFR is close to Tree when the injection rate is 0.15 under 
local mode. The average hop number of DPFR is 7.2% less than that of Min. Fig-
ure 8c shows the the buffer utilization of three algorithms under hotspot mode. 
Under the hotspot mode, the difference between the buffer utilization of DPFR 
and the buffer utilization of DPFR is small. While the injection rate is 0.36, the 
average hop number of DPFR is 6.5% less than that of Min. Figure 8d shows the 
buffer utilization of three algorithms under bitreversal mode. The buffer utiliza-
tion of the DPFR under this load mode is about 9.6% less than that of the Min. 
The buffer utilization of the three algorithms in bitreversal mode is less than the 
experimental values in random mode.

As shown in Fig.  9, the performance of the three algorithms changes as the 
failure rate increases. Figure 9a–c shows the average latency, average throughput 
rate, and buffer utilization as the failure rate increases. Figure 9d shows the time 
consumed by the three algorithms in constructing a fault-free path. DPFR shows 
good performance in terms of average delay, throughput, cache utilization, and 

(a) (b)

(c) (d)

Fig. 8  Performance evaluation of buffer utilization in different modes: a random mode, b hotspot mode, 
c transpose mode, d bitreversal mode
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algorithm time overhead. Because Min and Tree routing transmit data packets 
along a fixed path, the DPFR algorithm transmits When data packets, the routing 
is evenly distributed in the rectangular space from the source node to the destina-
tion node. In the case of the same data packet injection rate, each node using the 
DPFR algorithm needs to process the data packets more averagely. Therefore, the 
delay is lower, and the greater the injection rate and the greater the congestion, 
the performance advantage of the DPFR algorithm is more obvious.

Table 2 shows the comparison between the three algorithms and the average value 
of the performance parameters in the four modes. Compared with the other two algo-
rithms, DPFR shows obvious performance advantages in terms of average delay. In 
terms of average throughput, it is close to the Min algorithm and has obvious advan-
tages over the Tree algorithm. In terms of buffer utilization, DPFR has obvious advan-
tages over Tree routing, but it is inferior to Min routing in some cases.

(a) (b)

(c) (d)

Fig. 9  Comparison of algorithm performance under different failure rates: a average latency, b average 
throughput, c buffer utilization, b the time consumption to get a fault-free path
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6  Conclusions

High-performance interconnection network is a key factor that determines the per-
formance of parallel computers. Reliability requires that the interconnection net-
work can continue to operate normally when its routing switch node fails. In this 
paper, we propose a new virtual network partition scheme for 3-ary n-cube net-
works with structural failures. The proposed fault-tolerant routing algorithm is a 
deadlock free fully adaptive routing algorithm. Firstly, we classify and analyze the 
types of structural faults, which are expressed as convex faults. Secondly, we con-
struct disjoint paths in 3-ary n-cube networks based on structural faults. Finally, a 
fault-tolerant routing algorithm based on turn model is proposed when there is a 
fault in 3-ary n-cube network. Each physical channel only needs four virtual chan-
nels to avoid deadlock. We gave the detailed proof process of deadlock free routing 
algorithm, which shows that the algorithm is feasible in 3-ary n-cube network with 
2n − 1 faulty nodes. In addition, research shows that for routes that use fewer virtual 
channels, the lower the cost and the higher the reliability.
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