
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:13090–13114
https://doi.org/10.1007/s11227-021-03799-0

1 3

Fault‑tolerant routing algorithm based on disjoint paths
in 3‑ary n‑cube networks with structure faults

Yujie Zhang1,2 · Weibei Fan1,2 · Zhijie Han2 · Yunfei Song3 · Ruchuan Wang1,2

Accepted: 7 April 2021 / Published online: 19 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
The 3-ary n-cube network is widely used in large-scale multi-processor paral-
lel computers. It is an important issue to design high-performance communication
technology with fault tolerance. In this paper, we study the fault-tolerant routing of
3-ary n-cube without desired intersection. Firstly, we propose a fully adaptive rout-
ing algorithm for 3-ary n-cube network based on the new virtual network partition
technology. The virtual channel allocation of the algorithm is given and its dead-
lock free property is proved. Secondly, we propose a construction of disjoint paths
in 3-ary n-cube networks under the fault model. Finally, we propose a novel fault-
tolerant routing algorithm for 3-ary n-cube networks based on the disjoint path with
structure faults. The simulation results show that the proposed fault-tolerant routing
algorithm outperforms the previous fault-tolerant routing algorithm in many situa-
tions, which has a 19–21 percent increase in throughput and the injection rate.

Keywords 3-Ary n-cube · Disjoint path · Structure faults · Fault-tolerance · Routing
algorithm

 * Weibei Fan
 wbfan@njupt.edu.cn

1 College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023,
China

2 Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks,
Nanjing 210003, China

3 System Engineering Institute, Macau University of Science and Technology, Macao 999087,
China

http://orcid.org/0000-0003-1255-5815
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03799-0&domain=pdf

13091

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

1 Introduction

With the rapid development of information society, high performance computing
(HPC) has been the third pillar of scientific research following theoretical sci-
ences and experimental sciences. In the research of HPC, improving operation
efficiency has always been the primary goal of its development.

Parallel computing is an effective means to improve the computing speed of
the systems. Interconnection networks take vital roles in parallel computing sys-
tems, the selection of an interconnection network is crucial as it can greatly affect
communication performance, hardware costs and fault tolerant capabilities. The
topology of interconnection network defines the connections between the pro-
cessors of the parallel computing system. Numerous interconnection networks
have been proposed, such as hypercubes [1], crossed cubes [2], exchanged hyper-
cubes[3], DCell networks [4], k-ary n-cubes [5].

With the expansion of network scale and increase in complexity, the reliability
and stability of the network have become more and more urgent. Ensuring the
efficient and safe operation of the network has become very important. Reliabil-
ity of interconnection networks is crucial for evaluating the network performance
[6]. It is necessary to consider the reliability for running distributed systems,
and the fault tolerance of interconnection networks has been extensively studied
[7–9]. There are many types of failures: single node failures, link failures, and
fault domains where two types of failures are connected. In reality, processors
that are linked could affect each other, and the neighbors of a faulty processer
might have a higher probability of becoming faulty later. It should be noted that
rapid development of technology in nowadays, networks and subnetworks are
made into chips [10]. That means if any node/nodes on the chip become faulty,
the whole chip can be considered to be faulty. This reason motivated the research
on the effect caused by some structures or subgraphs becoming faulty, instead of
considering the effect of nodes or edges becoming faulty [11].

Q3
n
 network is an on-chip network structure widely used in multi-processor par-

allel computers [12]. Performance and fault tolerance are the two main prob-
lems facing the design of large-scale multi-processor systems. Because of this,
high-performance communication technology with fault tolerance has become a
very challenging problem. However, fault tolerance is massively parallel process-
ing. The most basic requirements of the device. On the one hand, although mod-
ern routers are becoming more and more robust, due to the long-term operation
of the components, the probability of errors will increase [13]. Meanwhile, the
scale of parallelism and multi-processors become larger, and the probability of
failure chains will also increase. On the other hand, routing algorithms originally
designed for fault-free networks fail under the influence of faulty nodes or faulty
chains. If the message is mistransmitted, the entire network will cause conges-
tion or even deadlock. For example, for deterministic routing algorithms, such as
DOR routing algorithms, since there is only one alternative path, when this only
path is caused by a failure when blocked, the message will be blocked [14–16].

13092 Y. Zhang et al.

1 3

Therefore, it is critical to design a multi-processor parallel routing fault-tolerant
mechanism, especially for the Q3

n
 network.

Fault-tolerant routing is a common fault-tolerant mechanism for solving multi-
processor parallel computers. A good fault-tolerant routing algorithm needs to well
alleviate possible routing congestion to achieve load balancing, and it also needs
to consider the quality of service, that is, to select the shortest routing path and
minimize communication delay as much as possible [17]. Data transmission can be
effectively guaranteed by finding parallel paths (disjoint paths) between the vertices
of the network. The problem of disjoint paths can generally be divided into three
categories: one-to-one disjoint paths, one-to-many disjoint paths and many-to-many
disjoint paths [18]. One-to-one disjoint path refers to a disjoint path connecting two
different vertices. One-to-many disjoint path considers the disjoint path (k ≥ 2) con-
necting a vertex s and k vertices t1, t2,… tk . A many-to-many disjoint path refers
to a disjoint path connecting k vertices s1, s2,… , sk and k vertices t1, t2,… tk . Dis-
joint multi-path routing is an effective strategy to achieve robustness to forward data
along multiple links or disjoint paths of nodes in the network.

The avoidance of deadlock is very important in the implementing an adap-
tive fault-tolerant routing algorithm. A common method is to divide each physi-
cal channel into a certain number of virtual channels to avoid deadlock. The
resources (such as cache, bandwidth) on the physical channel will be allocated to
each virtual channel [19]. Therefore, the number of virtual channels required in
the deadlock avoidance mechanism will affect the efficiency of resource utiliza-
tion in the routing mechanism. Under the condition of relatively limited physical
resources, how to use fewer virtual channels so that each virtual channel is allo-
cated more resources. However, using fewer virtual channels increases the diffi-
culty of the deadlock avoidance mechanism.

In this paper, we focus on the construction of disjoint paths and fault-tolerant
routing of Q3

n
 with structure faults. The main contributions of this paper are listed

as follows:

1. We propose an O(n2) algorithm to give the disjoint path between any two distinct
nodes in Q3

n
 . And after analysis, the maximum length of n-disjoint paths between

any two distinct nodes in Q3
n
 is no more than 2n − 1.

2. We give a disjoint path based fault-tolerant routing algorithm DPFR, which can
tolerate the number of faulty nodes not exceeding the size of connectivity.

3. We analyse the time complexity of the algorithm DPFR is O(n) and four modes
are implemented to evaluate the performance of the proposed algorithm in terms
of injection rate, throughput, average delay, and buffer utilization.

The remaining of this paper is organized as below. Section 2 introduces the related
work of disjoint paths and fault-tolerant routing. Section 3 provides the preliminar-
ies used throughout this paper and gives the formal definition and properties of Q3

n
 ,

and proposes an algorithm for finding n-disjoint paths between any two distinct
nodes of Q3

n
 . A fault-tolerant routing algorithm for Q3

n
 are given in Sect. 4. Simula-

tion and experiment results are presented in Sect. 5. Section 6 concludes the paper.

13093

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

2 Related works

The algorithm in the interconnection network needs to consider the following fac-
tors when designing: avoiding deadlock, resource allocation, self-adaptation and
fault tolerance. There are two main solutions to avoid deadlock in network transmis-
sion of data packets [20]. One is to use virtual channels to divide the network into
several virtual sub-networks. Another method is to limit the turn of routing mes-
sages in certain situations. To realize the efficient allocation of resources, it is neces-
sary to make the number of virtual channels as small as possible. Meanwhile, it also
needs to be adaptive to the algorithm and restrict certain turns. Fault-tolerant routing
requires the support of an effective fault model, while deadlock avoidance and high
self-adaptation are also necessary conditions for fault tolerance.

The routing algorithm determines the path that the data will go through in the
switch fabric, so the quality of the routing algorithm has a great impact on the sys-
tem performance [21]. Ren et al. [22] proposed a traffic balancing forgetting routing
algorithm in 2-D grids and tori. In addition, they also provide two different granu-
larity fault detection and analysis schemes, and ensure orderly packet delivery by
assigning a unique path to each process. Zhao et al. [23] proposed a fault-tolerant
minimum routing algorithm for two-dimensional grids. By calculating the fault-tol-
erant Manhattan path from each node to the source node or the target node, it marks
these nodes as nodes with lower time complexity. In the process of path counting,
no available nodes will be sacrificed under any fault distribution. Compared with
the work based on fault block model, this method is not affected by fault distribution
and has low computational complexity.

Zhao et al. [24] proposed a general fault-tolerant minimum routing of the grid
structure. Habibian et al. [25] proposed a fault-tolerant routing algorithm for hyper-
cube and CCC (Cube Connected Cycles) networks of any fault size and type based
on the best priority search and backtracking strategy. Dong et al. [26] studied the
paths and cycles embedding into 3-ary n-cubes with faulty nodes and links. Li
et al. [27] studied the embedding of paths and cycles into 3-ary n-cubes with path
restrictions. Francalanci et al. proposed a deadlock-free multicast routing algorithm
(DFMR) for k-ary n-cube networks, which prevents deadlock by allowing nodes to
send flit immediately when the link between nodes is available for transmission.
Zhang et al. [28] studied the structure connectivity and substructure connectivity of
bubble-sort star graph, furthermore, Zhang et al. [29] proved the structure connec-
tivity and substructure connectivity of k-ary n-cubes.

Multi-path fault-tolerant routing means that there are multiple paths to choose
from between the source and the destination. When one of the paths is interrupted
due to a node failure, the other path is quickly and randomly selected with prob-
ability, so multi-path fault-tolerant routing has good fault tolerance. The disjoint
path refers to a path that does not share any common nodes except for the two ends.
Disjoint paths are fundamental and essential for parallel computing, fault-tolerance,
and load balancing of a network [9]. Disjoint paths can ensure the stable and safe
transmission of data in the network. At present, there have been a lot of researches
on disjoint paths of well-known networks. Wang et al. [30] designed an algorithm

13094 Y. Zhang et al.

1 3

to construct at least �1(G) disjoint paths based on any two distinct nodes in general-
ized hypercube under the 1-restricted connectivity. Then, Wang et al. [31] designed
an algorithm to give disjoint paths between any two distinct nodes of exchanged
generalized hypercube. Lai [32] studied the optimal construction of all shortest dis-
joint paths in the hypercube with applications. Wang et al. [33] constructed n + k − 1
disjoint paths between every two distinct nodes of the k-dimensional DCell net-
work and propose an algorithm for finding a one-to-one r-disjoint path cover in Dk,n
for any integer 1 ≤ r ≤ n + k − 1 [33]. Guo et al. [34] give an O(�(G)2) algorithm
BuildPathSet(u, v) to get a set of �(G) disjoint paths between arbitrary distinct nodes
u and v in BCube.

Krishnan et al. [35] proposed a fault-tolerant routing algorithm with minimum
delay for grid architecture. The algorithm can find fault-tolerant paths from source
to target at the minimum Manhattan distance. Otake et al. [36] proposed two meth-
ods for fault-tolerant routing in the crossed cube. Aspnes et al. [20] given the fault-
tolerant routing in P2P systems, and considered the problem of designing an overlay
network and routing mechanism that permits finding resources efficiently in a peer-
to-peer system. Xiang et al. [37] proposed a deadlock-free unicast scheme based on
minus-first routing for Dragonfly networks. Minus-first routing is a partially adap-
tive routing scheme in dragonfly networks without virtual channels. Furthermore,
Xiang et al. [38] proposed a new deadlock-free adaptive fault-tolerant routing algo-
rithm based on two-tier security information model. The new fault-tolerant routing
algorithm can not only tolerate static and dynamic failures, but also avoid dead-zone
and aimless error routing by using the new security information model. When a
faulty block is encountered in the process of sending a message from the source
node to the destination node, the number of virtual channels will be increased in
order to avoid deadlock. In fact, some well-known deterministic strategies (XY rout-
ing, turn models, etc.) are good ways to avoid deadlock. They all send data packets
through the same fixed path between each source and target pair. However, if the
traffic is concentrated in the same area, congestion may occur, and multi-path rout-
ing will cause the load to concentrate on the boundary of the faulty area. Therefore,
this will have a negative impact on performance and reduce the throughput of the
routing algorithm.

3 System model

3.1 Preliminaries

In this section, we will give some definitions used in this paper. Interconnection net-
works are generally modeled with a graph G = (V ,E) , where the vertex set V repre-
sents processors and the edge set E represents communication links between proces-
sors. A path in G is a sequence of distinct nodes, P = (x0, x1,… , xk−1, xk) , in which
any two consecutive nodes xi and xi+1 are adjacent for any integer 0 ≤ i ≤ k . We
denoted the path P by x0 ∼ xk and an edge (ai, ai+1) in P by xi → xi+1 . Let P − ak to
denote the path (a0, a1,… , ak−1) . The length of a path P is the number of edges in P.

13095

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

A path P is called fault- free if all nodes in P are non-faulty. Suppose P and
P′ are the two paths from node x to node y, if the other nodes are distinct except
for nodes x and y, then we say P and P′ are disjoint. The distance between nodes
x and y is written as dist(x, y), which is the minimum value of all path lengths
from x to y. The diameter of G is the maximum distance between any two dis-
tinct nodes in G, denoted as max{dist(x, y) ∣ x, y ∈ V(G) and x ≠ y} . Let G be a
graph and F(G) be the faulty set of G. We refer to an edge (x, y) ∈ E(G) where
x ∉ V(F(G)) and y ∉ V(F(G)) , as a safe crossing-edge.

The 3-ary n-cube Q3
n
 (n ≥ 1) has N = 3n vertices, each vertex can be denoted

by x = xn−1 … x1x0 , where 0 ≤ xi ≤ 2 for every 0 ≤ i ≤ n − 1 . As shown in Fig. 1,
two vertices x = xn−1 … x1x0 and y = yn−1 … y1y0 are adjacent if and only if there
exists an integer j with 0 ≤ j ≤ n − 1 , such that xj = (yj ± 1) mod 3 and xi = yi for
i ∈ {0, 1, 2,… , n − 1} − {j} . Furthermore, the i-th position, from the right to the
left, of the n-bit string x is called the i-dimension. For any two vertices x and y,
if and only if they are different in the j-dimension, then the edge (x, y) is called
a j-dimensional edge or simply a j-edge. A vertex incident to a j-edge is called a
j-dimensional vertex.

(a)

(b)

(c)

Fig. 1 a The 3-ary 1-cube Q3

1
 , b the 3-ary 2-cube Q3

2
 , c the 3-ary 3-cube Q3

3

13096 Y. Zhang et al.

1 3

3.2 Fault information model

In this section, We first classify the types of structural failures and extract the com-
monality of such failures. Then, we construct disjoint paths for such structural fail-
ure models.

In a 3-ary n-cube network, failures are random. According to statistics [15], the
following types of failure models are common in the network, and different failure
domains and failure cycles can be formed at the same time. As shown in Fig. 2a,
when the faulty server has a small affect on the area, the faulty structures could be
K1 , K1,1 , and K1,2 . While when the effect of the faulty server on the area is becom-
ing larger, the faulty structure could be K1,M with M ≥ 3 . In the convex fault model,
there are a total of 12 types of node locations on the fault. They are: (1) North, (2)
South, (3) West, (4) East, (5) North-east outer corner, (6) North-west outer corner,
(7) South-east outer corner, (8) South-west outer corner, (9) South-east inner corner,
(10) South-west inner corner, (11) North-east inner corner, (12) North-west inner
corner. Figure 2b shows the specific locations of different fault nodes on the fault
model. The faults of the K1,M series can be further restricted to the CM fault model.
For this type of structural failure, we uniformly represent them as a convex failure
model.

We define the following five types of messages as follows.
where (u0, u1) , (a0, a1) and (v0, v1) represent the source node, the current node and

the destination node in the 3-ary n-cube network, respectively.
Generally, the packets that have just been injected into the network can be divided

into four types, as shown in Table 1, which only belong to Dim0+, Dim0−, Dim1+
and Dim1−. Dim0+ and Dim0− messages will become Dim1+ or Dim1− messages

(a) (b)

Fig. 2 a Structure faulty elements in a mesh-based supercomputer, b faults model

13097

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

after completing X-dimensional routing. For Horizon0− packets, it is a kind of pack-
ets after the first four packets are blocked by faults and then rerouted.

Due to the Dimension Order Routing (DOR) routing algorithm [39], there is only
one alternative route, so when this only route is blocked by a fault, the message will
be blocked. Traditional DOR is very simple and efficient, but it can only be used in
regular 2D mesh. Since the 3-ary n-cube network itself has surrounding channels,
under the principle of the shortest route, it enables resource circulation applications
among channel resources of each dimension. There may occur deadlock while using
the DOR algorithm in 3-ary n-cube networks.

The virtual channel can solve the deadlock problem caused by information
exchange in the network. Applying DOR routing in a 3-ary n-cube network can
avoid deadlock through virtual channels. In the network, a total of two virtual chan-
nels need to be used, called V0 and V1 , respectively. The following are the rules for
the use of these two virtual channels: V0 is used for routing by all packets that have
not passed the wrap-around pass. If a message is routed on a certain dimension
and needs to use a surround channel, it must pass through the V1 virtual channel.
At the same time, in the future routing process, the message will always use V1 on
this dimension. Meanwhile, the virtual channels V0 in the same dimension will no
longer have resource recycling applications between each other. Therefore, based
on the DOR algorithm, we design a multi-path routing algorithm for 3-ary n-cube
networks. First, we describe the routing process of the west-bound preferential turn
model under the restricted convex fault model. The Dim0+, Dim0−, Dim1+ and
Dim1− messages are applied.

Lemma 3.1 For Dim0+ packets, before being blocked by the fault, the packets
always use the DOR dimension sequence routing algorithm. If the route on the
X-dimension is completed, it will either reach the destination node or become one of
Dim1+ or Dim1−.

Proof We prove it according to the following two cases.
Case 1 There is no obstruction by the fault model in the routing process. Dim0+

packets are routed to the right according to the DOR dimension sequence, and
finally Dim0+ packets will successfully complete the X-dimensional routing, either
directly reach the destination node, or become Dim1+ packets or Dim1− message.

Case 2 There is failure model occurred during the routing process. When the
message is routed along the X-dimension in the DOR dimension, it is blocked by the
faulty node. In the fault model used in this article, the message is blocked only when

Table 1 Symbols and notations
Dim0+ 0 < v

0
− u

0
<

1

2
⋅ 3

n

2 , or v
0
− u

0
≤ −

1

2
⋅ 3

n

2;
Dim0− −

1

2
⋅ 3

n

2 < v
0
− u

0
< 0 , or v

0
− u

0
≥

1

2
⋅ 3

n

2;
Dim1+

v
0
= u

0
 and 0 < v

1
− u

1
<

1

2
⋅ 3

n

2 , or v
1
− s

1
≤ −

1

2
⋅ 3

n

2;
Dim1−

v
0
= u

0
 and − 1

2
⋅ 3

n

2 < v
1
− u

1
< 0, or v

1
− u

1
≥

1

2
⋅ 3

n

2;
Horizon0− a

1
= v

1
 and a0 > v

0;

13098 Y. Zhang et al.

1 3

it encounters a ring node of the west location type. At this point, the message will
start to use the Westbound Priority Turning Model algorithm for detouring. Until
the Dim0+ message reaches the node on the ring whose position type is noth-west
outer corner or south-west outer corner. Subsequently, the message stops detouring
on the faulty ring, but re-dos the DOR dimension sequence routing. If it is hindered
by the next fault in the subsequent routing, it can be solved by a similar method, and
finally the routing on the X-dimension is completed. See Fig. 3a.

Case 3 For Dim0+ messages, when the message regains the dimension order
routing resource or reaches the north-west outer comer or south-west outer comer
node of the structural failure model, the detour of this message will end. The similar
case to Dim0−. ◻

Lemma 3.2 For Dim1+ and Dim1− messages, before being blocked by the fault,
the message always uses the DOR dimension sequence routing algorithm. If the
routing on the Y-dimension is completed, it either directly reaches the destination
node or becomes a Horizon0− message.

Proof We have the following two cases to prove.
Case 1 There is no fault model in the routing process. When Dim1+ and Dim1−

messages are routed in DOR dimension on the Y- dimension, no fault is encoun-
tered. The message will successfully complete the Y-dimensional routing and
directly reach the destination node.

Case 2 There is failure model occurred during the routing process. When Dim1−
message is routed south-ward in the DOR dimension on the Y-dimension, it is
blocked by the faulty node. In the fault model we use, the message is blocked only
when it encounters a node on the ring whose location type is north or north inner
corner. At this time, the message will start to use the westbound priority turning

(a) (b)

Fig. 3 Routing characteristics of turn model for Dim0+, Dim1+ and Dim1− messages under structural
fault model

13099

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

model algorithm to make a clockwise detour. If the message does not become a
Horizon0− message before reaching the easternmost node of the fault ring, it will
be passed southward until it becomes a Horizon0− message. If it is hindered by the
next fault in the subsequent routing, it can be solved by a similar method, and finally
the routing on the Y-dimension is completed. The routing of Dim1+ packets is simi-
lar to Dim1− packets. The difference is that the detour direction on the fault ring is
counterclockwise. And when it reaches the east-most node of the fault ring, it will
be transmitted to the north until it becomes a Horizon0− message. See Fig. 3b. ◻

Lemma 3.3 For Dim1+ and Dim1− messages, before being blocked by the fault,
the message always uses the DOR dimension sequence routing algorithm. If the
routing on the Y-dimension is completed, it either directly reaches the destination
node or becomes a Horizon0− message.

Proof We have the following two cases to prove.
Case 1 There is no fault model in the routing process. Dim0−The message is

routed to the left according to the DOR dimension sequence. Finally, the Dim0−
message will successfully complete the X-dimensional routing, and will either reach
the destination node or become one of Dim1+ or Dim1− messages.

Case 2 There is failure model occurred during the routing process. When the
message is routed along the X-dimensional DOR dimension, it is blocked by the
faulty node.

In the fault model we used, only when the nodes on the ring of the east, north cor-
ner and south inner comer location types are encountered, the message is blocked.
At this time, the Dim0− message will start to detour on the ring. If the node on the
ring is east, the message will select its neighboring node to the north or south as the
next hop node for detouring. If YoffsetY (dimension offset)>0, select the neighbor-
ing node to the north, and this message will be routed according to the routing pro-
cess of Diml+ message. If Yoffset<0, the neighboring node in the south is selected,
and the route will be detoured according to the routing process of Dim1− message.
Eventually, the detoured Dim0− message will become Horizon0− messages. If the
node on the ring is the northeast inner corner or the southeast inner corner, the rout-
ing algorithm provides 180 turns. The message can also be converted into Dim1+
message or Dim1− message for detouring. If it is in the subsequent routing, it will
be blocked by the next failure. It can be solved by a similar method, and finally
becomes Horizon0− message. See Fig. 4a. ◻

Summarizing the above lemmas, we can draw the following conclusions.
Through DOR dimension sequence routing and west-bound priority turn model
fault-tolerant routing, Dim1− and Dim1+ messages will reach the destination
node if they do not encounter failures when they are routed in the Y-dimension.
Otherwise, it will be routed through Horizon0− message and finally reach the
destination node. For Dim0+ messages, regardless of whether it encounters a fail-
ure during the dimension sequence routing on the X-dimension, the X -dimension
routing will be completed. If the destination node has not been reached at this

13100 Y. Zhang et al.

1 3

time, it will be routed through Dim1− or Dim1+ packets, and finally reach the
destination node. For Dim0− messages, if X-dimensional routing is completed,
Dim1− or Dim1+ messages can reach the destination node. Otherwise, it will
be routed through Horizon0− message and finally reach the destination node.
Then, if the Horizon0− message can reach the destination node smoothly when
it encounters a failure, all the messages will reach the destination node smoothly.
Horizon0− messages are Dim0+, Dim0−, Dim1+ and Dim1− messages. The
message is blocked by a fault during the routing process, or will eventually
become a message type.

Lemma 3.4 For Horizon0− message, the eastward priority turn model can be used
to make a detour, and finally reach the destination node.

Proof We have the following two cases to prove.
Case 1 There is no fault model in the routing process. The DOR dimension

sequence route can be used by Horizon0− messages to complete the route on the X
dimension and reach the destination node.

Case 2 There is failure model occurred during the routing process. Horizon0-
message will be routed clockwise or counterclockwise along the fault ring on the
faulty node. If a similar situation occurs in the subsequent routing process, it can be
solved by a similar method, and the destination node will eventually be successfully
reached. See Fig. 4b. ◻

We can draw the following conclusion: for all packets injected into 3-ary
n-cube network, no matter which one of the four packets belongs to, they can
reach the destination node successfully under these two turning model algorithms.

(a) (b)

Fig. 4 Routing characteristics of turn model for Dim0− and Horizon0− messages under structural fault
model

13101

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

3.3 Construction of disjoint paths

In this section, we will an algorithm for constructing disjoint paths between any
two distinct nodes u and v in Q3

n
 . Let P present a path between a and b where

u = (xnxn−1 ⋅ ⋅ ⋅ x1;s) and v = (ynyn−1 ⋅ ⋅ ⋅ y1;t) . According to the definition of Q3
n
 , we

can construct disjoint paths which end nodes are u and v.
The multi-path with disjoint links cannot be calculated by simply using the multi-

pass Flody function [40]. We will illustrate this point through an example of the
shortest path with two paths. As shown in Fig. 5a, this is a complete graph between
four nodes, and the path length graph has been marked. Simply call the Flody
algorithm (or other similar shortest path method) to find the disjoint shortest path
between a and d. The process is as follows: Find the first path a − b − c − d as the
shortest single path, and the path length is 3. Since the paths do not intersect, the
length of the second path a − d is 8 and the total length of the multipath is 11. But
this solution is not optimal.

In order to effectively solve this problem, we use the following methods to opti-
mize. On the premise of finding the first path a − b − c − d , the first path is reversed,
that is, only the reverse path is allowed, as shown in Fig. 5b.

At this time, call the Flody function to find the correct second shortest path,
where a − c − b − d path length is 7 less than a − d length 8 path. After find-
ing the two paths, the two paths need to be integrated and optimized to obtain
the correct shortest path of disjoint multipath. The two paths at this time are
a − b − c − d and a − c − b − d . Obviously, the b − c path in the middle has both
forward and reverse paths. According to the principle of cyclic cancellation, the
final shortest double paths can be obtained as a − c − d and a − b − d . And the
total length of the multi-path is 8, which is the optimal solution (as shown in
Fig. 5). The principle of finding the shortest path of the multipath with more
than 2 paths is exactly the same. It is only necessary to reverse all the shortest
paths of the two paths found, and then call the Flody function on the new graph
to find the third shortest path. Combining the previous two paths and integrating
and optimizing them through the principle of circular cancellation, the shortest
path of the multi-path can be obtained. The idea of the above algorithm comes

(a) (b)

Fig. 5 a Complete graph with 4 vertices, b complete graph after reverse optimization

13102 Y. Zhang et al.

1 3

from the calculation algorithm of network flow. First, consider multiple disjoint
paths as a network flow from the source node to the terminal node. Then the
algorithm of network flow is modified to calculate disjoint paths.

In the following disjoint path algorithms, a sub-algorithm Find_Paths is
used repeatedly. This algorithm is used to get a shortest path from s to si where
s = (xnxn−1 ⋅ ⋅ ⋅ x1;u) and si = (xnxn−1 ⋅ ⋅ ⋅ xi ⋅ ⋅ ⋅ x1;i) . For convenience, we first
give the sub-algorithm Generate_Paths as follows.

The first situation is that nodes s and t are adjacent in the same
clique. Therefore, nodes s and t satisfy the following two conditions: (1)
xnxn−1 ⋅ ⋅ ⋅ x1 = ynyn−1 ⋅ ⋅ ⋅ y1 and (2) u ≠ v . Therefore, we propose an algorithm
DP_con to construct n-disjoint paths between s and t.

The following lemma will prove that the n paths constructed by the algorithm
DP_con are disjoint, and the maximum length of the constructed path is 9.

Lemma 3.5 Algorithm DP_con can construct n-disjoint paths with a maximum
length of 9 between nodes s and t, where s and t are adjacent in the same clique.

Proof Since the nodes s and t are adjacent in the same clique, we let
s = (xnxn−1 ⋅ ⋅ ⋅ x1;a) and t = (xnxn−1 ⋅ ⋅ ⋅ x1;b) . Through the algorithm DP_con, we
know that lines 4–5 construct a path from s to t through the external-neighbor of
node s, lines 6–7 construct a path (s, t) and lines 8–9 construct n − 2 paths from
s to t through nodes (xnxn−1 ⋅ ⋅ ⋅ x1;i) where i ∈ ⟨n⟩�{a, b} is (s, (xnxn−1 ⋅ ⋅ ⋅ x1;i), t) .
We know that the nodes s, t and (xnxn−1 ⋅ ⋅ ⋅ x1;i) are in the same clique. Thus, these
n − 2 paths are disjoint. In summary, the n paths from s to t constructed by algo-
rithm DP_con are disjoint. Next, we analyze the maximum length of the path con-
structed by the algorithm DP_con. Obviously, among the paths constructed by the
algorithm DP_con, the length of the path constructed from lines 4–5 is the longest
and its length is 9. In summary, the algorithm DP_con obtains n-disjoint paths from
s to t, and the length of the path does not exceed 9. ◻

13103

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

4 Fault‑tolerant routing algorithm

In this section, a fault-tolerant routing algorithm DPFR is proposed for the pres-
ence of faulty node in the network.

Let F be a faulty node set of Q3
n
 . This algorithm can obtain a fault-free path

between any two distinct fault-free nodes s and t in Q3
n
 when the faulty node set

|F| ≤ 2n − 1 . Then the time complexity of the algorithm is analyzed and the maxi-
mal length of the fault-free paths constructed by the algorithm. An n-dimensional
Q3

n
 can be divided into three subgraphs of the same size according to whether the

i-th bit is 0, 1 or 2, and denote these three subgraphs as Si=0
n−1

 (0-subgraph), Si=1
n−1

(1-subgraph), and Si=1

n−1
 (2-subgraph), respectively.

Theorem 4.1 There exists an O(n) algorithm for finding a fault-free path P
between any two distinct fault-free nodes in Q3

n
 with a faulty node set F ⊂ V(Q3

n
) with

|F| ≤ 2n − 1.

Proof Given two nodes s and t in Q3
n
− F with a faulty node set F ⊂ V(Q3

n
) with

|F| ≤ 2n − 1 , we propose an algorithm DPFR. In the algorithm DPFR, we will use
the algorithm DPFR and its sub-algorithm DP_con. The sub-algorithm DP_con uses
a loop to find the addresses of different bits in the coordinate representation of any
two nodes, and stores these addresses in a list L in turn. The time complexity of
sub-algorithm DPG is O(n). In the following, we use DP_con(s, t) to represent the
obtained list Q between nodes s and t, and H(s, t) to represent the Hamming distance
between nodes s and t. Next, we propose the algorithm DPFR. ◻

13104 Y. Zhang et al.

1 3

And then, the time complexity of algorithm DPFR is analyzed. At the beginning

13105

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

of the algorithm, the Hamming distance d between nodes s and t needs to be calcu-
lated. Then, obtain a list L which contains the different bit between nodes s and t.
The time complexity are both O(n). We know that the sub-algorithm Construct_d
can be computed in constant time, and the core part of the algorithm DPFR is a sub-
algorithm Fault-freeP, which divide Q3

n
 into three subgraphs Si=0

2n−1
 , Si=1

2n−1
 and Si=2

2n−1

such that s ∈ Si=0
2n−1

 , t ∈ Si=1
2n−1

 and t ∈ Si=1
2n−1

 . Assume that Si=1
2n−1

 contains at most n−1
2

faulty nodes of F, then obtain a fault-free path from node a to node s(1) ∈ Si=1

2n−1
 .

Next, regard s(1) as s, and repeat the above method to find a fault-free path from
nodes s to t in the subgraph Si=1

2n−1
 . Assume that the fault-free path constructed by

algorithm DPFR is as follows: s ∼ t = s ∼ s(1) ∼ ⋅ ⋅ ⋅ ∼ s(i) ∼ s(i+1) ∼ ⋅ ⋅ ⋅ ∼ s� ∼ t .
Since there are at most 2n − 1 faulty nodes, a fault-free path of length at most 4 can
be found from node s to some node s(1) ∈ Si=1

2n−1
 . Then find a fault-free path from

node s(1) to node t in Si=1
2n−1

 . Repeat the above process, find a fault-free path of length
at most 4 from node s(i) to node a(i+1) ∈ Si=1

2n−(i+1)
 , until s(i+1) = t or s(i+1) and t are

divide into a fault-free subgraph. Since |F ∩ Si=1
2n−(i+1)

| ≤ |F ∩ Si=1
n−i

| ⧵ 2 and
|F| ≤ 2n − 1 , it can get a subgraph Sn−[log(n−1)] which satisfy F ∩ Sn−[log(n−1)] = � ,
node s([log(n−1)]) is denoted as s′ and t ∈ Sn−[log(n−1)] . Then use the shortest path algo-
rithm DP_con to find a path from s′ to t, and it takes O(n) time. It is clearly that rout-
ing s(i) to the opposite subgraph cost O(n

3i
) time since there are at most n

3i
 nodes need

to be explore. Therefore, the total time complexity for finding the fault-free path
from s to t in Q3

n
 is

 ◻

Multi-path routing has better performance because it does not use the optimal
path, but uses multiple sub-optimal paths. Compared to using a few sub-optimal
paths, using multiple sub-optimal paths does not cause much performance degrada-
tion. Compared with the shortest path routing, multi-path routing can usually pro-
vide a better routing scheme for multiple parties participating in the game in the
network. According to the network flow theory [41], the proposed disjoint paths can
provide larger network flow than partially disjoint paths. Therefore, routing based
on disjoint paths has better network load balancing, which is more conducive to
improving the overall utilization of the network.

5 Simulation and performance evaluation

In this section, simulation experiments were carried out to compare the perfor-
mance of the proposed DPFR with the two most representatives of the existing rout-
ing schemes, e.g., Minimal routing (Min) [42], Tree-based routing (Tree) [43] and

T(n) = O(n) + O(n) + O(n) + O(

log∑

i=0

n
n

3i
)

= 3O(n) + O(n +
n

3
+ ⋅ ⋅ ⋅ +

n

3logn
)

= O(n).

13106 Y. Zhang et al.

1 3

DPFR. The minimal routing means that if a data packet can only jump from a node
to a connected node when the movement corrects an inconsistent bit. The tree-based
routing algorithm uses all header files to route along the tree. Multi-destination mes-
sages use all header flits in the message to route through the network at each inter-
mediate node along the path of the multi-destination message. The scale of network
is 8 ∗ 8 ∗ 8 , including 512 nodes. Each Switch is connected to four IP cores through
a local port, and the number of IP cores is 256. Min and Tree adopt XYZ routing and
DPFR adopt E-cube routing.

5.1 Simulation environment

The flit-level simulator [44] was used to evaluate the proposed fault-tolerant routing
algorithm. The simulator uses wormhole routing mechanism. The network param-
eters of the flit-level simulator are set as below: the number of virtual channels in
each physical channel is set to 4, and the size of each virtual channel is set to store
4 flits. The message length is set to 190 bytes and chip length is set to 150 bits.
The simulation experiment runs 20,000 clock cycles each time, and the preheating
period is set to the first 10% of the clock. In order to make the simulation results
more accurate, the simulator runs 20 times under the same parameter configuration,
and takes the arithmetic average as the output value of the simulation results.

In the flit-level simulator, the calculation methods for evaluating network per-
formance parameters such as throughput, average delay and buffer utilization. The
throughput refers to the maximum throughput of a given topology under the ideal
flow control and routing mechanism. The delay is the average value of the routing
delay between all communication node pairs in the whole network, assuming no
congestion occurs in the routing process. The buffer utilization means that the cache
is in the maximum allowable space, and the number of caches used to store micro-
chips in the switching nodes and IP cores accounts for the proportion of the entire
network cache.

5.2 Simulation results and discussion

The following four modes were used to carry out experiments: Random mode, Local
mode, Hoptspot mode and Bitreversal mode. The generation of messages obeys
exponential distribution. Under the random mode, the network traffic is randomly
distributed, and the probability of each node receiving data packets is equal. Under
local load mode, 60% of the traffic is limited to four IP cores in the cluster, 30% to
six nodes with Manhattan distance of 1, and 10% of the traffic is sent to other nodes
in a random distribution. Under the hotspot load mode, this paper considers the case
of 300% single hotspot (hotspot receives 300% more traffic than other nodes). Min
chooses the network center node as the hotspot, and (1, 1, 1) is chosen as the hotspot
for the 4 ∗ 4 ∗ 4 Min routing. Because of the symmetry of DPFR, a node 141 is
chosen arbitrarily as the hot spot. Under the four flow modes, the DPFR algorithm
is simulated in the presence of structural failures, and the average delay, average
throughput, and cache utilization under different packet injection rates are recorded.

13107

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

Figure 6 shows the average delay and injection rate of DPFR and Min under dif-
ferent modes. As shown in Fig. 6a, the delay of both structures is very low when the
injection rate is less than 0.51 under random load mode. While the injection rate
is greater than 0.51, the delay of Min increases rapidly. While the injection rate is
greater than 0.46, the DPFR delay also increases, but the increase is smaller than
that of Min. This is because DPFRs have shorter diameters than Min.

Figure 6b shows the delay comparison under local mode. As shown in figure,
the delay growth of DPFR is flat, and when the injection rate is greater than 0.4,
the delay growth begins to accelerate. DPFR have smaller buffer utilization in local
mode than in random load mode, so DPFR has shorter average delay in local load
mode than in random load mode. For Min, when the injection rate is small, the delay
under local load is smaller than that under random load, which is also due to the
smaller buffer utilization. While the injection rate is greater than 0.41, the average
delay of Min in local mode increases sharply. This is because there are fewer adja-
cent nodes on the six outermost planes of Min. While the injection rate increases,
a large number of communication gathers in fewer points, which are more prone to
blocking, resulting in a significant increase in the delay of data packets waiting to be

(a) (b)

(c) (d)

Fig. 6 Performance evaluation of average latency in different modes: a random mode, b local mode, c
hotspot mode, d bitreversal mode

13108 Y. Zhang et al.

1 3

processed. In this case, the delay due to blocking is much larger than the delay due
to the shortening of the buffer utilization. Therefore, when the injection rate is high,
the average delay of Min under local mode is larger than that under random mode.
The delay of both algorithms is low when the injection rate is small, and the average
delay of DPFR is slightly less than that of Min. While the injection rate is high, the
average delay of DPFR is much smaller than Min.

Figure 6c shows the average delay comparison in hotspot mode. While the injec-
tion rate is higher than 0.55, the average delay of both structures increases. Thereaf-
ter, at the same injection rate, the average delay of DPFR is always lower than that
of Min. In addition, because congestion is easy to occur in hot spots, and determin-
istic routing algorithm is adopted in both structures, the algorithm will not adjust the
routing according to the load. Therefore, some packets will wait a long time to apply
for hotspot resources, so the delay of hotspot load mode increases obviously at low
injection rate.

Figure 6d shows the relationship between average delay and injection rate of
three algorithms under bitreversal load mode. Under bitreversal load mode and low
injection rate, the average delay of DPFR and Min is lower. With the increase in
data packet injection rate, the average delay of DPFR and Min also increases. While
the injection rate is less than 0.52, the average delay growth of the DPFR is slightly
larger than that of the Min. While the injection rate is greater than 0.55, the average
delay of Min increases more than that of DPFR. This is because the node degree of
the outermost node of Min is small. While the injection rate increases, these nodes
are more likely to block, so the waiting time for processing data packets increases
significantly. Compared with the random load mode, the average delay of the three
topologies in the local load mode is larger when the injection rate is higher. This is
because the increase time caused by network congestion is much longer than the
decrease time caused by the shortening of buffer utilization. The average delay of
the DPFR is 18.5% lower than that of the Min while the injection rate is 0.76. The
average delay of the DPFR is 19.1% lower than that of the Min while the injection
rate is 0.52.

Figure 7 shows the average throughput and injection rate of DPFR and Min under
different load modes. As shown in Fig. 7a, in the case of random load mode, when
the injection rate is less than 0.15, there is no congestion in the network. Under the
same injection rate, the network throughput is basically the same. As the packet
injection rate continues to increase, the network becomes busy and the throughput
finally reaches saturation. For a DPFR, when the injection rate is higher than 0.2, the
saturated throughput of the network is 0.27. In Min routing, when the injection rate
is 0.16, the saturated throughput of the network is 0.19. The saturated throughput of
DPFR is 43.2% higher than that of Min routing.

Figure 7b shows the throughput and injection rate under local mode. While the
injection rate is higher than 0.6, Min reaches saturation and saturation throughput is
0.13. The saturated throughput of DPFR is 0.35, which is 16.77% higher than that of
Tree routing.

Figure 7c shows the relationship between throughput and injection rate under hot-
spot mode. While the injection rate is higher than 0.7, these three algorithms tend
to be saturated and the throughput difference is small. The overall throughput of

13109

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

DPFR is slightly higher than that of Min routing. It can be seen that the single hot
spot mode is more saturated than the other two modes, and the single hot spot is the
bottleneck of the whole network. Meanwhile, the network throughput has little rela-
tionship with the topology.

Figure 7d shows the throughput and injection rate of the three topologies. The
experimental data of network throughput of DPFR and Min are obtained by simula-
tion under Bitreversal load mode. While the injection rate is less than 0.19, there is
no congestion in the network. At the same injection rate, the network throughput
is basically the same. With the increase of data packet injection rate, the network
becomes busy gradually. The DPFR will reach saturation state. For DPFR, when
the injection rate reaches 0.21, the network reaches saturation, and the throughput at
saturation is 0.17. For Min algorithm, when the DPFR network reaches saturation,
the throughput of Min is 0.21. When the DPFR is saturated, the throughput is 7.7%
lower than that of the Min.

As shown in Fig. 8a, the total number of data packets increases continuously
until the network reaches saturation state with the gradual increase of injection
rate under the random mode. When the network reaches saturation state, the

(a) (b)

(c) (d)

Fig. 7 Performance evaluation of average throughput in different modes: a random mode, b hotspot
mode, c transpose mode, d bitreversal mode

13110 Y. Zhang et al.

1 3

difference between the buffer utilization of DPFR and Min is small. The buffer
utilization of DPFR is 12.8% less than that of Min. As shown in Fig. 8b, the
buffer utilization of DPFR is close to Tree when the injection rate is 0.15 under
local mode. The average hop number of DPFR is 7.2% less than that of Min. Fig-
ure 8c shows the the buffer utilization of three algorithms under hotspot mode.
Under the hotspot mode, the difference between the buffer utilization of DPFR
and the buffer utilization of DPFR is small. While the injection rate is 0.36, the
average hop number of DPFR is 6.5% less than that of Min. Figure 8d shows the
buffer utilization of three algorithms under bitreversal mode. The buffer utiliza-
tion of the DPFR under this load mode is about 9.6% less than that of the Min.
The buffer utilization of the three algorithms in bitreversal mode is less than the
experimental values in random mode.

As shown in Fig. 9, the performance of the three algorithms changes as the
failure rate increases. Figure 9a–c shows the average latency, average throughput
rate, and buffer utilization as the failure rate increases. Figure 9d shows the time
consumed by the three algorithms in constructing a fault-free path. DPFR shows
good performance in terms of average delay, throughput, cache utilization, and

(a) (b)

(c) (d)

Fig. 8 Performance evaluation of buffer utilization in different modes: a random mode, b hotspot mode,
c transpose mode, d bitreversal mode

13111

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

algorithm time overhead. Because Min and Tree routing transmit data packets
along a fixed path, the DPFR algorithm transmits When data packets, the routing
is evenly distributed in the rectangular space from the source node to the destina-
tion node. In the case of the same data packet injection rate, each node using the
DPFR algorithm needs to process the data packets more averagely. Therefore, the
delay is lower, and the greater the injection rate and the greater the congestion,
the performance advantage of the DPFR algorithm is more obvious.

Table 2 shows the comparison between the three algorithms and the average value
of the performance parameters in the four modes. Compared with the other two algo-
rithms, DPFR shows obvious performance advantages in terms of average delay. In
terms of average throughput, it is close to the Min algorithm and has obvious advan-
tages over the Tree algorithm. In terms of buffer utilization, DPFR has obvious advan-
tages over Tree routing, but it is inferior to Min routing in some cases.

(a) (b)

(c) (d)

Fig. 9 Comparison of algorithm performance under different failure rates: a average latency, b average
throughput, c buffer utilization, b the time consumption to get a fault-free path

13112 Y. Zhang et al.

1 3

6 Conclusions

High-performance interconnection network is a key factor that determines the per-
formance of parallel computers. Reliability requires that the interconnection net-
work can continue to operate normally when its routing switch node fails. In this
paper, we propose a new virtual network partition scheme for 3-ary n-cube net-
works with structural failures. The proposed fault-tolerant routing algorithm is a
deadlock free fully adaptive routing algorithm. Firstly, we classify and analyze the
types of structural faults, which are expressed as convex faults. Secondly, we con-
struct disjoint paths in 3-ary n-cube networks based on structural faults. Finally, a
fault-tolerant routing algorithm based on turn model is proposed when there is a
fault in 3-ary n-cube network. Each physical channel only needs four virtual chan-
nels to avoid deadlock. We gave the detailed proof process of deadlock free routing
algorithm, which shows that the algorithm is feasible in 3-ary n-cube network with
2n − 1 faulty nodes. In addition, research shows that for routes that use fewer virtual
channels, the lower the cost and the higher the reliability.

Acknowledgements We would like to express our sincerest appreciation to Prof. Jianxi Fan for his
constructive suggestions. This work is supported by Natural Science Foundation of Jiangsu Province
(No. BK20200753), National Natural Science Foundation of China (Grant Nos. 61902195, 61702351),
Natural Science Fund for Colleges and Universities in Jiangsu Province (General Program, Grant No.
19KJB520045), and NUPTSF (Grant Nos. NY219151, NY219131).

References

 1. Pai K-J, Chang J-M (2016) Constructing two completely independent spanning trees in hypercube-
variant networks. Theor Comput Sci 652:28–37

 2. Pai K.-J, Chang R.-S, Wu R.-Y, Chang J.-M (2019) Three completely independent spanning trees of
crossed cubes with application to secure-protection routing. HPCC/SmartCity/DSS, pp 1358–1365

 3. Fan W, Fan J, Lin C-K, Wang G, Cheng B, Wang R (2019) An efficient algorithm for embedding
exchanged hypercubes into grids. J Supercomput 75(2):783–807

 4. Wang X, Fan J, Jia X, Lin C-K (2016) An efficient algorithm to construct disjoint path covers of
DCell networks. Theor Comput Sci 609:197–210

 5. Hsieh S-Y, Kao C-Y (2013) The conditional diagnosability of k-ary n-cubes under the comparison
diagnosis model. IEEE Trans Comput 62(4):839–843

 6. Guo L (2018) Reliability analysis of twisted cubes. Theor Comput Sci 707:96–101

Table 2 Performance comparison of the three algorithms in different modes

Mode Average latency Average throughput Buffer utilization

DPFR Min Tree DPFR Min Tree DPFR Min Tree

Random 87.27 95.73 114.45 0.31 0.22 0.25 32.89 30.54 29.18
Local 95.73 107.99 123,15 0.28 0.25 0.18 30.51 30.75 15.12
Hotspot 114.45 126.50 135.49 0.34 0.30 0.15 33.11 29.67 25.99
Bitreversal 85.45 97.99 116.01 0.30 0.27 0.17 34.81 35.70 16.87

13113

1 3

Fault‑tolerant routing algorithm based on disjoint paths…

 7. Lv M, Zhou S, Chen G, Chen L, Liu J, Chang C-C (2020) On reliability of multiprocessor system
based on star graph. IEEE Trans Reliab 69(2):715–724

 8. Lv M, Zhou S, Sun X, Lian G, Liu J (2019) Reliability of (n, k)-star network based on g-extra condi-
tional fault. Theor Comput Sci 757:44–55

 9. Wang D (2012) Hamiltonian embedding in crossed cubes with failed links. IEEE Trans Parallel Dis-
trib Syst 23(11):2117–2124

 10. Wei W, Gu H, Wang K, Yu X, Liu X (2019) Improving cloud-based IoT services through virtual
network embedding in elastic optical inter-DC networks. IEEE Internet Things J 6(1):986–996

 11. Lin C-K, Zhang L, Wang D, Fan J (2016) Structure connectivity and substructure connectivity of
hypercubes. Theor Comput Sci 634:97–107

 12. Fan W, Fan J, Lin C-K, Wang Y, Han Y, Wang R (2019) Optimally embedding 3-ary n-cubes into
grids. J Comput Sci Technol 34(2):372–387

 13. Gu M, Hao R (2014) 3-extra connectivity of 3-ary n-cube networks. Inf Process Lett 114(9):486–491
 14. Hsieh S-Y, Lin T-J, Huang H-L (2007) Panconnectivity and edge-pancyclicity of 3-ary n-cubes. J

Supercomput 42:225–233
 15. Lv YL, Lin C-K, Fan JX, Jia XH (2018) Hamiltonian cycle and path embeddings in 3-ary n-cubes

based on K
1,3

-structure faults. J Parallel Distrib Comput 120:148–158
 16. Yuan J, Liu A, Qin X, Zhang XJ, Li J (2016) g-Good-neighbour node conditional diagnosability

measures for 3-ary n-cube networks. Theor Comput Sci 626:144–162
 17. Fan W, He J, Han Z, Li P, Wang R (2020) Reconfigurable fault-tolerance mapping of ternary n

-cubes onto chips. Concurr Comput Pract Exp 32(11):1–12
 18. Guo L, Su G, Lin W et al (2018) Fault tolerance of locally twisted cubes. Appl Math Comput

334:401–406
 19. Otake K, Mouri K, Kaneko K (2018) Fault-tolerant routing methods in crossed cubes. In: Proceed-

ings of the 10th International Conference on ACM Advances in Information Technology, vol 10, pp
1–10

 20. Aspnes J, Diamadi Z, Shah G (2003) Fault-tolerant routing in peer-to-peer systems, ACM PODC,
pp 223–232

 21. Fan W, Fan J, Han Z, Li P, Zhang Y, Wang R (2020) Fault-tolerant Hamiltonian cycles and paths
embedding into locally exchanged twisted cubes. Front Comput Sci. https:// doi. org/ 10. 1007/
s11704- 020- 9387-3

 22. Ren P, Kinsy MA, Zheng N (2015) Fault-aware load-balancing routing for 2D-mesh and torus on-
chip network topologies. IEEE Trans Comput 65(3):873–887

 23. Zhao H, Wang Q, Xiong K, Pei S (2018) A path-counter method for fault-tolerant minimal routing
algorithms in 2D mesh. J Circuits Syst Comput 27(4):1–11

 24. Zhao H, Bagberzadeh N, Wu J (2017) A general fault-tolerant minimal routing for mesh architec-
tures. IEEE Trans Comput 66(7):1240–1246

 25. Habibian H, Patooghy A (2017) Fault-tolerant routing methodology for hypercube and cube-con-
nected cycles interconnection networks. J Supercomput 73(3):1–20

 26. Dong Q, Yang X, Wang D (2010) Embedding paths and cycles in 3-ary n-cubes with faulty nodes
and links. Inf Sci 180(1):198–208

 27. Li J, Wang S, Yang Y (2014) Panconnectivity and pancyclicity of the 3-ary n-cube network under
the path restrictions. Appl Math Comput 243:339–348

 28. Zhang G, Wang D (2019) Structure connectivity and substructure connectivity of bubble-sort star
graph networks. Appl Math Comput 363:1–12

 29. Zhang G, Wang D (2019) Structure connectivity and substructure connectivity of k-ary n-cube net-
works. IEEE Access 7:134496–134504

 30. Wang G, Fan J, Lv Y, Cheng B, Kan S (2019) The constructive algorithm of vertex-disjoint paths in
the generalized hypercube under restricted connectivity. J Internet Technol 20(6):1995–2006

 31. Wang G, Lin C-K, Fan J, Cheng B, Jia X (2020) A novel low cost interconnection architecture based
on the generalized hypercube. IEEE Trans Parallel Distrib Syst 31(3):647–662

 32. Lai C-N (2012) Optimal construction of all shortest node-disjoint paths in hypercubes with applica-
tions. IEEE Trans Parallel Distrib Syst 23(99):1129–1134

 33. Wang X, Fan J, Lin C-K, Jia X (2016) Vertex-disjoint paths in DCell networks. J Parallel Distrib
Comput 96:38–44

 34. Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (Oct. 2009) BCube: a high
performance, server-centric network architecture for modular data centers. In: Proceedings of SIG-
COMM 2009, vol 39, no 4, pp 63–74

https://doi.org/10.1007/s11704-020-9387-3
https://doi.org/10.1007/s11704-020-9387-3

13114 Y. Zhang et al.

1 3

 35. Krishnan H, Preethi L (2018) Fault-tolerant routing with minimum delay for mesh architecture. In:
Proceedings of the International IEEE CET Conference on Control, Communication, and Comput-
ing, pp 322–325

 36. Otake K, Mouri K, Kaneko K (2018) Fault-tolerant routing methods in crossed cubes. In: Proceed-
ings of the 10th International Conference, no 10, pp 1–8

 37. Xiang D, Liu X (2015) Deadlock-free broadcast routing in dragonfly networks without virtual chan-
nels. IEEE Trans Parallel Distrib Syst 27(9):2520–2532

 38. Xiang D, Li B, Fu Y (2017) Fault-tolerant adaptive routing in dragonfly networks. IEEE Trans
Dependable Secure Comput 16(2):259–271

 39. Yang YS, Deshpande H, Choi G, Gratz PV (2018) SDPR: improving latency and bandwidth in on-
chip interconnect through simultaneous dual-path routing. IEEE Trans Comput Aided Des Integr
Circuits Syst 37(3):545–558

 40. Hougardy S (2010) The Floyd–Warshall algorithm on graphs with negative cycles. Inf Process Lett
110(8–9):279–281

 41. Ahuja R, Magnanti T, Orlin J (1993) Network flows-theory, algorithms and applications. J Oper Res
Soc 45(11):791–796

 42. Jeon SW, Jung K, Chang H (2014) Fully distributed algorithms for minimum delay routing under
heavy traffic. IEEE Trans Mob Comput 13(5):1048–1060

 43. Francalanci C, Giacomazzi P (2010) A high-performance deadlock-free multicast routing algorithm
for k-ary n-cubes. IEEE Trans Comput 59(2):174–187

 44. Mcdonald N, Flores A, Davis A, Isaev M, Gibson D (2018) SuperSim: Extensible flit-Level simula-
tion of large-scale interconnection networks. In: IEEE International Symposium on Performance
Analysis of Systems and Software 2018, pp 87–98

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Fault-tolerant routing algorithm based on disjoint paths in 3-ary n-cube networks with structure faults
	Abstract
	1 Introduction
	2 Related works
	3 System model
	3.1 Preliminaries
	3.2 Fault information model
	3.3 Construction of disjoint paths

	4 Fault-tolerant routing algorithm
	5 Simulation and performance evaluation
	5.1 Simulation environment
	5.2 Simulation results and discussion

	6 Conclusions
	Acknowledgements
	References

