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Abstract
Smart grids have attracted much attention recently for their potential to reduce 
power system operating and management costs. Smart grid core components include 
energy storage, renewable energy source(s), and smart meters. Smart meters collect 
diverse data regarding smart grid operation, which can lead to inefficient operation 
if the meter data are damaged or tampered with during collection or transmission. 
Therefore, it is important to identify abnormalities in smart grid data and process 
them accordingly. Various anomaly detection models have been proposed using 
statistical methods, but they cannot detect some anomaly patterns accurately, and 
the models generally did not consider repair strategies for the detected anomalies. 
Anomaly repair should be included with model training to improve forecasting per-
formance. This paper proposes a robust sliding window-based LightGBM model 
for short-term load forecasting using anomaly detection and repair. We first show 
how to detect anomalies using a variational autoencoder and then how they can be 
repaired using a random forest method. Finally, we verify that the proposed sliding 
window-based LightGBM achieves superior forecasting performance in combina-
tion with anomaly detection and repair.
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1 Introduction

Recent advances in the microelectromechanical system (MEMS) and flexible 
manufacturing system (FMS) have enabled significant sensor size reductions 
while retaining or extending advanced functionality and reducing their price [1]. 
Wireless communication technology has also enabled sensors to be embedded 
into many devices [2]. As a result, the continuous collection of large amounts of 
data through various sensors has become a very common phenomenon in modern 
systems [3].

Sensors measure physical quantities or objects that exist in nature, such as tem-
perature, humidity, pressure, and convert them into electrical signals [4]. Most of 
the data collected through the sensor are time-series data, i.e., recorded at regular 
time intervals. The data change due to various variations such as trend variation, 
cyclical variation, and seasonal variation [5]. The importance of time-series data 
is growing because data analysis enables understanding of data changes and pre-
dicts future changes [6].

Sensor-based time-series data have been used in many fields [7]. The smart 
city is one of the fields that actively use these data. Many smart city systems uti-
lize time-series data to develop applications [8]. For example, smart grid systems 
optimize energy operations by analyzing data collected from all power utilization 
processes within the smart city [9]. A smart grid, which is an intelligent power 
grid that combines information and communication technologies with existing 
power grids, can solve environmental problems and energy shortage problems by 
optimizing energy efficiency [10]. Through the smart grid, consumers can reduce 
electricity bills, and suppliers can optimize energy efficiency by solving demand 
and supply imbalances through real-time information sharing and control [11].

One of the main components that enable smart grid technology is the smart 
meter [12]. Smart meters are digital electronic meters that record energy con-
sumption in real-time and control energy use by communicating information to 
both power suppliers and consumers through a communication network. The data 
recorded by the smart meter are used to analyze current or predict future energy 
usage.

Anomaly detection is essential to ensure smart meter data security and integ-
rity [13]. Anomalies (outliers) are data points that differ significantly from other 
observations. They are commonly caused by malfunctioning smart meters, con-
sumer behavior changes, energy leakage, or tampering. If the smart meter data 
are damaged or tampered with during acquisition or transmission, many problems 
such as incorrect electricity bills or inefficient smart grid operation can arise [14]. 
Therefore, it is essential to determine whether smart meter data include anoma-
lies to avoid such problems [15].

Various statistical techniques have been proposed for anomaly detection [16], 
with interquartile range (IQR) being one of the most popular approaches [17]. 
However, IQR cannot detect some anomaly types, such as high leverage anoma-
lies. To solve this problem, machine learning-based anomaly detection models 
were proposed [18]. While many studies make many efforts to improve anomaly 
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detection performance, they do not consider how to repair the detected anomalies 
[19]. If the use of anomalies-removed data for training the predictive model can 
be expected to improve the prediction performance, but if the data including the 
anomalies are repaired to an appropriate value and then used for training the pre-
dictive model, further improvement in prediction performance can be expected 
[20].

Therefore, this paper proposes an accurate electric load forecasting based 
on anomaly detection and repair. We used a variational autoencoder (VAE) for 
anomaly detection, a random forest (RF) for data repair, and a sliding window-
based LightGBM for electric load forecasting. Figure 1 shows the overall struc-
ture for the proposed model.

The main contributions from this paper are as follows.

1. We propose a VAE anomaly detection scheme and verify it can achieve better 
accuracy than other statistical anomaly detection schemes.

2. We propose an RF anomaly repair scheme and verify its effectiveness by reflecting 
input variables.

3. We propose a sliding window-based LightGBM model for electric load forecast-
ing and verify it can forecast power consumption more accurately than other 
popular machine learning electric load forecasting models.
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Fig. 1  Overall structure of proposed electric load forecasting scheme
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The remainder of this paper is organized as follows. Section  2 discusses related 
anomaly detection, data repair, and electric load forecasting studies. Section 3 describes 
input variable configurations to constructing the proposed forecasting model, and 
Sect. 4 discusses the proposed VAE anomaly detection and repair schemes. Section 5 
presents the proposed sliding window-based LightGBM model for load forecast-
ing, and Sect. 6 discusses several experiments we performed to evaluate the proposed 
model performance. Finally, Sect. 7 summarizes and concludes the paper.

2  Related works

Many previous studies have considered anomaly detection, data repair, and electric 
load forecasting [21]. This section introduces various anomaly detection models and 
data repair methods and discusses relevant studies regarding electric load forecasting.

2.1  Anomaly detection

Breunig et  al. [22] proposed an anomaly detection model based on the local outlier 
factor (LOF), i.e., how isolated an object is with respect to its surrounding neighbor-
hood. Experimental results verified that LOF-based anomaly detection was a promis-
ing approach, identifying meaningful local outliers that previous approaches could 
not. Liu et al. [23] proposed an isolation forest (IForest) approach. IForest can create 
algorithms with linear time complexity, low constant, and low memory requirement. 
The proposed approach performed well in terms of area under the curve and process-
ing time, particularly for large datasets. Chen et al. [24] proposed a randomized neural 
network (NN), i.e., a randomly connected autoencoder-based ensemble model combin-
ing adaptive sample size with random edge sampling, to achieve high-quality results 
while avoiding overfitting and improving robustness compared with conventional NN 
outlier detection techniques. Akouemo et al. [25] employed autoregression with exog-
enous inputs (ARXs) and an artificial neural network (ANN) to detect and impute 
anomalies in time-series data. They performed hypothesis testing on residual extrema 
to verify their proposed approach could identify and impute anomalous data points. 
Araya et al. [26] proposed two frameworks for anomaly detection in building energy 
consumption: collective contextual anomaly detection using a sliding window (CCAD-
SW) framework and ensemble anomaly detection (EAD). The CCAD-SW framework 
identified anomalous consumption patterns using overlapping sliding windows, and the 
EAD framework combined several anomaly detection classifiers using majority voting. 
They verified that the EAD framework improved CCAD-SW sensitivity by 3.6% and 
reduced the false alarm rate by 2.7%.

2.2  Data repair

Xu et al. [27] proposed a point estimation model for biased sentinel hospital area dis-
ease estimation to interpolate missing data in temperature datasets. This technique 
employed a weighted summation of observed stations to estimate the missing data’s 
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unbiased minimum error variance, using ratio and covariance between stations to cal-
culate the weights. They achieved improved interpolation accuracy for the missing data 
from the temperature data and obtained the best linear unbiased estimation. Habermann 
et  al. [28] proposed cubic spline interpolation as an alternative to linear or standard 
B-spline interpolation. The proposed interpolation could be implemented faster and 
easier than B-spline interpolation but had limited preconditions. However, the approach 
could provide a quick solution to cubic spline interpolation once the preconditions were 
satisfied. Therefore, it could be used for various approximation problems as in compu-
tational economics. Gan et al. [29] proposed a seislet transform for sparsity-based inter-
polation from highly undersampled seismic data based on the classic projection onto 
convex sets framework. Seismic data undersampled at very low boundary frequency 
can be low-pass filtered to obtain accurate estimates and subsequently interpolated 
through this estimate. They verified that the proposed approach achieved better perfor-
mance than traditional frequency wavenumber-based approaches.

2.3  Electric load forecasting

Jurado et  al. [30] constructed several prediction models using RF, ANN, and fuzzy 
inductive reasoning (FIR) approaches. They then compared the prediction models 
with an auto-regressive integrated moving average model by predicting electric energy 
consumptions in three different buildings at Catalonia Technical University in Cata-
lonia, Spain, verifying that FIR approaches achieved the best prediction performance. 
Grolinger et al. [31] proposed electric load forecasting models based on support vec-
tor machine (SVM) and ANN for a large entertainment building in Canada and com-
pared their performance under various model configurations to discuss the strengths 
and weaknesses of each model. They also presented a model selection algorithm to 
determine SVM and ANN hyperparameters. ANN achieved better accuracy than SVM 
models with daily data. Abbasi et  al. [32] proposed an extreme gradient boosting 
(XGBoost) electrical load forecasting model, using feature importance to extract input 
variables from historical load over a week. They verified that historical loads close to 
or a week before the prediction time point had high importance for model construction. 
They used Australian Energy Market Operator electrical load data to confirm predic-
tion performance. The proposed XGBoost model exhibited mean absolute percentage 
error, MAPE = 10% with accuracy = 97%. Kuo et  al. [33] proposed an electric load 
forecasting model based on a convolutional NN, using historical electric load data as 
input variables to build the forecasting model. They verified that their proposed model 
was more accurate than models based on SVM, RF, decision tree (DT), etc.

3  Input variable configuration

This study used electric load data collected at a private university in Seoul, South 
Korea. The university grouped its buildings into four clusters according to the pur-
pose or location and collected their power consumption data in real-time using an 
i-Smart system operated by the Korea Electric Power Corporation (KEPCO). The 
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data were collected every 15  min from January 1, 2016, to December 31, 2019. 
Cluster A comprised 32 academic buildings, including the central library and col-
lege of humanities buildings. Cluster B contained 16 residential buildings, and Clus-
ters C and D contained 19 and 5 science and engineering buildings, respectively. 
Table 1 summarizes the collected data.

We also used time and weather data as input variables for anomaly detection 
and electric load forecasting. The following sections describe various relevant data 
details.

3.1  Time Data

Since electric load patterns differ depending on various timescales (minutes, hours, 
days of the week, months, etc.), we considered all variables that express date and 
time as an input variable [34], including month, day, hour, minute, day of the week, 
and holiday. Month, day, hour, and minute have a sequence form which is diffi-
cult to reflect periodic information in machine learning algorithms. For example, 
11:59 pm and midnight are continuous in time, but the difference of the minute data 
in sequence form is 59. To solve this problem, we enhanced the time data into two 
dimensions,

and

where cycle represents time data periodicity, e.g., month and minute cycles = 12 
and 60, respectively. We retained one- and two-dimensional data to better represent 
temporal characteristics [35]. In addition, we used a vector of 0 or 1 for each day of 
the week and holiday data. Days of the week can be expressed in continuous and 

(1)timex = sin ((360∕cycle) × time)

(2)timey = cos ((360∕cycle) × time),

Table 1  Statistical analysis of 
electric load data in the four 
building clusters

Statistic Cluster A Cluster B Cluster C Cluster D

Mean 643.77 315.97 640.76 510.03
Standard error 0.94 0.21 0.6 0.32
Median 535.68 305.43 562.08 472.2
Mode 271.2 278.64 454.56 417.6
Standard deviation 353.64 77.32 225.06 121.18
Sample variance 125,059.3 5,978.61 50,651.71 14,683.4
Kurtosis − 0.71 0.42 0.34 -0.53
Skewness 0.69 0.75 1.06 0.71
Range 1,565.76 522.36 1,116 572.2
Minimum 159.36 133.56 294.24 315.2
Maximum 1,725.12 655.92 1,410.24 887.4
Count 140,256 140,256 140,256 140,256
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binary format. If the days of the week are represented as continuous data, the differ-
ence between two consecutive days is 1, while the difference between Sunday and 
Monday is 6. This could have a negative impact on the forecasting model. Thus, we 
represented the day of the week as binary data using the one-hot encoding method. 
Likewise, if the input day of the week is a holiday, the input variable for a holiday 
is 1 and 0 otherwise. Table 2 provides the resultant 20-time data input variable data 
types.

3.2  Weather data

As power usage is closely related to weather conditions, we considered weather data 
as an input variable [36]. The Korea Meteorological Administration (KMA) pro-
vides diverse short- and long-range weather forecasts. We considered short-range 
weather forecasts for daily minimum temperature, daily maximum temperature, tem-
perature, humidity, wind speed, cloudiness, and precipitation. Short-range weather 
forecasts provide weather data for up to 67 h with 3 h resolution, and we calculated 
smaller resolution weather data using linear interpolation. Figure 2 shows an exam-
ple short-range weather forecast provided by KMA.

We also calculated wind chill (WC) and discomfort index (DI) to establish a more 
direct association with power consumption [37],

Table 2  Input variables 
configuration for time data

No Input variable Type

1 Month Continuous on [1, 12]
2 Day Continuous on [1, 31]
3 Hour Continuous on [0, 23]
4 Minute Continuous on [0,59]
5 Monthx Continuous on [− 1, 1]
6 Monthy Continuous on [− 1, 1]
7 Dayx Continuous on [− 1, 1]
8 Dayy Continuous on [− 1, 1]
9 Hourx Continuous on [− 1, 1]
10 Houry Continuous on [− 1, 1]
11 Minutex Continuous on [− 1, 1]
12 Minutey Continuous on [− 1, 1]
13 Monday Binary
14 Tuesday Binary
15 Wednesday Binary
16 Thursday Binary
17 Friday Binary
18 Saturday Binary
19 Sunday Binary
20 Holiday Binary
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and

where T, H, and WS represent temperature, humidity, and wind speed, respectively. 
Thus, we used nine weather data types. Table  3 provides the Pearson correlation 
coefficient (PCC) value of the weather data for each cluster.

(3)WC = 13.12 + 0.0615 × T − 11.37 ×WS0.16 + 0.3965 × T ×WS0.16

(4)DI = 1.8 × T − 0.55(1.8 × T − 26) × (1 − 0.01 × H) + 32,

Fig. 2  Example of short-range weather forecast provided by KMA

Table 3  PCC value of weather data for each cluster

Weather data Cluster A Cluster B Cluster C Cluster D

Daily minimum Temperature 0.017 0.196 0.171 0.137
Daily maximum Temperature 0.041 0.145 0.142 0.110
Temperature 0.119 0.277 0.295 0.278
Humidity 0.323 0.138 0.253 0.286
Wind Speed 0.270 0.136 0.230 0.286
Cloudiness 0.012 0.064 0.053 0.042
Precipitation 0.005 0.027 0.007 0.006
Wind chill 0.099 0.265 0.279 0.255
Discomfort index 0.127 0.298 0.304 0.290
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4  Anomaly detection model configuration

An autoencoder (AE) is a deep learning network based on unsupervised learn-
ing comprising encoder and decoder networks [38]. The encoder maps input 
data from high-dimensional space to low-dimensional space and expresses it as 
a latent variable. Latent variables compressed by the encoder preserve input data 
characteristics, so the decoder can restore the original input data by analyzing the 
latent variable. The difference between output and the input values becomes a 
loss function in AE and is used for learning by backpropagation, enabling unsu-
pervised learning.

The basic VAE principle is the same as for AE, but the latent variable is gen-
erated from a Gaussian distribution [39]. Latent variables generated by AE are 
random discrete values and hence difficult to understand what each latent vari-
able means; whereas VAE constructs a Gaussian probability distribution that can 
derive mean and standard deviation of the latent variable and then uses varia-
bles randomly obtained from the probability distribution as input values for the 
decoder. Figure 3 shows a typical AE model structure.

There are considerable differences between AE and VAE loss functions for 
learning. Only the reconstruction error is used for the AE loss function, i.e., an 
index that determines the decoder resilience. Since it is impossible to learn how 
latent variables are generated from specific input data, completely different latent 
variables can be generated from similar input data. On the other hand, the VAE 
loss function combines reconstruction error and Kullback–Leibler (KL) diver-
gence, an index that determines whether the VAE latent variable has a specific 
distribution.

The VAE loss function can be expressed as

where the first term represents reconstruction error, i.e., cross-entropy between xi 
and the result of recovering xi based on z generated by the encoder; and the second 

(5)Li
(
�, �, xi

)
= −�q�(z|xi)

[
log

(
p�
(
xi|z

))]
+ KL

(
q�(z|xi)||p(z)

)
,

Fig. 3  Typical variational autoencoder model structure
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term represents KL divergence, i.e., the probability distribution difference between 
sampled z and z generated by the encoder. The latent variable distributions converge 
with increased second term value.

Using KL divergence in the learning process can help the encoder generate a 
common cluster depending on the data class. Thus, latent variable characteristics, 
i.e., anomalies, can be more clearly defined using VAE compared with AE. There-
fore, this study employed a VAE-based anomaly detection model.

AE-based anomaly detection uses reconstruction errors from all input variables, 
and any reconstruction is determined to be an outlier if the reconstruction error 
exceeds a given threshold. However, if load data anomalies are detected using the 
reconstruction error for all input variables, normal load data may be classified as 
abnormal data. Therefore, we only used the load data reconstruction error after cal-
culating the reconstruction error for each input variable in VAE.

5  Load forecasting model configuration

LightGBM is a popular ensemble model released in 2016 that uses a boosting algo-
rithm [40] to combine several week learners into a more accurate model. The boost-
ing concept trains weak models sequentially, compensating for previous model 
problems in the subsequent model. LightGBM shortens data processing time, a dis-
advantage of previous boosting algorithms, using gradient-based one-side sampling 
(GOSS) and exclusive feature bundling (EFB) techniques. GOSS excludes data 
instances with small gradients and uses the remainder to estimate information. Since 
data with large gradients are more critical, information can be estimated quickly and 
accurately, even from small-scale datasets. EFB bundles mutually exclusive varia-
bles and processes them to reduce the number of variables. The number of variables 
can be effectively reduced by bundling and processing variables that rarely have 
simultaneous nonzero values without significantly impairing accuracy. Thus, Light-
GBM achieves good performance with short training times.

We also employ a sliding window algorithm to reflect the latest trends [41], 
which use previous steps to predict the next step. Figure 4 shows the sliding window 
approach for time-series data.

Fig. 4  Sliding window approach for time-series data
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The sliding window algorithm requires considerable learning time because the 
model needs to be newly trained to predict the next point. Thus, we need a model 
that provides excellent prediction performance even with short learning times to 
support this effectively, and hence we selected LightGBM.

6  Experimental results

6.1  Anomaly detection

This section verifies the proposed VAE anomaly detection scheme effectiveness by 
comparison with several popular anomaly detection models, including IQR, LOF, 
and IForest. For comparison, we constructed several datasets by increasing the ratio 
of anomalies to the total data amount from 1 to 10% in 1% increments. Anoma-
lies were randomly generated with values less than 0.8 times the normal data value 
or more than 1.2 times the normal data value. Also, randomly generated anomalies 
include both one-point anomalies and continuous anomalies. Figure 5 illustrates an 
example of the collected electric load data with generated anomalies. In the figure, 
points 1 to 4 represent one-point anomalies, and point 5 represents a continuous 
anomaly.

Anomaly detection scheme accuracy was measured as

where TP, TN, FP, and FN are true positive, true negative, false positive, and false 
negative metrics, respectively.

Figures 6, 7, 8, and 9 compare the selected model performances for the four build-
ing clusters, respectively. The proposed VAE anomaly detection scheme exhibits the 
best performance in most cases, with less accuracy reduction as the anomaly rate 
increases, compared with all other methods. For example, the LOF and proposed 

(6)Accuracy =
TP + TN

TP + TN + FP + FN
,
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scheme overall accuracy reduction = 20.6% and 9.4%, respectively, for 1–10% anom-
aly rate.

6.2  Data repair

This section investigates the proposed RF data repair scheme effectiveness com-
pared with linear interpolation. Linear interpolation is effective for repairing single 
point anomaly, but not for continuous anomalies. To repair continuous anomalies 
effectively, various external variables should be used to represent the situation at the 
time when the continuous anomalies occurred. We excluded popular models such as 
SVM and DNN in the comparison because they need a significant time for hyper-
parameter tuning and model training. On the other hand, RF is a flexible machine 
learning algorithm that performs well even without hyperparameter tuning. As RF 
works well with large amounts of data and large numbers of input variables, it is 
suitable for repairing anomalies using various external variables. Hence, we pro-
posed a data repair scheme using RF and compared it with zero and linear interpola-
tions. We repaired the randomly generated anomalies for the different anomaly ratio 
cases and compared the repaired and original data using mean absolute percentage 
error (MAPE), defined as

where n, yi , and ŷi represent data amount, actual electric load data, and forecasted 
electric load data, respectively. MAPE is effective at comparing the results of all 
clusters at once. Table 4 compares the repair methods for the defined building clus-
ters. The proposed RF repair method achieves better repair performance than linear 
interpolation for all cases. Values in bold font indicate the best repair performance 
for each anomaly rate.

(7)MAPE =
100

n

n∑

i=1
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6.3  Determining optimal window size

We constructed a sliding window-based LightGBM model for electric load fore-
casting, determining the optimal window size empirically by comparing perfor-
mance for various window sizes (1–10 days). Each day was represented by 96 
points since time resolution = 15 min. For the same reason using MAPE as an 
indicator of data repair, we used MAPE to compare the forecasting performance 
of sliding window-based LightGBM models with different window sizes.

As a result of conducting experiments on all clusters, prediction performance 
improved as window size increased up to 7 days. From then on, there is no fur-
ther significant improvement compared to the increase in training time. There-
fore, we set window size = 7 days. Figure 10 shows the training times and MAPE 
of the proposed model with different window sizes (Table 5).

Table 4  MAPE comparison of repair methods for each cluster

Anomaly rate Cluster A Cluster B

Zero Linear RF Zero Linear RF

0.01 99.46 3.43 2.87 99.36 2.92 1.64
0.02 98.48 3.43 2.92 98.47 2.82 1.79
0.03 97.98 3.34 2.95 97.99 2.79 1.88
0.04 97.49 3.31 2.89 97.49 2.85 1.98
0.05 97.01 3.30 2.88 97.01 2.93 1.85
0.06 96.51 3.40 2.93 96.50 2.87 1.93
0.07 96.00 3.36 2.93 96.01 2.95 1.93
0.08 95.55 3.39 3.00 95.52 2.94 1.90
0.09 95.10 3.34 2.92 95.10 2.86 1.86
0.1 94.61 3.34 2.92 94.61 2.87 1.88

Anomaly rate Cluster C Cluster D

Zero Linear RF Zero Linear RF

0.01 99.40 1.85 1.19 99.38 1.60 1.38
0.02 98.47 1.75 1.30 98.47 1.67 1.55
0.03 97.98 1.84 1.21 97.98 1.65 1.52
0.04 97.49 1.81 1.28 97.49 1.63 1.50
0.05 97.02 1.78 1.27 97.00 1.66 1.49
0.06 96.51 1.81 1.28 96.51 1.66 1.50
0.07 96.01 1.81 1.24 96.02 1.67 1.50
0.08 95.51 1.79 1.31 95.52 1.68 1.50
0.09 95.12 1.81 1.27 95.12 1.69 1.50
0.1 94.61 1.83 1.29 94.63 1.68 1.51
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6.4  Electric load forecasting

Tables  6, 7, 8, and 9 compare the forecasting performance of various machine 
learning models: linear regression (LR), DT, gradient boosting machine (GBM), 
RF, XGBoost, LightGBM, deep neural network (DNN), and long short-term 
memory (LSTM). DNN and LSTM models were implemented using Tensorflow, 
and the rest of the models were implemented using scikit-learn library. Table 5 
shows the hyperparameter settings for each forecasting model. We divided the 
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Fig. 10  MAPE and training time of proposed model

Table 5  Hyperparameter 
settings for each model

Model Hyperparameter

LR –
DT 1. Criterion: “friedman_mse”
GBM 1. Max_depth: 4

2. N_estimators: 256
RF 1. N_estimators: 256
XGBoost 1. Colsample_bylevel: 0.5

2. Max_depth: 6
3. N_estimators: 256

LightGBM 1. Max_depth: 4
2. N_estimator: 256
3. Num_leaves: 32
4. Subsample: 0.5

DNN 1. Batch_size: 1000
2. Hidden_layer: 6
3. Hidden_node: 24
4. Learning_rate: 0.1

LSTM 1. Batch_size: 1000
2. Hidden_node: 24
3. Learning_rate: 0.1
4. Seq_len: 96



12872 S. Park et al.

1 3

dataset into training and test sets, comprising data collected from January 1, 2016, 
to December 31, 2018, and January 1, 2019, to December 31, 2019, respectively.

We compared forecasting performance using mean absolute error (MAE), root-
mean-square error (RMSE), root-mean-square logarithmic error (RMSLE), and 
MAPE, respectively, defined as

(8)MAE =

∑n

i=1
��yi − ŷi

��
n

,

(9)RMSE =

�∑n

i=1

�
yi − ŷi

�2

n
,

(10)RMSLE =

�∑n

i=1

�
log

�
yi + 1

�
− log

�
ŷi + 1

��2

n
.

Table 6  MAE comparison of forecasting models

Forecasting model Cluster A Cluster B

Zero Linear RF Zero Linear RF

LR 137.574 141.111 141.109 51.950 42.667 42.662
DT 131.844 67.548 66.184 77.842 41.229 40.549
GBM 51.190 50.279 50.242 47.526 31.426 31.155
RF 66.494 51.017 50.976 60.251 31.466 31.432
XGBoost 50.390 47.716 47.693 47.936 31.447 31.243
LightGBM 50.719 50.266 50.251 46.817 31.390 30.995
DNN 29.176 29.170 28.418 12.435 12.426 12.456
LSTM 27.182 26.452 24.805 12.085 11.958 11.747
Proposed 25.233 24.809 24.492 12.515 12.465 11.469

Cluster C Cluster D

Zero Linear RF Zero Linear RF

LR 117.739 101.843 101.842 67.856 67.858 64.653
DT 148.247 75.016 73.789 106.423 56.346 55.732
GBM 104.571 65.012 64.825 53.486 48.762 48.692
RF 129.975 66.687 66.615 66.523 49.993 49.976
XGBoost 105.020 64.742 64.666 53.901 48.849 48.707
LightGBM 103.554 65.093 65.051 52.870 48.825 48.674
DNN 19.228 19.710 19.707 12.378 12.377 12.073
LSTM 21.657 18.086 18.378 13.137 11.301 10.916
Proposed 18.749 18.382 17.662 10.908 10.710 10.709



12873

1 3

Sliding window‑based LightGBM model for electric load…

and (7). In Tables 6, 7, 8, and 9, values in bold font indicate the best performance for 
each model.

The proposed RF-based data repair method provides superior performance overall 
metrics. Also, the sliding window-based LightGBM model achieves the best forecast-
ing performance compared with the other machine learning techniques for most cases.

Finally, we conducted a Wilcoxon test to verify that the results of the proposed 
model are statistically the same as those of the other models. In the test, if the p value 
is less than the significance level, the null hypothesis is rejected, which indicates that 
there is no significant difference between the two dependent samples. The results of the 
Wilcoxon test with a significance level of 0.05 are shown in Table 10. As the p value 
in all cases is lower than the significance level, it was proved that the results of the 
proposed model were not statistically different from those of other models. This means 
that the data used for the sliding window-based LightGBM model, albeit in a small 
amount, are sufficient for training.

Table 7  RMSE comparison of forecasting models

Forecasting model Cluster A Cluster B

Zero Linear RF Zero Linear RF

LR 170.086 170.086 167.66 66.632 55.125 55.116
DT 258.058 101.247 98.282 130.862 54.357 53.112
GBM 72.369 69.091 69.249 57.305 41.036 40.731
RF 96.460 72.840 72.690 71.589 41.229 41.180
XGBoost 70.724 66.696 66.680 57.486 41.001 40.811
LightGBM 70.041 69.773 68.550 56.228 41.133 40.642
DNN 49.604 49.599 49.113 18.415 18.420 18.089
LSTM 48.074 47.926 47.025 18.110 18.040 17.887
Proposed 40.576 39.657 39.656 17.187 17.056 17.045

Cluster C Cluster D

Zero Linear RF Zero Linear RF

LR 155.969 133.267 133.263 87.537 87.534 85.042
DT 264.216 95.386 94.811 189.74 88.124 87.129
GBM 117.878 78.325 78.086 81.246 80.437 80.414
RF 147.186 80.089 80.039 91.380 81.368 81.324
XGBoost 117.625 77.358 77.148 80.871 80.588 80.217
LightGBM 116.187 78.411 78.401 80.508 80.406 79.340
DNN 34.437 34.435 34.141 19.414 19.413 19.163
LSTM 34.941 33.553 33.270 19.602 18.636 18.397
Proposed 29.998 29.292 29.290 17.634 17.241 17.240
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7  Conclusion

This paper proposed an accurate electric load forecasting scheme that detects 
anomalies using VAE, repairs data using RF, and forecasts electric load using 
sliding window-based LightGBM. We collected 15-min resolution electric load 
data collected at a private university in Seoul, South Korea, and performed data 
preprocessing for the proposed scheme.

We proposed a VAE-based anomaly detection method and compared its perfor-
mance to popular anomaly detection methods such as IQR, LOF, and IForest. The 
proposed VAE-based anomaly detection method shows the best performance in 
most cases, with less accuracy reduction as the anomaly rate increases, compared 
with all other methods. In addition, we used the RF model to repair the anomalies 
to appropriate values. To repair continuous anomalies effectively, various external 
variables should be used to represent the situation at the time when the continu-
ous anomalies occurred. As RF works well with large amounts of data and large 
numbers of input variables, it is suitable for repairing anomalies using various 
external variables. As a result of comparing the proposed RF-based data repair 
method with the widely used missing data interpolation methods, such as zero 

Table 8  RMSLE comparison of forecasting models

Forecasting model Cluster A Cluster B

Zero Linear RF Zero Linear RF

LR 0.470 0.470 0.468 0.198 0.163 0.163
DT 2.133 0.158 0.155 2.068 0.175 0.170
GBM 0.117 0.116 0.116 0.175 0.122 0.122
RF 0.149 0.118 0.118 0.231 0.124 0.124
XGBoost 0.112 0.112 0.111 0.123 0.123 0.177
LightGBM 0.117 0.116 0.111 0.172 0.123 0.121
DNN 0.085 0.085 0.085 0.059 0.059 0.058
LSTM 0.083 0.081 0.083 0.058 0.058 0.057
Proposed 0.070 0.069 0.069 0.054 0.054 0.054

Cluster C Cluster D

Zero Linear RF Zero Linear RF

LR 0.253 0.218 0.218 0.173 0.173 0.168
DT 2.283 0.155 0.153 2.102 0.166 0.165
GBM 0.188 0.122 0.122 0.153 0.149 0.149
RF 0.245 0.127 0.127 0.182 0.151 0.151
XGBoost 0.188 0.122 0.122 0.153 0.150 0.149
LightGBM 0.184 0.122 0.122 0.149 0.149 0.149
DNN 0.048 0.048 0.048 0.037 0.037 0.037
LSTM 0.050 0.046 0.045 0.038 0.036 0.035
Proposed 0.043 0.041 0.041 0.034 0.033 0.033
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interpolation and linear interpolation, it was confirmed that the use of RF could 
better repair anomalies. Finally, we proposed a sliding window-based LightGBM 
model for electric load forecasting. As a result of experimenting with various 
window sizes, prediction performance improved as window size increased up to 

Table 9  MAPE comparison of forecasting models

Forecasting model Cluster A Cluster B

Zero Linear RF Zero Linear RF

LR 30.169 30.167 27.394 14.652 12.493 12.492
DT 22.043 11.831 11.625 23.411 12.226 12.061
GBM 9.246 9.216 8.633 13.674 9.099 9.018
RF 10.663 9.189 9.189 17.533 9.149 9.133
XGBoost 8.776 8.764 8.452 13.856 9.129 9.077
LightGBM 9.257 9.226 8.525 13.488 9.083 8.965
DNN 5.314 5.313 5.310 4.060 4.057 3.895
LSTM 5.086 5.003 4.597 3.897 3.875 3.892
Proposed 4.600 4.546 4.545 3.913 3.898 3.755

Cluster C Cluster D

Zero Linear RF Zero Linear RF

LR 16.587 14.824 14.823 14.488 14.488 13.049
DT 22.103 11.247 11.061 21.922 11.616 11.517
GBM 15.548 9.770 9.755 10.074 10.065 10.461
RF 19.373 10.059 10.046 13.066 10.334 10.328
XGBoost 15.670 9.791 9.789 10.099 10.070 10.563
LightGBM 15.400 9.788 9.776 10.372 10.087 10.053
DNN 3.053 3.052 3.051 2.535 2.524 2.524
LSTM 3.536 2.821 2.702 2.719 2.351 2.191
Proposed 2.756 2.702 2.700 2.183 2.144 2.144

Table 10  Result of Wilcoxon test

Compared models Wilcoxon test (p value)

Cluster A Cluster B Cluster C Cluster D

Proposed model LR 1.10 × 10−288 0 0 0
DT 0 0 0 0
GBM 0 0 0 0
RF 0 0 0 0
XGBoost 0 0 0 0
LightGBM 0 0 0 0
DNN 3.28 × 10−90 1.67 × 10−25 3.53 × 10−6 1.30 × 10−92

LSTM 5.06 × 10−45 1.55 × 10−49 2.70 × 10−50 1.01 × 10−182
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7 days, with no further significant improvement. Therefore, the proposed sliding 
window-based LightGBM model has a seven-day window size.

The performance of the proposed models was verified in terms of MAE, RMSE, 
RMSLE, and MAPE compared with other popular machine learning and deep learn-
ing methods. As a result of the experiment using the data repaired through the zero, 
linear, and RF interpolation techniques, it was confirmed that the best performance 
was obtained when using the data repaired by RF. In addition, as a result of com-
paring the performance of the proposed model with various models, it was con-
firmed that the performance of the proposed model shows the best performance in 
all indicators.

Despite meaningful experimental outcomes, our study has some limitations 
which present our future research directions. First, despite previous studies showing 
better performance, it could not be used due to time constraints. In order to apply to 
the actual smart grid system, we plan to explore new models that show good perfor-
mance and take less time for model training. Second, it is difficult to explain how the 
proposed model derives the predicted values. So, we plan to develop a more accu-
rate electrical load forecasting model by analyzing the influence of various input 
variables using an explainable artificial intelligence (XAI) technique. In addition, 
we will verify the possibility of application in the smart grid by research in link 
electrical load forecasting model with various systems such as Energy Management 
System (EMS) and Energy Storage System (ESS).

Acknowledgement This research was supported by Energy Cloud R&D Program  (grant number: 
2019M3F2A1073184) through the National Research Foundation of Korea (NRF) funded by the Ministry 
of Science and ICT.

References

 1. Hodge VJ, O’Keefe S, Weeks M, Moulds A (2014) Wireless sensor networks for condition monitor-
ing in the railway industry: a survey. IEEE Trans Intell Transp Syst 16(3):1088–1106

 2. Hempstead M, Lyons MJ, Brooks D, Wei GY (2008) Survey of hardware systems for wireless sen-
sor networks. J Low Power Electron 4(1):11–20

 3. Jagannathan S (2016) Real-time big data analytics architecture for remote sensing application. In: 
International Conference on Signal Processing, Communication, Power and Embedded System, pp 
1912–1916 (2016).

 4. Kanoun O, Trankler HR (2004) Sensor technology advances and future trends. IEEE Trans Instrum 
Meas 53(6):1497–1501

 5. Bell WR, Hillmer SC (1983) Modeling time series with calendar variation. J Am Stat Assoc 
78(383):526–534

 6. Fu TC (2011) A review on time series data mining. Eng Appl Artif Intell 24(1):164–181
 7. Ding D, Cooper RA, Pasquina PF, Fici-Pasquina L (2011) Sensor technology for smart homes. 

Maturitas 69(2):131–136
 8. Yu Z, Zheng X, Huang F, Guo W, Sun L, Yu Z (2020) A framework based on sparse representation 

model for time series prediction in smart city. Front Comp Sci 15(1):1–13
 9. Chou JS, Ngo NT (2016) Smart grid data analytics framework for increasing energy savings in resi-

dential buildings. Autom Constr 72:247–257
 10. Tabrizchi H, Javidi MM, Amirzadeh V (2019) Estimates of residential building energy consumption 

using a multi-verse optimizer-based support vector machine with k-fold cross-validation. Evolv Syst 
1–13 (2019)



12877

1 3

Sliding window‑based LightGBM model for electric load…

 11. Park S, Moon J, Hwang E (2019) 2-Stage electric load forecasting scheme for day-ahead CCHP 
scheduling. In: IEEE 13th International Conference on Power Electronics and Drive Systems 
(PEDS), pp 1–4

 12. Montazerolghaem A, Moghaddam MHY, Leon-Garcia A (2017) OpenAMI: Software-defined AMI 
load balancing. IEEE Internet Things J 5(1):206–218

 13. Raciti M, Nadjm-Tehrani S (2013) Embedded cyber-physical anomaly detection in smart meters. In: 
Critical information infrastructures security, pp 34–45

 14. Jiang R, Lu R, Wang Y, Luo J, Shen C, Shen X (2014) Energy-theft detection issues for advanced 
metering infrastructure in smart grid. Tsinghua Sci Technol 19(2):105–120

 15. Moghaddass R, Wang J (2017) A hierarchical framework for smart grid anomaly detection using 
large-scale smart meter data. IEEE Trans Smart Grid 9(6):5820–5830

 16. Zhang W, Yang Q, Geng Y (2009) A survey of anomaly detection methods in networks. In: Interna-
tional symposium on computer network and multimedia technology, pp 1–3

 17. Wang C, Viswanathan K, Choudur L, Talwar V, Satterfield W, Schwan K (2011) Statistical tech-
niques for online anomaly detection in data centers. In: 12th IFIP/IEEE international symposium on 
integrated network management and workshops, pp 385–392

 18. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 
(CSUR) 41(3):1–58

 19. Zhang A, Song S, Wang J, Yu PS (2017) Time series data cleaning: from anomaly detection to 
anomaly repairing. Proc VLDB Endowm 10(10):1046–1057

 20. Jung S, Moon J, Park S, Rho S, Baik SW, Hwang E (2020) Bagging ensemble of multilayer percep-
trons for missing electricity consumption data imputation. Sensors 20(6):1772

 21. Armstrong JS (1989) Combining forecasts: the end of the beginning or the beginning of the end? Int 
J Forecast 5:585–588

 22. Breunig MM, Kriegel HP, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. 
In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp 
93–104

 23. Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: 8th IEEE International Conference on Data 
Mining, pp 413–422

 24. Chen J, Sathe S, Aggarwal C, Turaga D (2017) Outlier detection with autoencoder ensembles. In: 
Proceedings of the SIAM International Conference on Data Mining, pp 90–98

 25. Akouemo HN, Povinelli RJ (2017) Data improving in time series using ARX and ANN models. 
IEEE Trans Power Syst 32(5):3352–3359

 26. Araya DB, Grolinger K, ElYamany HF, Capretz MA, Bitsuamlak G (2017) An ensemble learning 
framework for anomaly detection in building energy consumption. Energy Build 144:191–206

 27. Xu CD, Wang JF, Hu MG, Li QX (2013) Interpolation of missing temperature data at meteorologi-
cal stations using P-BSHADE. J Clim 26(19):7452–7463

 28. Habermann C, Kindermann F (2007) Multidimensional spline interpolation: theory and applica-
tions. Comput Econ 30(2):153–169

 29. Gan S, Wang S, Chen Y, Zhang Y, Jin Z (2015) Dealiased seismic data interpolation using seislet 
transform with low-frequency constraint. IEEE Geosci Remote Sens Lett 12(10):2150–2154

 30. Jurado S, Peralta J, Nebot A, Mugica F, Cortez P (2013) Short-term electric load forecasting using 
computational intelligence methods. In: IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), pp 1–8

 31. Grolinger K, L’Heureux A, Capretz MA, Seewald L (2016) Energy forecasting for event venues: Big 
data and prediction accuracy. Energy Build 112:222–233

 32. Abbasi RA, Javaid N, Ghuman MNJ, Khan ZA, Rehman SU (2019) Short term load forecasting 
using XGBoost. In: Workshops of the International Conference on Advanced Information Network-
ing and Applications, pp 1120–1131

 33. Kuo PH, Huang CJ (2018) A high precision artificial neural networks model for short-term energy 
load forecasting. Energies 11(1):213

 34. Massana J, Pous C, Burgas L, Melendez J, Colomer J (2015) Short-term load forecasting in a non-
residential building contrasting models and attributes. Energy Build 92:322–330

 35. Park S, Moon J, Jung S, Rho S, Baik SW, Hwang E (2020) A two-stage industrial load forecasting 
scheme for day-ahead combined cooling, heating and power scheduling. Energies 13(2):443

 36. Wang P, Liu B, Hong T (2016) Electric load forecasting with recency effect: a big data approach. Int 
J Forecast 32:585–597



12878 S. Park et al.

1 3

 37. Xie J, Chen Y, Hong T, Laing TD (2016) Relative humidity for load forecasting models. IEEE Trans 
Smart Grid 9:191–198

 38. Kramer MA (1991) Nonlinear principal component analysis using autoassociative neural networks. 
AIChE J 37(2):233–243

 39. Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint http:// arxiv. org/ abs/ 
1312. 6114

 40. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) LightGBM: a highly 
efficient gradient boosting decision tree. In: Advances in neural information processing systems, pp 
3146–3154

 41. Moon J, Jung S, Rew J, Rho S, Hwang E (2020) Combination of short term load forecasting models 
based on a stacking ensemble approach. Energy Build 109921

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Authors and Affiliations

Sungwoo Park1 · Seungmin Jung1 · Seungwon Jung1 · Seungmin Rho2 · 
Eenjun Hwang1 

 Sungwoo Park 
 psw5574@korea.ac.kr

 Seungmin Jung 
 jmkstcom@korea.ac.kr

 Seungwon Jung 
 jsw161@korea.ac.kr

 Seungmin Rho 
 smrho@cau.ac.kr

1 School of Electrical Engineering, Korea University, Seoul, Republic of Korea
2 Department of Industrial Security, Chung-Ang University, Seoul, Republic of Korea

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://orcid.org/0000-0002-0418-4092

	Sliding window-based LightGBM model for electric load forecasting using anomaly repair
	Abstract
	1 Introduction
	2 Related works
	2.1 Anomaly detection
	2.2 Data repair
	2.3 Electric load forecasting

	3 Input variable configuration
	3.1 Time Data
	3.2 Weather data

	4 Anomaly detection model configuration
	5 Load forecasting model configuration
	6 Experimental results
	6.1 Anomaly detection
	6.2 Data repair
	6.3 Determining optimal window size
	6.4 Electric load forecasting

	7 Conclusion
	Acknowledgement 
	References




