
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:11866–11880
https://doi.org/10.1007/s11227-021-03731-6

1 3

Semantic tools for development of high‑level interactive
applications for supercomputers

Maxim Gorodnichev1,2,3  · Danil Lebedev4

Accepted: 10 March 2021 / Published online: 30 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
The paper addresses the problem of devising a systematic approach and software
tools to support development of interactive supercomputer applications on the basis
of low level codes that are typically used on supercomputers for numerical simula-
tion and data processing. An interactive application should help a user to systemati-
cally organize all the activities associated with solution of some class of problems
on remote high performance computing systems. Activities include input data prep-
aration, chaining of remotely run computing jobs, visualization, search and com-
parison of results, performance optimization and others. A platform for development
of interactive supercomputer applications is proposed. The core of the platform is a
visual language that allows a developer to formally describe activities (operations)
and their relations to immutable data objects (“inputs” and “outputs”). Such a repre-
sentation of a problem domain contains information about meaningful combinations
of operations and becomes a basis for automated derivation of necessary user sce-
narios. A developer collects a library of UI components to represent data objects and
a library of program modules that implement operations. These libraries are used in
generation of a web-application that provides end users with appropriate interface to
support derived scenarios.

Keywords  Interactive supercomputer application · Usability · User interfaces ·
Domain specific language · Structural synthesis of programs

 *	 Maxim Gorodnichev
	 maxim@ssd.sscc.ru

	 Danil Lebedev
	 danil.lebedev.0881@gmail.com

1	 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk,
Russia

2	 Novosibirsk State University, Novosibirsk, Russia
3	 Novosibirsk State Technical University, Novosibirsk, Russia
4	 Astana IT University, Nur‑Sultan, Kazakhstan

http://orcid.org/0000-0001-6580-0082
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03731-6&domain=pdf

11867

1 3

Semantic tools for development of high‑level interactive…

1  Introduction

Users of high performance computing (HPC) systems (supercomputers) either
employ well established packages such as MATLAB, ANSYS, OpenFOAM, or
develop their own codes in order to solve numerical simulation and/or data pro-
cessing problems. The tools used by the latter group of users are rather low-level
such as Fortran and C/C++ languages, mathematical libraries and tools used to
implement parallelism (MPI, OpenMP, CUDA, MapReduce frameworks, etc) [1].
Usually, users of such codes organize computational experiments without any
automation. That is, users have to manually upload codes and initial data to a
target HPC system, build their programs, specify and submit computing jobs to
some job management systems, monitor their completion. Should a user need a
more complex experiment that requires a number of dependent jobs to be fulfilled
in some order, the user has to repeatedly fulfill these actions manually for each
step of the computational experiment or develop low-level scripts to run particu-
lar tasks in the required order. It means that all activities of a user and all data
objects related to such computational experiments are out of control of any infor-
mation system and a user bears full responsibility for running such experiments
in a correct and efficient way. The problem becomes more severe if a number of
different computing and storage systems have to be involved.

The objective of this work is to study how this problem can be addressed with
a formal approach to management of computational knowledge described in [2].
The approach is based on the idea of structural program synthesis (Sect. 2). We
create a software platform to assist development of interactive supercomputer
applications. While the general concept of the structural program synthesis pro-
vides a sound basis for the platform design, an attempt to practical implementa-
tion of the concept in a specific application area reveals questions that were not
covered in theoretical works.

A detailed example of a situation that requires development of an interac-
tive supercomputer application can be found in [3], where data objects, opera-
tions, usage scenarios that are needed to study parameters of large-scale lattice
gas automata are described and a manual implementation of an interactive super-
computer application is presented. The platform proposed in the present paper
is used, particularly, to re-implement such an application in a more systematic,
modular way that allows for easier future extensions, better maintainability, auto-
mated usage analysis and optimization.

2 � Structural Program Synthesis

The method of structural program synthesis is described in [2] using the con-
cept of a simple computational model. Formally, a simple computational model
is defined as C = (X,F, In,Out) where X is a finite set of variables, F is a finite set
of functional symbols (operations), In(a) = Ina ⊆ X is a set of ma so called input

11868	 M. Gorodnichev, D. Lebedev

1 3

variables defined for each a ∈ F , and Out(a) = Outa ⊆ X is a set of na so called
output variables defined for each a ∈ F . This formal structure is interpreted in the
domain D by associating a certain function fa ∶ Dma → Dna with each operation
a ∈ F , and each variable x ∈ X is interpreted with its value I(x) = dx ∈ D . A cor-
rect interpretation is assumed, which means that output variables of each a ∈ F
are interpreted as if they were “computed” by function fa given the values of the
input variables of a.

Let V ⊆ X , A ⊆ F be given. A set of functional terms T(V, A) is defined as
follows:

1.	 If x ∈ V  , then x is a term t ∈ T(V ,A) ; the sets in(t) = {x} , out(t) = {x} are called
“input” and “output” variables of the term, respectively.

2.	 Let a ∈ A , In(a) = {x1, ..., xma
} , be given and consider the term t = a(t1, ..., tma

) ,
where ∀i ∈ 1..ma ∶ ti ∈ T(V ,A) . The term t ∈ T(V ,A) if and only if
∀i ∈ 1..ma ∶ xi ∈ out(ti) . In this case: in(t) = ∪

ma

i=1
in(ti) , out(t) = Out(a).

We say that the term t “computes” the variable y if y ∈ out(t) . If we con-
sider a subset W ⊆ X and there is a set of terms T(V, A) such that
∀w ∈ W ∶ ∃t ∈ T(V ,A)) ∶ w ∈ out(t) then T(V, A) is an algorithm that allows one to
compute the variables W being given the values of the variables V.

It is possible to set a computational problem on a model: with sets of variables V
and W being given, it is required to deduce an algorithm, that computes the variables
in W being given the values of the variables in V. Note, that more than one algorithm
can be deduced (also, it is possible that no such algorithm can be deduced on the
model).

If we have program modules (programs, procedures, network services, etc.) to
implement functions associated with functional symbols, then it is possible to gener-
ate programs to implement such algorithms defined by sets of functional terms. The
correct interpretation of the model C guaranties that implementation of any of such
algorithms applied to the interpreted V will result in the same values of the variables
from W.

A reasoner that deduces algorithms and a program generator can use additional
information associated with functions, variables, program modules, and information
about target computing systems to optimize selection of an algorithm and generation
of a program according to non-functional requirements specified by a user.

We apply the idea of structural program synthesis to automate development of
interactive supercomputer applications. We propose a software platform based on
this approach that allows an application developer to formally describe the prob-
lem domain as a computational model. All the activities related to implementation
of computational experiments are represented as operations of the model and data
objects as variables. This information is used further to generate an interactive web-
application to control computational experiments in a meaningful way.

11869

1 3

Semantic tools for development of high‑level interactive…

3 � Basic Ideas

The question is what are the tools needed to automate development of interactive
applications capable of supporting required user scenarios? Generally speaking,
a development environment should provide a developer with an appropriate lan-
guage to allow one to formally describe user scenarios with all the details neces-
sary to set a formal specification for automated generation of an interactive appli-
cation. We consider a specific class of applications that help end users to organize
relatively small number of relatively large computing operations into workflows,
so this is not a general problem of arbitrary program generation. This allows us
to expect that the number and diversity of the mentioned “details”, the structure
of data dependencies make the problem of application generation affordable. This
point of view leads us to the following basic ideas on how to solve the addressed
problem.

First, a unified language for management of computing jobs and data on dif-
ferent HPC resources is required. This is necessary to hide technical details from
application developers (users as well) and to allow them to “speak” about job and
data management at the appropriate abstraction level. We develop (Sect. 4) the
HPC Community Cloud platform with its server providing a RESTful application
programming interface (HPC2C API) to manage remote data and HPC jobs.

Then, in order to describe scenarios for computational experiments, an appli-
cation developer needs a tool to describe unit operations such as “take these data,
filter data (running an HPC job for that, the HPC2C API can be used here) and
provide filtered data as a result” or “with these parameters of a reservoir, simulate
a fluid flow within the reservoir”. That allows a developer to create description of
all data objects types and operations within a certain subject area. Having such
elementary operations at hand, people usually think about composing scenarios
from them. A scenario is a set of operations with a partial order defined on this
set. One describes a number of scenarios and applies them whenever necessary.
However, practice requires to break up such scenarios often. Sometimes we need
to run some parts of such scenarios only or try certain steps of these scenarios
many times while changing input parameters in order to obtain necessary behav-
ior to move further. There are situations, in which data obtained within one sce-
nario can be used in other scenarios. Such practice motivates us to think about
a systematic support for such an activity. That can be achieved if we represent
all meaningful compositions of elementary operations as a computational model
(Sect. 2) that can be used to set problems on the model and derive scenarios to
solve such problems. In order to support development and usage of computational
models we develop an online integrated development environment (Sect. 5.1) that
implements a visual language for representation of computational models.

With a computational model, a developer can set a certain problem on a model
as described in Sect. 2. If we allow a developer to formally specify types of data
objects that need to be supplied as inputs for a specific problem, then we can
use this specification to generate input forms for the problem by composing basic
input forms. A library of forms for basic types and rules for their composition

11870	 M. Gorodnichev, D. Lebedev

1 3

becomes a part of the development environment. Complex input forms can be
generated if a structure of data objects is known as a hierarchical collection of
fields with specified basic types. For example, if a data object is a circle, it can
be described with its radius r and coordinates of the center: x, and y, all these
variables being of a real number type. This simple solution cannot be enough
to build rich interfaces. The system should allow a developer to provide specific
input solutions for certain data types. For example, if it is necessary to specify a
geometry of a simulation domain (lets say, a reservoir), then a widget for visual
construction of the domain can be included into the library of UI (user interface)
components and associated with the “reservoire” type. The same ideas apply to
visualization of data obtained as a result of some computational experiments.

As it was previously indicated, a fixed number of problem settings (user scenar-
ios) can be not enough to respond to growing user demands. It means that, in some
cases, an interface of a supercomputer application should also include the integrated
development environment itself to allow a user to modify computational models and
formulations of problems. Along with a set of problem settings selected for users by
a developer, this will provide a flexible response to user requirements.

To conclude, an interactive supercomputer application, within a proposed
approach, is a combination of numerical simulation and data processing codes that
can be run remotely on HPC systems and a web-application that is generated on the
basis of a computational model prepared by a developer (domain expert). Such an
application offers an environment for users to run computational experiments in a
comfortable way.

4 � HPC community cloud

The objective of the HPC Community Cloud (HPC2C) project is to develop a plat-
form able to accumulate knowledge about HPC-related content created by users and
third-party developers: software development tools, data visualization tools, inter-
active training materials, network services, numerical simulation and data analysis
software. The knowledge is accumulated in an active form: an interface should be
provided for users to analyze the collected data, develop and run programs with the
collected tools. The HPC2C project (Fig. 1) [4] implements a management server
that provides external software systems with a RESTful application programming
interface (API) and a web application that provides end users with a graphical inter-
face. The HPC2C web interface is developed to improve the productivity of users of
research and educational computer centers and, particularly, reduce the threshold for
users to enter the field of HPC. A prototype of the HPC2C web application can be
accessed at hpccloud.ssd.sscc.ru.

4.1 � HPC2C management server

The management server keeps track of users, their files, registered remote comput-
ing resources, computing jobs. It organizes a storage for users’ programs and data.

11871

1 3

Semantic tools for development of high‑level interactive…

HPC2C API is a unified basis for development of external software systems that can
access the resources of computer centers for large-scale computations. The HPC2C
API hides specifics of interfaces of particular computing systems behind a single
access point and a single management system. This is achieved by implementing
modules that transmit user commands made with a unified interface to specific inter-
faces of the controlled computing systems. Any user can register a computing sys-
tem with the HPC2C by providing its address, access credentials (as in [5]), and a
type of the interface. Examples of interface types are: a TORQUE job management
system on a Linux cluster head node and a regular Linux box with no job manage-
ment system.

Users can be included in different user groups. The rights to perform various
operations on various objects can be set at the group level and at the level of indi-
vidual users. Users can provide access to the objects they have created to other users
and groups.

4.2 � HPC2C user interface

The following possible usage scenario gives an idea of the HPC2C web-GUI inter-
face. Also note, that all actions of the scenario can be commanded through the
HPC2C API. The API is the basis for implementation of scenarios derived from
computational models (Sect. 5.1). So, the following is a typical list of actions that
are needed to run a computational experiment through the HPC2C interfaces. A
user:

–	 uploads source files of a numerical simulation or data processing application to
HPC Community Cloud,

–	 registers a computing system or selects a system from the list of systems pro-
vided by the HPC2C service and/or other users,

Fig. 1   HPC Community Cloud architecture. The HPC2C web-application “hosts” interactive supercom-
puter applications as plugins, they manage data objects and computing jobs on storage and HPC systems
via the API provided by the management server. External systems/applications can use the API as well

11872	 M. Gorodnichev, D. Lebedev

1 3

–	 describes rules for building programs based on the Make automation tool,
–	 builds programs according to the rules and corresponding to the architecture of

the selected target computing system,
–	 uploads input data files,
–	 submits a computing job for execution,
–	 monitors the status of the jobs,
–	 gets access to the output files produced by the job and information on the errors

(if there are any).

An application, once uploaded, can be registered with the HPC2C system and reused
in further job submissions. In order to run such registered applications a user needs
to provide input files and appropriate command line parameters.

An application can be registered without uploading source files and building
them through the HPC2C system. The only important point is that executable and
configuration files are prepared according to the HPC2C rules for any computing
system where users may want to employ the application. The invocation is done by
the registered name of the application. The HPC2C server finds a version of the
application that is appropriate for the target computing system and sends it for exe-
cution (this can be cached to avoid unnecessary transfers).

In other scenarios, users can submit jobs based on registered applications to
which other users have granted access. All of these functions are available through
the API, and end-users access these functions either through the HPC2C web inter-
face or through external software systems.

5 � Visual development environment

5.1 � Overview

A development environment (Fig. 2) based on the proposed visual language
(Sect. 5.2) is implemented as a part of the HPC2C web-application and is available
online to the users of the HPC2C service. There are five main tabs: (1) the “work-
bench” tab is used to develop and represent computational models, specify compu-
tational problems on models, run computational jobs to solve specified problems
and visualize running computations; (2) the “list of problems” tab contains a list
of problems that have been specified on the model opened currently in the “work-
bench” tab; (3) selection of one of such problems opens the “solve a problem” tab
where generated input forms for the selected problem can be found; (4) the “previ-
ous jobs” tab contains a list of computational jobs and selection of a job opens the
“workbench” tab to visualize a computational model associated with this job and
demonstrate either a final state of a finished job or visualize a live computational
process by highlighting variables as they get their values computed; (5) the “list of
CMs” contains a list of all available models. All the lists are searchable by names,
tags or textual descriptions that can be associated with each of the objects (models,

11873

1 3

Semantic tools for development of high‑level interactive…

problems, jobs). Each stored object has a unique string identifier assigned by the
system.

Users have access to the objects that they created or the objects shared by other
users. An object can be shared by a user to the general public or to certain groups of
users. Sharing of objects allows for collaboration.

The toolbox at the bottom contains controls to store, load models, to store prob-
lem specifications, run computational jobs, delete models, etc. A mouse together
with keyboard key combinations are used to draw models.

5.2 � Visual language

The workbench allows developers to draw computational models as they are
defined in Sect. 2. Green circles (see Figs. 2 and 3) depict variables (also called
“data objects”). Black circles depict operations. Variables and operations must have
names, names are written in circles. A developer connects variables and operations
with arrows to define input and output variables for operations. This is how a user
can define a simple computational model. However, simple models are not enough
to express many algorithms. Other approaches such as [6] introduce more power-
ful language constructs explicitly. Currently, we avoid this by hiding predicates and
recursive calls in the implementation of the operations. Predicates work in the fol-
lowing way: an implementation of an operation depending on the input may set val-
ues of output variables or leave (some of them or all) not computed. The execution

Fig. 2   Visual development environment. A workbench for visual construction of computational models

11874	 M. Gorodnichev, D. Lebedev

1 3

system can notice that an operation finished without producing outputs. Such a solu-
tion does not allow a deduction system (a reasoner) to see predicates and use this
information for workflow derivation. Recursive calls can be made visible for static
analysis (see description of operation types below) but can also be hidden in a low-
level procedure that implements an operation.

The following actions require that a developer opens a dialogue window associ-
ated with that or another object (variable or operation) and edits the properties of the
object.

A developer has to associate an implementation procedure with each operation
so that an execution system is able to fulfill operations automatically. The platform
supports an extensible set of operation types. Currently, the following types can be
chosen:

•	 JavaScript (JS) operations: a developer provides a piece of a JavaScipt code that
implements the operation; a mapping between JS variables and model variables
must be defined;

•	 HTTP methods: a developer may set the operation type as HTTP GET, for exam-
ple, and provide a target URL and request parameters; this allows to directly
access web-services where no complex preparation of a request is required (com-
plex requests can be prepared within JS operations);

Fig. 3   Representation of a simple computational model in a visual development environment: variables
are represented as green circles, operations are represented as black circles. The dashed outline (e.g.,
variables “fhpsim.conf” and “Initial CA-State”) means that a variable belongs to the set V (see Sect. 2).
The dotted outline (“FHP Visualization Result”) means that the variable belongs to the set W. The thick
outline (e.g., “fhpsim.conf”) means that the variable was assigned a value. This is a part of a model
developed to describe simulations with lattice gas automata [3]

11875

1 3

Semantic tools for development of high‑level interactive…

•	 “structured” operation: a computational problem is specified (Sect. 2) on some
stored model; implementation of such an operation means that, first, an algorithm
must be derived on the model and, second, the algorithm must be executed by the
execution system; the same model can be used for problem specification—this
allows to implement recursion that will be “visible” to the static analysis.

In fact, the reasoner and the execution systems are implemented as web services, so it is
possible to call them to solve problems specified on the models from operations of the
first two types. Such invocations will not be available for static analysis (unless explic-
itly specified in the description of non-functional properties of these operations).

A developer can set optional attributes of the variables:

•	 value: a number, an arbitrary string or a JSON-object can be set as a value of a
variable; variable with a value is highlighted with a thick outline;

•	 JSON-Schema: is used to automatically check values and generate input forms;
•	 input: can be set to true or false;
•	 output: can be set to true or false.

The attributes “input” and “output” are used to specify a problem on a model. A
developer sets such attributes for some of the variables. All the variables marked
with input = true constitute the V set (Sect. 2) (visualized with dashed outline) and
all the variables marked with output = true constitute the W set (dotted outline).
When these sets are specified, the problem is specified and can be stored for further
reference (becomes accessible on the “list of problems” tab). There are two options
to run a specified problem: by setting values of input variables using dialogue win-
dows on the “workbench” tab, or switch to the “solve a problem” tab and use gener-
ated input forms to set the values.

A developer can implement a GUI widget that can be used in a user interface to
visualize the value of a certain variable and a GUI widget that can be used in a user
interface to allow a user to set the value of the variable. Such widgets must be added
to the library of widgets and associated with the computational model and the vari-
able. There can be more than one widget of each type for each variable.

The execution system can check the value against a specified JSON-Schema auto-
matically, but if a user needs more complex check then a developer (can be the same
person) may wish to add a procedure into the library of “validators” that will be
called automatically to check the value of a variable.

Operations and variables can also have any additional attributes (metadata) that a
developer associate with these objects. Such information can be used by procedures
that implement operations.

6 � Storage

Models are stored as JSON-objects. There is a document-oriented database con-
trolled by the platform. It is used by default to store models developed under the
visual development environment. Also, it stores results of computations. Note, if

11876	 M. Gorodnichev, D. Lebedev

1 3

some problem is set on a model and some computation is fulfilled, then some values
of some variables become known (computed). As a result, a model with some of its
variables being attributed with their values is stored (separately from the original
model). Also, some other attributes can be set by operations and/or the deduction
and execution systems, for example, to save performance profiling information.

One may note that a collection of such attributed models can be viewed as a
table with variable values, or more generally as an OLAP cube (taking into account
that variables and operations can have multiple attributes). In such a way, well-
established tools can be used to analyze these collections of data. This provides
another possibility for an end user to manage large volumes of data associates with
computations.

Other types of storage can be used to store models, problem specification and
other objects. Remotely stored objects can be references whenever needed with
URIs. For example, a model can be fetched from a Git repository during execution
of a workflow.

7 � Real‑life complications

Practice introduces complications that are not explicitly taken into account by the
formalism described in [2] (Sect. 2). For example, it assumes that interpretations are
correct in a sense that for any derivable algorithm that computes a certain variable
from a given set of input variables the computed value of the output variable will be
the same (Sect. 2). In real settings, specific definitions of equality can be important.
In some cases we can tolerate “slightly” different values, e.g., if the values of a real
number variable computed by two algorithms are different due to round-off errors.
In other case, there can be a wrong procedure associated with some operation and
the algorithm involving such an operation will produce an incorrect value at least
on some inputs. Generally speaking, an expert is required to check adequacy of the
results. An expert can specify rules that allow the system to consider two values as
belonging to some equivalence class, specify a tolerable level of round-off errors,
etc. On the other hand, one should note, that the algorithms derived on a computa-
tional model and their results can be compared automatically to some extent.

Another example is the case of an unsolvable problem specification. In prac-
tice, if a problem specification is given that does not allow the reasoner to derive
an algorithm, it is not enough to provide a user with a negative result. The proposed
platform advises the user to introduce some more input variables into the problem
specification. Development of algorithms to provide an appropriate system reaction
deserves a separate research. Similar situation is addressed, for example, in [7].

Definitions of a computational model and its interpretation assume that, for each
operation, values of its output variables depend on values of the input variables only.
Nothing is said about side effects of the procedures used to implement the opera-
tions. With HPC applications, when multiple independent data sources, storage sys-
tems and computing resources are involved, it is not possible to put all data and
computing resources under exclusive control of the proposed platform. That means
that variables managed by the platform will often serve as references to actual data

11877

1 3

Semantic tools for development of high‑level interactive…

object stored elsewhere. So, side effects and external factors can influence the results
of computations.

As was mentioned in the Sect. 6, the history of computations associated with
some computational model can be stored for future analysis. For non-trivial problem
domains, the practice may require developers/users to reconsider previously devel-
oped and used models. Models can be restructured, extended, split, joined to other
models; variables and operations can be renamed, etc. We need to be able to com-
pare problem solutions obtained with different versions of a model. The platform
should be able to assist a developer/user to keep track of the model changes and
resolve such issues.

It is important to notice that, for non-trivial domains, an evolving, adapting com-
putational model is not just a tool for development of an interactive supercomputer
application but becomes a part of the application, the part that must be accessible to
experienced users.

8 � Related work

The project described in the paper relates to different fields of research.
The basic idea of the HPC Community Cloud (provide an API for management of

remote HPC jobs) is shared by many other project devoted to construction of web-
portals for HPC. An extensive survey of web-portals for HPC has been done recently
in [8]. The problem of creation of such portals has a long history of discussion and a
vast list of associated projects. During the last decade a number of projects emerged
[4, 5, 9–12] building such portals around services that provide application program-
ming interfaces (API) in the trending RESTful architectural style. The APIs allow
developers to implement applications capable of data management and control of
computing jobs on remote HPC resources. Having their specific traits, these projects
seem to share a view on users’ needs and associated problems, and, thus, are simi-
lar in approaches and solutions. The particular focus of the HPC Computing Cloud
project [4] used and developed in the present work is on creation of a platform for
accumulation and reuse of user-developed applications and collaboration of users
over the development and use of the applications.

Besides the need for high-level interfaces for particular remote running applica-
tions, research in the field of unified interfacing systems for development, deploy-
ment and use of simulation and data processing applications is motivated by many
factors. These factors include concerns related to reproducibility, accessibility, and
transparency of computational research [13–15], problems of application discovery
[16], need for collaborative work, diversity of target high-performance computing
systems that must be abstracted for a regular application user, and others.

The development of the high-level HPC services should be based, among the
other, on analysis of use cases as particularly underlined in [17]. This is actually
the basis of our project because we develop a tool to specify use cases and generate
high-level services according to such specifications.

The chosen approach to generation of efficient workflows and their execution is
known as structural program synthesis. Other works in this field are devoted to the

11878	 M. Gorodnichev, D. Lebedev

1 3

logical grounds of knowledge representation and derivation of algorithms or appli-
cation of this concept to other problem areas [6, 7]. Our project is focused on prac-
tical problems and technical issues that are usually abstracted away in theoretical
papers and particularly addresses the problem area of HPC applications. One of such
practical problems is that non-functional requirements should be taken in account
when deducing an algorithm (a workflow) on a computational model (so, this is not
enough to just deduce some algorithm that matches functional requirements). This
problem was formulated and addressed for example in [18]. A survey of approaches
to program synthesis can be found in [19].

Composition and execution of workflows are studied extensively. There is a lot
of research [20] devoted to scheduling of HPC workflows and there is a number
of well-established (ProActive Workflows & Scheduling) and emerging systems
that provide users with interfaces that allow to represent such scenarios in a form
that can be interpreted by a system. Explicit representation of scenarios allows such
systems to have control over workflows, use this information for better resource
scheduling, resolve failures in a meaningful way and so on. The difference with our
project is that we derive workflows. We do not develop new scheduling algorithms
within the project, but rather follow the basic project idea to collect and apply exist-
ing algorithms.

9 � Conclusion

A platform for development of interactive supercomputer applications is proposed.
An interactive supercomputer application is a web-application that provides a high-
level interface for a user and runs numerical simulation and data processing codes
remotely on HPC systems to solve the problems that the user specifies through a
high-level interface. The platform is built around a visual language that allows a
developer to formally describe operations (user actions or computations) and their
relations to immutable data objects (that either provide input information for the
operations or are created as a result of the operations). Such a representation (a com-
putational model) implicitly contains information about all meaningful user scenar-
ios. Actually, it defines all necessary terms and their relations to allow a developer to
“speak” at the level of the subject domain, thus defining a domain specific language.
It provides a basis for automated derivation and implementation of necessary user
scenarios and generation of a web-application that provides end users with appropri-
ate interface to support derived scenarios. An extensible library of UI components is
used in generation of interfaces. An extensible library of program modules that are
needed to implement operations is used to automatically fulfill derived scenarios.
Thus, the platform allows its users to accumulate and reuse knowledge about HPC
application components in a systematic way.

Future work includes development of system algorithms capable of taking into
account non-functional requirements: algorithms for workflow deduction, workflow
scheduling and others that will help, particularly, to resolve issues mentioned in
Sect. 7. Interestingly, such algorithms can be accumulated and used by the platform
on the same principles as user-level application components.

11879

1 3

Semantic tools for development of high‑level interactive…

Acknowledgements  This research has been funded by the Science Committee of the Ministry of Edu-
cation and Science of the Republic of Kazakhstan BR05236340 “Creation of high-performance intel-
ligent analysis and decision making technologies for the “logistics-agglomeration” system within forma-
tion of the Republic of Kazakhstan digital economic” and under state contract with ICMMG SB RAS
(0251-2021-0005).

References

	 1.	 Amaral V, Norberto B, Goulão M, Aldinucci M, Benkner S, Bracciali A, Carreira P, Celms E, Cor-
reia L, Grelck C, Karatza H, Kessler Ch, Kilpatrick P, Martiniano H, Mavridis I, Pllana S, Respício
A, Simão J, Veiga L, Visa A (2020) Programming languages for data-Intensive HPC applications: a
systematic mapping study. Parallel Comput. https://​doi.​org/​10.​1016/j.​parco.​2019.​102584

	 2.	 Malyshkin V (2015) Active knowledge, LuNA and literacy for oncoming centuries. In: Bodei C,
Ferrari G, Priami C (eds) Programming languages with applications to biology and security. Lecture
notes in computer science, vol 9465. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-​319-​25527-9_​
19

	 3.	 Gorodnichev M, Medvedev Yu (2019) A web-based platform for interactive parameter study of
large-scale lattice gas automata. In: Malyshkin V (eds) Parallel computing technologies. PaCT
2019. Lecture notes in computer science, vol 11657, pp 321–333. Springer, Cham. https://​doi.​org/​
10.​1007/​978-3-​030-​25636-4_​25

	 4.	 Gorodnichev M, Vaycel S (2014) Organization of access to supercomputing resources in the HPC
community cloud. Bulletin of the South Ural State University Series. Comput Math Soft Eng
3(4):85–95. https://​doi.​org/​10.​14529/​cmse1​40406

	 5.	 O’Leary P, Christon M, Jourdain S, Harris C, Berndt M, Bauer A (2015) HPCCloud: a cloud/web-
based simulation environment. In: IEEE 7th International Conference on Cloud Computing Tech-
nology and Science (CloudCom), Vancouver, BC, pp 25–33. https://​doi.​org/​10.​1109/​Cloud​Com.​
2015.​33

	 6.	 Novikov FA, Novoseltsev VB (2010) Interpretable program specification language. Program Com-
put Softw 36:48–57. https://​doi.​org/​10.​1134/​S0361​76881​00100​7X

	 7.	 Giedrimas V, Omanovic S, Grigorenko P (2017) The evolution of automated component-based soft-
ware development tools: from structural synthesis of programs to behavioral types. In: 2017 Inter-
national conference on information science and communications technologies (ICISCT). https://​doi.​
org/​10.​1109/​icisct.​2017.​81885​70

	 8.	 Calegari P, Levrier M, Balczyński P (2019) Web portals for high-performance computing: a survey.
ACM Trans Web 13(1):5:1–5:36. https://​doi.​org/​10.​1145/​31973​85

	 9.	 Cholia S, Sun T (2015) The NEWT platform: an extensible plugin framework for creating ReSTful
HPC APIs. Concurr Comput Pract Exper 27:4304–4317. https://​doi.​org/​10.​1002/​cpe.​3517

	10.	 Bychkov IV, Oparin GA, Bogdanova VG, Pashinin AA, Gorsky SA (2017) Automation develop-
ment framework of scalable scientific web applications based on subject domain knowledge. In:
Malyshkin V (eds) PaCT. LNCS vol 10421. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-​319-​
62932-2_​27

	11.	 Afanasiev A, Sukhoroslov O, Voloshinov V (2013) MathCloud: publication and reuse of scientific
applications as restful web services. In: Malyshkin V (ed) PaCT 2013. LNCS, vol 7979. Springer,
Berlin, Heidelberg, pp 394–408. https://​doi.​org/​10.​1007/​978-3-​642-​39958-​936

	12.	 Sukhoroslov O, Volkov S, Afanasiev A (2015) A web-based platform for publication and distributed
execution of computing applications. In: 14th International symposium on parallel and distributed
computing, Limassol, pp 175–184. https://​doi.​org/​10.​1109/​ISPDC.​2015.​27

	13.	 Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting acces-
sible, reproducible, and transparent computational research in the life sciences. Genome Biol
11(8):R86. https://​doi.​org/​10.​1186/​gb-​2010-​11-8-​r86

	14.	 Stodden V, Seiler J, Ma Z (2018) An empirical analysis of journal policy effectiveness for compu-
tational reproducibility. In: Proceedings of the national academy of sciences of the United States of
America, vol 115(11), pp 2584–2589. https://​doi.​org/​10.​1073/​pnas.​17082​90115

https://doi.org/10.1016/j.parco.2019.102584
https://doi.org/10.1007/978-3-319-25527-9_19
https://doi.org/10.1007/978-3-319-25527-9_19
https://doi.org/10.1007/978-3-030-25636-4_25
https://doi.org/10.1007/978-3-030-25636-4_25
https://doi.org/10.14529/cmse140406
https://doi.org/10.1109/CloudCom.2015.33
https://doi.org/10.1109/CloudCom.2015.33
https://doi.org/10.1134/S036176881001007X
https://doi.org/10.1109/icisct.2017.8188570
https://doi.org/10.1109/icisct.2017.8188570
https://doi.org/10.1145/3197385
https://doi.org/10.1002/cpe.3517
https://doi.org/10.1007/978-3-319-62932-2_27
https://doi.org/10.1007/978-3-319-62932-2_27
https://doi.org/10.1007/978-3-642-39958-936
https://doi.org/10.1109/ISPDC.2015.27
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1073/pnas.1708290115

11880	 M. Gorodnichev, D. Lebedev

1 3

	15.	 Jiménez RC, Kuzak M, Alhamdoosh M et al (2017) Four simple recommendations to encourage
best practices in research software. F1000Research 6:876. https://​doi.​org/​10.​12688/​f1000​resea​rch.​
11407.1

	16.	 Hucka M, Graham MJ (2018) Software search is not a science, even among scientists: a survey of
how scientists and engineers find software. J Syst Softw 141:171–191. https://​doi.​org/​10.​1016/j.​jss.​
2018.​03.​047

	17.	 Struckmann N et al (2018) MIKELANGELO: MIcro KErneL virtualizAtioN for hiGh pErfOr-
mance cLOud and HPC Systems. In: Mann Z, Stolz V (eds) CCIS vol 824. Springer, Cham, pp
175–180. https://​doi.​org/​10.​1007/​978-3-​319-​79090-​915

	18.	 Valkovskii VA, Malyshkin VE (1988) Synthesis of parallel programs and systems on the basis of
computational models. Nauka, Novosibirsk (In Russian. Sintez parallel’nykh programm i sistem na
vychislitel’nykh modelyakh)

	19.	 Bodik R, Jobstmann B (2013) Algorithmic program synthesis: introduction. Int J Softw Tools Tech-
nol Transf 15:397–411. https://​doi.​org/​10.​1007/​s10009-​013-​0287-9

	20.	 Wu F, Wu Q, Tan Y (2015) Workflow scheduling in cloud: a survey. J Supercomput 71(9):3373–
3418. https://​doi.​org/​10.​1007/​s11227-​015-​1438-4

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.1016/j.jss.2018.03.047
https://doi.org/10.1016/j.jss.2018.03.047
https://doi.org/10.1007/978-3-319-79090-915
https://doi.org/10.1007/s10009-013-0287-9
https://doi.org/10.1007/s11227-015-1438-4

	Semantic tools for development of high-level interactive applications for supercomputers
	Abstract
	1 Introduction
	2 Structural Program Synthesis
	3 Basic Ideas
	4 HPC community cloud
	4.1 HPC2C management server
	4.2 HPC2C user interface

	5 Visual development environment
	5.1 Overview
	5.2 Visual language

	6 Storage
	7 Real-life complications
	8 Related work
	9 Conclusion
	Acknowledgements
	References

