
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:9971–9987
https://doi.org/10.1007/s11227-021-03673-z

1 3

PyDTNN: A user‑friendly and extensible framework
for distributed deep learning

Sergio Barrachina1 · Adrián Castelló1 · Mar Catalán1 · Manuel F. Dolz1 ·
Jose I. Mestre1

Accepted: 4 February 2021 / Published online: 22 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
We introduce a framework for training deep neural networks on clusters of comput-
ers with the following appealing properties: (1) It is developed in Python, exposing
an amiable interface that provides an accessible entry point for the newcomer; (2) it
is extensible, offering a customizable tool for the more advanced user in deep learn-
ing; (3) it covers the main functionality appearing in convolutional neural networks;
and (4) it delivers reasonable inter-node parallel performance exploiting data paral-
lelism by leveraging MPI via MPI4Py for communication and NumPy for the effi-
cient execution of (multithreaded) numerical kernels.

Keywords Deep neural networks · Distributed parallel training · Python

1 Introduction

The recent outburst in machine learning via deep neural networks (DNNs) is largely
due to the combined effect of new algorithmic techniques, vast amounts of compu-
tational capacity in current hardware, and the explosion in the amount of training
data [1, 2]. The myriad of applications of deep learning (DL) and the computational
complexity of the training process have pushed the industry to design customized

 * Manuel F. Dolz
 dolzm@uji.es

 Sergio Barrachina
 barrachi@uji.es

 Adrián Castelló
 adcastel@uji.es

 Mar Catalán
 catalama@uji.es

 Jose I. Mestre
 jmiravet@uji.es

1 Universitat Jaume I, Castellón de la Plana, Spain

http://orcid.org/0000-0001-9466-3398
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03673-z&domain=pdf

9972 S. Barrachina et al.

1 3

architectures and hardware components as well as very sophisticated frameworks
for DL. In the latter category, we can identify Google’s TensorFlow, Facebook’s
PyTorch and Caffe2, Microsoft’s CNTK, Theano, and Keras, among others.

While these frameworks have doubtlessly contributed to the adoption of DL, we
also find that the level of internal intricacy of these packages turns their customiza-
tion into a fairly difficult task. A particular problem that we are concerned with is
the realization of distributed training for DNNs, which entails an extra degree of
complexity to DL frameworks. To tackle this, we present a lightweight framework
for distributed DL training and inference, named PyDTNN (Python Distributed
Training of Neural Networks),1 with the following features:

1. Amiable user interface: PyDTNN is developed in a high-level language, such as
Python, offering an interface that is similar to that exposed by popular packages,
such as Keras, to provide a flat accessing curve for the novice.

2. Extensible: PyDTNN prioritizes simplicity while facilitating user customization
of the framework.

3. Functional: PyDTNN covers fully connected, convolutional and pooling layers,
dropout, batch normalization, a variety of popular nonlinear functions, etc.

4. Moderately efficient: PyDTNN exploits data parallelism, using MPI for message-
passing and multithreaded kernels for the major linear algebra operations.

Note that we do not claim about PyDTNN offering an alternative for distributed
training that is competitive, for example, with TensorFlow enhanced with Horovod
from the point of view of parallel performance. Instead, we claim that PyDTNN
offers an accessible solution for basic training of simple DNN models on clusters
that can be more easily customized to prototype and experiment with new ideas.

The rest of the paper is organized as follows. In Sect. 2, we provide a brief over-
view of distributed training for DNNs and the exploitation of data parallelism. In
Sect. 3, we discuss the internal organization and functionality of PyDTNN, and in
Sect. 4, we describe its user interface. Next, in Sect. 5, we illustrate the flexibility of
PyDTNN as a tool to prototype ideas, and in Sect. 6, we elaborate on its efficiency.
Finally, in Sect. 7, we summarize the main properties of PyDTNN as part of our
concluding remarks.

2 Distributed training of DNNs

In this section, we provide a short review of DNNs and distributed training.
Overview of DNNs. Consider a collection of input vectors (or samples) given

by x1, x2,… , xs ∈ ℝ
n , respectively, classified using labels y1, y2,… , ys ∈ ℝ

m (also
known as target outputs or ground truth). A neural network comprises a number of
interconnected neurons, organized into multiple layers, which define a nonlinear

1 The source code for PyDTNN is available at https ://githu b.com/hpca-uji/PyDTN N.

https://github.com/hpca-uji/PyDTNN

9973

1 3

PyDTNN: A user‑friendly and extensible framework for…

function F ∶ ℝ
n
→ ℝ

m performing the mapping F(xr) = ỹr , where we expect that
ỹr ≈ yr , r = 1, 2,… , s . For performance reasons, the input–output mapping realized
by a DNN (also known as forward pass, or FP) is performed in batches of b samples
at a time [3].

The goal of the training process is to minimize the difference between the
output(s) computed by the NN and the ground truth, given by

∑s

r=1

1

s
‖yr − ỹr‖ . This

optimization problem is usually solved via the stochastic gradient descent (SGD)
method, which implements an iterative “back-propagation” (BP) procedure that
realizes the gradient computation (GC) which minimizes the difference and per-
forms the corresponding weight updates (WU).

In practice, current DNNs often combine convolutional layers (Conv) in the ini-
tial stages followed by fully connected layers (FC) layers in the last ones. A Conv
layer consists of multiple filters that operate on a (sub)tensor of the inputs, of the
same dimension as the filters, to produce a single scalar value. The filters are repeat-
edly applied in a sliding window manner to the whole input, in order to produce all
the output values [1]. An efficient realization of Conv can be obtained by means of a
re-organization of the proper input operand via an im2col transform [3–5]. The result
of the convolution operation can then be achieved using a general matrix–matrix
multiplication (Gemm).

Distributed training. There exist strict data dependencies between the outputs
of one layer and the inputs to the next layer, both in the FP and BP stages of DNN
training. Thus, the only parallelization option is to exploit the intra-layer concur-
rency, which corresponds to parallelizing the individual Gemm inside each layer.

In the data-parallel (DP) scheme [3], concurrency is extracted across the batch
dimension. This benefits from the fact that provided some algorithmic issues related
to the training convergence are conveniently tackled, the batch dimension (b) can
be linearly increased with the number of processes, up to values of b in the range
32k–64k [6, 7].

In short detail, the DP scheme replicates the weight matrices that define the NN
model in all processes while the remaining matrix operands (input/output activa-
tions to each layer) are distributed in the batch dimension by blocks of columns.
Therefore, in the FP and GC stages, there is no need for any inter-process commu-
nication. In contrast, the WU stage requires an Allreduce [8] exchange to aggregate
the local updates, across all processes into the model (weights) before the computa-
tion with the next batch.

The current version of PyDTNN comprises a distributed DP realization of the
training that relies on the MPI4Py Python package for the inter-node communica-
tion layer. The development of an alternative model-parallel scheme is part of ongo-
ing work.

3 A glimpse of PyDTNN

In this section, we provide an overview of PyDTNN and describe how this frame-
work exploits data parallelism.

9974 S. Barrachina et al.

1 3

3.1 Overview

Functionality PyDTNN supports basic DL modules to create, train, and perform
inference with MLPs and CNNs such as, for example, the VGG models, and the
residual neural networks (ResNet), among other types of convolutional DNNs. We
have oriented our design to obtain a customizable environment. Some plans toward
extending the current functionality, for example, in order to cover more involved
models, include developing the classes of modules that appear in recurrent DNNs.

Figure 1 offers an overview of the PyDTNN architecture. The top box illustrates
the application programming interface (API) exposed to the user, that he/she can
then leverage to create, train, and evaluate DNNs. The middle (gray) box comprises
the distinct PyDTNN modules, such as layers, activations, and models, among oth-
ers, that realize the training and inference processes. In addition to Python, Cython
is used to exploit intra-node parallelism via OpenMP. As shown in the bottom
boxes, these DNNs can be trained while exploiting: (1) model parallelism at intra-
node level; (2) DP at inter-/intra-node levels; or a combination of both (1) and (2),
for example, for clusters of nodes equipped with multicore processors.

Basic classes and methods The PyDTNN framework defines two main classes:
Model and Layer. The former class contains the model features and defines the
most relevant methods including, among others, train_dataset() for perform-
ing the training. This method receives several input parameters—such as the dataset
and optimizer objects, the number of epochs, the batch size b (per process), and a
list of loss metrics and learning rate schedulers, which set the training configuration.
The fragments of code in Listings 1 and 2 illustrate the main aspects of this method.
The first listing shows the implementation of the training cycle over the epochs and
training batches, returned by the corresponding dataset generator. The second one
corresponds to the training of a single batch.

The Layer class contains a generic definition of the three main methods: for-
ward(), backward(), and update_weights() (for FP, GC, and WU,

Fig. 1 PyDTNN architecture

9975

1 3

PyDTNN: A user‑friendly and extensible framework for…

respectively). Each type of layer specializes these functions. For example, only
those layers that operate with weights (Conv and FC) will redefine the update_
weights() method. The main methods of the FC layer, derived from the Layer
class, are shown in Listing 3. (The methods of the Conv layer are omitted for
brevity.)

3.2 Exploiting DP in PyDTNN

In the DP version of the training process, the batch has to be distributed among the
processes (cluster nodes), while the model (defined by the values of weights and
biases) needs to be replicated in all the processes [3].

9976 S. Barrachina et al.

1 3

Distributed batch In the application, the user specifies the dataset object and
the batch size, passing these values to the train_dataset() function. During
the parallel execution, batch_size is the dimension (number of samples) of the
local batch that each process will tackle. The dimension of the global batch is then
roughly obtained as the product between the size of the local batches and the num-
ber of processes.

When the train_dataset() function is executed in parallel, all processes
receive the full dataset (global dataset containing all samples). Listing 4 shows the
batch_generator() coroutine that serves as a data generator for the training
loop in line 9 of Listing 1. There, each process selects its subset (or local batch)
depending on its rank. While a true distribution of the samples provides a more scal-
able solution, in our design, we have prioritized simplicity over efficiency.

Replicated model Before the training commences, PyDTNN sets the same seeds
in all processes to generate the same initial random weights and biases (i.e., the rep-
licated model) at each process. During training, PyDTNN then ensures that all pro-
cesses perform a coordinated update of the model, as described next, to maintain the
inter-process coherence of the NN model.

9977

1 3

PyDTNN: A user‑friendly and extensible framework for…

The distributed training of a batch is illustrated in Listing 5. A direct comparison of
this code with its non-distributed counterpart, in Listing 2, shows the same actions for
the forward pass and gradient computation (initial part of the codes). The implicit dif-
ference between the distributed and “sequential” versions in these parts is that, in the
former, each process acts on the local part of the batch, while the latter operates with
the full batch (as described earlier in this subsection).

In contrast, the comparison between the weight updates in the sequential and distrib-
uted training codes shows a couple of new routines in the latter case. (Compare lines
14–15 in Listing 2 and lines 14–16 in Listing 5.) Concretely, in the distributed code
(1) each process computes its local contribution to the weight updates, according to
the information in the local batch that it has processed; and (2) all the contributions are
reduced next, before accumulating them into the global (replicated) weights. This is,
respectively, achieved in the distributed case via two functions calls: (1) backward()
and (2) reduce_weights_sync(). The latter function performs a reshape (lin-
earization) of the data structures, followed by the reduction, and completes the process
by undoing the reshape; see the code in Listing 6.

9978 S. Barrachina et al.

1 3

4 PyDTNN amiable user interface

The PyDTNN framework exposes a Keras-like user interface in order to flatten
the entry learning curve. This decision pursues to help the novice user as well as
motivate the more DL expert to start an interaction with the framework as there is
no need to learn yet-another-interface.

Listing 7 presents the instructions necessary to define a representative convo-
lutional neural network: VGG11 [9] for the CIFAR-10 dataset. This code illus-
trates the basic interaction cycle with the PyDTNN interface, which is composed
of four steps where the user: (1) defines each (individual) layer of the model;
(2) extracts the dataset for training (or inference) from the corresponding file(s);
(3) sets a few basic training parameters such as the learning rate, the number
of epochs to train, and the batch size; and, finally, (4) invokes the training (or
inference) routine. Similarly, Listing 8 shows the code necessary to define the
ResNet-32 network [10] for the same dataset. In this case, to permit the con-
struction of the identity shortcut-connections required by the ResNet-32 model,
PyDTNN includes the special AdditionBlock layer (see lines 10–18) which
processes the different paths contained in it to finally perform an element-wise
sum (during the forward pass) of the activations obtained at the last layer in each
of the paths.

During the creation of the model, the user can specify the distinct features of
the layers. For example, for an FC layer, the user indicates the number of neurons
and the activation function. In comparison, a Conv layer requires a larger number
of parameters: the number and shape of the filters, the padding and stride factors
for the filter application, and the activation function.

9979

1 3

PyDTNN: A user‑friendly and extensible framework for…

In addition, to specify a parallel execution, the user only has to invoke mpirun
as, for example, in:

In this example, the mpirun command launches the DP training of the VGG11
model using 12 processes (-np 12), each mapped onto a cluster node (-ppn 1),
and configured to use the Infiniband network interface (-iface ib0). The script
benchmarks_CNN.py is a utility from PyDTNN whose parameters specify the
model to be trained (--model vgg11), the dataset (--dataset cifar10),
the batch size (--batch_size 64), and the number of epochs to execute (--
num_epochs 100), among other options.

5 Extensibility of PyDTNN

To illustrate the possibilities and ease of customizing PyDTNN, we next describe a
couple of extensions of the baseline implementation.

Overlapping communications with computation Let us start by considering the
dependencies between the major operations in a forward–backward pass, displayed in
Fig. 2. On the one hand, there exist strict dependencies between the Gradient compu-
tations of “consecutive” layers since GCl−1 depends on GCl . On the other hand, the
corresponding reduction communication and weight update are decoupled so that, once
GCl is available, the exchange ARl and the update WUl can proceed in parallel with
GCl−1 , GCl−2 , ..., GC1 . As corresponds to a synchronous variant of the training, the

9980 S. Barrachina et al.

1 3

update WUl for the samples in a batch must be completed before these weights can
participate in the forward pass FPl with the next batch of samples.

Listing 5 shows the code that is executed by PyDTNN for the distributed training
procedure. Lines 9–11 calculate GC (per layer); in line 15, the call to allreduce_
weights() synchronizes the weight matrices in all processes; and line 16 completes
the backward pass by updating the local weights.

The goal of the following exercise is to illustrate how to transform the baseline ver-
sion of PyDTNN into a variant where the communications are overlapped with other
Gradient computations. This can be achieved by using the non-blocking version of the
MPI routine for the global reduction with a synchronization point (in the form of an
invocation to the MPI routine Wait) before the corresponding weight update. Listing
9 shows the changes that have to be introduced in the original code of the PyDTNN
library in order to overlap computation and communication during the training process.
As in the previous example, lines 9–11 compute the GC stage, and this is followed
by the invocation to reduce_weights_async(). The main difference is that this
function employs the non-blocking primitive Iallreduce instead of its blocking
counterpart Allreduce. The non-blocking variant allows overlapping the commu-
nication with the computation of other GC stages; see Fig. 2. Besides, to ensure the
communication completion in due time, an MPI wait function, wait_allreduce_
async(), is added before the weight update.

Fig. 2 Data dependencies in the training. The colored boxes correspond to the computational stages: FP,
GC, and WU; the circles denote Allreduce (AR) exchanges; and the arrows indicate dependencies. The
colored dashed lines mark operations which can be overlapped

9981

1 3

PyDTNN: A user‑friendly and extensible framework for…

Customizing the arithmetic precision An additional example of the PyDTNN
extensibility is presented in Listing 10. There, we demonstrate how to customize
the precision for the reduction of the weights in the backward process using, in this
particular case, two different datatypes: FP32 (comp_dtype) and FP16 (comm_
dtype). This function employs FP32 for the arithmetic (line 15) but transforms the
data from FP32 to FP16 for communication (lines 18 and 26). The purpose of this
modification is to reduce the number of bytes transferred while maintaining the pre-
cision of the local arithmetic.

9982 S. Barrachina et al.

1 3

Blocking the convolution operators A significant part of the computational cost
of CNNs is due to the application of convolutions. A general, flexible, and high-
performance approach to deal with this type of operators, in a convolutional layer, is
to process the layer input tensor (activations) via the im2col transform [4], followed
by an invocation to a general matrix multiplication (Gemm) kernel to multiply the
weight matrix with the output of the im2col transform [4, 5]. Unfortunately, apply-
ing this transform results in a very large matrix, which may exhaust the memory of
the system. In particular, the im2col transform expands the layer input tensor into an
augmented matrix that is kh × kw times larger, where kh∕kw denotes the height/width
of the filter layer.

9983

1 3

PyDTNN: A user‑friendly and extensible framework for…

Listing 11 shows how the convolution operator (appearing in a convolutional
layer in the forward pass) is applied in PyDTNN by first invoking an external
method, for efficiency implemented in Cython (lines 3–4), to then perform the nec-
essary matrix multiplication (line 7).

To reduce memory consumption, we can perform an alternative segmented appli-
cation of the im2col transform, as shown in Listing 12. There, the im2col transform
is calculated in chunks of size chunk_size (see lines 11–13), requiring only a
matrix that is batch_size / chunk_size times smaller than that used in the
approach of Listing 11. In line 17, each of the im2col chunks (x_cols) is multi-
plied by the reshaped weights (w_cols) to obtain the corresponding portion of the
output tensor (y_cols).

6 Efficiency of two‑level parallel PyDTNN

As argued earlier, PyDTNN exploits two levels of parallelism: inter-node and
intra-node, with the second one being extracted via the invocation to multithreaded
routines, much like other frameworks for distributed DL. In any case, we want to
emphasize that PyDTNN is designed as a tool to rapidly prototype ideas, not as a
DL solution to compete in performance with modern DL frameworks.

In the following evaluation, we expose and motivate the performance gap
between PyDTNN and TensorFlow (TF, version 2.2.0) using the native Keras
backend enhanced with Horovod (version 0.20.3). For this evaluation, we train the
AlexNet, VGG11, and ResNet-32 models (on the CIFAR-10 dataset) inspecting
three metrics: (1) total execution time; (2) number of epochs for convergence; and
(3) speed-up with respect to the baseline execution. All the experiments were carried
out on a cluster consisting of eight nodes, each equipped with two Intel Xeon Gold
5120 CPU (Skylake) processors with 14 cores each (28 cores in total), 190 GiB of
DDR4 RAM, and connected via a Mellanox EDR Infiniband switch. Regarding the
software, we leveraged Intel Python v3.7.4 and NumPy v1.17.4 linked against Intel

9984 S. Barrachina et al.

1 3

MKL 2020.0 Update 1 from the Intel Composer XE 2020 package. We also used
MPI4Py v3.0.3 linked against the Intel MPI library from the same Intel package.

Table 1 reports the training costs (in kiloseconds) and the number of epochs for
PyDTNN and TF(+Horovod), for various numbers of MPI ranks (or processes) and
threads per process. Each process is bound to a single node and each thread to a
core inside the node. These values correspond to the actual execution time for each
framework when training AlexNet, VGG11, and ResNet-32, on the CIFAR-10 data-
set, till a validation accuracy threshold of 70% is achieved.

The first result in Table 1 that catches our attention is the difference between the
number of epochs that the two frameworks require for reaching the convergence
threshold for the VGG11 and ResNet-32 models; in contrast, for the AlexNet model,
both frameworks need approximately the same number of epochs. This factor is cru-
cial to explain the distinct performance of the frameworks. To gain insights into the

Table 1 Execution time (in kiloseconds) and number of epochs (#E) for the training of AlexNet, VGG11,
and ResNet-32 on CIFAR-10 using TF and PyDTNN, with a threshold convergence validation accuracy
of 70% using different number of processes in DP (#P) and threads per process (#T)

The optimizer was SGD with a learning rate (LR) � = 10−3 for AlexNet and 10−2 for ResNet-32, momen-
tum set to 0.9; and Adam with a LR � = 10−4 for the VGG11. For the DP execution, the LR was tuned
using the linear scale rule LR=LRbase × p , where p is the number of processes. The batch size b was set
to 64 × p for AlexNet and VGG11; and 128 × p for ResNet-32

AlexNet VGG11 ResNet-32

#P #T TF PyDTNN TF PyDTNN TF PyDTNN

Time #E Time #E Time #E Time #E Time #E Time #E

1 2 7.15 25 4.62 23 5.68 4 5.46 8 12.78 13 10.47 8
6 4.12 23 2.81 23 2.38 4 3.69 9 2.56 6 5.31 6

12 2.49 25 2.60 25 1.54 4 3.08 9 2.55 8 8.60 10
24 1.86 25 2.54 25 1.20 4 2.00 6 1.57 6 9.82 11

2 2 4.49 25 2.66 25 3.16 4 2.53 7 3.16 6 3.89 6
6 3.20 25 1.52 23 0.99 3 1.51 7 1.74 7 3.13 7

12 1.66 23 1.30 23 0.70 3 1.36 7 1.31 8 2.55 6
24 1.17 25 1.42 25 0.74 4 1.21 6 0.72 5 3.05 7

4 2 2.47 25 1.43 26 1.69 4 1.90 7 2.44 9 7.22 22
6 1.59 25 0.88 26 0.70 4 0.80 7 1.48 12 2.13 9

12 0.98 25 0.76 26 0.49 4 0.73 7 1.00 11 2.33 10
24 0.66 25 0.81 26 0.40 4 0.86 7 1.15 16 5.20 22

6 2 1.90 27 0.96 26 1.38 5 1.50 11 1.84 10 5.09 22
6 1.17 24 0.66 28 0.49 4 0.91 11 1.19 14 3.28 21

12 0.73 26 0.55 26 0.35 4 0.83 11 1.16 20 1.75 11
24 0.56 28 0.55 26 0.28 4 1.59 13 0.47 10 4.08 25

8 2 1.22 23 0.98 32 1.09 5 0.94 9 1.89 14 3.70 21
6 0.85 24 0.50 27 0.47 5 0.61 9 1.30 21 2.14 18

12 0.58 27 0.53 31 0.33 5 0.66 9 0.80 18 1.39 12
24 0.39 24 0.62 27 0.27 5 1.02 9 0.78 22 1.97 16

9985

1 3

PyDTNN: A user‑friendly and extensible framework for…

computational behavior of both models, Fig. 3 illustrates the differences between
the two frameworks by comparing the global execution time, the number of epochs,
and the execution time per epoch for the same DL models and number of processes/
threads configurations. In the figure, the ratios are computed by dividing the corre-
sponding value for PyDTNN by that of TF. Thus, a value higher than 1 means that
TF outperforms PyDTNN, while a result lower than 1 indicates the opposite case.

Focusing on the total execution time, we recognize that TF is more competitive
than PyDTNN, except for AlexNet using 2/4 threads per process. These differences
can be better explained by looking into the two other factors, number of epochs and
execution time per epoch, as follows:

• Regarding the first factor, TF is in general more efficient as it achieves the same
convergence threshold in a slightly smaller number of epochs than PyDTNN.
We suspect these differences come from the distinct internal algorithmic imple-
mentations of both frameworks. In any case, we observe a considerable sensitiv-
ity of the number of epochs to training factors such as the number of nodes and
threads per node, for both TF and PyDTNN.

• Concerning the execution time per epoch, we can observe that, for both AlexNet
and VGG11 models using from 2 to 6 threads, PyDTNN is slightly more effi-
cient than TF, while the opposite occurs for ResNet-32. This can be explained
by the compute-bound nature of ResNet-32 over AlexNet and VGG11, which is
better handled by TF with a large number of threads. A second observation about

Fig. 3 Total time, time per epoch, and number of epochs ratio PyDTNN/TF (top, middle and bottom
rows, respectively) for AlexNet, VGG11, and ResNet-32 on CIFAR-10 when varying number of nodes
(processes) and threads per process, with a threshold convergence validation accuracy of 70%

9986 S. Barrachina et al.

1 3

this factor is that PyDTNN delivers fair scalability when increasing the number
of processes. This is reasonably given that, in our experiments, the batch size is
augmented linearly with the number of processes, leading to a good weak scaling
ratio. In contrast, augmenting the number of threads/cores is done while main-
taining the batch size and, therefore, the total training “workload” per epoch. In
this scenario, the scalability of PyDTNN suffers. The ultimate reason for this is
that PyDTNN relies on multi-threaded libraries for some of the most computa-
tionally demanding intra-node operations. However, there are many other parts
of PyDTNN that simply rely on plain (sequential) Python code. As the number
of threads is increased, by Amdahl’s Law, the contribution of these sequential
parts to the overall execution time for these parts in PyDTNN becomes consider-
able and the degree of parallel efficiency decays.

7 General remarks

PyDTNN was started as an exercise to understand in detail distributed training of
neural networks. While there exist several sophisticated DL frameworks for distrib-
uted training, in our experience, the ample functionality and high parallel perfor-
mance of these frameworks come at the expense of considerable complexity, espe-
cially in the case of those packages that explicitly target distributed platforms such
as clusters. For this reason, we designed our framework for distributed DL training
that puts the focus on simplicity, at the expense of offering more limited functional-
ity and sacrificing some of the (intra-node) parallel performance. This paper dem-
onstrates that it is possible to offer a simple interface, together with a DNN training
package that is easy to customize and can be very helpful to rapidly prototype ideas,
offering fair parallel efficiency on a cluster.

Acknowledgements This work was supported by Project TIN2017-82972-R from the Spanish Ministe-
rio de Ciencia, Innovación y Universidades. M. F. Dolz was supported by project CDEIGENT/2018/014
from the Generalitat Valenciana.

References

 1. Tal B-N, Torsten H (2019) Demystifying parallel and distributed deep learning: an in-depth concur-
rency analysis. ACM Comput Surv 52(4):65

 2. Chan E, Heimlich M, Purkayastha A, van de Geijn R (2007) Collective communication: theory,
practice, and experience. Concurr Comput Pract Exp 19(13):1749–1783

 3. Kumar C, Sidd P, Patrice S (2006) High performance convolutional neural networks for document
processing. In: International workshop on frontiers in handwriting recognition

 4. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE
conference on computer vision and pattern recognition (CVPR), pp 770–778

 5. Pouyanfar S et al (2018) A survey on deep learning: algorithms, techniques, and applications. ACM
Comput Surv 51(5):92:1–92:36

 6. Karen S, Andrew Z (2014) Very deep convolutional networks for large-scale image recognition.
arXiv preprint arxiv :1409.1556

 7. Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient processing of deep neural networks: a tutorial
and survey. Proc IEEE 105(12):2295–2329

http://arxiv.org/abs/1409.1556

9987

1 3

PyDTNN: A user‑friendly and extensible framework for…

 8. Aravind V, Andrew A, David G (2017) Parallel multi channel convolution using general matrix mul-
tiplication. In: 2017 IEEE 28th international conference on application-specific systems, architec-
tures and processors (ASAP), pp 19–24

 9. You Y, et al. (2018) Large-batch training for LSTM and beyond. Technical Report UCB/EECS-
2018-138, Electrical Engineering and Computer Sciences, University of California at Berkeley

 10. Yang Y, Igor G, Boris G (2017) Scaling SGD batch size to 32k for ImageNet training. arXiv pre-
print arxiv :1708.03888

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1708.03888

	PyDTNN: A user-friendly and extensible framework for distributed deep learning
	Abstract
	1 Introduction
	2 Distributed training of DNNs
	3 A glimpse of PyDTNN
	3.1 Overview
	3.2 Exploiting DP in PyDTNN

	4 PyDTNN amiable user interface
	5 Extensibility of PyDTNN
	6 Efficiency of two-level parallel PyDTNN
	7 General remarks
	Acknowledgements
	References

