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Abstract
Cluster-based routing protocols have been proven efficient in prolonging the life 
cycle of wireless sensor networks (WSNs). Periodic and multi-hop clustering are 
the most popular techniques which provide the required energy-efficient communi-
cation and scalability in large-scale WSNs. In clustering, WSN is divided into num-
ber of clusters, and cluster head is selected in each cluster. However, in the existing 
clustering protocols, CH’s near base station undergoes large number of receiving, 
aggregating and transmitting operations in comparison with far away CHs. This 
imbalance of load on CHs and lack of structured multi-level clustering framework 
leads to early death of WSNs. Moreover, resolving the issues of scalability and data 
reliability along with load balancing is a very tedious task. In this paper, a hier-
archical clustering and routing (HCR) protocol is proposed to formulate a load-
balanced approach for clustering while taking care of energy efficiency, reliability 
and scalability. Firstly, a hierarchical layered framework is created to split the WSN 
into virtual circular layers for efficient transmission of data in hierarchical fashion. 
Subsequently, an ant lion optimizer is employed for the selection of CHs to ensure 
reliable, energy balanced and scalable cluster formation. Simulation results demon-
strate that HCR protocol outperforms existing state-of-the-art clustering protocols 
in terms of network lifetime, balanced clustering, throughput and energy efficiency.
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1  Introduction

Wireless sensor networks (WSNs) comprise of tens to thousands of sensor nodes 
(SNs), deployed to sense and transmit the collected data to Base Station (BS) [1]. 
WSNs are being employed in a wide range of practical applications like pollution 
monitoring, natural disaster detection, smart healthcare monitoring, military sur-
veillance, intrusion detection and target tracking, etc. [2]. Due to limited energy 
resources and remote deployment of WSNs, it may not be possible to recharge or 
change the battery of dead SNs from time to time. This limitation has inspired 
industrialists and researchers to design low-power hardware devices and energy-
efficient protocols respectively [3].

Energy-efficient routing protocols provide the productive utilization of battery 
power required to extend the lifetime of WSNs. As compared to non-clustering 
protocols, clustering-based routing (CBR) protocols have proved to efficiently 
improve the network lifetime by mitigating the energy consumed in collisions, 
over-hearing and idle listening [4]. In clustering, SNs are grouped into clusters 
and one node from each cluster acts as cluster head (CH). A time slot for data 
transmission is assigned to each SN by their respective CHs. CHs collect the 
sensed data from SNs, aggregate the collected data and transmit the aggregated 
packets to BS directly or via another CHs. Network lifetime in CBR protocols is 
divided into periodic rounds, where each round comprises of two stages: setup 
stage and steady-state stage [5]. In setup stage, clustering is performed to select 
the appropriate CHs for current round, and in steady-state stage, transmission of 
sensed data takes place. Periodic re-clustering after each round is performed to 
rotate the role of CH for even distribution of load among SNs.

Huge difference in the energy consumption of CHs and SNs has driven the 
researchers to avoid premature death of WSN by equally distributing the energy 
load in CBR protocols. Low Energy Adaptive Clustering Hierarchy (LEACH) 
protocol was the first attempt to address this problem. In LEACH, a probabilistic 
function is employed to select CHs. SN once selected for CH role cannot become 
CH again for next k rounds, where k is the optimal number of required CHs [6]. 
Some more stochastic approaches like LEACH have been proposed in the litera-
ture [7–9], which do not consider residual energy as a parameter to select the CH. 
Despite reducing the control overhead to save energy, these protocols suffer from 
issues like scalability and premature death of WSN due to energy unaware selec-
tion of CHs. Event-driven-based data transmission protocols like [10, 11] aim to 
further reduce the overhead by only sending the sensed data when sudden change 
in environment occurs. But these protocols are restricted to specific application 
environment like intrusion detection or volcano monitoring.

In contrast to above techniques, authors of [12–14] have considered energy 
left in each SN to compete in the CH selection process. SNs compete with their 
neighbor nodes to elect themselves as CH. Competition is performed based on 
higher residual energy to select only those SNs as Ch which are capable enough 
to run throughout the current round. In addition to residual energy, distance 
between CH and BS is minimized in [15] to reduce the transmission cost of CHs, 
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whereas [16] has selected CHs based on higher node degree. These competition-
based approaches are simpler to implement but are not appropriate for large-scale 
WSNs due to their high message passing complexity.

It is proved in the literature that CH selection is a non-deterministic polynomial 
hard (NP-hard) problem because there are kNC possible combinations to select k 
CHs from N SNs [17]. Researchers have explored Evolutionary Optimization Tech-
niques (EOT) like ant colony optimization (ACO) [18], biogeography-based opti-
mization (BBO) [19], particle swarm optimization (PSO) [20], differential evolu-
tion (DE) [21] and genetic algorithms (GA) [22] to solve various NP-hard problems 
including CH selection problem. EOT aims to find an optimal set of CHs by mini-
mizing or maximizing the objectives defined in the fitness function. Intra-cluster dis-
tance is minimized in [6] and [23] using simulated annealing algorithm and PSO, 
respectively. Main goal for minimizing the intra-cluster distance is to reduce the 
energy consumed in transmissions between SNs and their CH. In addition to intra-
cluster distance, [24] has also minimized the CH to BS distance using GA to further 
reduce the overall communication cost. All these protocols extend the network life-
time by minimizing the energy consumed during data transmission. However, they 
have not considered the balancing of energy load among CHs.

Some studies [25, 26] have tried to stabilize the energy load of clusters by gener-
ating the clusters with similar intra-cluster distances. The motive is to equalize the 
consumption of energy while transmitting the data from SNs to their CHs. However, 
minimizing the variation in the intra-cluster distances may lead to formation of clus-
ters with varying node degree. Subsequently, energy of CHs with high node degree 
will deplete fast, resulting in the premature death of WSN.

In one of the recent works, PSO-based clustering protocol is proposed [27] con-
sidering intra-cluster distance, node degree and residual energy for the selection of 
CHs. The protocol minimizes the orphan nodes that are not connected to any CH for 
energy-efficient communication. Some authors [28–30] performed the selection of 
CH based on CH to BS distance, residual energy of SNs and intra-cluster distance 
using chemical reaction optimization (CRO) [31], BBO and PSO, respectively.

After thorough review of the existing literature, three main research gaps have 
been identified. Firstly, there is a lack of scalability approach for large-scale WSNs, 
which also focuses on load balancing. Although, multi-hop routing [27–30] and une-
qual clustering protocols [32–36] provide scalability, but due to uneven formation 
of clusters [37] and imbalanced load on CHs, respectively [38], they suffer from hot 
spot problem. Some works [25, 26] have tried to equalize the intra-cluster distances 
of all clusters for balancing the energy consumption of CHs. However, considering 
node degree along with intra-cluster distance for balancing the energy load of CHs 
and SNs will result in better utilization of limited energy resources. Secondly, reli-
able delivery of data while ensuring scalability results into contradicting objectives. 
Due to which, one of these issues has always been left behind while designing the 
routing protocols for WSNs. Finally, two separate problems are defined for cluster-
ing and routing in existing CBR protocols, which increases the computational com-
plexity and latency in cluster formation.

Specifically, in this paper, hierarchical clustering and routing (HCR) protocol is 
proposed to enhance the network lifetime of large-scale WSN by creating balanced 
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clusters. To reduce the computational complexity and control overhead, a hierarchi-
cal layered framework (HLF) is designed to provide the joint solution for clustering 
and routing. To achieve the objectives of HCR protocol, a multi-objective fitness 
function is derived according to the constraints of HLF. Following are the major 
contributions of this paper:

•	 Hierarchical clustering: HLF is designed which divides the large-scale WSN into 
circular layers based on the number of SNs and CHs, required at each layer. The 
motive is to distribute the energy load evenly among hierarchical layers and to 
perform joint clustering and routing.

•	 Balanced inter-cluster and intra-cluster routing load: Equal number of CHs from 
succeeding layer are assigned to each CH of their preceding layer for balanc-
ing the inter-cluster routing load, and for balancing the intra-cluster load, node 
degree of CHs is equalized along with intra-cluster distance.

•	 Scalability at network level: HCR protocol utilizes HLF to estimate the number 
of layers and SNs required at each layer to make sure that the network is fully 
connected. Further, inter-cluster distance is maximized between the clusters of 
each layer to cover all the SNs.

•	 Energy efficiency: Energy consumed in data transmissions from SNs to CHs and 
from CHs to BS is conserved by minimizing the inter-cluster and intra-cluster 
routing distances.

•	 Optimization of CH selection process: A novel EOT namely ant lion optimizer 
(ALO) is applied to optimize the selection of CHs.

The rest of the paper is organized as follows: The network model and energy 
model are described in Sect.  2. Section 3 describes the proposed methodology of 
HCR protocol. Section 4 demonstrates simulation results of HCR protocol in com-
parison with BERA [29], PSO-ECHS [30] and PSO-C [23]. Finally, Sect.  5 con-
cludes the paper.

2 � System model

2.1 � Network model

Consider a WSN having area a ∗ a square units and N number of SNs are deployed 
randomly over some geographic location for the realization of HCR protocol. BS is 
located in the middle of WSN and has unrestricted computational ability, storage 
and battery power. Further, all the SNs have similar storage, transceiver and battery 
power. It is assumed that BS knows the location of all SNs, which can be obtained 
from localization techniques or received signal strength indicator value. The com-
munication between SNs and their CHs is performed in a round-robin scheduling 
methodology, and inter-cluster communication is done using CSMA\CA technique 
to avoid any packet collisions. Various notations used in the paper are presented in 
Table 1.
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2.2 � Energy model

First-order radio model [6] is considered in this paper to measure the energy 
consumption of SNs. This model considers the energy dissipated in aggregation, 
transmission and reception of data packets. Energy consumed in transmissions 
( Etrans ) and receptions ( Erecv ) of k bits over distance X is shown in Eqs. 1 and 2 as 
follows:

where Eelec is energy consumed by electrical circuit, ∈fs is energy dissipated in free 
space communication and ∈mp is energy dissipated in multi-path communication. 
Thus, energy consumed in each round by CHs of inner layers and outermost layer is 
subsequently evaluated using Eqs. 3 and 4, respectively, as follows:

2.3 � Hierarchical layered framework

HLF is designed in this paper to partition the WSN into circular layers considering 
number of SNs and CHs required at each layer. Although few layering-based frame-
works are present in the literature, they all are based on uniform node density or 

(1)Etrans =

{
k ∗ Eelec + k ∗∈fs∗ X2 if X > do
k ∗ Eelec + k ∗∈mp∗ X4 if X ≤ do

(2)Erecv = k ∗ Eelec

(3)ECH = m ∗ k ∗ Eelec + k ∗ Eelec + k ∗∈fs∗ X2 + 2 ∗ k ∗ Eelec

(4)ECH = m ∗ k ∗ Eelec + k ∗ Eelec + k ∗∈fs∗ X2

Table 1   Network parameters Notation Meaning

a*a WSN having length ‘a’ units
N SNs deployed in the WSN
K Total CHs in WSN
BS Base station node
S Set representing SNs
Sch Set representing CHs

D
chj
si

Distance between jth CH and ith SN

D
chi+1
chi

Distance between CHs of ith layer and 
(i + 1)th layer

D
SBS
chi

Distance between BS node and jth CH

Echi
Energy of ith CH

Esi
Energy of ith SN
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predetermined node deployment strategy. However, in random deployment of SNs, 
determining the position of layers is a very tedious process.

It is proved in [41] that after level 3 hierarchy, the reduction in energy consump-
tion is negligible. So, following function is derived to divide the WSN upto level 3 
hierarchy based on the number of SNs:

where NX>do
  represents the SNs with distance greater than do and l is number of 

hierarchical levels. Concentric layers are formed such that immediate succeeding 
layer will have two times the SNs as compared to preceding layer. So, number of 
SNs in each layer for 2-level and 3-level hierarchy can be evaluated using Eq. 6 and 
Eq. 7, respectively, as:

where Nj is the number of SNs in jth layer. Similarly, number of CHs in immedi-
ate succeeding layers will be two times more than preceding layer for balancing the 
energy load throughout the WSN. Figure 1 shows the division of WSN into h layers 
using HLF.

2.4 � Problem formulation

2.4.1 � Load‑balanced cluster formation

Since, routing load of all CHs for inter-cluster data transmission is already balanced 
by HLF, intra-cluster routing load is balanced in this objective. Intra-cluster load 
depends on two factors; intra-cluster distance and node degree of CHs. To equal-
ize the load of all clusters, variations in these two factors should be minimized as 
follows:

where CDi and NDi are the intra-cluster distance and node degree of  ith CH, 
respectively.

(5)l =

⎧
⎪⎨⎪⎩

1, if NX>do
< N∕3

2, ifN∕3 < NX>do
< 2 ∗ N∕3

3, if NX>do
> 2 ∗ N∕3

(6)Nj =

{
N∕3 for j = 1

(2 ∗ N)∕3forj = 2

(7)Nj =

⎧⎪⎨⎪⎩

N∕7 for j = 1

2 ∗ N∕7forj = 2

4 ∗ N∕7 for j = 3

(8)
minimize f1 =

����∑K

i=1

�
CDi − CD

�2

K − 1
+

����∑K

i=1

�
NDi − ND

�2

K − 1
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2.4.2 � Scalable and distributed clusters

Scalability is the ability of an algorithm to provide the same performance regardless 
of any change in the size or node density of WSN. Since, HLF adjusts itself accord-
ing to the number of SNs and distance from BS, WSN will always be connected in a 
multi-level fashion. However, following objective is formed to disperse the CHs within 
a layer by maximizing the inter-cluster distance of same layer:

where DCH
j+1

i

CH
j

i

 represents the distance between two adjacent CHs of same level. This 

objective will force the CHs of same layer to form a shape regular polygon, hence 
covering the network effectively. Since f2′ is a maximization objective, it is con-
verted into minimization objective as follows:

(9)maximize f �
2
=

h∑
i=1

Ki∑
j=1

D
CH

j+1

i

CH
j

i

(10)minimize f2 =
1

f �
2

Fig. 1   Hierarchical layered framework
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2.4.3 � Energy‑efficient communication

For energy-efficient data transmission, intra-cluster routing path, inter-cluster rout-
ing path and distance between CHs of first layer and BS are minimized as follows:

where DCH
j

i

CHi−1
 represents the distance between linked CHs of adjacent layers, DCHi

BS
 is 

the distance of BS and ith CH of innermost layer and DCHi

Sj
 is the distance of jth MN 

from ith CH and ni is the number of MNs in ith cluster.

2.4.4 � Data delivery reliability

Reliability in data delivery means that the routing path is strong enough to handle 
the transmission from source to destination. In proposed protocol, data delivery reli-
ability is ensured by minimizing the weak links as follows:

where AD is average distance of all the SNs from their CHs. If the distance between 
any SN and its CH is greater than average distance, it is considered as a weak link. 
Objective function f4 gives the count of weak links in the current scenario, and this 
objective needs to be minimized to ensure data reliability as high as possible.

2.4.5 � Normalized fitness function

Min–max normalization is applied on all the objectives as they have different ranges. 
An overall LP minimization fitness function is formulated as follows:

where �1, �2, �3 and �4 are the weightage parameters such that �1 + �2 + �3 + �4 = 1

.

2.5 � Ant lion optimizer

Ant lion optimizer (ALO) is a recently proposed nature-inspired evolutionary optimiza-
tion technique based on the hunting behavior of antlion. Antlion has a unique way of 
hunting prey by creating circular cone-shaped pits in sand. Then, antlions hid them-
selves at the center bottom of the pit and wait for the prey (usually ants) to fall in the 
pit. ALO has a good balance between exploration and exploitation phases. Population 
in ALO comprises of two sets, one each for ants and antlions. Each ant and antlion 

(11)minimize f3 =

h∑
i=1

Ki∑
j=1

D
CH

j

i

CHi−1
+

K1∑
l=1

D
CHl

1

BS
+

K∑
i=1

ni∑
j=1

D
CHi

Sj

(12)minimize f4 =

N∑
i=1

{
1 if DCH

Si
> AD

0 if DCH
Si

< AD

(13)minimize f = �1 ∗ f1 + �2 ∗ f2 + �3 ∗ f3 + �4 ∗ f4
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in ALO technique is considered as a possible solution of CHs positions. Elite antlion 
represents the optimal positions of CHs w.r.t. objectives defined in the fitness function. 
Ants rotate around antlion and elite antlion in search of better solution. Positions of ant-
lions and elite antlion are updated accordingly when a better solution is found. Math-
ematical modeling of ALO for CH selection problem is done as follows:

2.5.1 � Initialization and parameter settings

Antlions and ants are randomly initialized in the search area of a ∗ a sq. meter. Each 
antlion ( A ) or ant ( T ) represents a complete solution of CH positions. Population of m 
antlions for selecting K number of CHs is represented as follows:

where Ai,j represents jth candidate CH node having two dimensions for its x and y 
coordinates. Similarly, population of m ants is created randomly. Lower bound and 
upper bound are set according to the network area as 0 and a , respectively.

2.5.2 � Evaluate fitness and select elite antlion

After initialization, fitness value of all the antlions and ants is calculated using fitness 
function defined in Sect. 2.4. Antlion with best fitness is selected as elite antlion ( Aelite ). 
Since, fitness function for selection of CHs is derived as a minimization problem as 
shown in Eq. 13, antlion having least fitness cost is considered as an elite antlion.

2.5.3 � Random walk of ants

An antlion is selected for each ant using roulette wheel selection method based on the 
fitness of antlion. Movement of ants is monitored by both the selected antlion and elite 
antlion. Random walk of ith ant can be formulated as follows:

where RA
i
 is the random walk of ant around antlion selected using roulette wheel and 

RE
i
 is the walk of ant around elite antlion. Random walk of an ant is given as:

where cs represent cumulative sum of the uniformly distributed random numbers. 
Accordingly, r

(
ti
)
 is calculated based on the random numbers generated as follows:

(14)Population =

⎡
⎢⎢⎢⎢⎢⎣

A1,1,A1,2,…A1,j … ,A1,K

A2,1,A2,2,…A2,j … ,A2,K

……

……

Am,1,Am,2,…Am,j … ,Am,K

⎤
⎥⎥⎥⎥⎥⎦m∗K

(15)Ri(ant) =
RA
i
+ RE

i

2

(16)Rant =
[
cs
(
2r
(
t1
)
− 1,

)
, s
(
2r
(
t2
)
− 1,

)
, s
(
2r
(
tmax

)
− 1,

)]
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To mimic the behavior of ants falling in pits, lower and upper bounds of ant 
movement boundary are decreased based on iterations. The reduction in search 
space for an ant represents the exploitation behavior of the algorithm.

2.5.4 � Catching ants and rebuilding traps

After the random movement of ants, new position of antlion is selected based on 
the current position of ant revolving around it. Position of antlion is updated to the 
position of ant when fitness value of ant becomes better than the current fitness of 
antlion. Similarly, position of an elite antlion is updated when fitness of any antlion 
becomes better than fitness of elite antlion as follows:

where At+1
i

 is the new position of ith antlion for (t + 1)th iteration, At+1
elite

 is the new 
position of elite antlion for (t + 1)th iteration, antt

i
 is the current position of ant 

revolving around ith antlion in tth iteration and f () represents the fitness value.
The process of ants random walk and position updating of antlions continues 

until optimal solution is found or maximum number of iterations are reached. It may 
be possible that there are no SNs placed at the optimal positions generated at the end 
of ALO-based CH selection. So, the SNs nearest to the chosen positions are selected 
for the role of CH.

3 � Hierarchical clustering and routing (HCR) protocol

HCR protocol presents a joint solution for multi-hop routing and multi-level clus-
tering. Firstly, hierarchical layered framework (HLF) is designed in HCR protocol 
for partitioning of the WSN into hierarchically aligned circular layers as shown in 
Fig. 1. Basic design goal of HLF is to balance the CHs routing load at each layer. 
Then, an ALO-based CH selection algorithm is run to find the most favorable solu-
tion of CHs for the current round such that scalable, energy-efficient, reliable and 
load-balanced clusters are formed. Layers are formed by HLF in such a way that 
successive layer has double the SNs than preceding layer. To balance the CHs load 
throughout the WSN, number of CHs in successive layer is also kept double than 
preceding layer.

In HCR protocol, transmitting, receiving and aggregating operations of CHs are 
distributed equally for even energy consumption of CHs at each layer. Basically, a 
CH undergoes three kinds of data transmission and receiving operation in HCR pro-
tocol; 1) MNs transmit the sensed data to their assigned CH, 2) CHs of preceding 

(17)r(t) =

{
1 if rand > 0.5

0 if rand < 0.5

(18)At+1
i

= antt
i
if f

(
antt

i

)
> f

(
At
i

)

(19)At+1
elite

= At+1
i

if f
(
At+1
i

)
> f

(
At
elite

)
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layer receive data packets from the CHs of succeeding layer and 3) CHs transmit the 
aggregated packet to the CH of preceding layer. Only the CHs of outermost layer do 
not undergo receiving operation from outer CHs. Since CHs have to perform various 
operations, its energy will be depleted fast. Hence, a round-based policy is followed 
in this paper to rotate the job of CH among SNs of same hierarchical layer. Each 
round consists of three phases: information gathering phase, cluster formation phase 
and data transmission phase. Working flow of HCR protocol is shown in Fig. 1 and 
various phases followed in HCR protocol are discussed as follows:

3.1 � Information gathering phase

Information gathering phase is run at the beginning of each round. In information 
gathering phase, BS broadcasts a message requesting the residual energy informa-
tion from all SNs. Location information is not requested from SNs as it is assumed 
that BS knows the locations of all SNs, which can be obtained from RSSI values 
or localization techniques. Based on number of SNs and their location, BS utilizes 
HLF to partition the WSN into virtual circular layers aligned in hierarchical fashion.

3.2 � Cluster formation phase

In cluster formation phase, BS runs an ALO-based algorithm for the selection of 
CHs to select the appropriate CHs at each layer. Four objectives have been derived 
for the appropriate selection of CHs, one each for load-balanced cluster formation, 
scalable and distributed clusters, energy-efficient communication, and data delivery 
reliability as explained in Sect. 2.4. After the selection of CHs using above fitness 
function, a role message is broadcasted by BS containing the role of all SNs as either 
CH or MN. SNs on receiving this message will change their status to either CH node 
or MN. MNs then send a join request message to get time slot for data transmission 
from their respective CH to avoid any intra-cluster collisions. On receiving the allot-
ted time, SNs go into sleep state until their turn comes up to send data.

3.3 � Data transmission phase

In data transmission phase, CHs of outermost layer collect data from the SNs of 
their cluster known as intra-cluster data collection, aggregate the collected data into 
one packet and send the aggregated packet to closest CH located in the adjacent 
inner layer. CHs of inner layers receive data packets from both their MNs and outer 
layer CHs, aggregate it and transmit it to their adjacent inner layer until the data 
are received at BS. Routing load of CHs is equally divided throughout the WSN 
such that each pair of CHs will send data packet to one CH of their adjacent inner 
layer. CHs use CDMA technique for data transmission to avoid inter-cluster colli-
sions. The detailed flowchart of different phases followed in HCR protocol is shown 
in Fig. 2.
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4 � Performance evaluation

In this section, performance of proposed HCR protocol is evaluated and com-
pared with popular clustering protocols namely PSO-ECHS, PSO-C and BERA. 

BS SNs

Send InfoReq_Msg(ID,xBS,yBS) Receive InfoReq_Msg()

Send Info_Msg(ID,xID,yID,EID)Receive Info_Msg()

Information Gathering Phase

Request Data from SNs

Collect Data from SNs

Run centralized algorithm to 
select optimal set of CHs using 

HDAPSO

Send Role_Msg(CHID,SNID) Receive Role_Msg()

Is CH?

Broadcast Adv_Msg(CHID) Receive Adv_Msg()

Yes No

Send Join_Req_Msg(SNID)Receive Join_Req_Msg()

Send Slot_Msg(TDMAID) Receive Slot_Msg()

Cluster Formation Phase

Broadcast DataReq_Msg() Receive DataReq_Msg() Receive DataReq_Msg()

Send Data_Msg(SNID)Receive Join_Req_Msg()

Aggregate CHs data with received data from MNs

Send Agg_Data_Msg()Receive Agg_Data_Msg()

Data Transmission Phase

Fig. 2   Flowchart of working phases in proposed HCR protocol



10177

1 3

Hierarchical clustering and routing protocol to ensure…

Experimentation is performed for WSNs deployed over large geographic area to test 
the robustness of HCR protocol in handling large-scale WSNs. Energy consumption, 
network lifetime, balanced clustering and throughput are the performance metrics 
used in this paper to validate the simulation results.

4.1 � Simulation parameters

The simulation of the HCR protocol and other competent protocols is performed 
on MATLAB under diverse network conditions. 500 SNs are randomly deployed 
over the WSN area, and BS is deployed at center of the WSN. Three different 
network sizes (WSN1 for 300 × 300  m2, WSN2 for 500 × 500  m2 and WSN3 for 
700 × 700 m2) and five random network topologies for each size are considered for 
simulation. Average of all network topologies for a particular network size is taken 
for performance comparison. Data packet and control data packet size are set as 
6400 and 200 bits, respectively. Energy model and parameters are taken same as in 
competent protocols. ALO is run for 100 iterations with population size of 30 to find 
the best possible CH positions.

4.2 � Energy consumption comparison

Simulation results of energy consumed by HCR protocol and its competent proto-
cols are plotted in Fig. 3a–c. Each protocol is run for five different network topolo-
gies and average energy consumed in first 1000 rounds is considered for comparison. 
Further, results are compared for three different network sizes to evaluate the effect 
of node density on CH selection and energy consumption. Figure 3a–c demonstrates 
the superiority of HCR protocol in comparison with competent protocols for con-
serving the energy irrespective of the network sizes. BERA has shown close perfor-
mance to HCR protocol for dense networks but lacks far behind in sparse networks. 
The major reason for the conservation of energy in HCR protocol is the adoption of 
layering-based framework for balanced and structured clustering.

4.3 � Network lifetime comparison

Network lifetime is time period for which the network can perform at its full poten-
tial [39]. In this paper, first node die (FND) is considered as a metric to evaluate 
the lifetime of network. Figure 4 illustrates the simulation result for different net-
work areas and it is perceived that HCR has much better lifetime as compared to 
competent protocols. While the difference in network lifetime of HCR and BERA 
is not significant in sparse WSNs but HCR has performed for much longer in dense 
networks as shown in Fig. 4. This is due to the balanced load of CHs in HCR pro-
tocol, which results in longer functioning of the WSN. PSO-C and BERA have not 
employed any objective for balanced energy consumption due to which they have 
short life span. PSO-ECHS on the other hand has shown worst network lifetime 
because it employs a parametric function for cluster formation which results in the 
formation of unequal and inefficient clusters.
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(a) Comparison based on energy consumption for WSN#1(300*300 m2) 

(b)  Comparison based on energy consumption for WSN#2(500*500 m2) 
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(c)  Comparison based on energy consumption for WSN#3(700*700 m2) 
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Fig. 3   a Comparison based on energy consumption for WSN#1(300*300  m2) b Comparison based 
on energy consumption for WSN#2(500*500  m2) c Comparison based on energy consumption for 
WSN#3(700*700 m2)
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4.4 � Balanced clustering comparison

In this paper, focus is on balancing the CHs load in terms of node degree and data 
transmission distance. CHs with same node degree will dissipate equal amount of 
energy in receiving operations, and clusters will consume same amount of energy 
in transmission operations if intra-cluster distance of all clusters is similar. Fig-
ures 5 and 6 illustrate the comparison of various protocols based on variations in 
the node degree and intra-cluster distance, respectively. HCR protocol has shown 
least variations for both the parameters which strengthen its ability to create 
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Fig. 4   Network lifetime comparison

Fig. 5   Comparison of variations (standard deviation) in node degree of CHs
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balanced clusters. This is due to the novel fitness function used in HCR protocol 
for CH selection and cluster formation.

4.5 � Throughput comparison

Throughput in WSNs is measured in terms of total raw packets generated in its life-
time [26]. Figure 7 shows the throughput of all the protocols for different network 
sizes. HCR protocol has highest throughput as compared to its competent proto-
cols and maintains its integrity regardless the size of WSN. Throughput is directly 

Fig. 6   Comparison of variations (standard deviation) in intra-cluster distance
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proportional to the lifetime of WSN, and same behavior is observed in Fig. 7. It is 
due to the combination of HLF and defined fitness function, that HCR protocol has 
shown superior performance in diverse network conditions.

4.6 � Convergence comparison

ALO is deployed in this study due to its high convergence rate and less parametric 
tuning as compared to other EOT. Further to test the robustness of ALO for achiev-
ing the stable optimal solution in comparison with PSO, BBO, ABC and DE, 20 
independent runs are performed for the objective function defined in HCR protocol. 
Each run is of 500 iterations and population size is set at 30. Table 2 illustrates the 
performance comparison of different EOTs in terms of convergence rate and opti-
mal fitness cost. ALO converges toward an optimal solution in minimal number of 
iterations and has shown stability in convergence rate in successive runs. Also, the 
fitness cost attained by ALO to obtain an optimal solution is best among other EOT.

5 � Conclusions

This paper presents a load-balanced hierarchical clustering and routing protocol to 
provide a load-balanced and energy-efficient communication in large-scale WSNs. 
The problem of network lifetime optimization is addressed in HCR protocol by bal-
ancing the inter-cluster and intra-cluster routing loads of CHs. HLF is designed in 
HCR to reduce the delay in the formation of clusters and routing paths by providing 
a joint solution for clustering and routing. HLF divides WSN into concentric virtual 
layers such that number of SNs and CHs in succeeding layer is two times its preced-
ing layer. Based on the constraints of HLF, a novel fitness function is derived to 
choose the best favorable set of CHs in each layer such that load-balanced, reliable, 
energy-efficient and scalable clusters are created. ALO-based CH selection algo-
rithm is run to select CHs based on the derived fitness function. Results obtained 
from the simulations establish that HCR protocol outperforms other competent pro-
tocols in terms of energy efficiency, network lifetime, load balancing, throughput 
and convergence. The scalable and load-balanced methodology of HCR can be fur-
ther extended for in.

Table 2   Evolutionary 
optimization techniques 
comparison

Algorithm Convergence rate com-
parison

Best fitness cost 
comparison

Mean SD Mean SD

ALO 81.25 24.71 1.8164 0.0152
BBO 315.67 92.54 1.8551 0.0363
DE 188.36 75.66 2.2972 0.0348
PSO 126.58 56.67 1.9048 0.0559
ABC 377.45 108.65 1.8649 0.0207
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