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Abstract
Dynamic routing problems involve electronic decision making, which compromises 
reactivity with the quality of decision making. The time for seeking better decisions 
comes at the price of a lower reactivity to changes in inputs. This factor is especially 
important in situations where consumers are calling for a service and a good deci-
sion needs to be made as quickly as possible. There are two approaches in solving 
dynamic vehicle routing (DVRP): to run a state solver every time new requests come 
in, to construct an initial solution and then to update it each time new information 
comes. The latter is more commonly used and more flexible. Also, the environment 
is badly affected by factors like  CO2 emissions; noise; etc. A variant of VRP called 
green VRP (GVRP) has been formulated in this context. The solution strategies for 
GVRP are developed to help organizations with alternative fuel-powered vehicles 
to resolve challenges that arise in conjunction with limited refueling facilities as a 
result of restricted vehicle driving range. Here, the authors propose a spiking neu-
ral P system (SN P)-based model with modified rules and learning in association 
with firefly optimization (FA) to solve the combined version of GVRP and D VRP 
with time windows, called DGVRPTW. The SN P system proposed here is a mul-
tilayer neural system with embedded potentials and learning facilities which uses 
the rectified linear unit (reLu) as activation functions. The proposed SN P system 
is used for geo-location clustering, and the firefly algorithm (FA) is used for route 
optimization. The proposed SN P system can do predictions accurately when a new 
customer enters the scenario. The scheme has been tested on medium as well as 
large-scale instances and analyzed different performance measures such as nature of 
convergence, utilization rate, solution improvement percentage and dynamic meas-
ures. Having applications in image classifications, optimization problems, etc., the 
proposed system is worthy of future study. 
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1  1 Introduction

Natural computing (NC) [1] is a term used to describe those methods inspired by 
nature to create innovative problem-solving techniques or those focused on the 
use of computer systems to imitate natural phenomena or those which use bio-
inspired materials for processing. The main research fields that involve NC are 
artificial neural networks (ANN) [2], swarm intelligence [3], evolutionary algo-
rithms [4], quantum computing [5] and membrane computing (MC) [6]. It might 
seem that the relationship between computer science and biology is boosting at 
the moment, with positive impacts for both fields. Biology is a rich source of 
ideas for creating new solutions and paradigms for computationally hard prob-
lems, generating new concepts and hypotheses that help to describe and evaluate 
different systems. By the end of 1990s, membrane computing (MC) had emerged 
as a branch of natural computing. The models pertaining to this computational 
framework, called P systems, were considered as distributed devices inspired by 
cell structure. Some of these models were also taken off the structure and func-
tion of more complex entities such as tissues and organs. MC began as a new 
experimental paradigm that created a wide range of basic research in theoretical 
computer science. Membrane systems have been used in recent years as modeling 
vehicles for different biological systems or as design languages in graphics or to 
represent a wide variety of parallel systems. Because of its non-determinism and 
maximum parallelism features, many engineering design optimization problems 
are solved with MC at a reasonable time [7]. Membrane structure classifies MC 
systems into cell-like [8], tissue-like [9], and neural-like [10] structures. The lat-
ter group is MC’s new branch, which is integrated into the P systems (SN P sys-
tems) by spiking neurons.

Spiking neural P systems (SN P systems) are bio-inspired neural computation 
models that are designed by abstracting the way the neurons spike. This means 
the coordination of biological neurons is accomplished by spikes in central nerv-
ous systems. SN P systems come under artificial neural network models of the 
third generation.

An SN P system can be represented by a direct graph with nodes referring to 
spiking neurons and edges shape synapses between neurons that can represent 
SN P systems. SN P systems with the division of neurons [11], budding [12] 
and spikes and anti-spikes [13] are implemented in many applications and have 
proven to be efficient and reliable. SN P systems have been viewed as word gener-
ative devices of 0’s and 1’s [14]. To solve knapsack problems, an optimization SN 
P system was introduced to find solutions to the unconstrained single objective 
optimization problem [15]. It was applied to solve knapsack instances and proved 
to be efficient. Also, the use of SN P systems can be seen in many smart and 
expert fields, such as the semantics of deductive database systems [16] and multi-
ples in parallel [17]. It is therefore concluded that SN P systems are more power-
ful in both theoretical and practical aspects of intelligent and expert systems [18].

The Vehicle Routing Problem (VRP) [19] is the problem of constructing suit-
able routes from a depot to a range of destinations each with business-specific 
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restrictions, such as vehicle limits, cost controls, time periods and resources 
limitations related to the depot loading process. If all the services start and end 
in some fixed time interval, then it is called VRP with time windows (VRPTW) 
[20]. VRP is known for its computational complexity for which many exact and 
heuristic algorithms have been proposed, but arriving optimal solutions is still 
a challenging task. Researchers almost define some basic information about the 
locations and demands of customers, available vehicles, and so on. In most VRP 
studies, these are fully known before the service plan is carried out. However, 
VRP is dynamic (DVRP) [21] in actual service processes; that is, the demands 
and arrangements of customers are gradually changing over time, although some 
of the demands of customers may be known beforehand. Also, since 2014, most 
of the researchers explore green VRP (GVRP) [22], a new variant of VRP, which 
focuses on overcoming difficulties of limited refueling infrastructure and mini-
mizing CO2 emissions.

A meta-heuristic suggested by Yang in 2008 is inspired by nature is based on 
fireflies ’ flashing actions, which serves as a signal system for attracting other 
fireflies. As can be seen in several surveys [23–25], since its proposal, the FA 
has been applied successfully to many different fields of optimization problems. 
Nevertheless, in the current scientific community, it still attracts a lot of attention. 
Since FA has been designed for continuous optimization problems, there are only 
very few applications of FA in VRP instances. This lack of work, together with 
the minimal computational overhead and the good performance that the FA has 
demonstrated since its proposal, has motivated its use in this study.

The aim of this paper is to develop an efficient spiking neural P system with 
modified rules, potentials and learning capabilities to solve the combination of all 
of the above-mentioned variants, called dynamic green VRP with time windows 
(DGVRPTW), which is more complex because of the additional constraints and 
objectives added. The suggested SN P system here is a multilayer SN P system 
used for the region prediction of dynamic customers followed by an FA for route 
optimization.

The main contributions of the proposed work are:

1. A mathematical model of the DGVRPTW has been formulated with some added 
constraints which optimize the refueling capacity of vehicles and CO2 emissions.

2. A multilayer SN P system with learning and training has been designed with 
activation rules on synapses for tackling dynamism.

3. An ideal arrangement of neurons in the SN P system is presented which carries 
information and does the processing accurately.

4. A new way of encoding fireflies and distance calculation is adopted for optimizing 
routes inside each cluster.

The remaining sections are methodized as follows. Section  2 carries out a 
detailed literature survey on the problem. Section 3 talks about classical FA. Sec-
tion 4 presents details about DGVRPTW, dynamism followed by the mathemati-
cal formulation of the problem. Section 5 gives the design of SN P systems with 
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potentials. Section 6 gives a detailed description of different modules, structure, 
and functioning of the proposed system. Experimental analysis and results are 
given in Sect.  7. Finally, the conclusion and future scope of the work are pre-
sented in Sect. 8.

2  Literature review

2.1  Dynamic vehicle routing problem: survey

Technology innovation in various fields has fostered the development of intelligent 
transportation systems (ITS), using the advent of geo-location techniques with geo-
graphic information systems [26]. The object of vehicle routing is an administra-
tive function linked to the competence of dispatch as well as the cost of optimiza-
tion directly dependent on the size of the fleet [27]. The state-of-the-art schemes in 
ITS use an optimization technique coupled with some heuristic search techniques to 
attain a solution.

Additional constraints such as regulations on waiting, service and travel times 
characterize the transportation of people. Cab system is the most common individ-
ual online transportation system where the requests from the customers are made up 
of pickup time and location coupled with the drop location. There are many variants 
available, such as advance booking, sharing, etc. [28–31].

Owing to the highly variable travel time, factors such as congestion, rivalry, and 
cooperation between transport companies should be taken into consideration. All 
these applications fall under the logistics of the region. Effective scheduling of real-
time traffic and dynamic routing of a fleet of vehicles require additional modules and 
attributes. For better trade-off between dynamic travel and service times, a decision 
support system (DSS) can be used [32–34].

In courier transport systems, not only request locations, time windows and capac-
ity constraints should be taken into account, but also traffic data and prohibited paths 
should also be considered. The Automatic Fleet Management System (AFMS) ena-
bled optimization has been considered to solve these types of problems [35–37].

Customer satisfaction is an important factor in FMS. Delivery of newspaper is 
an example of such a type of domains where complaints will be filed in the event of 
delivery delay. Centralized applications were proposed to reduce costs and improve 
customer satisfaction, using cell phones to communicate continuously with drivers 
at the same time as routing [38, 39].

The retailer designs different customers in grocery delivery systems that can be 
considered within a fixed time span. At the same time, when the capacity constraints 
are violated, it is made inaccessible to the customers. A customer’s time slots are 
actively designed based on future in-home delivery request issues [40]. Greedy 
randomized adaptive search procedure (GRASP) and adaptive large neighborhood 
search (ALNS) have been proposed that consider uncertainty by introducing sce-
narios for possible realizations of demand. Problems with dynamic stacker cranes 
[41, 42] which considered container carriers with loading and unloading vessels are 



9693

1 3

A solution to dynamic green vehicle routing problems with time…

undergoing operational study. However, factories and hospitals are other areas of 
operation where goods or medical devices have to be moved, respectively [43].

The capacity constraints can be exceeded in the service domain. The dynamic 
traveling salesman problem [44] is one of the most illustrative models in this 
domain. Certain fields provide activities for repair and maintenance, winter gritting, 
etc. A daily visit to customer locations is mandatory in the first groups. A customer 
can also order for a new service in the event of an emergency. A context is that the 
French non-profit organization operates under the call of patients with a crew of 
physicians supported by certain emergency services. A subset of streets or roads that 
are impacted by the storm must be gritted in winter gritting applications. Depending 
on the path of the storms, the new sections have to be gritted [45].

2.2  Green vehicle routing problem: survey

Green-VRP (G-VRP) research focuses on optimizing transport energy consumption. 
The cost of gas accounts for a large part of the total transportation cost of petroleum 
[46]. The most obvious course of action would be to reduce fuel consumption and 
improve transportation performance at the operational level. It is also important that 
a reduction in fuel consumption dependent on petroleum will substantially reduce 
greenhouse gas emissions [47]. To include fuel consumption in the routing model, 
it is important to formulate computing fuel consumption in relation to the condi-
tion of a moving vehicle. In [48], the authors considered a more practical transport 
cost impacting both the load of the vehicle and the length of the traveled arc. They 
describe the Energy Minimizing Vehicle Routing Problem (EMVRP) as the CVRP 
with a new cost objective, where the cost function is a combination of the total load 
(including the empty vehicle weight) and the arc duration. A model of fuel con-
sumption is given in [49]. They suggested a Fuel Consumption Rate (FCR) known 
to be CVRP (FCVRP), which would extend CVRP to reduce fuel consumption. In 
[50], the authors applied the transport speed to the fuel consumption measurement 
model in time-dependent VRPs in addition to the transport range and the charg-
ing weight discussed in the above two articles. Other VRP-related studies that aim 
at minimizing total fuel consumption are also been designed [51–54]. This design 
seeks to eliminate the possibility of running out of fuel with the goal of reducing the 
total distance. Stegner [55] extended time-windowed G-VRP. The above papers on 
GVRP state that fuel consumption merely provides the formula for calculating fuel 
consumption, assuming that the fuel is sufficient to cover the entire tour.

State-of-the-art schemes have only considered the DVRP without any additional 
constraints such as CO2 emissions, fuel consumptions etc. Also, it lacks concrete 
learning and training methods to predict the dynamic regions for customers. Instead 
they make use of schedulers to convert a dynamic requests to static requests over 
time periods and then send to the optimization procedures for optimal solutions.

The proposed system is no way similar to the schemes in literature. The authors 
try to approach the problem from a different perceptive. Here, the maximum paral-
lelism feature of SN P systems are coupled with learning and training methods in 
order to predict the dynamic customers on arrival rather than converting it to static 
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requests by schedulers. Thus, the proposed system replaces the schedulers and pre-
dicts the region of customers based on the trained data. Moreover, it is for the first 
time, the SN P systems are employed for such specific tasks with learning and train-
ing functions in VRP domain, which highlights the novelty of the system.

3  Classical firefly algorithm

CFA was first introduced in [56], which was based on the flashing behavior of fire-
flies for drawing in prey and mates. The main rules used in FA are:

1. Fireflies will be attracted to each other regardless of their gender.
2. As the separation between the two fireflies’ increases, their attraction decreases. 

For any two fireflies, the less bright one will move towards the brighter one. In 
the event that the brightness is the same or less, it will move arbitrarily.

3. The landscape of the objective function is dependent on the brightness of the 
firefly.

The attraction of a firefly depends upon the light intensity and this relation can be 
expressed by the following formula:

where � is the light absorption coefficient.
Also, the distance between two fireflies at positions i and j is calculated by:

The movement of a less bright firefly i towards a brighter one j can be calculated 
by:

where � a randomization parameter and rand is a random number within the uniform 
distribution over [0, 1].

4  Problem description and formulation

4.1  Dynamic green vehicle routing problem with time windows

Given a complete graph G with nodes representing client locations, depot and 
fuel stations, the DGVRPTW finds a set of routes, each of which starts and ends 
at depot, visit a set of clients within the specified time window without violating 
the vehicle capacity and fuel tank capacity with minimum total distance by each 
of the vehicles. Because of the recent improvements in real-world communications, 

(1)�(r) = �0D, where D = e−�r
2

(2)rij =
|||
|||Xi − Xj

|||
|||

(3)Xnew
i

= Xold
i

+ �
(
rij
)(
Xj − Xi

)
+ �(rand − 0.5)
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‘dynamism’ would be very significant. In dynamic routing, not all pieces of infor-
mation on the routing process are available when it begins, and the information may 
change even after the routes have been constructed. Figures 1 and 2 show the route 
planning procedure in the static and dynamic environment, respectively. The dotted 
lines in Fig. 2 show the new path constructed based on the dynamic request from the 
customer D. The F1 and F2 are fuel stations.

4.2  Degree of dynamism

The performance of dynamic routing is calculated based on the number of dynamic 
demands and the time when these demands occur, while static VRP depends on 
the number and distribution of clients. If we examine the performance of a specific 
algorithm under constraints, the measure of’ dynamism’ would be important. The 

Fig. 1  Static environment route planning (at t = t0)

Fig. 2  Dynamic environment route planning (at t = t1)
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reaction time of 2 customers with time windows under dynamic situation is given in 
Fig. 3, where  r1 and  r2 are reaction times of customer 1 and customer 2, respectively.

In case of time windows ( tw) , the effective dod (edod) can be defined as:

where 0 ≤ edod − tw ≤ 1 , lk − tk ≤ T , k = 1,2, ..n , where n is the total number of 
requests and the planning horizon is defined in the interval l[0, T].

4.3  The mathematical formulation of the problem

DGVRPTW is defined based on a complete graph G = (V, E), where V = {1, 2, M, 
M + 1} denotes the vertex set and E = {{(i, j)| i, j ∈ M, i ≠ j} denotes the edge set. 
Here, Vcust = {1,2,…M} is the customer set of vertices. M + 1 is the depot vertex. 
The method of delivery of the commodity to the set of customers is carried out 
using the same set of M vertices with a fixed maximum capacity Q for each vehicle. 
The depot D is fitted with a collection of n vehicles.

Each vertex i ∈ V is associated with several measures such as traveling cost/dis-
tance denoted as Cij,, (i, j) ∈ E and i ∈ M, j ∈ M , a requestri , time of service by vehi-
cle k, tik and the time window [ ei, li ], where ei  represents the earliest time and li 
represents the latest time when the service at vertex i can starts. Also, the speed 
function f is defined by p non decreasing levels pf  over set S = {1, 2, p}. So, the 
problem is to find the minimum total traveling cost subject to vehicle capacity, time 
window, and fleet size that visit each customer in the set Vcust . But, while servicing 
the customers, each vehicle emits carbon dioxide (CO2) which is proportional to the 
total fuel used by vehicles.

So, the main objectives of DGVRPTW are to find routes with minimal total 
traveling cost, total fuel consumption and CO2 emissions subject to the following 
conditions:

The vehicle leaves the depot D and returns to D after completion of customer 
service.

(4)

edod =
1

n

n∑

k=1

(
T −

(
lk − tk

)

T

)
+ tw

=
1

n

n∑

k=1

(
1 −

rk

T

)
+ tw

Fig. 3  Reaction time of two customers in dynamic scenarios with a time window
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1. The number of vehicles used at the depot cannot exceed the size of the fleet.
2. Each customer is served once by one vehicle.
3. The service to the customers must start with the time window [ ei, li]
4. The total capacity of each vehicle cannot exceed Q
5. The vehicle’s early arrival is allowed, but the vehicle must wait for the service to 

be delayed to time ei but not later than li
6. Emissions of CO2 are proportional to the overall vehicle fuel consumption

The mathematical model of DGVRPTW involves a group of decision varia-
bles that model the sequence of vehicles visiting customers and the following are 
defined:

Pijk ∈ R+ : the total amount of flow on each edge (i, j) ∈ V .
Zi ∈ R+ : the time which service starts at node i ∈ V .
The mathematical model of the problem can be formulated as:
Minimize.

• The total traveling cost performed by each of the vehicles.

  
• Minimize the total fuel usage and  CO2 emissions
• The total fuel usage of each of the vehicles is directly proportional to the CO2 

emissions. The fuel rate [57] can be expressed by:

  
where �-fuel to air ratio;

�− engine friction factor.
G-engine speed.
V-engine displacement.
� and k are constants.
P-engine power output per second which is given by:

Pre—engine power needed for running losses of the engine.
�tf—vehicle drive train efficiency.
Ptotal—total tractive power in kilowatts

(5)yijk =

{
1, if vehilce k travels from i to j

0, otherwise

(6)xijk =

{
1, if vehicle k traverses edge (i, j) with speed f

0, otherwise

(7)
∑

i∈V

∑

j∈V ,i≠j

∑

k∈N

Cijyijk

(8)Fuel rate = �

(
�GV + P∕�

)
∕k,

(9)P = Ptotal∕�tf + Pre, where,
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subject to:

 1. 

 2. 

 3. 

 4. 

 5. 

 6. 

 7. 

 8. 

 9. 

 10. 

 11. 

(10)

∑

i � V

∑

j � V ,i≠j

∑

k∈N

�GV�Cij

∑

f∈S

x
f

ijk

/
rp +

∑

i � V

∑

j � V ,i≠j

∑

k∈N

���ijCij�yijk +
∑

i � V

∑

j � V ,i≠j

∑

k∈N

��ijCij�Pijk

+
∑

i � Vcust

∑

j � Vcust,i≠j

∑

k∈N

���Cij

∑

f � S

x
f

ijk

(
rf
)2
�yijk

(11)∑

j∈Vcust

∑

k∈N

yijk ≤ |N|

(12)∑

j∈V

∑

K∈N

yijk = 1, i ∈ Vcust

(13)
∑

i∈V

∑

k∈N

yijk = 1, j ∈ Vcust

(14)
∑

d ∫ VM+1

∑

j ∫ Vcust

ydjk ≤ 1, k ∈ N

(15)
∑

d∈VM+1

∑

j∈Vcust

yidk ≤ 1, k ∈ N

(16)
∑

i∈VM+1

∑

j∈VM+1

yijk = 0, k ∈ N

(17)
∑

j∈V

Pjik −
∑

j∈V

Pijk = ti, i ∈ Vcust, k ∈ N

(18)
∑

f∈S

x
f

ijk
= yijk, i, j ∈ V , k ∈ N

(19)yijk ∈ {0, 1}, i, j ∈ V , K ∈ N

(20)Pijk ∈ R+, i, j ∈ {V , k ∈ N}

(21)
x
f

ijk
∈ {0, 1}, i, j ∈ V , k ∈ N, f ∈ S
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5  Design of spiking neural P systems with potentials

A variation in the SN P system is designed to select rules in a simple manner 
appropriately as in [58]. A small rule modification of the rule has been done in 
order to introduce the firing process in the proposed system. To this extent, we do 
not include spikes as the regular SN P systems, yet it is believed that each neuron 
contains a potential that can be communicated as a rule. If the potential is less 
than or equal to its threshold potential, each neuron fires. At that point, the neu-
ron will devour a fraction of the potential and the remaining potential is transmit-
ted to the neighboring neurons by the neurotransmitters, which may increase or 
decrease with a weight in the positive and negative form, respectively.

Where

1. A is the alphabet set.
2. σ 1…..σ m, are neurons of the tuple σ i = ( Pi, γi, Ri) 1 ≤ i ≤ m, where:

(1) Piis the potential that is initially given to neuron σi
(2) γi is a real number called output weight of neuron σ i;
(3) Ri is the rule set in σ i of the form:

• E∕ak → a;d, where E is a regular expression over the alphabet A, k ≥ 1 and 
d ≥ 0. At some point in time, t, if neuron σi contains c spikes and ∈ acL 
(E), c ≥ k, then this rule will be activated, consuming k spikes, sending one 
spike to each of the neighboring neurons after d time steps. At the step 
t + d, the neuron again becomes active and can receive spikes and is able 
to apply the rule at t + d + 1.

• Thi/dj → 1, f, where j = 1, 2… ri, for some  ri ≥ 1, where Thi ∈ Rc, and 
f ≥ 0, Thi ≥ 0 is the potential of neuron σi and dj ∈ Rc with the constraint 
0 < dj < Thi.

3. Snt is the synapses at step t of the form (j, k, γjk). γjk is the weight of the synapse 
connecting the neurons σ j and σ k and is used to amplify the signals. If the synapse 
gets only one spike, then the weight γjk is multiplied by 1 and sends to the receptor 
neuron. Generally Sn ⊆ {1,2,….m} x {1,2,….m} x Rc are neurotransmitters between 
the neurons of the system where i ≠ j, k ≠ 0, for (i, j, k) ∈ Sn.

4. In ∈ {σ 1…σ m} is the input set of neurons.
5. Ot ∈ {σ 1… σ m} is the output set of neurons.
  The information in the form of spike trains is read by the input neurons from 

the environment. Based on the spike train configurations it spikes and passes 
information to the synapses. The output neurons are responsible for emitting 
spikes to the environment and In ∩ Ot = ɸ.

6. Learning function fn is used to amplify or weaken the synapses during the activa-
tions.

Π =
(
A, �1 … ..�m, Sn, fn, In, Ot

)
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Note that there are no forgetting rules inside each neuron yet it is controlled by 
adjusting the neuron’s potentials.

6  Proposed system design

State-of-the-art algorithms use either ANN to group customers into different clus-
ters using x and y coordinate positions that represent customers’ geo locations or 
they use any clustering technique to group customers based on locations. In ANN, 
the neural synapses are weighted by weight vectors. In all those cases, the dynamic 
requests from customers are converted into static requests by an event scheduler. 
Density-based models have also been used to identify the nearest neighbor based 
on the Euclidean distance. But, the degree of dynamism was very low when com-
pared to the real-time routing scenario. In order to fix this problem, a multilayer 
spiking neural P system is designed, which will predict the new customer coordi-
nates based on the trained dataset. The trained model computes the results and maps 
the dynamic customers to appropriate regions. The route optimization in each region 
is performed by FA. The outline of the proposed system is illustrated in Fig. 4. It 
contains 2 modules:

• Customer coordinate agent
• Route planning agent

The customer coordinate agent handles the dynamic request from customers. It 
invokes the SN P system to predict the dynamic coordinate region and this informa-
tion will be transferred to the route planning agent. The route planning agent per-
forms optimization of routes using FA and then the routes are combined. That is, 
the function of the route planning agent is to perform optimal routing inside each 

Customer 
Coordinate 

agent 

Route planning 
agent 

Dynamic Request Predic	on 
using SN P system Route Construc	on using FA 

Fig. 4  Agent outline of the proposed system
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cluster/region in order to optimize the objectives described in Sect. 4.3. If we use 
a multi-agent system including vehicle agent, dynamic agent, etc., the performance 
can be greatly improved. A detailed block diagram of the proposed system is given 
in Fig. 5. The inputs of the system are customer coordinates, demands of the cus-
tomers and time windows. After passing this information through all the modules, 
finally, we get the optimized routes for each of the vehicles as output. A step by step 
description of the same has been given in the following sections.

6.1  Static clustering of customer coordinates

Here, initially, k means clustering is used to map the known customer coordinates 
into regions. The travel distance and travel time are also considered. The k value is 
evaluated for each dataset using the elbow method [59]. After obtaining the result of 
the elbow method for each dataset, the location of the customer region is obtained 
by the k-mean method.

6.2  Spiking neural P system modeling

A set of SN P systems with modified rules and training are designed to handle the 
problem. There are mainly two modules in the proposed SN P system:

• Read module
• Cluster module

Read module: The read module consists of a total of 42 neurons that read the 
input spike trains to the system. Representation of geo-location coordinates by spike 
trains is detailed in Sect.  6.3.1. The structure of the SN P system read module is 
given in Fig. 6. It consists of 42 neurons (40 neurons in general and two neurons, 

Fig. 5  Block diagram of the proposed system
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one for reading the input spike train and another for spike generation). The process 
of inputting spike train s = s1s2…s20, where, si ∈ {0, 1} is as follows:

Initially, all the neurons potential is set to 0 and has no spike, except the 
σspike − generator, which is having one spike at the start and the potential is set to 
0.5. The threshold potential for all the neurons in the input module is 1 and is 
maintained throughout the reading process so that it will be activated whenever 
the spiking rule is satisfied. So, at t1, σspike − generator fires, passing one spike to �r1 . 
Simultaneously σinput fires and reads s  (s1) from the input spike train. If  s1 = 1, 
then the σinput spikes, passing one spike to the neurons �vi,, i ∈ {1, 2, …., 20}. 

Fig. 6  Spiking neural P system for reading module
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Also, �r1 fires, passing on a spike to �r2 and �v1 , enabling the spiking rule in �v1 . 
Then �v1 fires and store a spike in �z1 . In order to clear the previous spikes, we set 
the potential of neurons to be equal to one until the next activation by σinput. Now, 
�z1 = 1 , representing  s1 = 1.

If  s1 = 0 σinput is disabled at step 1. Since it is disabled, �r2 is deactivated by setting 
the potential equal to 1. So. �z1 = 0 . The spike train s can be read by bits in a step by 
step and keep it in �zi,i ∈ {1, 2, …., 20}. When the reading finishes, a spike from �r20 
goes back to σspike − generator by passing all the �ri,i ∈ {1, 2, …., 20} returns to the initial 
configuration and is enabled for reading the next spike train. The weight values are set 
to 1 in the reading stage.

Cluster module: The structure of the cluster module is shown in Fig. 7. The �zi,i ∈
{1, 2, …, 20} is used for the design of SN P systems for clustering. The 20 �zi,i ∈{1, 2, 
20} neurons from the output of the reading module together with the k output neurons 
(here k = 4), a total of 24 neurons are used in the cluster module. The spiking rule is 
used to process the information, whereas the spiking activity is controlled by the poten-
tial rule. If a neuron contains n spikes and the potential is enabled, it spikes for n times 
in n steps. A three-layer structure is designed for passing and processing information. 
The input layer, the intermediate layer, and the output layer. The input layer and the 
intermediate layer are fully connected. The connections between the intermediate layer 
and the output layer are specially formulated.

The �z1 and �z10 are chosen as two input neurons, �zi, i = {3, 9, 12, 13, 15, 18} as 
intermediate neurons and the remaining neurons as output neurons. The neurons in 
the intermediate layer and the outer layer are divided into 2 and 4 groups respectively. 
There are 12 neurons in the output layer in which each of the 3 neurons is grouped 
and colored by red, green, blue and yellow respectively. Finally, 4 output neurons are 
designed to take the information from the 4 groups of output layers. Neuron �zi,i ∈ 
{1, 2,…, 20} will fire for n times if there are n spikes, passing one spike each time. 
The weight of the synapses in the cluster module is initialized by 1 and updated by 
the function freLu (Eq. 22). Thus the 4 output neurons σouti, i = {1, 2, 3, 4} have spikes 
and are being counted. A 4-dimensional vector of a number of spikes (NS) is obtained 
after finishing the firing process. Also, the potential values of the 4 output neurons are 
recorded. So, we get a 4 dimensional ordered pair ( NSi,Pi) vector, where I ∈ {1, 2, 3, 
4} for each of the input spike train combinations.

For each of the synapses in the cluster module, an activation rule is defined in the 
form:

(f, d) where,

1. f- activation function as defined in Eq. 22.
2. d = delay

=

{
0, if the spikes are emitted immediately

1, if the spikes are emitted immediately
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Fig. 7  Spiking neural P system for cluster module



9705

1 3

A solution to dynamic green vehicle routing problems with time…

6.3  Mapping dynamic coordinates using spiking neural P system

The processes involved in mapping dynamic coordinates are described below.

6.3.1  Encoding customer coordinates by spike trains

In this section, the way to encode customer coordinate values by spike trains is dis-
cussed. For each customer coordinate (x, y), 10 binary digits are used for each of the 
x and y values. If the coordinates involve fractions, a round to next integer calcula-
tion is performed for easier processing. With 10 bits, a maximum of 512 km in both 
x and y axes can be considered. If one needs to cover more distance, more bits can 
be added. For example, if a customer is located at (52, 128) then the corresponding 
spike train will be encoded as:

The most significant 10 digits represent the x coordinate value and the least sig-
nificant 10 digits represent the y coordinate value of a customer.

6.3.2  The process of mapping

The process of mapping coordinates involves mainly 4 steps. It is depicted in Fig. 8.
Coordinate input: The customer coordinates x and y are given as spike trains to 

the input neuron σinput, σx_inputandσy_input from the environment. Initially, the poten-
tial of the input neuron is set to 0.5 and the threshold potential is set to 1. So, it 

(22)freLu(x) =

{
0, if x ≤ 0

x, if x > 0

(52, 128) = 0, 000, 110, 1000, 010, 000, 000

Fig. 8  Block diagram of mapping dynamic requests
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is always been enabled and spike. After consuming a fraction of the potential, the 
remaining potential is emitted to the neighboring neurons with the spike, there it 
may get added or subtracted. In this way, the input information will be passed from 
the input layer to the output layer.

Training: When the input module reads the spikes, the �zi,i ∈ {1, 2, 20} neurons 
will contain a certain number of spikes. The potential of the neuron is managed by a 
potential adapter [60]. So, when, �zi,i ∈ {1, 2, 20} has spikes, it fires if the potential is 
less than that of the threshold potential. During the firing process, the weight of each 
of the synapses will be updated by the learning function as defined in Eq. 22. Thus 
the spikes will be passed through the synapses and thus the potential of all of the par-
ticipant neurons will be changed. Finally, it reaches the output layer. The ‘k’ neurons 
(for each cluster evaluated by elbow method) in the output layer is associated with a 
potential and can emit spikes to the environment. At the end of the computation, we 
obtain a topological structure, which is a set of values in the form of ( NSi , Pi ) where i ∈ 
{1, 2,…k}. We run each coordinate input 10 times and compute the average. Thus for 
k clusters, k trained SN P systems will be obtained. These trained systems will be used 
to cluster unknown coordinates. Since the size of the training set of each cluster used in 
the proposed work is within a finite limit w, the bound to the weights on each synapse 
is not more than w. For SN P systems, the synapse weight should be limited. So the 
worst-case bound to the weight of the synapse is O (w3). The difference between known 
and unknown coordinates inputs are simplified using a variance.

Generating standard output combinations: For an input (x–y coordinates of the cus-
tomer), the set of spikes trains are read into the k trained SN P systems. With this coor-
dinate input, each of the systems starts computing. Finally, we will get a k dimensional 
vectors of the form  (NSi, Pi ), where i ∈ {1, 2… k}. We run the coordinates for a maxi-
mum of 10 iterations and computed the combination of an average number of spikes 
generated and the average potential for each of the k output neurons. It is given by:

where max-iter = 10 is used in the proposed system.
Clustering unknown coordinates: If a new customer with a dynamic request 

arrives, its coordinate values are read into each of the k trained SN P systems and 
allow them to start processing. It will produce a k dimensional vector  (NSi, Pi ) where 
i ∈ {1, 2, k} after the computation halts for each of the k output neurons which are 
the number of spikes and the corresponding potential respectively. Then it calculates 
the variance between the output vectors of unknown coordinates and known output 
vectors using the formula,

(23)Navg =

max−iter∑

j=1

k∑

i=1

NSji
/
max−iter

(24)Pavg =

max−iter∑

j=1

k∑

i=1

Pji
/
max−iter
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where NSunknown(i) , i ∈ {1, 2… k} is the k output vectors of unknown coordinates and 
Navg(i) , i ∈ {1, 2… k} is the average output vector of known trained coordinates. The 
one with the lowest value of variance is considered as the final result.

6.4  Firefly encoding

The route optimization is done by FA. The main processes are described as follows.

6.4.1  Motivation

Though Most of the existing methods generally perform well in almost all circum-
stances where they are implemented, there is still room for further modifications of 
new methods since current methods have some disadvantages in terms of compu-
tational complexity or in applications. An optimization approach that is well suited 
for VRP and its variants is ACS [61]. Authors have tried many combinations with 
ACS such as ACS with TS [62], PSO [63], and variable neighborhood search (VNS) 
[64], etc. But major limitations of ACS include premature convergence and getting 
trapped into local optima.

On the other hand, FA has acquired high popularity; it has been rarely applied in 
VRP. The process of encoding fireflies in discrete optimization problems is a major 
issue. But, due to its multimodality nature, more diversified solution space can be 
obtained that is very useful for routing problems. So, it was felt that appropriate ini-
tialization and distance calculation of FA might be more effective in solving routing 
problems. Keeping this in mind, we adopted a different firefly encoding and distance 
calculation suitable for the application.

6.4.2  Overview

Although FA was designed for continuous optimization problems, it has been 
applied to many discrete optimization problems after some modifications. But the 
quality of solutions depends on the initial pool of feasible solutions. Also in VRP, 
the duplication of customers may result in the position update strategy of FA. So it 
involves the maintenance overhead of infeasible solutions.

The initial feasible solution is defined by Clarke and wright algorithm [65]. Also, 
the fireflies are encoded as a set of customers with index denoting the visiting order. 

(25)VarNS =

√√√√
k∑

i=1

NSunknown(i) − Navg(i)

(26)VarP =

√√√√
k∑

i=1

Punknown(i) − Pavg(i)
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The shaded structures are used to denote the depot. Figures 9 and 10 show different 
firefly representations of two different tours.

The connection distance Cij between two fireflies is defined by:

The total distance between two fireflies is the sum of the connection distances 
between the two fireflies F1 and F2.

(27)

Cij =

{
0, if node i is connected to node j in F1 then in F2 node i should be connected to node j

1, Otherwise

Fig. 9  Representation of tour 1

Fig. 10  Representation of tour 2

Fig. 11  Firefly F1 and firefly F2
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Figure 11 shows the two different firefly representations F1 and F2. The distance 
between F1 and F2 is 9 which is the sum of distances of all the connections which 
are connected to different connections in two fireflies. It is depicted in Fig. 12.

7  Experimental results and discussions

In this section, the performance of the proposed system to solve DGVRPTW will 
be rigorously assessed. The system is tested on a benchmark dataset of DVRPTW 
instances and GVRPTW instances separately and the results are analyzed. Various 
parameter settings are given in Table  1. All the experiments are simulated using 
MATLAB with Intel xenon 2.93 GHz processor, 12 GB RAM and Windows 10 OS.

7.1  Case study 1: DVRPTW dataset

The proposed system is tested by an average of 40 runs on each of the benchmark 
dataset, which are open and available at http://neo.lcc.uma.es/vrp/. A comparison of 
the solution quality in terms of the best and average values of the proposed system 
is done with state-of-the-art schemes: ACO, k-ACO and E-ACO [20], VNS [66], 
GA-DVRP [67], and is tabulated in Table 2. The best results are in boldface. The 
proposed system achieves 17 out of 20 best values and 15 out of 20 average values 
compared with other best-known ACO variants. The K-ACO attains the worst per-
formance compared to the other algorithms in terms of best and average solutions.

The solution improvement percentage of the proposed system is compared with 
other schemes considering k-ACO as the benchmark scheme. It is noted that the pro-
posed system achieves the highest solution improvement. It is given in Fig. 13.

Fig. 12  Distance calculation of two fireflies (individual distance is represented by blue lines)

Table 1  Parameter settings Parameter Value

α 0.2
β 1
� (Initial value) 1
Maxiter 100–300
Population size 30

http://neo.lcc.uma.es/vrp/
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Fig. 13  Comparison of solution improvement percentage of various schemes (K-ACO as the benchmark 
scheme)
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Fig. 14  Comparison of best solutions based on different degrees of dynamism
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The effect of dynamism with different dod (1/3,1/2 and 2/3) under time windows 
is analyzed. The best and average values under different dod are given in Figs. 14 
and 15, respectively. It is noted that the distribution of best and average results is rel-
atively balanced and stable with different edod. So, we concluded that the proposed 
system is stable and robust.

7.2  Case study 2: GVRPTW dataset

The GVRPTW benchmark dataset is taken from EI bouzekri [68], which is hav-
ing a range of customers from 10 to 300. The depot is identified as [0, 0] and 
the customer coordinates are included in the region [0,100] km. The capacity of 
the vehicle is set as 25000 kg. The load volumes of customers randomly belong 
to [500 kg, 2500 kg] and the service time of customers is fixed at 15 min. The 
service period should range in [8 h, 18 h] and the average speed of the vehicle is 
fixed as 80 km/hr.

To make the static GVRPTW benchmark dataset dynamic, we performed the 
following:

• Appearance time- for each order, the time of working day, when the request 
becomes known to the SN P system.

• The number of vehicles is set to 30 for each instance.

We performed a comparison of the influence of dynamism on minimizing CO2 
emissions by vehicles, and the solution quality is compared by minimizing the total 
emissions at the static and dynamic environment. From the analysis of the result, it 
is found that the CO2 emissions and fuel consumption are high in dynamic requests 
due to the dynamic allocation of vehicles to corresponding customers within the 
time frame regardless of the location. In static case, the routes have already been 
known to the depots so no re-rerouting need to be performed once starts serving 
customers. It is detailed in Fig. 16. The quality of solutions versus CO2 emissions 
is analyzed in a static and dynamic environment and is tabulated in Table 3. It is 

Fig. 16  Analysis of the influence of dynamism in CO2 emissions
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noted that the solution quality is less for dynamic instances compared to static 
instances. A comparison of the vehicle utilization rate of various schemes is plotted 
in Fig. 17.

Table 3  Analysis of solution quality versus  CO2 emissions under static and dynamic conditions

Problem instance Static Dynamic

The total cost of  CO2 
emissions

Solution quality 
(%)

The total cost of  CO2 
emissions

Solution 
quality (%)

1 987.6 94 1107 92.30
2 1786.4 92.10 2985 89.70
3 2116.8 97.40 2645 98.10
4 1143.7 88.50 1347.5 87.20
5 2312.9 99.10 2319.7 96.10
6 1543.9 91.90 1764.2 90.30
7 1887.4 95.30 2132.5 93.20
8 1154.9 83.10 1237.3 81.20
9 1227.9 96.20 1332.7 95.30
10 1876.1 98.70 2115.3 97.30
11 1211.7 91.50 1442.6 90.20
12 976.9 93.90 1265.6 92.10
13 996.6 97.50 1332.5 95.80
14 1543.8 92.80 1778.9 90.10
15 1176.2 92.90 1223.2 91.30

Fig. 17  Comparison of the vehicle utilization rate of different schemes
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7.3  Case study 2: large‑scale dataset

Most of the state-of-the-art algorithms use small and medium datasets to test the 
performance of DVRP. The authors found only one scheme, EACO, which has used 
the Kelly data, having a scale of 225–480. The SFO [69] algorithm has been simu-
lated on Kelly dataset to compare the performance. Then the proposed system is 
compared with the ACO variants and SFO on Kelly dataset on best and average 
solution quality and is given in Fig. 18. From the analysis of the result, it is noted 
that the proposed scheme is superior in arriving best and average solution values 
compared to other systems.

Fig. 18  Comparison of best and average solution values of various schemes on Kelly dataset

Fig. 19  Nature of convergence of proposed system ((a) Kelly 09 and (b) Kelly 10)
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7.4  Nature of convergence of proposed system

The convergence rate of the proposed system has been examined by taking two 
instances from Kelly Dataset, namely "Kelly09" and "Kelly10," and is given in 
Fig. 19a and b, respectively. The green line and blue line, respectively, indicate 
the best and average solution values with the number of iterations. For Kelly 09, 
the proposed scheme started to converge in 20 iterations while 30 in EACO and 
SFO [70] schemes. For Kelly 10 instance also the same has noticed. From the 
analysis of solution values, it has found that the proposed system is superior to 
other best-known schemes in finding the best and average solutions. So, it is con-
cluded that the proposed system arrives at the optimal solution in a short time.

1. For problems having around 5001000 scale datasets, it is found that the proposed 
scheme can find optimal solutions in 30 iterations.

2. After analyzing the results, the following conclusions have been gained:
3. The performance of the proposed system is superior to the schemes ACO, KACO, 

EACO, VNS, and GADVRP in terms of solution values (Table 2).
4. The proposed system is having the best vehicle utilization over other schemes 

(Fig. 17).
5. The solution improvement percentage of the proposed method is almost 30%, 

while other schemes have below 20 improvements (Fig. 13).
6. The proposed scheme works well for large-scale datasets as well compared to 

existing schemes in terms of solution values (Fig. 18).
7. It is noted that the distribution of best and average results is relatively balanced 

and stable with different edod. So, we concluded that the proposed system is 
durable and robust (Figs. 14, 15).

8. It is scalable since it shows excellent performance in large-scale datasets. Also, the 
convergence rate is high (20 iterations) compared to existing schemes (Fig. 19).

Table 4  Pairwise T-test statistics

Mean N Std. deviation Std. error mean Sig

Pair 1 ACO 1761.8915 20 857.2475 191.6864 0.003
Proposed scheme 1419.395 20 605.8148 135.4643

Pair 2 E-ACO 1650.4835 20 831.3698 185.8999 0.000
Proposed scheme 1419.395 20 605.8148 135.4643

Pair 3 K-ACO 1984.8967 20 975.99005 212.97849 0.000
Proposed scheme 1419.395 20 605.8148 135.46

Pair 4 GA-VRP 1655.976 20 803.84 107.025 0.0395
Proposed scheme 1419.395 20 605.8148 135.46 0.0173

Pair 5 VNS 1717.6410 20 830.7174 185.75
Proposed scheme 1419.395 20 605.8148 135.46 0.0173
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7.5  Statistical analysis

A statistical analysis has been performed over the algorithms considered for 
DVRPTW datasets. A pairwise t-test has been done to check the significance of the 
proposed scheme. The null hypothesis for the paired t-test is assumed as the true 
mean difference between paired samples is zero. On the other hand, the alternative 
hypothesis is that the true mean difference between paired samples is not zero. The 
level of significance is 0.05. Since all pairs have significantly less than 0.05, the null 
hypothesis is rejected. The results of the pairwise t-test are given in Table 4. The 
results show that there are significant differences between these pairs of algorithms.

After analyzing the results so far, the algorithms are ranked on the basis of the 
average solution quality obtained over 20 test instances. A score is assigned for each 
of the problem instances as per the Holm-Bonferroni [70] ranking scheme. The p 
values are compared with the calculated values and analyzed the system perfor-
mance. The results are given in Table  5. The significance is given as ‘Accepted’ 
if the null hypothesis (no difference in performance between the considered algo-
rithms) is true otherwise ‘Rejected’ if the null hypothesis is false.

The results summarized above appear competitive with respect to state-of-the-art 
algorithms.

8  Conclusions and future scope

As spiking neural P systems are computing models, having maximum explora-
tion and exploitation capabilities, they are adequate for arriving global optimal 
solutions in a feasible time. In this paper, we proposed a multilayer SN P system 
with potentials and activation functions, which does region mapping of custom-
ers in DGVRPTW, followed by a route optimization by FA. So, the major concern 
is to focus on improving dynamic measures which is well tackled by the proposed 
scheme. Apparently, other measures such as convergence rate and vehicle utilization 
have also been improved. It is tested on benchmark instances and proved the effi-
ciency and reliability of the system.

The advantages of proposed system are as follows:

Table 5  Holm–Bonferroni 
ranking (proposed scheme as the 
reference with rank 5.15)

RANK ZJ PJ D/J output

E-ACO 4.85  − 2.08333 0.01401 0.0185 Rejected
K-ACO 4  − 3.43137 0.007143 0.025 Rejected
GA-DVRP 3  − 5.26961  < 0.00001 0.05 Rejected
VNS 2.8  − 5.4321  < 0.00001 0.024 Rejected
ACO 2  − 5.1098  < 0.00001 0.0328 Rejected
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1. The performance of the proposed system is competitive to the other schemes in 
terms of best and average solution quality.

2. The solution improvement percentage of the proposed system is high compared 
to state-of-the-art schemes.

3. The quality of solutions is high under static conditions, and the amount of  CO2 
emissions is found to be less.

4. The distribution of best and average results is the same under different dod, and 
thereby, the system is stable and robust.

5. A balance between solution quality and time impediments has been found on 
large-scale dataset, which highlights the scalability of the system

Even though the system works better than state-of-the-art schemes, there is still 
room for further improvements in terms of number of vehicles and distance metric. 
As future research directions, we may focus on improving the solution quality fur-
ther along with other optimization constraints as well.
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