
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:8038–8062
https://doi.org/10.1007/s11227-020-03613-3

1 3

Traffic classification for efficient load balancing in server
cluster using deep learning technique

V. Punitha1 · C. Mala2

Accepted: 29 December 2020 / Published online: 12 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Extensive use of multimedia services and Internet Data Center applications demand
distributed deployment of these applications. It is implemented using edge comput-
ing with server clusters. To increase the availability of the services, applications are
deployed redundantly in server clusters. In this situation, an efficient server alloca-
tion strategy is essential to improve execution fairness in server cluster. Categorizing
the incoming traffic at server cluster is desired for the improvement of QoS. The
traditional traffic classification models categorize the incoming traffic according to
their applications’ type. They are ineffective in selection of suitable server, as they
do not consider the characteristics of the server. Hence this paper proposes a classi-
fier to assist the dispatcher to distribute the requests to appropriate server in server
cluster. The proposed deep learning classification model based on incoming traffic
characteristics and server status is reinforced with extended labelling using correla-
tion based approach. The experimental results of the proposed classifier have shown
considerable performance enhancement in terms of classification measures and
waiting time of the requests compared to existing machine learning models.

Keywords Network traffic classification · Server allocation strategy · Server cluster ·
Deep learning technique

1 Introduction

The technological advancements in computing and the availability of increased
bandwidth empower the users to request internet services and data center appli-
cations from anywhere, and at any time. The application servers are receiving

 * V. Punitha
 vpunitha21@gmail.com

1 Department of Computer Science and Engineering, Saranathan College of Engineering,
Tiruchirappalli, India

2 Department of Computer Science and Engineering, National Institute of Technology,
Tiruchirappalli, India

http://orcid.org/0000-0002-0314-0020
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03613-3&domain=pdf

8039

1 3

Traffic classification for efficient load balancing in server…

enormous number of requests due to high demand. As a result, the computational
complexity of the data center/cloud server is increasing. To meet the present high
demand, the availability of the services is increased. As a consequence, the deploy-
ment architecture of internet applications has undergone a huge transformation, i.e.,
the work of the central cloud server is distrubuted to network edges which improves
the availability of the services and reduces the dependency and end to end latency
[1]. This technology is called as edge computing. The edge computing is organized
with server clusters, data centres and servers connected by high performance net-
work [2].

A server cluster is a collection of autonomous servers networked together to give
a single system appearance [3]. The performance of edge computing depends on
server cluster. To improve the QoS of server cluster, QoS in resource allocation
strategy at server cluster is to be improved. Analysing the incoming traffic at net-
work edge provides valuable findings about applications’ demand and users’ need.
This kind of information is applied for network management operations. It is also
used by the dispatcher of the server cluster to design an accurate server assignment
policy for the improvement of QoS in server cluster.

Classification of requests at dispatcher according to their applications helps to
assign the respective application server for the requests. Many classification mech-
anisms have been proposed to categorize the network traffic [4–6]. Port-based
approach, payload based approach, deep packet inspection approach and statistical
signature approach are widely used mechanisms to categorize the network traffic [5,
7]. Recent internet applications use dynamic ports. Hence port based approach can-
not be always used to classify the real-time traffic. Mostly, the payload of the traffic
is encrypted to preserve users’ privacy. So deep analysis in the payload is infeasible.
Flow based approaches bring out behavioral characteristics of network traffic better
than packet based approaches [5]. Moreover, the existing traffic classification mech-
anisms classify the traffic based on the applications, especially based on standard
and widely used applications [8, 9]. They are applied to select appropriate applica-
tion server for each request.

Recently, many applications instances are deployed in the same application serv-
ers and these applications share common IP address and port numbers [8]. There are
many such servers in a server cluster [1, 2]. Furthermore, application instances are
also deployed in one or more servers to improve the availability of the services. In
this situation, classifying the traffic according to the application type is not adequate,
because this classification is ineffective in identifying appropriate application serv-
ers. They do not consider present load on the servers. Beyond IP address and port,
the server status is very much essential to classify the requests, so that they can be
distributed to suitable servers. This emphasizes an automatic categorization of traf-
fic at network edge for the improvement of QoS and it is yet to be discussed. Hence
a novel classification model, considering the users’ requesting behaviour and prop-
erties of server cluster, is necessary to classify the request for efficient server alloca-
tion scheme.

8040 V. Punitha, C. Mala

1 3

2 Literature survey

This literature survey presents few existing methodologies pertaining to the classi-
fication of network traffic proposed by various authors. Authors in [10] presented a
SVM classification model exclusively for UDP traffic. Here signatures were derived
from incoming network traffic using chi-square-like test. Then, the derived signa-
tures were given as input to classification model. Authors tested the performance of
the model for different types of application traffic such as VoIP, P2PTV and tradi-
tional P2P applications. Flow level statistics were applied to categorize applications
of UDP traffic in [11]. A graph was constructed with the bidirectional flow and the
components of the graph were identified. Each application was defined as a compo-
nent in the graph. Authors suggested that P2P applications were distinguished using
the ports of the component.

In [12], authors performed classification for real time data using four machine
learning methodologies such as C4.5 decision tree, SVM, Naive Bays and Bayes
Net. Different types of application and their network flows were analysed. Authors
proved that the classification accuracy of C4.5 decision tree methodology was better
than others.

In [13], authors presented a SVM based P2P flow identification method. Authors
presented a review on identification of P2P traffic using multidimensional flow
properties. The properties were selected using discriminatory selection procedure
to improve the classification accuracy. But it does not tested on real-time P2P traf-
fic. In [14], authors proposed a classification model with optimized feature selection
procedure. They applied correlation analysis and redundancy filtering. The perfor-
mance of feature selection procedure was evaluated with various supervised learn-
ing techniques.

In DAG-SVM, the learning structure was implemented with series of binary clas-
sifier organized in DAG structure. Here when the classification error appreared,
it spread over to other layers. In the proposed Improved DAG-SVM, the learning
structure was defined by two metrics called distance and decision function [8]. The
classification errors were rectified in the layer where the errors occurred. Here, two
learning structures were practiced to classify the incoming network traffic according
to the type of the application.

A novel signature based scheme was proposed to differentiate the applications of
the traffic in [15]. Here authors constructed signature from first few bits of a network
flow. The signatures were compressed and an automata engine was created to recog-
nise the pattern. But this model classifies the traffic according to the applications. A
new traffic classification model was proposed in [16] to classify both UDP and TCP
traffic using protocol signature. The proposed model reconstructed itself in constant
interval of time using the previous classification results and protocol distribution.
Network packet properties were removed and packet document was created using
payload and this document model was applied for classification. Encrypted payload
data could also be classified using this model, but frequent reconstruction of the
model is additional overhead and time consuming.

8041

1 3

Traffic classification for efficient load balancing in server…

In [17], a traffic classification model was proposed to eliminate noise in traffic
dataset for the improvement of reliability of training dataset. The proposed model
extracted statistical characteristics of packet features such as number of packets,
mean and standard deviation of packet size and inter packet time. The model dis-
covered noisy traffic by finding the misclassification and redefining those traffic. But
multi-tenant application features are not considered.

New traffic classification model called, Automated Packet Payload Content (PPC)
was presented in [18]. Signatures were generated according to the applications using
static payload. Subsequently, the traffics were classified as text and binary based
applications. Authors proved that wrapped applications or applications using ran-
dom ports could also be identified by PPC.

Usage of supervised algorithms are controlled due to complexity of labelling the
unknown data. To overcome this issue, authors in [19] proposed semi supervised
framework using flow correlation . Flow label propagation method which recog-
nized the unknown flow using correlation measure and Nearest Cluster based Classi-
fier (NCC) using k-means technique were proposed in [19]. After grouping the flows
into clusters, NCC mapped them into different classes according to their applica-
tions. Authors tested their compound classification model with Bag-of-Flows (BoF).

In [9], authors proposed a classification model to identify zero-day applications
based on flow correlation. The features were selected using optimization technique.
The proposed model applied supervised learning approach as well as unsupervised
learning approach. A SVM classification model was proposed in [20]. The incoming
traffics were classified based on flow features and state information of the servers.
Here the execution fairness was improved by the proposed classification model, but
the feature vectors are not updated dynamically for each request.

A new resource allocation framework was proposed exclusively for Storm clus-
ter with predefined priority channels in [21]. Authors measured QoS violation of
the application and CPU usage. Authors observed the QoS violation in terms of
expected latency. But the application streams are classified as only low, medium and
high priority classes.

Two models were constructed in [22], MLP and CNN models and four types of
traffic were classified using deep learning methodology. Authors proved that per-
formance of CNN model was good for audio traffic; MLP was good for other traffic
such as text, image or video. But number of hidden layers and neurons in each hid-
den layer are very minimum. A new virtualised network function was proposed for
SDN [23]. It distinguished the type of the traffic using port number. This function
captured the traffic for limited period and computed the features. DNN architecture
was implemented, but only inbound traffic features are applied for classification.

A deep learning classification model was proposed for IoT traffic in [24]. Deep
architecture was constructed with CNN and Recurrent neural network (RNN). Mini-
mum number of features were selected using the proposed feature selection proce-
dure. But application using dynamic port is not considered for classification.

A reinforcement learning approach was proposed to overcome the unbounded
state space issues in [25]. This model-based approach learnt the control policies for
queuing network to minimize average queue backlog. The theoretical guarantees
were corroborated on server assignment problems.

8042 V. Punitha, C. Mala

1 3

Authors proposed an integer linear programming model for server allocation
under many failure prototypes [26]. Initially, the model was designed with optimum
allocation without failures, called start time optimization. Then, when failure hap-
pened, it reallocated the user to another server considering the delay. Authors proved
that instability during connection failure was eliminated.

Authors proposed a bi-criteria approximation model in [27] to optimize the allo-
cation of jobs to server considering the total cost of the schedule. This model was
designed with many exceptional situations such as identical servers, constant num-
ber of servers having cost constraints etc. The model also developed approximation
systems with linear constraints for a varied classes of load balancing problems.

A continuous time resource assignment problem with fairness reviews was stud-
ied in [28]. Considering utility and total time, a new structure was proposed and
theoretical results were verified.

Authors in [29], proposed a new server allocation strategy in cloud environment.
Here cuckoo optimization algorithm was applied to select a server by avoiding con-
gestion in the network. The selection was obtained by finding the suitability of the
respective virtual machines by the cuckoo algorithm. The selected virtual machine
accomplished the user’s works; the other virtual machines were ignored.

A new load balancing algorithm for fog computing environment was proposed in
[30]. Here, to minimize the energy consumption, the tasks were allocated equally to
all the nodes in fog layer. When a node was overloaded, the algorithm transferred
the task to nearby free node. But compared to this method, nature inspired method-
ologies produce better results.

In [31] authors proposed a novel procedure for server allocation problem in vir-
tual computing labs. This data driven procedure allocated the servers to dynamic
demands, considering system cost and quality of service. The quality of service was
measured by finding fraction of clients who gained delayed or immediate access
to the server and the system cost by finding available number of flexible and pre-
loaded servers. Singular value decomposition was used to estimate future demand
and stationary dependent period by period was used to deal with dynamic system.

Allocation of edge servers was implemented in [32] by considering two types of
deployments such as flat and hierarchical deployment. M/M/c queuing systems were
modeled for both deployment types. In flat type, if the arrival rates were same, allo-
cation of servers was unbiased across all base stations. Turnaround time was mini-
mized in hierarchical deployment when none of the edge cloud was co-located with
base station.

In [33], authors proposed a resource allocation framework in multi-access edge
computing environment to minimize the number of migration events instead of
maximizing the resource usage, as the migration caused service downtime. The
proposed model avoided migration of low priority services by reserving adequate
resources for high priority services. Number resources required for high priority ser-
vices were estimated through learning automata. The method was evaluated using
expected admission time metrics.

A novel cloud architecture was proposed in [34] for MMORPG game. Server
allocation to the game players was performed using a heuristic algorithm which

8043

1 3

Traffic classification for efficient load balancing in server…

minimized server rental/execution cost. The performance of the algorithm was com-
pared with online heuristic algorithms in terms of scalability.

Based on the presented survey, it is observed that the incoming traffics are classi-
fied according to their applications using network packet features so that they can be
distributed to appropriate application servers. But classification of incoming traffic
for the improvement of server utilization requires the following deliberations.

– Packet header information are adequate to categorize the real time traffic based
on their applications. But other distinct features of network traffic and servers are
essential to categorize the traffic to improve the execution fairness.

– Deep packet inspection approaches are good at classifying network traffic
according to the type of the applications. But flow based classification identi-
fies the applications in dynamically changing environment more effectively. Only
few classification methods applied server characteristics in classifying incoming
requests, but it is more essential for the improvement of execution fairness.

– The applications of the traffic are identified using information theory by few
authors. Machine learning approaches are used by many authors. Deep neural
network architecture will produce better learning accuracy, as it brings out latent
characteristics in network traffic and it is yet to be investigated.

The above assessment emphasizes automatic classification of real-time traffic for the
improvement of QoS in server cluster. In this regard, this paper,

– Proposes a model to classify the requests at server cluster in multi-tenant envi-
ronment where multiple application instances are deployed in the same server.

– Examines the characteristics of the request in terms of network flow features and
also appraises the characteristics of the server.

– Proposes a novel method to obtain server properties dynamically using bag of
flow.

– Proposes a novel Traffic Classification for Server cluster using Deep Learning
approach (TCSDL) to categorize the incoming traffic based on its characteristics
and server status.

– Proposes a correlation based approach to integrate unknown network traffic in
bag of flow with labelled network traffic.

– Proposes an Extended Learning approach to identify and define the classes for
unlabeled unknown traffic when number of labelled traffic is less.

The rest of the paper is organized as follows. The proposed classifier and extended
learning approach are elaborated in Sect. 3. The experimental results of the proposed
classifier are analysed in Sect. 4 and the proposed work is summarized in Sect. 5.

8044 V. Punitha, C. Mala

1 3

3 Proposed traffic classification model

Over the recent years, nearly all the commercial organizations are offering the ser-
vices over the internet. Consequently, the development of internet data center appli-
cations and the respective traffic towards network edges are increasing. This in turn
demands proficient server cluster at network edge. The proficiency of the server
cluster can be improved with an efficient request-server assignment strategy. Effec-
tive classification of incoming traffic at dispatcher balances the load among the serv-
ers and improves execution fairness [35]. Hence this paper proposes a classifica-
tion model, Traffic Classification for Server cluster using Deep Learning approach
(TCSDL) for improved server allocation in server clusters using deep learning
approach.

3.1 Deep learning technique

Many research works have been carried out in network traffic classification using
machine learning techniques [5, 6]. Deep learning technique is a special kind of
machine learning technique. It uses multiple layers to gradually bring out higher
level features and relationships from the input. The Deep Neural Network (DNN) is
modelled with artificial neurons, called as perceptrons. The perceptrons are organ-
ized in three layers, namely input, hidden and output layers. The structure and
relationships among the features are even more refined in each hidden layer. The
DNN is constructed with Artificial Neural Network (ANN) or Convolutional Neural
Networks (CNN) or Stacked Auto-Encoder (SAE). SAE is mostly used to extract
abstract features from raw input using unsupervised learning. CNN is mostly applied
for image and video analysis. High dimensional space is required to represent and
to bring out latent features of the network traffic, so in this paper, a deep neural net-
work is constructed with ANN.

3.2 Framework of the proposed TCSDL

Usually, the classifier categorizes the incoming network traffic according to their
application type based on network packet features. But the proposed TCSDL is
designed to classify the incoming traffic to improve the QoS in server cluster, i.e.,
the incoming requests are classified in such a way that they are always assigned to
a least loaded server. For this purpose, the packet features are alone not enough,
hence the status of the server cluster is also added into the feature set. The status of
the server cluster is to be acquired dynamically. But including a dynamically chang-
ing variable into the feature set is complex. Hence the proposed TCSDL constructs
Bag of Flows (BoFs), i.e., the network traffic is recorded for a short period of time.
The network flows during this period are aggregated and it is called as Bag of Flow
(BoF) [19]. The defined time period is called as session window. As it is a short
period, the status of the server will not change during this period. Hence the status
of the server is obtained for every session window and it is updated in the feature

8045

1 3

Traffic classification for efficient load balancing in server…

set. Subsequently the network traffics are labelled based on the feature set, and fur-
ther TCSDL is trained. The framework of the proposed TCSDL is depicted in Fig. 1.

In traditional supervised learning framework, the network traffic classifier learns
the features of labelled training traffic and classifies the incoming real time traffic
into predefined classes. This method is degraded when the size of the labelled net-
work traffic is small. To overcome this weakness, this paper proposes a new method
to extend the labelled network traffic automatically during training. The proposed
method finds the correlation between labelled traffic and unlabelled unknown traffic.
Closely associated labelled traffic for any unknown traffic is identified and the cor-
responding class label is assigned to the unknown traffic. The correlations between
traffics are found only within Bag of Flow (BoF), i.e., for a short period of time,
as the server cluster will not change its characteristics during this period [19], i.e.,
when two clients are connected to the server on a specific port (i.e., specific applica-
tion), the traffic generated by these clients are more likely be identical, as the servers
will not change their applications in short span of time [9, 19]. Thus, in this period
or in BoF, when the correlation between unknown traffic and labelled traffic is high,
then they are more identical. Hence the proposed model obtains the correlation
between labelled traffic and unknown traffic in each BoF and extends the labelling.

3.3 Feature learning in proposed TCSDL

Generally, the application of the traffic is identified using the packet features such
as destination IP and destination port. For effective classification of requests in
multi-tenant architecture, this paper considers the status of the server along with the
inbound traffic characteristics.

Before classifying the incoming traffic for effective server allocation, the static
requests are to be separated. These requests use static IP address and they do not use
external database. So they are processed directly and quickly. It is assumed that the
static requests are handled by a dedicated server. So the proposed classifier does not
consider static requests for classification. They are discriminated using IP address

Fig. 1 Framework of the pro-
posed TCSDL

Extended network
traffic

Known Traffic Unknown
Traffic

TCSDL Classifier

Labelled network traffic

Correlation and
Labelling

Bag of Flow
Construction

Labelled
network

traffic

8046 V. Punitha, C. Mala

1 3

and the size of the response. Remaining requests, other than static requests are taken
for analysis. The inbound traffic properties such as source IP, source port and arrival
time are obtained from packet header. The upstream and downstream communica-
tions concerning to a request are recorded in order and it is named as a network flow.
The duration of the network flow defines the service time of a request. The size of
the response for each network flow is measured in terms of upstream packets (US)
and average outbound packet size (sizeavgOutPktSize). These parameters are listed
in Table 1 and represent feature set. The proposed TCSDL classifies the network
traffic in such a ways that the requests are always distributed to least loaded server.
For this purpose, TCSDL observes the status of the servers in the server cluster in
terms of queue size at each server and expected waiting time at each queue dur-
ing session window. The network flow features and server features that are listed in
Table 1 are constructed for each session window.

In existing classification models, authors extracted packet header information
and computed the network features for entire traffic [5]. In [9, 19], authors com-
puted 20 flow statistical features from extracted packet header information of the
datasets. These classification models are trained and tested using already available
datasets. So authors did not consider computational latency. The proposed model is
trained and tested using benchmark datasets. So computation of flow features can
be implemented in offline. But it is a challenging task when real-time network traf-
fics are tested by the model [36, 37]. Hence the proposed model computes the flow
features for each session window. During this period, the packet header properties
are extracted and features are computed. Session window is of short duration, so
time taken to compute the flow features in this period, is low. The latency of feature
learning is further reduced by computing the features in overlapping manner with
testing, i.e., when the requests in the previous session window are being classified,
the feature learning is performed for the traffic in current session window.

Table 1 The features learnt by
TCSDL to classify the network
traffic

Feature Description

srcIP Source IP address
srcPort Source port
destIP Destination IP address
destPort Destination port
arrivalTime Arrival time of the request
flowDur Flow duration
US Upstream packets in a flow; number of

packets communicated from server to
client in a flow

avgOutPktSize Average packet size of the messages com-
municated from server to client in a flow

waitTime Expected waiting time at each server queue
qSize Size of the queue at each server
avgResTime Average response time of each server

8047

1 3

Traffic classification for efficient load balancing in server…

3.4 Proposed traffic classification for server cluster using deep learning approach
(TCSDL)

There are three major stages in training the proposed classification model; they are
computation of network flow features, construction of bag of flow and updating
server features in feature set. The phases of the proposed TCSDL are portrayed in
Fig. 2. After removing error packets from the captured traffic, network flows are
constructed. For each flow, flow features such as US, avgOutPktSize and flowDur
are computed. Then, feature set is constructed with packet and flow features. Then,
server status in terms of average response time, queue size and queue waiting time
is obtained for each session window and updated in the feature set. Then, the least
loaded server is selected according to the request characteristics and server status.
Following this, the feature set is labelled. Finally, the proposed model learns the
features and classifies the request according to the requested application and server
status.

The objective of this classification is, when a new request is received, the pro-
posed classifier defines the class, it is despatched to the server based on the class.
In recent times, the application instances are deployed redundantly in many servers
in server cluster to improve the QoS. So the request can be executed at any server.
In this context, the objective of the classification is to improve the performance of
the server. Hence the proposed TCSDL is based on server status, i.e., for example if
the server 1 is least loaded, then the request is classified as class 1. It means that the
requests which are classified as class 1 are forwarded to the server 1, the requests
which are classified as class 2 are forwarded to server 2 and so on. So the requests
which are to be executed by a particular server are classified into the same class. The
server cluster has more than two servers, so the problem is devised as multiclass
classification problem.

The classification scheme proposed in TCSDL to improve the QoS of the server
cluster is presented in Algorithm 1. Let {T1, T2,… , Tp} be the incoming traffic and
p be the size of the incoming traffic. Bag of flow is constructed for each session
window. Let q be the number of bag of flows. The server features (SFi) are extracted
for each session window. In each bag of flow, the network flows are constructed and
packet features are extracted. Then, the flow features (FFi) are computed. The flow
features FFi and server features SFi are updated into the feature vector (FV). Here
FVi defines the feature vector for ith flow. Now the TCSDL is trained to catego-
rize the network flow based on flow features and server features. If application is
deployed in many servers say {S1, S2,… , Sl} , where l < n , then least loaded server
Sk is selected using waitTime, qSize, avgResTime. Subsequently the request (Fi) is
classified as class Ck . So that Fi is forwarded to the server Sk . The waiting time and
response time are computed using the flow duration of the requests in previous BoF.

8048 V. Punitha, C. Mala

1 3

Remove the error packets from captured traffic

Construct network flows

Label the feature set as per the selection of
server

Find packet header information for each nework flow

Train the model with the labelled feature set to
classify the request

Captured network traffic

TCSDL Model

Yes

NO

Compute network flow features for each flow
 from packet header information

Take a network flow and
Check network flow

exhausted?

Construct feature set

Update feature set with server
features

Select appropriate server according to request
characteristics and server workload

For each Session
Window

Extract server status

Compute server
features

Fig. 2 Flow diagram of the proposed TCSDL

8049

1 3

Traffic classification for efficient load balancing in server…

Algorithm 1: Traffic Classification in TCSDL
Description: To classify in the incoming traffic to improve the QoS of the server
cluster

Input: Incoming network traffic {T1, T2, ...Tp}
Output: Classified network traffic

1. Construct bag of flow {B1, B2, ...Bq} ;
2. for each bag of flow, Bi ε {B1, B2, ...Bq} do

a. Obtain server features SFi : waitT ime, qSize, avgResT ime;
b. Construct network flow {B1, B2, ...Bq} from incoming traffic;
c. for each Fi ε {F1, F2, ...Fr} do

i. Extract packet features for Fj ;
ii. Compute flow features FFj : flowDur, US, avgOutPktSize ;
iii. Update FVj with SFi and FFj ;
iv. Select least loaded server Si ε {S1, S2, ...Sl} based on FVj Declare the
class of Fi as Ck ;

3.5 Extended labelling in proposed TCSDL

The learning accuracy of the supervised learning depends on training dataset. Label-
ling the entire traffic or unknown traffic is a challenging task. Hence in this paper,
the proposed TCSDL is initially trained with the available training traffic. Then, the
labelling is extended further with unknown traffic.

The proposed TCSDL model combines both labelled and unlabelled traffic and
constructs a Bag of Flow (BoF). Now the BoF consists of known labelled traffic
along with unknown unlabelled traffic. Then correlation among the labelled and
unlabelled traffic in a BoF is discovered using Spearman correlation. The Spear-
man rank correlation measures the degree of relationship between 2 data or vari-
ables [38]. The distribution of the data is not considered in Spearman correlation
examination. Hence this paper applies Spearman correlation examination to identify
the association between unlabelled network traffic and the predefined labelled net-
work traffic. The labelled network flow is described in terms of source and destina-
tion address, protocol, service time, upstream packets and average packet size. The
packet features of unlabelled traffic is extracted and examined with labelled prede-
fined traffic using Spearman correlation examination. The extended labelling pro-
cess proposed in TCSDL is described in Algorithm 2.

8050 V. Punitha, C. Mala

1 3

Algorithm 2: Extended Labelling in TCSDL
Description: To generate labelled traffic for the proposed TCSDL classifier from
unlabelled unknown traffic

Input: Predefined labelled network traffic {L1, L2, ...Lp}, Unlabelled unknown
traffic {U1, U2, ...Uq}

Output: Extended labelled network traffic

1. Combine labelled and unlabelled traffic,
{T1, T2, ...Tp + q} = {L1, L2, ...Lp}U{U1, U2, ...Uq} ;

2. Construct bag of flow {B1, B2, ...Bv} from {T1, T2, ...Tp + q} ;
3. for each bag of flow, Bi ε {B1, B2, ...Bv} do

a. Construct network flow {F1, F2, ...Fr} from incoming traffic ;
b. for each Fi ε {F1, F2, ...Fr} do

i. Extract packet features for Fj ;
ii. Compute flow features FFj for labelled traffic ;
iii. for each unlabelled flow do

Find Spearman correlation rank ρk with labelled FFj ;

iv. Define the class for unlabelled flow as Ck = maxk(ρk) ;

Let {L1, L2,… , Lp} and {U1,U2,… ,Uq} be labelled and unlabelled network traf-
fic, respectively. The extended labelling algorithm combines both the traffics and
generate BoFs. In each BoF, flow features for labelled flows (FFj) are computed.
Then, each unknown flow in BoF is examined with labelled flow using Spearman
correlation and the correlation rank (�k) is computed. The rank indicates degree of
relationship between two traffic. It is in the range of −1 to +1 [38]. If the rank is +1,
it means that the unlabelled traffic is same as the labelled traffic. If it is −1 , then both
traffics are different. The closely associated labelled traffic for each unknown traffic
in BoF is discovered by finding maximum rank value among the ranks generated for
each labelled traffic. Then the respective class is assigned to the unknown traffic.
Thus the proposed TCSDL model extends the labelling.

4 Result and performance analysis

This section presents the simulated environment of the proposed system and elabo-
rates its performance assessment. The proposed deep architecture is developed using
Google Colaboratory with Tensorflow, Keras and PyTorch. The proposed model is
evaluated with machine learning models and existing static method. Matlab tools
are used to develop the machine learning models. Wireshark is used to derive the
packet parameters from the network traffic [39]. The proposed model is examined
with benchmark datasets captured from public repository [40, 41]. The statistics of
the datasets are presented in Tables 2, 3, Table 4.

Assumption: The server cluster has heterogeneous servers and the service time of
each server is distinct. They are configured with multiple applications.

Traditionally, the incoming network traffics at server cluster are classified accord-
ing to the applications’ type and forwarded to the respective application servers. The

8051

1 3

Traffic classification for efficient load balancing in server…

applications of the traffics are identified using IP address and port numbers. But in
multi-tenant architecture, multiple application instances are deployed in the same
server and also to increase the availability, such multiple servers are organized in
distributed places. Hence classifying the incoming traffic based on IP address and
port number become ineffective. As the server supports multiple applications, classi-
fying the request based on their applications alone doesn’t be much effective. Hence
server status is also considered while classifying the requests at server cluster.

Machine learning techniques are pre-eminent in classifying network traffic using
packet features [5]. Classifying the requests using unsupervised learning techniques
is challenging in multi-dimensional space; dimensionality reduction and optimal
selection of ‘k’ is essential for better classification accuracy. Additionally, evaluating
the clustered traffic is also challenging [42, 43]. Hence, supervised learning mod-
els such as SVM with different kernels, Decision Tree, Naive Bayes and K-Nearest
Neighbors (KNN) are examined in this paper. Apart from this, in complex and high
dimensional data, bringing out latent characteristics in the data gives better classifi-
cation accuracy [44, 45]. Hence in this paper, the server status and the flow features
are labelled and so that the proposed deep learning approach can be evaluated using
the supervised learning models.

Table 2 Network traffic data from benchmark dataset

Dataset No. of packets Time span (sec) Average packets per
second

Average
packet size
(bytes)

WIDE dataset 30,00,000 6262.78 234.6 692
UNB dataset 35,00,000 7932.72 252.1 707

Table 3 WIDE dataset Protocol No. of packets Percentage
of packets

No. of flow Bytes

TCP 14,59,047 48.63 87,218 47,84,47,419
UDP 10,50,991 35.03 68,090 19,56,15,349
Others 4,89,962 16.33 29,511 1,83,65,628

Table 4 UNB dataset Protocol No. of packets Percentage
of packets

No. of flow Bytes

TCP 16,88,747 48.25 80,284 98,90,28,260
UDP 12,50,072 35.72 60,452 37,20,07,928
Others 5,61,181 16.03 21,957 5,24,73,042

8052 V. Punitha, C. Mala

1 3

4.1 Performance of the proposed TCSDL model

The performance of the proposed TCSDL is measured using classification metrics
such as precision and recall. Precision defines the ratio of number of network traffic
correctly classified in a given class to the total number of network traffic predicted in
the same class. Recall defines the ratio of number of network traffic correctly classi-
fied in a given class to the number of network traffic labelled in the same class [5].
In this paper, initially server cluster has only 3 heterogeneous servers to make the
prediction rate analysis and average waiting time analysis simple. The classification
metrics are computed for all the three class independently and presented in Tables 5
and 6. Precision and recall values in linear and polynomial SVM are lesser among
other machine learning models. KNN identifies the similar traffics using nearest
neighbour. The server characteristics are uniform in each session window, so it cat-
egorizes the traffic more perfectly. Hence precision and recall are greater than lin-
ear and polynomial SVM models. Decision tree model is designed with sequence of
decisions on the significant features. Waiting time and queue length are used as most

Fig. 3 No. of servers in server cluster versus F measure

Table 5 Performance of the proposed TCSDL model for WIDE dataset

Learning models Precision Recall

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

KNN 0.8188 0.7996 0.7759 0.8395 0.8011 0.7968
Naïve bayes 0.8498 0.8591 0.7989 0.8081 0.8235 0.7438
Decision tree 0.85 0.8027 0.803 0.8017 0.8198 0.8486
Linear SVM 0.7863 0.7375 0.6706 0.7368 0.74 0.7281
SVM-RBF 0.881 0.8674 0.8296 0.8876 0.8285 0.862
Polynomial SVM 0.7933 0.7366 0.7759 0.7914 0.7811 0.7668
DL 0.9297 0.9202 0.9361 0.937 0.9162 0.9302

8053

1 3

Traffic classification for efficient load balancing in server…

significant features for classification of the request. Hence the classification perfor-
mance in decision tree model is also good. Among the machine learning models
SVM-RBF model produces best classification results. The proposed multiclass clas-
sification model requires more than one hyperplane in multidimensional space. The
hyperplanes generated in SVM-RBF classifies each request perfectly. But the latent
characteristics between similar traffic are brought out effectively by the proposed
DNN architecture.

As SVM-RBF model produces best results among machine learning models, the
proposed TCSDL model is further compared against SVM-RBF model with differ-
ent server clusters which are having 5, 7 and 8 heterogeneous servers respectively.
The classification metrics such as precision, recall and F-measure values are com-
puted for each class and the average F-measure values are obtained and plotted in
Fig. 3. One Verses One multiclass classification is used in SVM-RBF model. So
it generates 10, 21 and 28 hyperplanes to classify 5, 7 and 8 classes, respectively
[20]. These hyperplanes categorize the request in multi-dimensional space and it is
observed that F-measure values are above 0.7. It is also observed from Fig. 3 that
the increase in number of classes does not degrade performance much in TCSDL
model. Multiple hyperplanes in SVM-RBF do not discriminate the classes perfectly
as in DL. In SVM for better prediction, it is required to calculate optimal arrange-
ment of hyperplanes for splitting the space [46]. Whereas, the DNN architecture in
the proposed TCSDL identifies the similarities among feature sets more effectively
and predicts the classes flawlessly. This improves the prediction rate and hence
the classification performance of TCSDL is better than SVM-RBF model for both
datasets.

Along with classification metrics, implementation efforts are also considered for
comparison of methods presented in Tables 5 and 6. The implementation has three
major phases namely, feature learning, training the model and testing. Same fea-
tures are applied in all classification models and hence the feature learning phase
and computational complexity of this phase are same for all the models. Presently,
feature learning is implemented in overlapping fashion. The computational com-
plexity for feature learning could be further reduced using parallel execution of
tasks and automatic feature learning [47] which will be examined in the future work.

Table 6 Performance of the proposed TCSDL model for UNB dataset

Learning models Precision Recall

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

KNN 0.7541 0.7626 0.7345 0.7786 0.7099 0.7593
Naïve Bayes 0.8486 0.86 0.8174 0.8621 0.801 0.8625
Decision Tree 0.8271 0.8153 0.7715 0.8053 0.8034 0.8109
Linear SVM 0.7425 0.6892 0.7074 0.7462 0.7099 0.6794
SVM-RBF 0.8984 0.9174 0.8297 0.9011 0.8473 0.8969
Polynomial SVM 0.7918 0.8085 0.7869 0.8177 0.8027 0.7593
DL 0.9508 0.9469 0.9287 0.9401 0.9478 0.9417

8054 V. Punitha, C. Mala

1 3

So comparison among classification models in terms of computation complexity
involves training and testing time. The training and testing time taken by the mod-
els are measured for the server cluster with three servers and without considering
extended dataset. They are plotted in Fig. 4. Among the machine learning models
taken for analysis, decision tree and SVM-RBF models produce best performance.
Hence training and testing time taken by these models are compared with TCSDL.
It is observed from Fig. 4 that time taken for training the decision tree model is
minimum among the models taken for analysis. If the training dataset is large, the
training time of SVM model will be long [48]. Additional effort is needed to mini-
mize the size of the training dataset using optimization technique which considers
only the representative data and minimizes other data in training dataset [48]. As
SVM-RBF does not apply any optimization technique in this paper, training time
taken by SVM-RBF is longer than decision tree. DNN hidden layers in the proposed
TCSDL has multiple nodes, hence time taken for training TCSDL is higher than
decision tree and SVM-RBF models. Comparatively, testing time is less. Time taken
for training and testing are reduced with effective organization of multiple premium
GPUs and cooling system. Above all, prediction accuracy of TCSDL is higher than
decision tree and SVM-RBF models and moreover training the model is a one time
work. Considering these factors, this paper proposes that DL architecture is ideal for
classification of request for effective server utilization.

The proposed TCSDL is compared with existing static model, SCEW [20] in
terms of accuracy and f-measure. Accuracy and F-measure are computed for each
model and they are plotted in Figs. 5 and 6. Existing SCEW method derived the sta-
tus of the server, but it is not updated frequently. With this static server features and
incoming flow features, feature vector was constructed. Thus, the predicted classes
for the incoming requests are not accurate and hence the accuracy and F-measure
decreased in Figs. 5 and 6. Whereas the proposed model observes the status of the
servers dynamically during each session window and the feature vectors are updated
correspondingly. The proposed machine learning (ML) models classifies the incom-
ing requests based on the network flow features and dynamically derived server sta-
tus. Hence in Figs. 5 and 6, the learning accuracy and F-measure are greater than
existing SCEW model. The proposed TCSDL brings out the relationship between

Fig. 4 Learning phases versus Execution time(sec)

8055

1 3

Traffic classification for efficient load balancing in server…

features efficiently in each BoF. Hence the learning accuracy of the proposed
TCSDL is greater than existing SCEW and machine learning models in Figs. 5
and 6.

4.2 Prediction accuracy and analysis

The number of requests classified by the proposed TCSDL model is computed for
every 2000 arrivals. The prediction rate of request is computed and plotted in Fig. 7.
The prediction rate is defined as the number of requests correctly classified divided
by total number of requests received. The precision and recall values of each cat-
egory are above 0.9 for both datasets. Hence the prediction rate in Fig. 7 is always
above 0.9. It implies that the proposed classification model proficiently classifies the
request considering the load balancing among servers.

Now, the efficiency of proposed model in predicting each type of request is
examined. The proposed TCSDL is designed with three servers to make the analy-
sis simple. So it classifies the incoming requests into three categories. The number
of requests classified in each category is computed for every 2000 arrivals for both
datasets. They are plotted in Fig. 8. The servers in server cluster are heterogeneous.

Fig. 5 Learning models versus
Accuracy

Fig. 6 Learning models versus
F-measure

8056 V. Punitha, C. Mala

1 3

The service time of server 1 is less than other two servers in server cluster, as the
configuration of server 1 is high, compared to others. So queue size and waiting time
are low. So numerous incoming requests are classified as class 1 and forwarded to
server 1. Hence in Fig. 8, the number of requests predicted as class 1(to server 1) is
greater than other categories. The service time of server 3 is greater than other two
servers, so the queue size and waiting time are slightly long in server 3. Hence the
number of requests classified as class 3 and forwarded to server 3 are less and it is
noticed in Fig. 8.

To evaluate the proposed model in predicting each type of request, the prediction
rate of each category is also computed. They are plotted in Figs. 9 and 10. The pre-
diction rate is defined as the ratio of number of requests that are classified correctly
in each category to the number of requests predicted in the same category. Inbound
traffic characteristics and server status are well defined in the proposed TCSDL
model. Moreover the proposed deep architecture discovers the associations between

Fig. 7 Number of arrivals ver-
sus Prediction rate of request

Fig. 8 Number of arrivals versus Number of request classified and forwarded to different servers

8057

1 3

Traffic classification for efficient load balancing in server…

traffic flows. Hence the prediction rate of the proposed TCSDL for each category is
always above 85% in both datasets in Figs. 9 and 10. Beyond executing the incom-
ing requests, server 2 is assigned with other works. Hence the calculated expected
waiting time is not perfect in server 2. This leads to few misclassification in this cat-
egory. Hence the prediction rate of class 2 (to server 2) is slightly decreased in both
datasets. But they are always 85%. Hence it is evident that TCSDL classifies each
type of request proficiently.

The objective of the proposed classification model is to improve the QoS of the
server cluster and TCSDL classifies the incoming request in such way that they
are assigned to the appropriate server and thereby reducing the waiting time of the
requests. Hence the performance of TCSDL is assessed in terms of average waiting
time. The average waiting time is measured for various arrivals and it is plotted in
Fig. 11. The existing SCEW method did not derive the server properties dynami-
cally, whereas in the proposed TCSDL, the server status is considered as a signifi-
cant feature for classification and they are derived in each session window. Hence
the average waiting time of the proposed TCSDL in Fig. 11 is less than the existing
static SCEW method. If the service times of the requests are low, then waiting time
of upcoming requests are also low. This is observed in WIDE dataset during 6000
arrivals in Fig. 11. In UNB dataset minimum waiting time is observed during 2000
arrival rates.

Fig. 9 Number of arrivals
versus Prediction rate of each
category of request in WIDE
dataset

Fig. 10 Number of arrivals
versus Prediction rate of each
category of request in UNB
dataset

8058 V. Punitha, C. Mala

1 3

For various sizes of session windows, the BoFs are constructed and the classifica-
tion is performed. Each time F-measure and average waiting time are computed and
plotted in Fig. 12. F-measure is high during the session window 2500 ms. But here,
average waiting time is long. On the other hand, average waiting time is minimum
during 500 ms. But here, f-measure is low and the construction of BoF is extremely
frequent. Hence the proposed model assigns the duration of session window is
1.5sec, where the average waiting time is not so long; as well as the f-measure is not
minimum and it is noticed in Fig. 12.

The performance of classification is improved with extended labelled data and it
is observed in Figs. 13 and 14. To reduce the complexity of labelling, the proposed
model identifies the correlation between labelled traffic and unlabelled unknown
traffic. When it finds similarity, the unlabelled unknown traffic is automatically
labelled and added into the extended training dataset. The size of extended training
dataset is measured frequently. When substantial increase is observed in size of the
extended training dataset, then the proposed TCSDL is trained with extended train-
ing dataset. It is observed that the false positive rate is reduced with extended train-
ing dataset. The results are plotted in Figs. 13 and 14. From the results, significant
increase in F-measure is observed.

Fig. 11 Arrival rate versus
Average waiting time

Fig. 12 Session time versus Average waiting time Vs F-measure

8059

1 3

Traffic classification for efficient load balancing in server…

It is inferred from the above results that the proposed traffic classification model
using DNN architecture classifies the incoming traffic based the network flow char-
acteristics and status of the server. The proposed classifier recognizes the associa-
tions between labelled network traffic and unlabelled unknown traffic in a bag of
flow and supports extended labelling.

5 Conclusion

Classification of incoming traffic at server cluster facilitates the improvement of
QoS in server cluster. The proposed deep learning classification model categorizes
the incoming requests based on the characteristics of inbound network traffic and
status of the server cluster. The proposed categorization assists the dispatcher to
direct the traffic toward least busy or most appropriate server in the server cluster,
this in turn reduces makespan. The proposed extended learning approach effortlessly

Fig. 13 Size of training dataset
versus F-measure

Fig. 14 Learning models versus
F-measure

8060 V. Punitha, C. Mala

1 3

defines classes for unlabelled unknown traffic using bag of flow. The incoming traf-
fics are captured using Wireshark. Colaboratory with Keras and Tensorflow is used
to develop the proposed deep learning model. It is found from the experimental
results that the proposed classifier significantly outperforms the exiting static and
machine learning models in terms of classification accuracy and f-measure.

Acknowledgements The authors acknowledge the valuable discussions and suggestions given by Dr. N.
P. Gopalan, Professor, National Institute of Technology, Tiruchirappalli for this paper.

References

 1. Skala K, Davidovic D, Afgan E, Sovic I, Sojat Z (2015) Scalable distributed computing hierarchy:
cloud, fog and dew computing. Open J Cloud Comput 2(1):16–24

 2. Taleb T, Samdanis K, Mada B, Flinck H, Dutta S, Sabella D (2017) On multi-access edge comput-
ing: a survey of the emerging 5g network edge cloud architecture and orchestration. IEEE Commun
Surv Tutor 19(3):1657–1681

 3. Shahzadi S, Iqbal M, Dagiuklas T, Qayyum ZU (2017) Multi-access edge computing: open issues,
challenges and future perspectives. J Cloud Comput 6(1):30

 4. Dipti T, Bhawna M (2016) Svm and naive bayes network traffic classification using correlation
information. Int J Comput Appl 147(3):1–5

 5. Finsterbusch M, Richter C, Rocha E, Muller JA, Hanssgen K (2013) A survey of payload-based traf-
fic classification approaches. IEEE Commun Surv Tutor 16(2):1135–1156

 6. Huang NF, Jai GY, Chao HC, Tzang YJ, Chang HY (2013) Application traffic classification at the
early stage by characterizing application rounds. Inf Sci 232:130–142

 7. Yuan R, Li Z, Guan X, Li X (2010) An svm-based machine learning method for accurate internet
traffic classification. Inf Syst Front 12(2):149–156

 8. Hao S, Hu J, Liu S, Song T, Guo J, Liu S (2015) Network traffic classification based on improved
dag-svm. In: 2015 International Conference on Communications, Management and Telecommuni-
cations (ComManTel). IEEE, pp 256–261

 9. Zhang J, Chen X, Xiang Y, Zhou W, Jie W (2014) Robust network traffic classification. IEEE/ACM
Trans Netw 23(4):1257–1270

 10. Finamore A, Mellia M, Meo M, Rossi D (2010) Kiss: stochastic packet inspection classifier for udp
traffic. IEEE/ACM Trans Netw 18(5):1505–1515

 11. Zhang Q, Ma Y, Wang J, Li X (2014) Udp traffic classification using most distinguished port. In:
The 16th Asia-Pacific Network Operations and Management Symposium. IEEE, pp 1–4

 12. Shafiq M, Yu X, Laghari AA, Yao L, Karn NK, Abdessamia F (2016) Network traffic classification
techniques and comparative analysis using machine learning algorithms. In: 2016 2nd IEEE Interna-
tional Conference on Computer and Communications (ICCC). IEEE, pp 2451–2455

 13. Zhao Y, Wei Z, Zou H (2012) Svm based p2p traffic identification method with multiple properties.
Int J Eng Manuf 2(4):1

 14. Peng L, Yang B, Chen Y (2015) Effective packet number for early stage internet traffic identifica-
tion. Neurocomputing 156:252–267

 15. Hubballi N, Swarnkar M (2018) Bitcoding : network traffic classification through encoded bit level
signatures. IEEE/ACM Trans Netw 26(5):2334–2346

 16. Xiao X, Li R, Zheng HT, Ye R, KumarSangaiah A, Xia S (2019) Novel dynamic multiple classifica-
tion system for network traffic. Inf Sci 479:526–541

 17. Binfeng W, Jun Z, Zili Z, Lei P, Yang X, Dawen X (2017) Noise-resistant statistical traffic classifi-
cation. IEEE Trans Big Data. https ://doi.org/10.1109/TBDAT A.2017.27359 96

 18. Tongaonkar A, Torres R, Iliofotou M, Keralapura R, Nucci A (2015) Towards self adaptive network
traffic classification. Comput Commun 56:35–46

 19. Zhang J, Chen C, Xiang Y, Zhou W, Vasilakos AV (2013) An effective network traffic classification
method with unknown flow detection. IEEE Trans Netw Serv Manag 10(2):133–147

https://doi.org/10.1109/TBDATA.2017.2735996

8061

1 3

Traffic classification for efficient load balancing in server…

 20. Punitha V, Mala C (2017) Traffic classification for the dispatcher in a server farm based on svm. In:
Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics and swarm
intelligence, pp 93–97

 21. Wang Y, Tari Z, HoseinyFarahabady MR, Zomaya AY (2017) Qos-aware resource allocation for
stream processing engines using priority channels. In: 2017 IEEE 16th International Symposium on
Network Computing and Applications (NCA). IEEE, pp 1–9

 22. Lyu Q, Lu X (2019) Effective media traffic classification using deep learning. In: Proceedings of the
2019 3rd International Conference on Compute and Data Analysis, pp 139–146

 23. Xu J, Wang J, Qi Q, Sun H, He B (2018) Deep neural networks for application awareness in sdn-
based network. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Pro-
cessing (MLSP). IEEE, pp 1–6

 24. Lopez-Martin M, Carro B, Sanchez-Esguevillas A, Lloret J (2017) Network traffic classifier with
convolutional and recurrent neural networks for internet of things. IEEE Access 5:18042–18050

 25. Liu B, Xie Q, Modiano E (2020) Rl-qn: a reinforcement learning framework for optimal control of
queueing systems. arXiv preprint arXiv:2011.07401

 26. Masuda S, He F, Kawabata A, Oki E (2020) Distributed server allocation model with preventive
start-time optimization against single failure. In: 2020 IEEE 21st International Conference on high
performance switching and routing (HPSR). IEEE, pp 1–6

 27. Nguyen TT, Jörg R (2020) Improved bi-criteria approximation schemes for load balancing on unre-
lated machines with cost constraints. Theor Comput Sci. https ://doi.org/10.1016/j.tcs.2020.12.022

 28. Cayci S, Gupta S, Eryilmaz A (2020) Group-fair online allocation in continuous time. arXiv pre-
print arXiv :2006.06852 , pp 1–21

 29. Tyagi M, Manoria M, Mishra B (2020) Efficient user authentication, server allocation and secure
data storage in cloud. Int J Internet Technol Secur Trans 10(1–2):211–228

 30. Kaur M, Aron R (2020) Energy-aware load balancing in fog cloud computing. Mater Today Proc
 31. Siyun Y, Nelson L, Vidayadhar KG, Haipeng S (2020) Data driven server allocation at virtual com-

puting labs. Queueing Models Serv Manag 3(2):137–166
 32. Li D, Asikaburu C, Dong B, Zhou H, Azizi S (2020) Towards optimal system deployment for edge

computing: a preliminary study. In: 2020 29th International Conference on Computer Communica-
tions and Networks (ICCCN). IEEE, pp 1–6

 33. Mukhopadhyay A, Ruffini M (2020) Learning automata for multi-access edge computing server
allocation with minimal service migration. In: ICC 2020-2020 IEEE International Conference on
Communications (ICC). IEEE, pp 1–6

 34. Jaya I, Cai W, Li Y (2020) Rendering server allocation for mmorpg players in cloud gaming. In:
49th International Conference on Parallel Processing-ICPP, pp 1–11

 35. Jayasinghe M, Tari Z, Zeephongsekul P, Zomaya AY (2011) Task assignment in multiple server
farms using preemptive migration and flow control. J Parallel Distrib Comput 71(12):1608–1621

 36. Sreeram I, Vuppala VPK (2019) Http flood attack detection in application layer using machine
learning metrics and bio inspired bat algorithm. Appl comput inf 15(1):59–66

 37. Prasad KM, Reddy ARM, Rao KV (2017) Bifad: bio-inspired anomaly based http-flood attack
detection. Wirel Pers Commun 97(1):281–308

 38. Xiao C, Ye J, Esteves RM, Rong C (2016) Using spearman’s correlation coefficients for exploratory
data analysis on big dataset. Concurr Comput Pract Exp 28(14):3866–3878

 39. Chappell L, Combs G (2010) Wireshark network analysis: the official Wireshark certified network
analyst study guide. Protocol Analysis Institute, Chappell University

 40. Fontugne R, Borgnat P, Abry P, Fukuda K (2010) Mawilab: combining diverse anomaly detectors
for automated anomaly labeling and performance benchmarking. In: Proceedings of the 6th Interna-
tional COnference, pp 1–12

 41. Lashkari AH, Draper-Gil G, Mamun MSI, Ghorbani AA (2017) Characterization of tor traffic using
time based features. ICISSP, pp 253–262

 42. Pacheco F, Exposito E, Gineste M, Baudoin C, Aguilar J (2018) Towards the deployment of
machine learning solutions in network traffic classification: a systematic survey. IEEE Commun
Surv Tutor 21(2):1988–2014

 43. Boutaba R, Salahuddin MA, Limam N, Ayoubi S, Shahriar N, Estrada-Solano F, Caicedo OM
(2018) A comprehensive survey on machine learning for networking: evolution, applications and
research opportunities. J Internet Serv Appl 9(1):16

 44. Rashmiranjan N, Chandra PU, Kumar DS (2020) A comprehensive review on deep learning-based
methods for video anomaly detection. Image Vis Comput 106:104078

https://doi.org/10.1016/j.tcs.2020.12.022
http://arxiv.org/abs/arXiv:2006.06852

8062 V. Punitha, C. Mala

1 3

 45. Li P, Chen Z, Yang LT, Gao J, Zhang Q, Jamal DM (2018) An improved stacked auto-encoder for
network traffic flow classification. IEEE Netw 32(6):22–27

 46. Blanco V, Japón A, Puerto J (2020) Optimal arrangements of hyperplanes for svm-based multiclass
classification. Adv Data Anal Classif 14(1):175–199

 47. Punitha V, Mala C (2020) A deep learning approach for detection of application layer attacks in
internet. In: Handling Priority Inversion in Time-Constrained Distributed Databases, Chap 10. IGI
Global, pp 175–188. https ://doi.org/10.4018/978-1-7998-2491-6.ch010

 48. Arumugam P, Jose P (2018) Efficient decision tree based data selection and support vector machine
classification. Mater Today Proc 5(1):1679–1685

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.4018/978-1-7998-2491-6.ch010

	Traffic classification for efficient load balancing in server cluster using deep learning technique
	Abstract
	1 Introduction
	2 Literature survey
	3 Proposed traffic classification model
	3.1 Deep learning technique
	3.2 Framework of the proposed TCSDL
	3.3 Feature learning in proposed TCSDL
	3.4 Proposed traffic classification for server cluster using deep learning approach (TCSDL)
	3.5 Extended labelling in proposed TCSDL

	4 Result and performance analysis
	4.1 Performance of the proposed TCSDL model
	4.2 Prediction accuracy and analysis

	5 Conclusion
	Acknowledgements
	References

