
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:7676–7689
https://doi.org/10.1007/s11227-020-03607-1

1 3

High‑performance dataflow computing in hybrid memory 
systems with UPC++ DepSpawn

Basilio B. Fraguela1   · Diego Andrade1

Accepted: 28 December 2020 / Published online: 8 January 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Dataflow computing is a very attractive paradigm for high-performance computing, 
given its ability to trigger computations as soon as their inputs are available. UPC++ 
DepSpawn is a novel task-based library that supports this model in hybrid shared/
distributed memory systems on top of a Partitioned Global Address Space envi-
ronment. While the initial version of the library provided good results, it suffered 
from a key restriction that heavily limited its performance and scalability. Namely, 
each process had to consider all the tasks in the application rather than only those 
of interest to it, an overhead that naturally grows with both the number of processes 
and tasks in the system. In this paper, this restriction is lifted, enabling our library to 
provide higher levels of performance. This way, in experiments using 768 cores the 
performance improved up to 40.1%, the average improvement being 16.1%.

Keywords  Dataflow computing · Hybrid parallelism · PGAS · Runtimes · 
Programability · High-performance computing

1  Introduction

Developing parallel applications is a complex task, particularly in distributed mem-
ory systems. This has led to a wide range of proposals to enhance the programma-
bility of these systems. A notable example is the abstraction of Partitioned Global 
Address Space (PGAS) [24], which provides both private separate memory spaces 
to each process and a common space accessible by all the processes in an applica-
tion. This latter space allows manipulating what is actually distributed memory as if 
it were a shared space, thus simplifying the development. However, given the large 
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cost of remote accesses in distributed memory, this space is partitioned so that each 
portion of the shared space is local to a different process. This characteristic allows 
programmers to reason on locality in order to minimize remote accesses. This para-
digm has been implemented both on languages [8–10, 19, 25] and libraries [3, 18, 
26].

Also, while many applications present relatively simple patterns of parallelism, in 
others the patterns of dependences between tasks may be highly irregular and even 
impossible to predict in advance. In addition, even in situations in which the patterns 
are regular, the ability to trigger a computation as soon as its specific dependences 
have been satisfied, rather than waiting for a global synchronization, can enhance the 
performance of an application. Therefore, there is also much research on enhancing 
the programmability of parallel applications with complex patterns of dependencies, 
which can also benefit applications with simpler patterns. Although this problem 
can be tackled following a large number of approaches, a particularly promising one 
is dataflow computing, in which a runtime manages the tasks that constitute the par-
allel application ensuring that they are run only when their dependencies have been 
satisfied. One of the most convenient ways to provide those dependencies consists in 
labeling the inputs and outputs of each task and specifying the order in which such 
tasks would be run in a sequential program. With this information, the runtime can 
infer the task dependency graph (TDG) that enables the dataflow parallel execution. 
While most efforts in this area have targeted shared memory systems, the more chal-
lenging distributed memory environments have also been considered [1, 22].

A recent library that conjugates PGAS and dataflow computing is UPC++ Dep-
Spawn [14], which builds upon UPC++ [26], a library-based implementation of the 
Unified Parallel C (UPC) [8] language. UPC++ DepSpawn requires that the parallel 
tasks are expressed as functions, so that each task consists in the execution of a user-
provided function. Then, the library examines the types of the formal parameters 
of each task function in order to infer which task arguments are only inputs to the 
function and which ones can be modified by it. This, coupled with the invocation 
of all the tasks in the application in sequential order allows the library to build the 
TDG and schedule the task according to their dependencies. Another very interest-
ing feature of the library is that it can also schedule parallel tasks among multiple 
threads within each process. This makes it naturally fit for the hybrid shared/distrib-
uted memory systems that are so common in current clusters and supercomputers 
since the advent of multi-core processors.

In this paper we enhance UPC++ DepSpawn by raising a very critical restric-
tion. Namely, in [14] each process had to build the whole TDG in order to cooperate 
successfully with the other processes, even when each process actually only needs 
to know about the subset of the TDG related to the tasks it is in charge of. Remov-
ing this restriction is particularly important for scalability, as the larger the number 
of processes considered, the smaller the fraction of a TDG that is of interest to each 
process, and thus the bigger is the waste of resources associated with the construc-
tion and analysis of the whole TDG in each process.

The rest of this manuscript is organized as follows. First, Sect.  2 introduces 
UPC++ and the library. Then, Sect. 3 discusses the limitation of the library con-
sidered in this paper and how it was tackled. This is followed by an evaluation in 
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Sect. 4 and a discussion of the related work in Sect. 5. The last section of the paper 
is devoted to our conclusions and future work.

2 � UPC++ DepSpawn

Since UPC++ DepSpawn works within an UPC++ application, UPC++ will be 
briefly introduced before delving into the details of our library.

As indicated in Sect. 1, UPC++ [26] is a C++ library that provides the facilities 
and semantics of the UPC [8] language and a number of additional ones. UPC++ 
applications consist of multiple processes that can run in a distributed memory 
environment following a SPMD style enabled by a unique rank for each process. 
While regular variables belong to the private space of each process, library data 
types such as shared_var<T> or shared_array<T, B> express scalar and 
array variables of elements of type T located in the shared space accessible by all 
the processes, respectively. While the scalar variables are physically located in the 
memory of process 0, shared arrays are distributed among the processes in a block 
cyclic fashion, the block size being B, which if not specified defaults to 1, thus 
giving place to a pure cyclic distribution. UPC++ also generalizes for the shared 
space the C++ pointers and references with the data types global_ptr<T> and 
global_ref<T>, respectively. The library takes advantage from the C++ opera-
tor overloading facilities, so that these objects can be built from its shared variables 
using the expected C++ operators such as & or [], in the case of arrays. This way, 
UPC++ provides a very natural way of manipulating the global space variables, as it 
is analogous to that of the private variables. The library also provides other facilities 
that are of little relevance to our explanation.

The interest of UPC++ is supported both by its degree of success among users 
compared to other alternatives to MPI [17] and by the development of a new version 
of the library  [3] that emphasizes asynchronous computation. This newer version 
does not natively provide key elements for our proposal such as global references or 
shared distributed arrays. As a result, although possible, the integration of UPC++ 
DepSpawn with the new proposal seems less natural and straightforward. However, 
we plan to tackle it future work.

UPC++ DepSpawn is an evolution of DepSpawn  [15], a library for dataflow 
computing in shared memory, that targets the UPC++ environment. This way, the 
new library supports dataflow execution in a distributed memory system managed 
by UPC++. The library integrates also the shared memory runtime of the original 
DepSpawn, which was compared to state-of-the-art approaches in  [13] providing 
good results, thus enabling in addition task parallelism within each UPC++ process.

The requirements to parallelize an application on top of UPC++ DepSpawn are 
simple. First, each task must be packaged in a C++ function that only communicates 
with other tasks by means of its arguments. The library will infer the nature of each 
argument from the type of its associated formal parameter. Namely, parameter data 
types that preclude the modification of the argument will indicate that the associated 
argument is only an input to the function. This is the case of constant references or 
nonreference types, which imply that the argument is passed by value. Nonconstant 
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references, on the other hand, will hint the ability of the task to modify the asso-
ciated argument, thus constituting a potential input and output of the task. As a 
result, contrary to other approaches, UPC++ DepSpawn requires no programming 
overhead for labeling the usage that each task will make of each argument. Once 
the tasks have been expressed in this fashion, the library is invoked by calling each 
task/function f on its arguments args using the syntax upcxx_depspawn(f, 
args) and invoking function upcxx_wait_for_all() at the point where the 
specification of the tasks has finished and we wish to wait for their completion.

Listing 1 illustrates the usage of the library for the parallelization of a complex 
algorithm, namely the Cholesky decomposition. The distributed array A, com-
posed by N× N tiles, is provided by means of a UPC++ shared_array in which 
each element is a tile. Since this data type only provides unidimensional arrays, it 
is built as a vector of N∗ N tiles. The code then indexes it using macro _ in order 
to map from the bidimensional indexing of the 2D matrix it represents to the lin-
ear indexing required by shared_array objects. The algorithm has exactly the 
same look as a sequential implementation, with the difference that each function is 
invoked by means of the upcxx_depspawn routine described above and that a 
upcxx_wait_for_all() finishes the algorithm. Notice that since UPC++ pro-
grams run in SPMD mode, this strategy implies that all the processes go through the 
whole algorithm, thus having a complete picture of all the tasks to execute and their 
dependencies.

The processes independently decide which one runs each task by computing for 
each process the priority it has for being assigned the task. This priority is based on 
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the location of the task arguments. Let us consider a task T with n arguments so that 
lj, 1 ≤ j ≤ n , is the process in whose memory argument j resides and wj, 1 ≤ j ≤ n , is 
an integer with the value 1 if the argument j is written by T and 0 otherwise. Then, 
the priority pi associated with process i for the task T is given by 
pi =

∑n

j=1
(lj == i) ∗ (1 + wj ∗ W) , where a == b is an operation that returns 1 if 

a = b and 0 otherwise, and W is an extra weight associated with written arguments. 
This way, the process with the highest priority pi is assigned the task. Since the 
number of arguments of a task is limited and typically (quite) smaller or similar to 
the number of processes used in an execution, our algorithm does not compute pi for 
every process. Rather, it iterates on the task arguments, accumulating the value 
(1 + wj ∗ W) associated with argument j to plj , the priority of the process whose 
memory has that argument. The pi values are stored in a C++ std::unordered_
map container that maps from process id i to priority pi . The container only has 
entries for the processes that are related to at least one argument in the current task, 
and the maximum pi is found iterating on the existing entries. If several processes 
happen to be associated with the maximum priority computed, the first one found is 
assigned the task. There are two important things to notice on this. First, since this 
container is unordered, the process chosen is not necessarily the one with the lower 
rank. Second, the process is chosen in a deterministic fashion based on the internal 
implementation of the container, which enables all the processes to obtain the same 
value independently, without any communication.

Listing 1 also includes the definition of the function dgemm(a, b, c), which 
computes a = a + b * c. Since the function modifies its first argument but not the 
other two ones, the first parameter must be a nonconstant reference, while other two 
ones can be just tiles, implying pass by value, or constant references to tiles. Since 
the arguments are tiles located in the shared space, the references should be pro-
vided by the UPC++  data type so that they can be associated. As 
for arguments passed by value, there is no need to use parameters based on UPC++ 
data types, as UPC++ will implicitly obtain copies from the original arguments and 
place them in the associated parameters that have the corresponding regular C++ 
data type.

3 � Partial TDG construction

Expressing the whole algorithm in each process that participates in the dataflow exe-
cution has the advantage that, as seen in Listing 1, the code of the parallel algorithm 
is totally analogous to that of the sequential version. This minimizes the develop-
ment and maintenance cost. However, this also implies that every process has to 
store the information and analyze the potential dependencies of every task, even 
when it may be possible to know in advance that the process will be in charge of 
portions of the TDG totally unrelated to that task. In practice, a process only needs 
to store and keep track of (a) the tasks it has to run, (b) those that provide the input 
dependences of those tasks, and, finally, (c) those that depend on the tasks assigned 
to the process. Let us notice that the larger the number of processes that participate 
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in a UPC++ DepSpawn parallel computation, the smaller the portion of the TDG 
that is actually of interest to each process. As a result, the relative overhead associ-
ated with the processing of the whole TDG in each process grows with the number 
of processes used, thus limiting the scalability.

The library has been extended with a new function in order to deal with this 
problem. Namely, function upcxx_cond_spawn(condition, f, args) 
enables the user to specify the condition that a task has to fulfill in order to be of 
interest to the executing process. If the condition holds, the function acts as a regu-
lar upcxx_spawn(f, args) invocation since the process must know about the 
task. Otherwise, the library neither builds nor processes the task, although it still 
performs two actions, both of them with negligible cost. We now explain them in 
turn.

The first action required is to record the existence of the task in the UPC++ Dep-
Spawn task counter. This counter is local to each process, and it is increased each 
time a upcxx_spawn or upcxx_cond_spawn function is invoked. The task 
associated with each one of these invocations receives the value of the counter at 
that moment as unique identifier. This identifier is internally used mainly for notify-
ing to other processes when a given task has finished. Notice that this implies that 
each task must receive the same identifier in all the processes that have it in their 
TDG. Our implementation achieves this by ensuring that every task has the same 
identifier in all the processes. This is accomplished by making each process iterate 
over the whole algorithm to implement, making the upcxx_spawn or upcxx_
cond_spawn invocation associated with every task in the global TDG. The stand-
ard upcxx_spawn invocations and the upcxx_cond_spawn ones in which 
the condition is true will in addition actually create the task. On the contrary, the 
upcxx_cond_spawn invocations whose condition does not hold will not create 
any task. However, they will increase the local task counter to make sure that future 
tasks that are of interest to the calling process receive the same identifier as in the 
other processes that need to know about such tasks.

The second action taken when the condition of a upcxx_cond_spawn does 
not hold is to record the task just skipped as completed, as otherwise it would be 
considered as live. The reason for this behavior is that, as explained in  [14], the 
runtime periodically stops the generation of new tasks when it detects that the num-
ber of live tasks goes above a reasonable threshold. UPC++ DepSpawn follows this 
strategy in order to avoid generating a TDG too large as well as to speed up the 
processing of the pending live tasks assigned to the process. When this happens, 
the main thread tries to execute pending tasks that are ready for execution and to 
answer remote requests from other processes. Our runtime computes the number 
of live tasks that can trigger this behavior as the difference between the number of 
tasks created, which is given by the current value of the task counter discussed in 
the previous paragraph, and the number of tasks completed. This latter value is also 
another local counter in each process. Marking the tasks ignored by upcxx_cond_
spawn with a false condition as completed helps the runtime to make its periodic 
stops only when it is actually worthwhile. As we can see, just as in the case of the 
first action, this recording does not need any synchronization with other processes 
and it is very cheap, just requiring the increment of a counter.
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The new upcxx_cond_spawn function can be exploited in many algorithms. 
For example, in stencil computations we know that only the tasks that operate on the 
data assigned to our process or the immediately neighboring ones can be of inter-
est. Similarly, in tile-based computations such as the Cholesky decomposition in 
Listing 1, it is possible to infer which are exactly the tasks that are related due to 
dependencies based on the location in the matrix of the tiles used by each task. As a 
practical example, one can infer from the Cholesky code that the potrf computa-
tion on tile (i,i) is only of interest to the trsm computations that operate on all 
the tiles below it in column i. Therefore, the potrf task only needs to be known 
to the processes that own tiles in this column. If we assume a 2D block-cyclic distri-
bution of the tiles on a 2D mesh of processors, which is the usual one for this algo-
rithm, this means that the processes in the same column of the 2D mesh as the one 
who owns tile (i,i) are the interested ones. Thus, if proc_col stands for the 
number of the column of the current process in the 2D mesh, and col_cyc is the 
period for the distribution of the columns of the matrix on this mesh, the computa-
tion only belongs to the TDG of the processes in which (i % col_cyc) yields 
proc_col. As a result, this task would be spawn as
upcxx_cond_spawn((i % col_cyc) == proc_col, potrf, 

A[_(i,i)]);
An interesting question is whether compiler technology could be applied to gen-

erate these expressions, saving users from having to identify them. While we do not 
know of any implementation that achieves this from actual source code, DAGuE/
PaRSEC [6], discussed in Sect. 5, can accept as input a sequential pseudo-code, con-
sisting of simple loop nests, from which it can infer the exact dependencies among 
tasks in such pseudo-code relying on the integer programming framework Omega-
Test [20]. We must note, however, that this strategy can only be applied in codes in 
which all the dependencies can be statically established at compile time, which is 
the scope to which PaRSEC is restricted. On the contrary, as seen in [14], UPC++ 
DepSpawn supports applications whose dependencies can only be known at runt-
ime, and even applications in which the dependencies can dynamically change dur-
ing the execution. Given the dynamic nature of these problems, the automated iden-
tification of the conditions under which each task is of interest to a given process 
does not seem feasible for a compiler.

4 � Evaluation

Our evaluation has been performed in a cluster with 32 nodes interconnected by 
InfiniBand FDR@56Gbps. Each node consisted of 2 Intel Xeon E5-2680 v3 proces-
sors at 2.5GHz with a 128GB DDR4 memory. Since each processor has 12 cores, 
this results in a total of 768 cores. Compilations were performed with g++ 6.4 and 
optimization level O3.

Our evaluation relies on four benchmarks: the right-looking Cholesky factori-
zation in Listing  1, the LU decomposition, the sparse LU decomposition and the 
Gauss–Seidel stencil computation. The four algorithms fulfill the necessary condi-
tion for this evaluation that it is possible to determine the subset of tasks that are of 
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interest to each process. The sparse LU decomposition is particularly interesting and 
challenging, given the irregular nature of its computations, which not only depends 
on the sparsity pattern of the matrix, but even evolves during the execution of the 
algorithm, as the decomposition generates fill in.

Figures 1,  2,  3 and 4 show the performance of the Cholesky factorization, LU 
decomposition , sparse LU decomposition and Gauss–Seidel stencil for differ-
ent numbers of nodes, respectively. The experiments were performed for all the 
benchmarks using two problem sizes and one process per node with one thread per 
core. In the case of the first two codes, we also plot the performance achieved by 
DPLASMA  [5], which is the leading implementation for these algorithms in this 
environment. This library also follows a task-based dataflow-driven approach pro-
vided by the PaRSEC runtime  [6], discussed in Sect.  5. Notice that DPLASMA 
cannot provide a baseline for our sparse LU decomposition because PaRSEC can-
not support irregular codes. Both DPLASMA and our implementations rely on 
the highly optimized OpenBLAS library version 0.3.1 for the BLAS operations, 
but while DPLASMA relies on OpenMPI 2.1.1 for the computations, UPC++ 

Fig. 1   Performance of the 
Cholesky decomposition 
benchmark

Fig. 2   Performance of the LU 
decomposition benchmark
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DepSpawn runs on top of GASNet 1.28.0. The performance of these benchmarks 
depends both on the tile size and on the mapping of the tiles to the processes used. 
Thus, for all our experiments, we always plot the performance achieved for the best 
tile size and mapping.

Since the impact of the optimization is difficult to see for small numbers of 
nodes, Fig. 5 shows the speedup of UPC++ DepSpawn with partial TDG generation 
with respect to the original UPC++ DepSpawn implementation for each benchmark, 
problem size and number of nodes. When a single node is used, the process must 
build the whole TDG necessarily; thus, this figure starts at two nodes. Gauss–Seidel 
is the benchmark that benefits the most from this improvement, while the impact 
on the other codes is around the same order of magnitude. The reason is that 
Gauss–Seidel has a complexity O(6N2) , which is much smaller than the O(N3∕3) 
and O(2N3∕3) of the Cholesky and LU decompositions, respectively. As a result, the 
relative cost of the construction of the whole TDG is noticeable bigger for this algo-
rithm than for the other ones.

Fig. 3   Performance of the 
sparse LU decomposition 
benchmark

Fig. 4   Performance of the 
Gauss–Seidel benchmark
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The figures also show that while the impact of this optimization is discrete for 
small number of nodes, it is more noticeable from eight nodes onward. This makes 
sense, since the more processes are used in the parallel execution, the smaller the 
portion on the TDG actually needed in each node, and thus more time can be saved 
by this optimization. We can see, however, that in the linear algebra benchmarks, the 
relative impact stalled and even diminished in most tests at 32 nodes. This is related 
to the fact that it is increasingly likely there are idle threads during the execution as 
the number of processes used to solve a given problem grows for two reasons. First, 
the smaller amount of work per node reduces the load of each process. Second, the 
more distributed memories we use in the execution, the more unlikely it is that the 
data involved in a dependency are found in the local memory of the executing pro-
cess, thus resulting in more communications and related stalls. Since the UPC++ 
DepSpawn runtime can take advantage of these idle cycles to overlap the construc-
tion and analysis of the TDG with the execution of the algorithm, the availability of 
idle threads reduces the impact of the optimization. This factor is less important in 
Gauss–Seidel than in the other benchmarks because its optimal mapping of tiles to 
processes assigns a consecutive block of tiles to each process, thus reducing to the 
minimum the communications, which only happen for the rows and columns along 
the borders of the block of tiles assigned to each process. The other algorithms in 
contrast require communications for the vast majority of the tasks as the number of 
processes grows, and in addition those communications do not consist in a single 
row or column of a tile, but in a whole tile each.

We can see that the partial generation of the TDG plays a key role in improving 
the qualitative comparison of UPC++ DepSpawn with a state-of-the-art approach 
such as DPLASMA for Cholesky. This way, once this optimization is applied, the 
performance of the two tools is quite similar for the large matrix test. As for the 
smaller matrix, there are both situations in which the two proposals offer very simi-
lar performance as well as others where one of them clearly outperforms the other 
one. Regarding LU, where the UPC++ DepSpawn baseline already offered the best 
results, the application of the optimization has smaller effects that slightly further 
improve the performance of the runtime or at worst have a negligible effect.

Fig. 5   Speedup achieved by the 
TDG partial generation
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It is also interesting to evaluate the impact on this optimization on programmabil-
ity, as the specification of the conditions that a task must fulfill to be part of the min-
imum TDG required in each process involves additional coding. Table 1 compares 
the number of lines, excluding comments and empty lines, of the baseline and the 
optimized UPC++ DepSpawn implementations of the algorithms used. The table 
also includes for comparison purposes the minimum number of lines required for 
the Parameterized Task Graph (PTG) specification of the Cholesky and LU bench-
marks provided by DPLASMA (see an example in  [12]). This means that for the 
measurement we have cleaned everything that is not strictly required in the PTG.

Most of the growth of the number of lines of the UPC++ DepSpawn implemen-
tation is not associated with the conditions themselves, as they can be written in a 
single line per task type, but to the computation of parts of the conditions that can be 
reused in several conditions in separate variables in order to improve the readability 
of the code. This way, depending on the size of the initial code, the coding style and 
the desire to maximize the readability of the code, one can expect increases between 
15% and 70% of the number lines. However, even with this additional coding, this 
value will still be at about one half of the number of lines required by the equivalent 
PTG strategy.

5 � Related work

There are several strategies for developing data-flow applications in distributed 
memory environments. One approach involves requiring the user to explicitly spec-
ify beforehand all the tasks and the dependencies among them. This is the case of 
the Parameterized Task Graph (PTG) model  [11], on which the PaRSEC frame-
work [12] used in this paper is based. On the one hand, this static availability of the 
dependences allows the framework to generate offline the portion of the TDG that is 
of interest for each process, achieving results similar to the ones of the optimization 
presented in this paper. On the other hand, the requirement to know in advance all 
the dependencies in the code preclude the application of this approach to problems 
whose dependencies can only be known at runtime.

The most common approach in the literature consists in explicitly enforcing the 
dependencies by means of programming mechanisms and objects manipulated by 
the user. Indeed, a large number of synchronization mechanisms such as locks [8], 
clocks  [10], full/empty bits  [9], synchronized blocks  [25], synchronization vari-
ables [16] and futures [3], to name a few, have been proposed.

Table 1   Source lines of code

Implementation Cholesky LU Sparse LU Gauss–Seidel

UPC++ DepSpawn 13 13 31 16
UPC++ DepSpawn optimized 20 22 37 18
PTG DPLASMA 44 39 – –
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Another alternative is to express the dependences implicitly by specifying the 
inputs and outputs of each task and providing an apparently sequential version of 
the algorithm based on those tasks. During the execution of this version a runtime 
builds the TDG and dynamically schedules the tasks according to the dependencies 
inferred. This requirement to observe in sequence all the tasks in the application is 
a potential bottleneck that can severely limit the scalability, which is the problem 
tackled in this paper. In this family of solutions, we find centralized approaches in 
which a single process is responsible for building and managing the TDG, while the 
other processes are servers that run the tasks assigned [7, 22]. These approaches can 
limit the TDG overheads by generating smaller numbers of tasks of a coarser grain, 
which in [7] can be further parallelized within a node in a second level of parallel-
ism. Other approaches generate the TDG in parallel in all the processes involved, 
this being the case of our library and StarPU [1, 2], which lacks the multithreaded 
nature of our solution within each process and operates on top of MPI. The strategy 
of generating a partial TDG in each process makes sense for these approaches, and is 
in fact mentioned as future work in [1]. There are projects such as Legion [4], which 
has moved from a library-based implementation to a new language and related com-
piler [21]. This improvement enabled static analyses that are impossible at runtime 
and moved offline part of the cost, in addition to achieving a clearer notation. Other 
projects based on implicit parallelism were based on languages and compilers that 
generate the low-level data-flow application from the high-level user specification 
right from their inception [23].

6 � Conclusions

UPC++ DepSpawn is a library that allows to exploit task-based dataflow comput-
ing in hybrid shared/distributed memory systems by applying both process-level and 
thread-level parallelism. Two of the most distinctive properties of the library are its 
integration in a PGAS environment such as UPC++, and the reliance on the data 
types of the formal parameters of the functions that constitute the tasks to execute 
to infer the data dependencies. This gives place to a quite terse an natural notation.

In this paper we have improved the initial implementation of the library by add-
ing the ability to restrict the generation of the TDG in each process to only the por-
tion that is actually of interest to that process. The reduction in runtime overhead 
due to this optimization allowed to improve the execution time of the Cholesky fac-
torization, the LU decomposition, the sparse LU decomposition and the Gauss–Sei-
del stencil by 8.6%, 6.4%, 3.9% and 18.9% on average, respectively, in executions 
ranging from 2 to 32 nodes with 24 cores each.

Our future work includes the development of a version of UPC++ DepSpawn on 
top of the new version of UPC++ presented in [3] and exploring the usage of het-
erogeneous computing in the tasks managed by the library.
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