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Abstract
A hybrid of supervised (artificial neural network), unsupervised (clustering) 
machine learning, and soft computing (interval type 2 fuzzy logic system)-based 
load balancing algorithm, i.e., clustering-based multiple objective dynamic load bal-
ancing technique (CMODLB), is introduced to balance the cloud load in the present 
work. Initially, our previously introduced artificial neural network-based dynamic 
load balancing (ANN-LB) technique is implemented to cluster the virtual machines 
(VMs) into underloaded and overloaded VMs using Bayesian optimization-based 
enhanced K-means (BOEK-means) algorithm. In the second stage, the user tasks 
are scheduled for underloading VMs to improve load balance and resource utiliza-
tion. Scheduling of tasks is supported by multi-objective-based technique of order 
preference by similarity to ideal solution with particle swarm optimization (TOP-
SIS-PSO) algorithm using different cloud criteria. To realize load balancing among 
PMs, the VM manager makes decisions for VM migration. VM migration decision 
is done based on the suitable conditions, if a PM is overloaded, and if another PM 
is minimum loaded. The former condition balances load, while the latter condition 
minimizes energy consumption in PMs. VM migration is achieved through inter-
val type 2 fuzzy logic system (IT2FS) whose decisions are based on multiple sig-
nificant parameters. Experimental results show that the CMODLB method takes 
31.067% and 71.6% less completion time than TaPRA and BSO, respectively. It has 
maintained 65.54% and 68.26% less MakeSpan than MaxMin and R.R algorithms, 
respectively. The proposed method has achieved around 75% of resource utilization, 
which is highest compared to DHCI and CESCC. The use of novel and innovative 
hybridization of machine learning, multi-objective, and soft computing methods in 
the proposed algorithm offers optimum scheduling and migration processes to bal-
ance PMs and VMs.

Keywords  Machine learning · Interval type 2 fuzzy set · Load balancing · ANN · 
K-mean clustering · VM migration
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1  Introduction

The ubiquitous nature of cloud computing has attracted tremendous users in recent 
years [1]. Cloud computing has the ability to handle an expanded volume of tasks 
by providing an adaptive online environment. The ability of the cloud is to support 
numerous users and tasks that provide many advantages. It introduces a new con-
cern, known as load balancing [2]. The involvement of numerous users requires an 
efficient load balancing mechanism to maintain an unmanaged cloud environment 
system. Numerous load balancing methods are studied and examined in the previous 
work [3]. Here, the authors provided a clear view of the performances of different 
cloud load balancing techniques with their pros and cons. Figure 1a shows a bal-
anced cloud environment in which user tasks are distributed to all virtual machines 
(VMs) in each physical machine (PM) to maintain load balancing. Similarly, Fig. 1b 
illustrates an unbalanced cloud in which user tasks are assigned to a particular PM 
to make it overloaded. The efficient utilization of resources makes a significant and 
balanced cloud.

Several researchers have shown interest in other clouds-related research such 
as task scheduling and VM scheduling process to achieve efficient load balancing, 
high utilization of resources, energy efficiency, improvement in quality of service 
(QoS), etc. [4]. In task scheduling, many optimization algorithms such as particle 
swarm optimization (PSO), fuzzy logic (FL), and genetic algorithm (GA) are used 
to achieve optimized solutions. Author [4] has analyzed various task and resource 
scheduling processes in different layers. Adaptive multi-objective task scheduling 
(AMTS) strategy was introduced for efficient resource utilization and energy effi-
ciency [5]. The PSO algorithm is adapted for the task scheduling process. Tempo-
ral task scheduling algorithm (TTSA) deals with cost minimization problem in a 
hybrid cloud [6], where the solution for cost minimization problem is derived from 
hybrid simulated annealing PSO algorithm. VM-based task scheduling proves that 
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load balancing and resource utilization can be improved jointly by a proper schedul-
ing process [7]. To achieve this, greedy PSO (GPSO) algorithm in which particle 
initialization is better than traditional PSO is employed. In order to reduce the large 
consumption of energy and improve load balancing, resource pre-allocation and task 
scheduling were employed [8] in the process. Here, scheduling of tasks and alloca-
tion of resources are performed by the matching probabilistic and simulated anneal-
ing (SA) algorithms (CESCC).

MakeSpan is minimized by performing suitable load adjustment in a multi-data 
center cloud [9], in which a static load balancing strategy, namely the Multi-Rumen 
Anti-Grazing algorithm, is presented for load adjustment. Autonomous agent-based 
load balancing (A2LB) algorithm balances load among VMs in the cloud with the 
help of three agents as load, channel, and migration [10]. These three agents are 
incorporated in each data center (DC) to migrate VM from overloaded DC to under-
loaded DC. Another agent-based load balancing scheme is included with front-end 
agent (FA), server manager agent (SMA), and virtual machine agent (VMA) [11]. 
FA is responsible for routing VM requests, while VMA and SMA are responsible 
for load monitoring in VM and PM, respectively. Load balancing in a dynamic 
multi-service scenario in centralized hierarchical cloud-based multimedia system is 
considered as an integer linear programming problem [12]. The problem is solved 
by an efficient GA with an immigrant scheme. The load balancer is responsible for 
task migration, whereas load balancing is achieved using efficient task scheduling 
in DC [13]. Here, the tasks are scheduled by an improved weighted round robin 
(WRR) algorithm, which considers the current load on VM for scheduling. Dynamic 
Hadoop cluster on IaaS (DHCI) architecture has involved modules of VM migra-
tion, VM management, scheduling, and monitoring to achieve well-behaved load 
balancing for cloud system environment [14]. Parallel computing entropy is utilized 
for dynamic VM migration-based data locality scheme. Continuous VM migration 
is supported by named data networking (NDN) in order to balance load among DCs 
in the cloud [15]. In NDN, VMs and services are provided with a unique name to 
provide uninterrupted services during VM migration.

Though the above-discussed works improve load balancing, it is still a pri-
mary concern due to the increasing demand of cloud-based environment in every 
advanced computing field. Thus, it is necessary and demanding to design novel 
algorithms for load balancing in the cloud system environment. The major strength 
of the proposed method is that it includes the machine learning-based supervised 
and unsupervised technique to train the cloud systems to identify the loads on VMs 
and clusters them into underloaded and overloaded VMs. Once cluster formation 
is achieved, it would be easier for the cloud system to assign cloud tasks to under-
loaded VMs. Task assignments are performed using a mathematical multi-criteria-
based TOPSIS-PSO method which will reduce the system complexity by introduc-
ing relative closeness for cloud performance metrics, execution time, transmission 
time, and CPU utilization to the PSO method. Further, a fuzzy-based technique is 
incorporated to identify the destination PM for the migration of overloaded VMs 
to achieve PM-level load balancing. The use of these soft computing based-tech-
niques gives more realistic results than the previously existing work and enhances 
the proposed method strength. However, the proposed method does not focus on 
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storage-intensive tasks and storage IOPS/transfer-based VM capacity which makes 
the work less advanced in a real-time-based cloud environment.

The significant contributions of this paper in cloud computing are summarized as 
follows:

•	 Efficient CMODLB load balancing method is the hybridization of artificial neu-
ral network-based load balancing (ANN-LB), technique of order preference by 
similarity to ideal solution with particle swarm optimization (TOPSIS-PSO), and 
interval type 2 fuzzy logic system (IT2FLS) methods in order to balance load 
among VMs and PMs in the cloud environment. The objective of CMODLB is 
to improve multiple objectives such as MakeSpan, resource utilization, comple-
tion time, transmission time, energy consumption, and load fairness.

•	 The proposed CMODLB is initiated by Stage 1 where the ANN-LB technique 
is applied using Bayesian optimization-based K-means (BOK-means) with ANN 
algorithm to create clusters of VMs into underloaded VMs and overloaded VMs. 
Runtime tasks are scheduled to underloaded VM to maintain the load balance.

•	 In Stage 2, runtime tasks are scheduled by applying the TOPSIS-PSO algorithm, 
which supports three objectives for scheduling. The multiple objectives taken 
into account are execution time, transmission time, and CPU utilization.

•	 In Stage 3, the VM manager monitors the load on PMs and migrates optimal 
VM from the overloaded PM. VM migration decision is also made if a PM has a 
minimum load in order to minimize energy consumption.

•	 In the VM migration process, optimal destination PM is selected by decision 
making interval type 2 fuzzy logic system (IT2FL), which achieves efficiency in 
uncertainties. Fuzzy logic assures that the destination PM is underloaded based 
on significant parameters.

The rest of this paper is prepared as follows: Sect. 2 debates previous related lit-
erature on cloud environment-based load balancing. In Sect. 3, existing problems in 
the previous work are highlighted. Section 4 explains the proposed CMODLB load 
balancing algorithm working structure, while Sect.  5 examines the experimental 
evaluation of implemented work. Finally, Sect. 6 gives a glimpse of the contribution 
of the work and concludes with future scope.

2 � Related work

The adaptive cost-based task scheduling (ACTS) method was introduced to mini-
mize the completion time of a task to maximize its QoS [16]. Completion time on 
each VM has been taken as the cost of the data access path, and tasks were given a 
priority based on a deadline. The minimum cost path was allocated for a low-prior-
ity task, which had a minimum deadline. Here, VMs are selected based on comple-
tion time only, which has introduced unbalanced load and resource underutilization. 
Hence, this approach degrades the performance of the cloud when the selection of 
VMs is made only by completion time.
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A two-level task scheduling technique was presented in a multimedia cloud [17]. 
In this mechanism, first-level scheduling was performed between users to DCs and 
second-level scheduling was performed among DCs to servers. Both scheduling 
levels followed the M/M/1 queuing system. However, M/M/1queue supports only 
a single server and also limits waiting space for tasks. This limitation makes it less 
efficient.

Li et  al. attempted to reduce the heavy consumption of energy in the cloud by 
minimizing job completion time (JCT) [18]. For this purpose, task placement and 
resource allocation (TaPRA) and TaPRA-fast algorithm were developed. However, 
these algorithms are able to solve only a single-task placement problem and not suit-
able to handle multiple tasks.

Energy-aware dynamic task scheduling (EDTS) algorithm was involved with two 
algorithms, namely data flow graph critical path (DFGCP) and critical path assign-
ment (CPA) [19]. Here, DFGCP was used to obtain a near-optimal solution, while 
the CPA algorithm was employed to find an optimal solution. This method fails to 
provide efficient resource utilization with lower energy consumption.

Load balancing was performed through VM scheduling in the cloud [20]. VM 
scheduling was carried out by combining two optimization algorithms, resulting in 
a new meta-heuristic algorithm named ant colony optimization with particle swarm 
(ACOPS). The workload for new requests was predicted based on historical infor-
mation in ACOPS. A pre-rejection module was incorporated to minimize scheduling 
time. Maintaining historical information increases space complexity, and due to the 
pre-rejection module, user tasks do not experience better QoS.

Hybrid particle swarm optimization (HPSO) was applied for load balancing in 
centralized cloud-based multimedia storage [21]. In HPSO, each particle’s weight 
was computed by multi-kernel support vector machine (MKL-SVM) and fuzzy 
simple additive weight (FSAW) methods. The involvement of three simultane-
ous and dynamic algorithms increases both load balancing time and computational 
complexity.

Honey bee behavior-inspired load balancing (HBB-LB) algorithm was presented 
to balance load across VMs and minimize the tasks’ waiting time [22]. Load bal-
ancing was performed by the task transfer process in which tasks from overloaded 
VMs are migrated to underloaded VMs. Here, load balancing during initial task 
assignment is not considered and tasks are assigned to random VM, which increases 
MakeSpan and resource underutilization.

PSO algorithm and bacterial foraging optimization (BFO) algorithm were com-
bined and introduced bacterial swarm optimization (BSO) to perform load balancing 
in DCs [24]. In a hybrid bacterial algorithm, the global solution over search space 
was determined by the PSO algorithm, and local search was performed by the BFO 
algorithm. This algorithm focused on only allocating optimal VM for incoming 
tasks; however, load on PMs was not considered.

Dragonfly optimization algorithm-based load balancing method was introduced 
to balance load among VMs [25]. Initially, each VM’s load and capacity were cal-
culated, and tasks were assigned to VMs randomly. If the load on VM was greater 
than the threshold, then optimal underloaded VM for each task was selected. This 
method increases MakeSpan for user tasks and suffers from high processing time.
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Load balancing via optimal task deployment strategy was realized in [26]. Bayes 
theorem was introduced to find probabilities of physical host for optimal task 
deployment. Based on the probabilities, physical hosts were clustered to detect opti-
mal PM for user task. In this way, the load across PMs was balanced. However, this 
method is not suitable to balance load across VMs.

VM migration was performed by using a distributed network of brokers [27]. 
Migration decision was made based on RAM and CPU state of VMs, and migration 
was performed by deriving policies by hypervisor. This method increases complex-
ity and does not perform well in terms of resource utilization.

Firefly optimization–energy-aware virtual machine migration (FFO-EVMM) 
algorithm was presented to attain both load balancing and energy efficiency [28]. 
FFO-EVMM algorithm also utilizes the concept of artificial bee colony (ABC) algo-
rithm for load monitoring on VMs. If a migration decision was made, then optimal 
VM for migration and optimal destination for migration were determined by FFO 
algorithm. This method increases migration time because time constraint is not con-
sidered in the migration process.

Energy-aware utility prediction model was introduced for VM consolidation in a 
cloud [29]. Here, VM consolidation model was applied periodically to optimize VM 
placement. VM migration was enabled if any resource of VM exceeds total capac-
ity. Consideration of a single parameter for migration increases the number of VM 
migrations, which results in higher energy consumption.

Thus, the previous works seem to be insufficient to achieve efficient load balanc-
ing. The majority of the works focus on either task scheduling or load balancing in a 
cloud. However, introducing an effective task scheduling and load balancing (among 
VMs and PMs) method is a key concern in cloud computing. This work introduces 
an algorithm with the aim to increase load balancing performance by using effective 
clustering, task scheduling, and VM migration process.

3 � Problem definition

An enhanced Min-Min algorithm, which involves two phases, was presented for 
load balancing in a cloud [30]. In the first phase, tasks were assigned to VMs based 
on execution time, and in the second phase, tasks were rescheduled to utilize unused 
resources. Since tasks are assigned to VMs, which provide minimum execution time. 
In the first phase, rescheduling of tasks increases execution time. Involvement of two 
scheduling processes increases overall MakeSpan, which degrades its performance.

In multi-objective tasks scheduling algorithm, tasks were given priority based 
on QoS, and VMs were sorted based on MIPS values [31]. Tasks and VMs were 
assigned as per the task and VM list. In this process, resource utilization is poor 
since VMs are sorted based on MIPS values. The VM list which is prepared ini-
tially is processed with all task set. After assigning a task to VM, the parameters of 
VM may change. This change is not considered in the presented method. Hence, the 
scheduling process is not much efficient.

Two-stage strategy for task scheduling includes Bayes classifier for classifica-
tion of VMs in the first stage and scheduling algorithm in the second stage [32]. 
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In this method, task queue, waiting queue, and ready queue were maintained, and 
tasks were put in a waiting queue until a suitable VM became idle. Maintenance of 
multiple queues and databases increases space complexity. This method allows wait-
ing queue tasks to move into the ready queue only if the ready queue is free. Hence, 
waiting time for tasks in the waiting queue is increased significantly.

The self-adaptive learning PSO (SLPSO) algorithm was included with four 
update strategies to update the velocity of particles [33]. The best update strategy 
was detected in each iteration based on execution probability and used in the SLPSO 
algorithm. In SLPSO, frequent selection of update strategy leads to higher time con-
sumption and higher complexity.

Load balancing mutation using PSO (LBMPSO) algorithm was introduced to 
schedule tasks and load balancing in which objective function was formulated based 
on expected execution time, transmission time, and round trip time [34]. All three 
times were computed for each task on each VM to find the optimal VM. If the num-
ber of VMs and tasks are large, then this method presents a large MakeSpan and 
high complexity. Hence, it motivates to introduce an effective idea to balance cloud 
loads without reducing execution time and resource utilization.

An efficient novel task scheduling algorithm called technique of order prefer-
ence by similarity to ideal solution with particle swarm optimization (TOPSIS-PSO) 
algorithm has been introduced [35]. TOPSIS-PSO solves task scheduling issues 
using multiple objective-based technique i.e., TOPSIS. The TOPSIS algorithm gen-
erates fitness value for PSO technique using three multi-criteria, viz. execution time, 
transmission time, and cost. The algorithm has been found suitable for task schedul-
ing approaches with less computational complexity but lacks load balancing issues. 
Hence, to get an efficient outcome, we performed a multi objective-based TOPSIS-
PSO algorithm (using four objectives) for scheduling of the tasks in our dynamic 
load balancing approach.

A new hybrid task scheduling technique named PSO with gravitational emulation 
local search (PSO-GELS) has been introduced for grid computing [36]. The algo-
rithm PSO-GELS perfectly examines its role with respect to MakeSpan. We com-
pared it with our proposed CMODLB load balancing algorithm with respect to the 
obtained MakeSpan values for the same configurations set because of its dynamic 
nature. Previously, authors [36] have compared their work with various other exist-
ing algorithms such as SA, GA, GA-SA, GA-GELS (genetic algorithm–gravitational 
emulation local search), PSO, and PSO-SA.

Authors of [49] have introduced a crow–penguin optimizer which is the fusion 
of the crow search optimization algorithm (CSA) and the penguin search optimiza-
tion algorithm (PeSOA) for the execution of multi-objective task scheduling strat-
egy (CPO-MTS). The introduced CPO-MTS algorithm performed the execution of 
tasks in a minimal time by a converging problem to a global optimal solution rather 
than the local optima. Authors have compared their work with various other existing 
algorithms such as CPO, CSA, PSO, ABC, GA, ACO, and PeSOA. The introduced 
work is suitable for load balancing in a static cloud environment which makes the 
algorithm less effective.

A novel task scheduling technique named threshold-based multi-objective 
memetic optimized round robin scheduling (T-MMORRS) is presented to offer 
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high-quality services and maintains bursty user demands [50]. Initially, some user 
requests are transferred to the server where the proposed algorithm performed a 
quick scan for workload conditions through a burst detector. Furthermore, if the 
obtained result by burst detector has a normal load, then T-MMORRS chooses 
threshold multi-objective memetic optimization (TMMO) else T-MMORRS 
will choose weighted multi-objective memetic optimized round robin scheduling 
(WMMORRS) for burstiness load. T-MMORRS technique is compared with the 
multi-objective genetic algorithm (MGA) and dynamic power-saving resource allo-
cation (DPRA). T-MMORRS achieves higher efficiency and lower time consump-
tion. However, the algorithm offers high complexity to the cloud system.

An efficient load balancing system using an adaptive dragonfly algorithm was 
proposed by the authors of [51]. Completion time, processing costs, and load param-
eters are used to develop the multi-objective function. Authors have compared their 
work with dragonfly optimization algorithm (DA) and firefly algorithm (FA) and 
claim that the proposed method has better performance than the respective algo-
rithms. The limitation of this work was that the author has not focused on load 
fairness and resource utilization cloud parameters which makes the algorithm less 
efficient. For more detailed survey comparison of various existing load balancing 
algorithms have been discussed in Table 1. 

4 � Proposed work

4.1 � System overview

The proposed work focuses on load balancing among PMs and VMs in a cloud 
environment through hybrid supervised (with target attribute, i.e., ANN) and unsu-
pervised (without target attribute, i.e., BOK-means clustering) machine learning 
techniques for efficient load calculation and VM clustering process. The proposed 
cloud environment consists of M numbers of PMs as:P =

{
PM1,PM2,… ,PMM

}
. In each PM, L numbers of VMs are included as: VM =

{
VM1,VM2,… .,VML

}
. 

The cloud environment is involved with S number of users tasks represented as 
T =

{
T1, T2,… , TS

}
 . To balance load among M PMs and L VMs, two entities, VM 

manager ( VMMan ) and cloud balancer (CBal), are involved.

4.1.1 � 4.1.1 Contribution methods

The proposed cluster-based multi-objective dynamic load balancing (CMODLB) 
method is introduced for an efficient load balancing without the loss of resource uti-
lization. Figure 2 depicts the overall functioning of CMODLB method. To achieve 
the goal, machine learning- and soft computing-based techniques have been used for 
each stage to learn the behavior of the cloud to develop the effectiveness and better 
performance of the cloud environment. The CMODLB method comprises the fol-
lowing three stages:
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4.1.1.1  Stage I: Grouping of VMs using BOEK‑means with ANN  In this stage, the load 
of cloud VMs under PMs is calculated using Bayesian optimization-based K-means 
with artificial neural network as shown in Fig. 3. The reason behind using ANN is 
to support multiple VMs simultaneously to get the current load with the objective to 
reduce the total clustering method. In our previous work [23], we investigated that the 
K-means clustering algorithm offers a major shortcoming in the initialization of the 
centroid which makes it more expensive to evaluate the functions. To overcome this 
problem, Bayesian optimization (BO) algorithm which builds a probabilistic model 
for the problem and finds posterior predictive distribution for that problem [37, 38] is 
introduced with the K-means algorithm.

4.1.1.2  Stage II: Task scheduling using TOPSIS‑PSO method  For efficient task sched-
uling, the technique of order preference by similarity to ideal solution with particle 
swarm optimization (TOPSIS-PSO) algorithm [35] is performed with different cloud 
objectives. A VM is allocated to a task which minimizes execution time and transmis-
sion time and maximizes CPU utilization. Here, PSO algorithm is combined with a 
multi-objective-based TOPSIS algorithm in order to remove the PSO’s weak local 
search ability and to find optimal fitness function by considering three criteria. The 
relative closeness is formulated by the TOPSIS algorithm which is the objective func-
tion for PSO. All underutilized VMs are taken in PSO algorithm, and fitness value 
is calculated using multi-objective TOPSIS algorithm. The use of multi-objective 
TOPSIS method introduces the most efficient task scheduling outcome. PSO algo-
rithm is set with tasks on underloaded VMs ( TU =

{
TU1, TU2,… , TUQ

}
 ), and at each 

iteration, the fitness value for a particle is calculated. The fitness value gives particle 
local best (LBest) and global bbest (GBest) values, and both values are updated.

Fig. 2   CMODLB method
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4.1.1.3  Stage III: VM migration using Iterative Type 2 Fuzzy Logic (IT2FL) method  For 
PM-level load balance, it is necessary to maintain destination PM with a balanced 
load even after VM migration. Available resources are also important in destination 
PM selection which provides better performance for user tasks. Therefore, a selection 
of optimal destination PM should be performed in an efficient manner. To realize this 
fact, interval type 2 fuzzy logic (IT2FL) is incorporated in VM migration process as 
shown in Fig. 4 that illustrates the flow diagram of IT2F logic for PM selection. Here, 
rule base follows rules to obtain fuzzy output. PM with high output is taken as PMdes 
(destination PM). Lotfi A. Zadehi introduced IT2FL set to extend the functional 
properties of Type1 and general fuzzy logic systems. IT2 FL gives the possibility to 

Fig. 3   BOK-Means with ANN-based clustering

Fig. 4   IT2 FL logic for PM selection
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provide more parameters to describe membership functions (MF) and handles more 
uncertainty [40]. It is the first-order uncertainty fuzzy set model.

The overall process of the CMODLB method includes a grouping of under-
loaded and overloaded VMs using supervised ANN-LB technique, scheduling of 
tasks by TOPSIS-PSO multi-criteria-based technique, and VM migration using 
iterative type 2 fuzzy logic (IT2FL) method is depicted in Fig. 2 where as Table 2 
explains description of used notations in the manuscript. Each significant stage has 
been discussed in detail in the following sections.

4.2 � BOEK‑means with ANN‑based clustering (Stage I)

Knowledge of the currently available load on VMs will improve task scheduling, 
thus reducing the unbalanced DCs and decreasing resource underutilization. To 
achieve this, we have introduced VMMan that will perform clustering of VMs based 
on their current available load in each PM; VMMan maintains VM list with their load 
information and PM list with their information. VMs are clustered as per their cur-
rent load given as follows:

Table 2   Notations and their description

Notation Description

VM Virtual machine
PM Physical machine
DC Data center
TS Task from sth user
MIPS Million instructions per second
EL Execution time of sth task on Lth VM
VMMan VM manager
CBal Cloud balancer
NL

P
Number of processors in Lth VM

NL
MIPS

Number of MIPS in Lth VM

BWL Bandwidth of Lth VM
VMU Cluster with underloaded VMs
VMO Cluster with overloaded VMs
WL , C(VL),LL Weight, capacity, load of Lth VM
ET , TransT,, UCPU Execution time, transmission time, CPU utilization of 

sth task on Lth VM
C C = (c1, c2,.., cK) is the set of centroid
γ(c) Bayesian optimization for best centroid
G G = {G1, G2} Cluster groups
PMOver Overloaded physical machine for VM migration process
PMunder Underloaded physical machine
PMdes Destination physical machine for VM migration process
Vop Optimal VM for migration process
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•	 Underloaded VMs: Set of VMs having load lower than the target value, and it is 
denoted as VMU.

•	 Overloaded VMs: Set of VMs having load greater than the target value, and it is 
denoted as VMO.

Group formation of VMs is realized by BOK-means with ANN algo-
rithm. In BOK-means with ANN algorithm, all VMs are fed into ANN to cal-
culate their current load. The load on each VM is considered as weight val-
ues and denoted as W =

{
WV1,WV2,… ,WVL

}
. Based on the weight value 

of each VM, BOK-means algorithm forms clusters such as underloaded 
VMs with VMU =

{
VMU1,VMU2, ..,VMUQ

}
 and overloaded VMs with 

VMO =
{
VMO1,VMO2, ..,VMOR

}
 . Weight value in terms of the load is calculated 

using Eq. (1) as follows:

where WL and LL denote the weight and load on Lth VM, while Ej s represents the 
execution time of Sth assigned tasks on VML. C(VL) provides the capacity of VML 
and computed as:

The capacity of each Lth VM ( C
(
VL

)
 ) is calculated by considering the number of 

processors (NP), the number of million instructions per second (MIPS), and band-
width (BW) of Lth VM. Figure 3 illustrates BOK-means with ANN algorithm-based 
clustering process. The optimal centroid maximizes the performance of the K-means 
clustering algorithm. For a given function f(c) that represents optimization problem 
and c represents the attribute of user task belonging to the compact set of centroids 
(c ∈ C), the probability of clustering improvement is expressed as:

where�(c) is obtained from

Here, �c is the predictive mean function and �(c) is a predictive marginal function. 
Improvement in an optimal solution is obtained from Eq. (3). After the initialization 
of the optimal centroid, all VMs are initialized with their weight values. Then BOK-
means method was performed to find optimal clusters.

(1)Wi = Li

1

Ej

∑
Ej∀ assigned task on VL

C
�
VL

�

(2)C
(
VL

)
=
(
NL
P
× NL

MIPS
+ BWL

)
×

1

100
.

(3)Improvement = �(�(c))

(4)�(c) =
f
(
cbest

)
− �c

�(c)
.



8805

1 3

CMODLB: an efficient load balancing approach in cloud computing…

Algorithm  1  depicts the complete process of clustering of VMs using the BOK-
means method ANN algorithm. The obtained cluster includes g1 and g2 where

Here,g1 includes a cluster of underloaded VMs and g2 includes a cluster of over-
loaded VMs. In the cloud, each VM is able to execute different tasks having dis-
similar execution times. This process of execution of different tasks in different VMs 
may dynamically vary the current load of VMs. Because of this dynamic execu-
tion nature, it may happen that a VM in g1 may achieve heavy load or a VM in g2 
may lead to achieve less load. Such factor motivates to introduce a balancer that 
will maintain each cluster group without losing their uniqueness. The key role of 
the balancer is to make a decision on load balancing by assigning its each VM to a 

g1 = VMU =
{
VMU1,VMU2,… ,VMUQ

}
g2 = VMO =

{
VMO1,VMO2,… ,VMOR

}
.
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suitable cluster location. For example, if any VM in g1 has changed its current load, 
then it is the responsibility of the balancer to remove that VM from g1 and put it 
into a suitable cluster location in g2 . Hence, each cluster maintains optimal VMs. To 
understand its concept more deeply, let us consider four VMs in the cloud system 
having VM_ID from 0 to 3. Each VM initially assigned some tasks to their specific 
IDs (0 to 3). Using ANN, the obtained VM loads are VML1 = 0.19 , VML2 = 0.19, 
and VML3 = 0.20 . Further, assume that using ANN the obtained values are clus-
tered into the underloaded and overloaded clusters using the BOK-means method. 
To classify VMU and VMO , a threshold is set from which g1 =

{
VML2 andVML4

}
 is 

obtained as an underloaded and g2 =
{
VML1andVML3

}
 is obtained as an overloaded 

cluster. The threshold is calculated using Eq. (6) and Eq. (7), respectively. Obtained 
VM loads are depicted in Table 3.

if
[
g1 < g2

]
then g1 is Underloaded. else g1 is overloaded. if 

[
g1 = g2

]
 then LBal 

will assign tasks to VM having minimum load among VMs of g1 and g2 both. The 
obtained underloaded VMs are further being used for task assignment execution 
using a multi-objective-based TOPSIS-PSO scheduling algorithm.

4.3 � Multi‑objective‑based TOPSIS‑PSO scheduling algorithm (Stage II)

The next step is task scheduling process in which each task is allocated to the 
optimum underloaded VM of cluster g1 . The task scheduling process aims to bal-
ance the load between VMs and to make the best use of resource utilization. In 
this process, to preserve load among VMs, the set of VMU determined by BOK-
means with ANN algorithm is taken and other VMs have been excluded. Incom-
ing user tasks T =

{
T1, T2,… , TS

}
 are assigned to optimal underloaded VM in 

(5)Dist =

g∑
j=1

n∑
i=1

VML
(j)

i
− m2

j
∀j = 1, 2,… , p ∀k = 1, 2,… ,m

(6)g1 =

j∑
VM=1

VMLj

(7)g2 =

i∑
VM=1

VMLi

Table 3   Obtained VM loads VM_Id VM Task_Id VML

0 1 0 0.19
1 2 1 0.19
2 3 2 0.20
3 4 3 0.19
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VMU =
{
VMU1,VMU2,… ,VMUQ

}
 . Based on multiple parameters such as the exe-

cution time of task, the transmission time of the task, and CPU utilization, an opti-
mal VM is selected.

The execution time (ET) of Sth task on Lth VM is given by

Execution time is computed by obtaining the ratio of the length of the Sth task 
lengthS and MIPS of Lth VM. Optimal VM is nominated for Sth task that reduces 
ET.

The transmission time (TT) for a task TS on VM VL is computed as

The transmission time of the Sth task on a specific VM is obtained by taking the 
ratio of task size SizeS and bandwidth of VM BWL . Similarly, CPU utilization of VM 
is calculated by

The TOPSIS algorithm is initiated by assigning some weight values for every 
three criteria which are signified by 

[
ET , TT ,UCPU

]
=
[
HE,Htrans,HU

]
 and includes 

the following steps:
Step1 Construction of Decision Matrix (DM). The decision matrix is constructed 

using multiple alternatives and multiple criteria.
Here, TU1, TU2, TU3, TU4, and TU5 are called alternatives (tasks) and ET, TT, and 

UCPU are known as multiple criteria. ET1i, TT1i, and UCPU1i represent the execu-
tion time, transmission time, and CPU utilization of Ti on VMUQ, respectively. The 
obtained DM values for five tasks TU1, TU2, TU3, TU4, and TU5 on underloaded VMU 
(vmID = 0) with ET, TT, and UCPU are expressed in Table 4.

Step2 Construction of Standard DM. In this step, each criterion is compared with 
each column alternative to transform into non-dimensional attributes. In this stand-
ardization, each row of DM is divided by the root of the sum of the square of respec-
tive row as follows:

(8)To be Minimized, ET =
lengthS

MIPSL
.

(9)To be Minimized, TT =
SizeS

BWL

.

(10)To be maximized,UCPU =
Total CPU usage of processes

Number of processes
.

Table 4   Decision table of multiple alternatives and criteria

Multiple alternatives

TU1 TU2 TU3 TU4 TU5

Multiple criteria ET 0.256 0.282 0.307 0.333 0.359
TT 1.150 1.100 1.200 1.300 1.400
UCPU 0.800 0.800 1.000 1.000 1.000
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where each element in DMrepresents in ath alternative and cth criteria for DMac.
Step3 Construction of Weighted standard DM. To get weighted standard DM, 

each attribute weight value is multiplied by each element in standard DM. The 
weight values for execution time, transmission time, and CPU utilization criteria are 
evaluated as

where HE,Htransand HU are the weight values for ET , TTandUCPU , respectively, and 
ETQ, TTQandUCPUQ on Qth VM. The weight values should be a positive integer.

Step4 Evaluation of ideal and negative solution. In this step, an extremely posi-
tive ideal solution that maximizes benefit criteria and a negative ideal solution that 
minimizes benefit criteria are determined. ET and TT are considered as performance 
criteria which are to be minimized, and UCPU is taken as benefit criteria which are to 
be maximized. Positive (A+) and negative (A−) ideal solutions are given by

where V+
Ua

 and V−
Ua

 represent the positive and negative solutions for ath alternative, 
respectively.

Step5 Determination of separation measures. In this step, each alternative is sep-
arated from A+ and A− which is measured as

Equations (17) and (18) calculate the distance between each alternative positive and 
negative solution, respectively. Here, the number of criteria is 3.

Step6 Calculation of relative closeness. The value of relative closeness (RC) is 
achieved from the positive and negative separation measures (f +

Q
 and f −

Q
 ) of tasks on 

Qth VM with respect to positive ideal solution A+ and is defined as

(11)Sac =
DMac�∑m

i=1
DM2

ac

(12)ET = ETQ × HE

(13)TT = TTQ × HTrans

(14)UCPU = ETQ × HU

(15)A+ =
(
V+
U1
,V+

U2
, ..,V+

Ua

)

(16)A− =
(
V−
U1
,V−

U2
, ..,V−

Ua

)

(17)f +
Q
=

√√√√ 3∑
c=1

(
Vac − V+

c

)2

(18)f −
Q
=

√√√√ 3∑
c=1

(
Vac − V−

c

)2
a ∈ alternatives c ∈ criteria.
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The role of RC is to perform as a fitness value for the PSO algorithm. The ability 
of particle swarm reaction introduces solutions to optimization problems [36]. In 
PSO, a swarm comprises individual particles that fly on search space, and these par-
ticles handle solutions to the problems. By the experience of a particle and its neigh-
boring particles, the position may be influenced by the best local position (LBest). 
However, if the neighborhood of a particle has the best position in the swarm, it 
would be the best global position (GBest). Once particle has been initialized, in each 
repetition particle is placed near to GBest and velocity using Eq. (20) and FV is cal-
culated. The velocity of a particle is expressed as

where i+1
Q

Vel signifies existing velocity and i
Q
Vel denotes the earlier velocity of Q . 

i+1
Q

Parandi
Q
Par are the current and earlier position of Q . Two learning factors L1, L2 

and the random numbers ran1, ran2 are involved in velocity computation with respect 
to the values depicted in Table 4. Each user task performs this process and is then 
scheduled to an optimal underloaded VM. The obtained relative closeness for each 
task T from TOPSIS is initialized to compute the fitness value for each particle. Ini-
tially, for each task, TOPSIS calculates a decision matrix for the given multiple 
alternatives (tasks) and three criteria (execution time, transmission time, and CPU 
utilization) using Eqs. (8), (9), and (10), respectively. The algorithm recalculates the 
standard decision matrix by a root of the sum of squares of respective rows using 
Eq. (11). Weighted standard DM is calculated using Eq. (12), Eq. (13), and Eq. (14) 
for ET , TransT , andUCPU , respectively. Next, positive and negative ideal solutions 
are performed to check maximum and minimum benefit from the criteria using 
Eq. (15) and Eq. (16). Separation of alternatives from f +

Q
 and f −

Q
 using Eq. (17) and 

Eq.  (18) is performed. Relative closeness (fitness value) is obtained for each task 
with respect to each alternative as a particle using Eq. (19). The obtained FV value 
is further compared to the current local best particle value, which is calculated in the 
initial steps of PSO. If the current FV is larger than the current local best particle, 
then update the value of LBest with the current FV value updated, else the value of 
LBest will remain the same. Once the algorithm gets the value of all LBest , the larg-
est LBest is found by comparing them with each other. The largest LBest will be 
considered as the global best particle GBest . Similarly, if the current GBest is larger 
than the previous GBest , then the value of GBest is updated with the current GBest 
value; else, the value of LBest will remain. The process is iteratively performed until 
the maximum number of iterations is reached. During each iteration, particle veloc-
ity and position are updated using Eq. (20) and Eq. (21). The final particle solution 

(19)FVQ = RCQ =
f −
Q

f −
Q
+ f +

Q

.

(20)

i+1
Q

Vel = � ∗ i
Q
Vel + L1 ∗ ran1 ∗

(
LBest − i

Q
Par

)
+ L2 ∗ ran2 ∗

(
GBest − i

Q
Par

)

(21)i+1
Q

Par = i
Q
Par + i+1

Q
Vel
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having the largest GBest will be assigned to the most optimal underloaded  
VM VUoptimal for mapping.

By assigning each task to optimal VM, MakeSpan, completion time, and trans-
mission time of tasks are reduced significantly. TOPSIS-PSO method assigns user 
tasks only to VMU. Therefore, TOPSIS-PSO-based task scheduling process with 
ANN-LB technique introduces load balancing and efficient tasks scheduling among 
VMS. Further, it reduces MakeSpan, completion time, and transmission time of 
tasks without reducing resource utilization. The overall procedure of the TOPSIS-
PSO algorithm is shown in Algorithm  2. Finally, each task in the user task set is 
scheduled to optimal VM in the underloaded VM set, which can be expressed as

Tasks which are assigned to VMU2and VMU4 are denoted in Table 5 where tasks 
T0, T3, and T4 are mapped to VM

U2 and Tasks T1 and T2 are mapped to VM
U4 . 

The given task assignment matrix table represents task mapping according to the 
increased number of tasks and VMs. The calculation is executed for both less and a 
considerable number of tasks, and related effects are observed for both cases. In this 
observation, a small number of VMs and runtime tasks are used.

The assignment of the best VM for user task results in better performance and 
better resource utilization. Therefore, MakeSpan, which is the overall completion 
time for all assigned tasks for a particular VM, is minimized significantly. Involve-
ment of LBal efficiently monitors the load on grouped VMs and reassigns VM after 
task assignment to prevent VMs from overloading. Hence, balanced load among all 
VMs is maintained by efficient clustering and task scheduling processes. It is also 
necessary to balance load among PMs. PSO parameters are depicted in Table  6. 
Load balancing among PMs is realized by the VM migration process, which is elab-
orated in the next section.

(22)
[
T1, T2, T3, ..,TS

]
=
[
VMUt1,VMUt2,VMUt3,… ,VMUts

]
.

Table 5   Tasks assignment 
matrix to VMs

Tasks Resources

VM
2

VM
4

T0 1 0
T1 0 1
T2 0 1
T3 1 0
T4 1 0
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4.4 � VM migration based on fuzzy Logic (Stage III)

Both VM clustering and task scheduling are involved in load balancing across VMs, 
whereas VM migration is involved in load balancing among PMs. Load on each PM 

Table 6   PSO parameters

Parameters Values Description

Swarm size No. of particles Problem space in terms of swarm size
Particle(Q) 5 Particles or population in swarm
Iterations 50–1000 Number of swarm iterations
Constant factor (L1) 1.49445 Self-consciousness study factor [35] or cognitive 

parameter [36]
Constant factor (L2) 1.49445 Swarm consciousness study factor [35] or social 

parameter [36]
Max(V) (No. of resources or 1) Maximum velocity of a particle
Min(V) (0–1) Minimum velocity of a particle
rand (0–1) Uniformly distributed random number
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is monitored by the VM manager, which maintains PM information. PM load is cal-
culated in terms of load on VMs that are presented in that PM as follows:

Equation  (23) computes load on mth PM in terms of load L of all VMs ( Li ) pre-
sented in that PM. VM migration also enables energy efficiency along with load 
balancing. VM manager takes VM migration decision in the following conditions:

1.	 If a PM becomes overloaded (for load balancing)
2.	 If a PM has less load (for energy efficiency).

When a PM attains one of the above conditions, optimal VM is migrated from that 
PM to optimal destination PM. Consider PMm with 

{
VM1,VM2, ..,VMi,… ,VML

}
 

and load on VMs as 
{
L1, L2, ..,Li,… , LL

}
 . If PMm is overloaded, then the optimal 

VM is selected and migrated from that PM to another PM. The optimal VM for 
migration is selected based on migration time, and it is computed for Lth VM as

Here, RAM
(
VML

)
 represents RAM of VML and BWL denotes the bandwidth of VML. 

Condition for a VM to be selected as an optimal VM for migration is formulated as

A VM that satisfies the above condition is selected for migration and denoted 
as Vop . The next important step is to find an optimal destination PM for migration. 
Important mathematical definitions, terminology, and well-explained concepts that 
explain how IT2FL is set and the system is evaluated in the proposed research work 
are discussed in the following subsections. Detailed IT2FL set and system process 
are explained as follows (Fig. 4).

4.4.1 � Interval type 2 fuzzy logic set (IT2FL)

Definition 1  A T2 FS is denoted as S′ and expressed by its T2 degree of member-
ship function (DoMF) and �S� (x, f ) is defined as follows:

where expression x ∈ X, f ∈ Dx is the domain of x in ⊆ [0, 1].The primary variable 
x of S′ can be denoted as X . The use of ʃʃ is to represent the union over, all correct 
values of x and f. If the universe of discourse (UoD) is discrete in nature, then it will 
be expressed as

(23)L
(
PMm

)
=

L∑
i=1

Li.

(24)MT
(
VML

)
=

RAM
(
VML

)
BWL

.

(25)optimalVM = min{MT(VM)}.

(26)S� = � x ∈ X � f ∈ Dx

�S� (x, f )

(x, f )
�S� (x, f ) ≤ 1
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In discrete UoD, ʃʃ is simply replaced with 
∑∑

 to represent the values of vari-
ables x and f. In this research, the continuous UoD approach is being focused on 
MF. The value of the fuzzy set S′ is expressed as:

where S′ is the fuzzy set defined over a UoD of primary variable x with T2 DoMF 
�s� (x, f ).

Definition 2  If the value of �S� (x, f ) = 1 in Eq. (24), then S′ is said to be IT2 FLS.

Definition 3  The vertical slice of �S� (x, f ) is the representation of value x′ in x 
having 2d-plane with axes f  and �S′

(
x′, f

)
 . Secondary MF is the vertical slice of 

�S� (x, f ) [40], i.e.,

where�S′

(
x′
)
 is the secondary MF of S′ . Equation (30) is used when all second-

ary MF values of IT2 FLS are 1, otherwise fx� (f ) will be replaced with value 1. The 
value of fx� (f ) lies between 0 ≤ fx� (f ) ≤ 1.

Definition 4  The representation of �S� (x, f ) in IT2 FLS is achieved by footprint of 
uncertainty (FoU). The union of primary membership (Dx) is the FoU of S′ as

where FoU for lower member function L(MF) L�S� (x) and upper member function 
U(MF) U�S� (x) are expressed as follows:

and

where infi and Sup are the infimum and supermum of the support of �S� (x).
Figure 5 shows the presentable image of IT2 FLS triangular MF for S′ with its 

two bounded T1 FSs. L�S� (x) and U�S� (x) are the L(MF) and U(MF), respectively. 
The region between L(MF) and U(MF) is the footprint of uncertainty (FoU) [40] 
which is the primary membership that consists of bounded region for IT2 FLS. Any 

(27)S� =
∑
x∈X

∑
f∈Dx

�S� (x, f )

(x, f )
.

(28)S� =
{(

(x, f ),𝜇S� (x, f )
)||x ∈ X, f ∈ Dx ⊆ [0, 1]

}
.

(29)S� = ∫ x ∈ X ∫ f ∈ Dx

1

(x, f )
, Dx ⊆ [0, 1]

(30)𝜇S�

(
x = x�, f

) ≡ 𝜇S�

(
x�
)
= � f ∈ Dx�

1

f
, Dx ⊆ [0, 1]

(31)FoU
(
S�
)
=
⋃
x∈X

Dx = {(x, f )|f ∈ Dx ⊆ [0, 1]}

(32)L𝜇S� (x) = infi(f | f ∈ [0, 1],𝜇S� (x, f ) > 0)

(33)U𝜇S� (x) = sup(f | f ∈ [0, 1],𝜇S� (x, f ) > 0)
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T1 FS within the FoU is the embedded T1 FS, and such sets are represented as L (S�

) 
and U 

(
S′
)
 . Each input value in continuous UoD maintains DoMF that ranges the 

value between L(MF) and U(MF). In this work, triangular MF is used to character-
ize the fuzzy set. The expression of triangular MF is as follows:

A triangular MF Δ(a, b, c) is the collection of optimistic boundary or lower limit 
(a) , an expected value or middle value (b), and pessimistic boundary or upper limit 
(c).

4.4.2 � Interval type 2 fuzzy logic system (IT2FLS)

IT2FLS is comprised of five stages, i.e., fuzzification, creation of knowledge base 
rule, fuzzy inference mechanism, type reduction, and defuzzification. The only dif-
ference between IT2 FLS and T1 FLS is that T1 FLS does not perform the type 
reduction stage. Type reduction is the central most part in IT2 FLS in which it trans-
fers the fuzzy output set to T1 fuzzy set. The computational process includes input 
vectors x1 ∈ S

�

1
,… .., xm ∈ S

�

m
 and single output y ∈ Y  . Knowledge base rules are 

characterized as Q fuzzy rules (FR) and expressed as [46]:

(34)Δ(x ∶ a, b, c) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0, x ≤ a
x − a

b − a
,

1,
c − x

c − b
,

0,

a ≤ x ≤ b

x = b

b ≤ x ≤ c

x ≥ c

Fig. 5   IT2 FL set MF and FoU
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where FR′

i
 is the ith fuzzy rule that consists of a set of universe of discourses 

( x1, x2 … xmandy) and linguistic variables (L1
i
, L2

i
..Lm

i
andOi). The part of FR (x1 is L1

i
 

and x2 is L2
i
 and …..xm is Lm

i
) is said to be the antecedent or premise, whereas rule 

statement (y is Oi) is the consequence or conclusion. The execution process of an 
IT2 FLS and its mathematical terminology is discussed in the following steps:

Step1 Obtain the membership function of xm , on each S′

m
 using Eq. (26) which is 

represented as:

where L�S
′
m

(
xm
)
 and U�S

′
m

(
xm
)
 are the L(MF) and U(MF) functions of UoD xm on 

fuzzy set S′

m
 . The value of L(MF) always must be less than or equal to the value of 

U(MF).
Step2 Compute the firing interval of the mth rule, FoUQ(x),

where f m
L
andf m

U
 are the upper bound and lower bound firing interval of mth fuzzy 

rule, respectively. Symbol × denotes the product t-norm operation and expressed as:

Step3 Compute the type reduction step with the defined rule and firing interval 
FoUQ(x) using the center of set (CoS) reducer method.

Perform Karnik–Mendel (KM) algorithm [47] to compute the left- and rightmost 
points yL(x)andyR(x), respectively. The KM algorithm is used to obtain the switch 
points for yL(x) andyR(x) . The function of yL(x) is to perform the firing interval 
switching from upper bound to lower bound. It is the minimum of YCoS(x) and can be 
computed as

The function of yR(x) is to perform the switching firing interval from lower bound 
to upper bound, and it gets maximum of YCoS(x) . It is computed as

(35)
FR

�

i
∶ if x1 is L

1
i
and x2 is L

2
i
and … xm is Lm

i
then y is Oi for i ∈ FR,m ∈ input

(36)
[
L�S

�
m

(
xm
)
,U�S

�
m

(
xm
)]

form = 1, 2… .M

(37)FoUQ(x) =
[
f m
L
, f m
U

]

(38)f m
L
=
{
L�S

�

1

(
x1
)
× L�S

�

2

(
x2
)
…× L�S

�
m

(
xm
)}

(39)f m
U
=
{
U�S

�

1

(
x1
)
× U�S

�

2

(
x2
)
…× U�S

�
m

(
xm
)}

(40)
YCoS(x) =

�
f m ∈ f m(x)
ym ∈ Om

M∑
m=1

f mym
�

M∑
m=1

f m =
�
yL(x), yR(x)

�

(41)yL(x) =

∑L

m=1
f m
U
ym
L
+
∑M

m=L+1
f m
L
ym
L∑L

m=1
f m
U
+
∑M

m=L+1
f m
L

.
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where LyL ≤ yL(x) ≤ LyL+1 UyR ≤ yR(x) ≤ UyR+1.
Step4 Calculate the defuzzified output from [48],

The above equations will be used, in finding the best possible optimal destina-
tion PM. IT2 FLS has unique characteristics that provide better performance even 
in uncertain abound conditions and work well with missing components. The Java-
based toolkit Juzzy [39] library files have been imported to input the IT2 FLS-based 
VM migration results in CloudSim. Configuration parameters for the fuzzy sys-
tem are shown in Table 7. To understand the working approach of IT2 FLS in the 
proposed CMODLB method, a descriptive example is discussed. In our proposed 
method, we present a model for the possibility of selection of the optimal destination 
PM for VM migration, which depends on available memory (Avl_Mem), available 
CPU (Avl_CPU), and available load (Avl_Load) of destination PM. It is assumed 
that the selection of optimal destination PM takes input variable Avl_Mem, Avl_
CPU, and Avl_Load having linguistic terms low and high and output variable Pos-
sibility with linguistic terms low, medium, and high. The input and output linguistic 
variables are defined by their fuzzy values. The Avl_Mem of mth PM is said to be 
low and high as defined in Eq. (44). Similarly, Avl_CPU and Avl_Load are defined 
in Eq. (45) and Eq. (46), respectively (Table 6).

(42)yR(x) =

∑R

m=1
f m
L
ym
U
+
∑M

m=R+1
f m
U
ym
U∑R

m=1
f m
L
+
∑M

m=R+1
f m
U

(43)Y =
[
yL(x) + yR(x)

]
∕2.

(44)if AvlMem j is

{
0 ≤ j ≤ 5, Low

5.1 ≤ j ≤ 10, High

(45)if Avl_CPUj is

{
0.5 ≤ j ≤ 5.2, Low

5.3 ≤ j ≤ 10, High

Table 7   Simulation parameters 
for type 2 fuzzy system

Parameter Value

Fuzzy type Interval type 2 fuzzy
Input Available memory in PM, available 

CPU in PM, and load in PM
Membership function type Triangular with FoU
Linguistic term Low, medium, and high
Defuzzification method Centroid of sum
Type reduction method Center of sets (using KM algorithms)
Representation Vertical slices
Output Possibility
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The number of rules in the rule base is set by the product of the maximum num-
ber of linguistic terms in each input fuzzy set, i.e., 2 × 2 × 2 = 8 . The corresponding 
eight fuzzy rules using Eq. (36) are elaborated in the following section. R1 is rule#1 
which states: If available memory, available CPU, and available current load of jth 
PM are low, then there is a low possibility for this PM to be an optimal destination 
PM for VM migration. Similarly, other rules are defined in the same manner. It is 
shown that the highest possibility of being an optimal destination PM is achieved 
when the input set matches Rule#7.

The rules are stated as

Each input domain consists of two IT2 FS. Figure  6 a–c shows the UMF and 
LMF of input fuzzy set Avl_Mem, Avl_CPU, and Avl_Load using vertical slice rep-
resentation by Eq. (26). Triangular MF has been used for the input crisp set given 
in Eq. (34). The obtained MF graphs represent universe of disclosure on the x-axis 
that ranges from 0 to 10, and the degree of MF on the y-axis which ranges between 
0 and 1. Table 8 shows the FoU for upper and lower MF for each input and output 
linguistic variable. Representation of Type 2 set can be achieved through vertical 
slice, horizontal slice, wavy slice, zSliced, etc. However, in this experiment, vertical 
slice representation is performed due to its simplicity and ease. The FoU L(MF) and 
FoU U(MF) are the footprints of uncertainty for lower and upper membership func-
tions for each input and output linguistic variable. Table 8 depicts FoU L(MF) and 
FoU U(MF) for low PM memory having triangular MF values Δ(x ∶ 1.0, 3.0, 3.0) 
and Δ(x ∶ 0.0, 1.0, 5.0), respectively. Similarly, other values are obtained. A fuzzy 
set is fed into the inference model which combines fuzzy set and rule base. Based on 
rules provided in the rule base, IT2 FLS provides single output for multiple inputs.

To understand its working nature, let the value of the input vector 
( x1 = AvlMem, x2 = AvlCPU , x3 = Avl_Load ) be (1.5, 3.8, 7.5). The input value of 
AvlMem is 1.5 which is low as given in Eq. (41), AvlCPUis3.8 which represents low 
from Eq.  (42) and AvlLoadis 7.5 which is high in range as per Eq.  (43). The input 
value matches with rule number two ( R2 ∶ If Avl_Mem is Low and Avl_CPU is Low 
and Avl_Load is High THEN Possibility is Low). Using Eq. (36), the obtained lower 

(46)if Avl_Loadj is

{
0.0 ≤ j ≤ 3.5, Low

3.6 ≤ j ≤ 10, High

R1 ∶ If Avl_Mem is Low and Avl_CPU is Low and Avl_Load is Low THEN Possibility is Low

R2 ∶ If Avl_Mem is Low and Avl_CPU is Low and Avl_Load is High THEN Possibility is Low

R3 ∶ If Avl_Mem is Low and Avl_CPU is High and Avl_Load is Low THEN Possibility is Medium

R4 ∶ If Avl_Mem is Low and Avl_CPU is High and Avl_Load is High THEN Possibility is Low

R5 ∶ If Avl_Mem is High and Avl_CPU is Low and Avl_Load is Low THEN Possibility is Medium

R6 ∶ If Avl_Mem is High and Avl_CPU is Low and Avl_Load is High THEN Possibility is Medium

R7 ∶ If Avl_Mem is High and Avl_CPU is High and Avl_Load is Low THEN Possibility is High

R8 ∶ If Avl_Mem is High and Avl_CPU is High and Avl_Load is High THEN Possibility is Medium
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and upper membership functions for AvlMem,AvlCPUandAvlLoad on each low and high 
linguistic variables are represented in Table 9. These bounds will be used in fuzzy 
inference rules for firing intervals IT2 FSs.

Fig. 6   Member function (MF) for T1 FLS is shown in a, b and c 

Table 8   FoU MF upper and lower bounds

S. No. Low-memory PM High-memory PM

FoU L(MF) Δ(x ∶ 1.0,3.0,3.0) Δ(x ∶ 7.5,8.0,10.0)

FoU U(MF) Δ(x ∶ 0.0,1.0,5.0) Δ(x ∶ 5.1,8.0,10.0)

S. No. Low available CPU PM High-memory PM

FoU L(MF) Δ(x ∶ 1.5,3.0,4.0) Δ(x ∶ 6.0,8.0,9.0)

FoU U(MF) Δ(x ∶ 0.5,3.0,5.0) Δ(x ∶ 5.1,8.0,10.0)

S. No. Low available load PM High-memory PM

FoU L(MF) Δ(x ∶ 0.5,2.5,3.0) Δ(x ∶ 4.5,6.0,10)

FoU U(MF) Δ(x ∶ 0.0,2.5,3.5) Δ(x ∶ 3.6,6.0,10.0)



8819

1 3

CMODLB: an efficient load balancing approach in cloud computing…

Figure 7 explains the comparable calculation for firing intervαal to a given input. 
When x = 1.5, the vertical line at 1.5 intersects FoU (for low Avl_Mem) in the inter-
val 

[
�LowL

(
AvlMem = 0.30

)
,�LowU

(
AvlMem = 0.52

)]
 . For x = 3.8, the vertical line at 

3.8 intersects FoU (for low Avl_CPU) in the interval 
[ �LowL

(
AvlCPU = 0.28

)
,�LowU

(
AvlCPU = 0.60

)
], and for input x = 7.8, the vertical 

line at 7.8 intersects FoU (for low Avl_Load) in the interval 
[�HighL

(
AvlLoad = 0.31

)
,�HighU

(
AvlLoad = 0.59

)
 . From these inputs, two firing 

levels are then computed, i.e., firing interval lower membership ( f m
L
) and upper 

membership ( f m
U
) for each rule using Eq. (35) and Eq. (36), respectively. The lower 

firing intervals for rule#1 are obtained by multiplying each L(MF) of three inputs 

Table 9   FoU MF upper and lower bounds

Lower MF Upper MF

[�LowL

(
AvlMem = 0.30

)
�LowU(AvlMem = 0.52)]

[�HighL
(
AvlMem = 0.70

)
�HighU(AvlMem = 0.96)]

[�LowL

(
AvlCPU = 0.28

)
�LowU

(
AvlCPU = 0.60

)
]

[�HighL
(
AvlCPU = 0.84

)
�HighU

(
AvlCPU = 0.93

)
]

[�LowL

(
AvlLoad = 0.50

)
�LowU

(
AvlLoad = 0.60

)
]

[�HighL
(
AvlLoad = 0.31

)
�HighU

(
AvlLoad = 0.59

)
]

Fig. 7   Calculation of firing interval MF for rule#2
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( LowAvlMem, LowAvlCPUandLowAvlLoad ). Similarly, upper firing intervals for rule#1 
are obtained by multiplying each U(MF) of three inputs ( LowAvl

Mem
,LowAvl

CPU
andLowAvl

Load
 )  

and hence f 1
(1.5,3.8,7.8)

= [f 1
L
= 0.042, f 1

U
= 0.187] . The fired rule interval FoU for 

rule#2 is f 2
(1.5,3.8,7.8)

 = 
[
f 1
L
= 0.091, f 2

U
= 0.091

]
 . Similarly, each rule is performed in 

the same procedure to obtain rule FoU as given in Table  10. The centroid of the 
rules consequent is calculated using the iterative KM procedure [48]. For each fuzzy 
rule type 2 fuzzy set (FS) output, the centroid of the consequent is calculated for 
lower and upper interval ym

L
and ym

U
 . The total number of output FS for output possi-

bility is 3, i.e., low, medium, and high. From Eq. (40), the obtained centroid of the 
low, medium, and high output FS is [0.5,3.45], [4.45,6.75], and [7.5,9.5], respec-
tively. The centroid of each rule consequent for the output possibility is shown in 
Table 6. Type reduction is performed using KM algorithm, and we find left point 
(L) = 3 and right point (R) = 2. So, the value of yL(x) is obtained to perform the firing 
interval switching from upper bound to lower bound, whereas the value of yU(x) 
required to perform the switching firing interval from lower bound to upper bound 
using Eq.  (41) and Eq.  (42), respectively. It is needed to reorder ym

L
and ym

U
 in an 

ascending manner where y1
L
≤ y2

L
≤ y3

L
≤ y4

L
≤ y5

L
≤ y6

L
≤ y7

L
≤ y8

L
 and 

y1
U
≤ y2

U
≤ y3

U
≤ y4

U
≤ y5

U
≤ y6

U
≤ y7

U
≤ y8

U
 . Hence, reordered output possibility for 

lower bound is [0.5, 3.45, 3.45, 4.45, 4.45, 4.45, 6.75, 7.5] and for upper bound is 
[0.5, 0.5, 3.45, 6.75, 6.75, 6.75, 6.75, 9.50].

Defuzzification is needed to calculate the crisp output of possibility using 
Eq.  (43). The possibility crisp output is the average summation of yL and yR . The 
final crisp output y2 with respect to rule#2 is:

The obtained crisp output value suggests a cloud system that the PM with its 
input values for rule# maintains a low possibility for destination optimal PM for VM 
migration. It clearly shows that the output value 4.52 has a low possibility for VM 
migration. Figure  8 shows a graphical representation of triangular MF for output 
possibility using Eq. (31). The x-axis shows the possibility with respect to the input 
fuzzy set, and the y-axis shows the DoM between 0 and 1. The Low, Medium, and 

yL =
(
f 1
U
× y1

U

)
+
(
f 2
U
× y2

U

)
+
(
f 3
U
× y3

U

)
+
(
f 4
L
× y4

L

)
+
(
f 5
L
× y5

L

)
+
(
f 6
L
× y6

L

)
+
(
f 7
L
× y7

L

)
+
(
f 8
L
× y8

L

)/(
f 1
U
+ f 2

U
+ f 3

U
+ f 4

L
+ f 5

L
+ f 6

L
+ f 7

L
+ f 8

L

)

=
(0.187 × 0.5) + (0.091 × 0.5) + (0.290 × 3.45) + (0.078 × 4.45) + (0.980 × 4.45) + (0.061 × 4.45) + (0.294 × 6.75) + (0.182 × 7.50)

(0.187 + 0.091 + 0.290 + 0.078 + 0.980 + 0.061 + 0.294 + 0.182)

yL =
9.74

2.16
= 2.25

yR =
(
f 1
L
× y1

L

)
+
(
f 2
L
× y2

L

)
+
(
f 3
U
× y3

U

)
+
(
f 4
U
× y4

U

)
+
(
f 5
U
× y5

U

)
+
(
f 6
U
× y6

U

)
+
(
f 7
U
× y7

U

)
+
(
f 8
U
× y8

U

)/(
f 1
L
+ f 2

L
+ f 3

U
+ f 4

U
+ f 5

U
+ f 6

U
+ f 7

U
+ f 8

U

)

=
(0.042 × 0.5) + (0.026 × 3.45) + (0.290 × 3.45) + (0.285 × 6.75) + (0.346 × 6.75) + (0.340 × 6.75) + (0.546 × 6.75) + (0.537 × 9.50)

(0.042 + 0.026 + 0.290 + 0.285 + 0.346 + 0.340 + 0.546 + 0.537)

yR =
16.38

2.41
= 6.79

Y2 =
2.25 + 6.79

2
= 4.52.
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High linguistic variables for possibility are obtained by using Eq. (47). Low possibil-
ity is considered when the value of y is between 0 and 4.6. Similarly, Medium and 
High are obtained using Eq. (47). Table 11 depicts the lower and upper MF bounds 
for output possibility for its linguistic variables.

Similarly, to check the performance of IT2FLS with other rule bases similar math-
ematical steps have been performed for each set of rules by the obtained values of Mth 
PM properties. Table 12 shows the overall obtained rule# with their respective input 
values of three sets (memory, CPU, and load) and their respective output (possibil-
ity). It is explained that rule#1 has an output possibility of 1.3 which results in a low 
possibility for PMdes for VM migration from Eq.  (47). Similarly, rule#2 and rule#4 
have obtained low possibilities with values 4.52 and 4.23. Rule# 3, 5, 6, and 8 have 
achieved 4.98, 5.91, 6.84, and 7.0 crisp output values for medium possibility, respec-
tively. The selection of PMdes for migration is to be made only when PM has high 
available memory, high available CPU, and low load. Finally, Rule#8 with its crisp 
output 8.99 has obtained high possibility to become optimal PMdes for VM migration.

The algorithm checks for VMU in PM once PMdes is identified. If any PM has 
VMU , then that VMU will be turned off after migration in order to save energy. Hence, 

(47)if PossibilityPMj
is

⎧⎪⎨⎪⎩

0 ≤ Y ≤ 4.6, Low

4.7 ≤ Y ≤ 7.0, Medium

7.1 ≤ Y ≤ 10, High

Fig. 8   Member function (MF) for otput possibility

Table 11   FoU MF upper and lower bounds

Low PM Possibility Medium PM Possibility High PM Possibility

FoU L(MF) Δ(y ∶ 0.5, 2.5, 4.0) Δ(y ∶ 4.7, 5.5, 7.0) Δ(y ∶ 7.1, 8.5, 9.5)

FoU U(MF) Δ(y ∶ 0.0, 2.5, 4.6) Δ(y ∶ 4.7, 5.5.5, 6.5) Δ(y ∶ 7.6, 8.5, 10)
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this VM migration process results in load balancing among PMs along with energy 
efficiency. The complete working steps of VM migration-based IT2FLS algorithm 
are given in Algorithm 3.

Table 12   Crisp input and 
obtained crisp output after 
defuzzification

Rule Avl_Mem(x
1
) Input Output

Avl_CPU(x
2
) Avl_Load (x

3
) Possibility(O)

R1 ∶ 1.0 2 3 1.3

R2 ∶ 1.5 3.8 7.8 4.52

R3 ∶ 1.9 7 5.8 4.98

R4 ∶ 2.5 8 6.2 4.23

R5 ∶ 7.2 1 4.2 5.91

R6 ∶ 6.1 1 6 6.84

R7 ∶ 8 8 2 8.99

R8 ∶ 7 6.1 5.1 7.0
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4.5 � Computational complexity

The proposed CMODLB algorithm is a hybridization of ANN-LB, TOPSIS-PSO, 
and VM migration using IT2FLS technique, which may get high computational 
complexity. The complexity of the complete algorithm is calculated for each work-
ing stage. The ANN-based backpropagation neural method takes O

(
n4
)
 complexity 

for feedforward and O
(
n5
)
 for backpropagation where ‘ n ’ is the number of inputs 

(VMs). VM load is calculated with the complexity of O
(
n5 + n4

)
 [41]. The compu-

tational complexity of BOK-means is of O
(
N2

)
 , where N is the number of iterations 

[42] for Bayesian optimization. K-mean clustering algorithm takes the complexity 
of O(n) for computing distance between items. The reassigning cluster has the com-
plexity of O(km) . For centroid, it takes the complexity of O(mn) ; each of the above 
steps takes t iterations with O(tkmn) complexity, where ‘ k ’ is the number of clusters, 
‘ m ’ is the objects, and ‘ n ’ is the dimensionality of the vector. In PSO-TOPSIS algo-
rithm, PSO has the complexity of O(ntlog(n)) in which ‘ n ’ is the number of popu-
lations and t is the number of iterations. Besides this, the complexity of the TOP-
SIS algorithm is O

(
n2 + n + 1

)
 for FV computation [35]. (4p + 1)M is the required 

design degree of freedom for IT2FL [43] where p is the number of antecedents cor-
responding to each M rule.

5 � Experimental evaluation

This section explains the experimental evaluation of the proposed CMODLB load 
balancing method in a cloud system environment. This section also comprises sub-
sections. In the simulation environment, the details about the proposed cloud envi-
ronment are provided, while in the performance matrices, each significant matric is 
explained. Comparison of the CMODLB method with existing task scheduling and 
load balancing methods is shown in the comparative analysis section. Our proposed 
work is compared with other existing algorithms CESCC strategy [8], WRR method 
[13], DHCI [14], two-level mechanism [17], TaPRA method [18], HBB-LB [22], 
BSO algorithm [24], utilization model [29], TOPSIS-PSO [35], SA, GA, GA-SA, 
GA-GELS, PSO, PSO-SA and PSO-GELS [36] and FUGE [45] for its performance 
analysis.

Table13 explores the shortcomings that occurred in former scheduling and load 
balancing techniques. These shortcomings are taken as essential features for the 
experimental evaluation of the CMODLB proposed method.

5.1 � Simulation setup

The proposed CMODLB in cloud environment uses JAVA (JDK 1.7) including 
Java runtime environment, Java class libraries, and Java tools. NetBeans 7.4 and 
eclipse are used for simulation. The essential classes for DCs, VMs, and computa-
tional resources are provided by the CloudSim tool [44], which supports modeling 
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and replication of datacenters, virtualized server hosts, energy-aware computational 
resources, federated cloud, etc., of large-scale environment.

In Table 14, significant parameters considered in the simulation of CMODLB are 
depicted with their corresponding values. The values of parameters are categorized 
into physical machines, virtual machines, and tasks. Two to six numbers of PM hav-
ing up to four processing units have been used with 4 GB RAM and 11 TB storage 
capacity with a maximum of 9600 MIPS. Around 10–50 numbers of VMs are used 
having a MIPS of up to 2400.

5.2 � Performance metrics

This section discusses the significant performance metrics which are considered 
in the experimental evaluation. Definition of each metric is provided along with 
its importance. Significant metrics considered in this section are: completion time, 
transmission time, MakeSpan, number of VM migrations, resource utilization, and 
system load fairness.

5.2.1 � Completion time

Completion time for a task that is assigned to a VM is a metric which is the sum-
mation of execution time (ET), transmission time (TT), and waiting time (WT) of Sth 
task on Lth VM and is expressed as follows:

If the load on a particular VM is more, then the tasks assigned to it suffer from 
high waiting time, leading to large completion time and overall high MakeSpan. 
Therefore, this metric should be as low as possible.

5.2.2 � Transmission time

The purpose of these metrics is to calculate the transmission time, a task needs to 
reach a particular VM. Transmission time is the proportion of Sth task size by the 
bandwidth of Lth VM [35]. TT must be less to achieve better resource utilization and 
MakeSpan.

(48)Completion time = ET + TT +WT .

Table 13   Limitations of previous works

Existing method Demerits

Two-level mechanism [17] Supports only a single server for task scheduling
Increases waiting time for user tasks

TaPRA method [18] Only suitable for the single-task assignment problem
BSO algorithm [24] Load balancing among PMs is not achieved
Utilization model [29] Increases number of VM migrations
TOPSIS-PSO [35] Load balancing is required
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5.2.3 � MakeSpan

MakeSpan is the total amount of time required by a VM to execute the assigned 
tasks [35]. It is also defined as the time difference between completion time of last 
job (Clast) and starting time of first job (Sfirst) and is expressed as,

This metric should be as low as possible. MakeSpan can be minimized by assign-
ing optimal VM to user task, which can be achieved by task scheduling. Balanced 
VMs achieve minimum MakeSpan. It is also defined as the sum of completion time 
of tasks assigned on a particular VM and is given as

Here, R represents the number of tasks assigned to VM, whereas completion 
timep represents the completion time of pth task on that VM.

(49)TT = Size of taskS
/
Bandwidth of VML.

(50)Make span =
(
Clast − Sfirst

)
.

Makespan =

R∑
P=1

Completion timep.

Table 14   Simulation parameters for cloud environment

Parameter Value

Physical machine Number of PMs 2–6
Number of processing units in one PM 4
MIPS 9600
Storage capacity 11 TB
RAM 4 GB
Scheduling interval 30 ms
Monitoring interval 180 ms

Virtual machine Number of VMs in each PM 10–50
MIPS 2400
Number of processing units 4

Task Number of tasks 50–2000
Maximum task length 20,000
Task size 500
MIPS required 10,000
Average RAM 512 MB
Average bandwidth 100,000 Mbps



8828	 S. Negi et al.

1 3

5.2.4 � Number of VM migrations

Since VM migration consumes energy, CPU, bandwidth, and time, it is necessary 
to control the number of migrations performed in the system. This metric provides 
the number of migrations carried out in the system. VM migration takes place fre-
quently if the system is unbalanced. Hence, this metric plays a vital role in the eval-
uation of load balancing.

5.2.5 � Resource utilization

In a cloud infrastructure, resources are pooled to serve multiple consumers simulta-
neously. It is important to utilize these resources efficiently. An efficient task assign-
ment process can achieve this by assigning each task to the optimal underloaded 
VM. Resource utilization can be calculated in terms of CPU utilization, memory 
utilization, and bandwidth utilization.

5.2.6 � Load fairness

To analyze the performance of the proposed method having a large system load. The 
metric provides load fairness using its system load. The calculation of load fairness 
depends on the completion time of each task. It has been included that if a cloud 
system has a better completion time of tasks, then it has the potential to achieve 
higher load fairness. This analysis will predict the efficiency of system load with 
respect to the number of user tasks. System load fairness LF is given as [17],

where CTt is the completion time of t tasks and N represents the total number of 
tasks.

5.3 � Comparative analysis

In this section, the proposed CMODLB method has been compared with some of 
the state-of-the-art methods.

5.3.1 � Analysis of completion time

This metric estimates the total execution time that comprises the waiting time of 
each task given in Eq. (48). The metric value should be low for an efficient cloud 
system. Figure 9 shows the comparative analysis among TaPRA method, BSO algo-
rithm, and the proposed CMODLB method in terms of completion time. Here, com-
pletion time increases as the number of tasks increases. It is quite clear that BSO 
algorithm has maximum completion time as compared to TaPRA and CMODLB 
algorithm. This is for an imbalanced load on PMs in DCs. Hence, a large number of 
tasks cannot be accomplished in PM. In TaPRA method, completion time is slightly 

(51)LF =

�∑N

t=1
CTt

�2�
N
∑N

t=1

�
CTt

�2
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increased with the increase in the set of tasks. It completes 2000 tasks in approx-
imately 42  s which the CMODLB does in 30  s. The average completion time of 
TaPRA method is 20.6  s, whereas the average completion time of the CMODLB 
method is 14.2  s. But BSO algorithm provides the average completion time of 
around 50 s which is higher than TaPRA method and the CMODLB method. Since 
TaPRA method allows a single-task assignment in each step, it takes more time than 
the CMODLB method. In TaPRA method, task assignment process is not able to 
consider execution time in order to minimize completion time. Clustering of VMs 
approach reduces the complexity of finding appropriate VM for the execution of 
tasks with respect to its current load. If the VM having less load executes the task, 
then the waiting time of tasks on that VM will be very less. This approach offers the 
lowest execution and transmission time. Due to the involvement of efficient load bal-
ancing and task assignment processes, the CMODLB method achieves 31.067% and 
71.6% less completion time compared to TaPRA and BSO, respectively, as shown in 
Table 15. Therefore, load balancing-based CMODLB method reduces task comple-
tion time significantly.

5.3.2 � Analysis of transmission time

The transmission time metric evaluates the actual transfer time of a task to reach 
the assigned VM. It includes the size of tasks and bandwidth of a VM as given in 
Eq. (49). For a well-organized cloud system environment, this metric must remain 
minimum. Figure  10 shows the comparative analysis among the PSO method, 
TOPSIS-PSO algorithm, and proposed CMODLB method in terms of transmission 
time. The experimental analysis is performed for 10 to 40 numbers of tasks having 
10 numbers of VMs. Here, transmission time increases the number of tasks. It is 
noticeable that the PSO algorithm suffers from high transmission time compared 
to TOPSIS-PSO and the CMODLB method because the task scheduling process in 
PSO takes more time than TOSIS-PSO and CMODLB method. In PSO method, the 
transmission time slightly increases with the increase in the number of tasks. It gives 
nearly 0.711  s for 10 tasks, while TOPSIS-PSO takes 0.644  s and the CMODLB 
method achieves 0.60  s for the same. The average transmission time of PSO and 
TOPSIS-PSO method is 1.39 and 1.32  s, respectively, whereas the average trans-
mission time of the CMODLB method is 1.30 s. The PSO and TOPSIS-PSO algo-
rithms provide average transmission time around 0.09 and 0.02  s, respectively, 
which are higher than the CMODLB method. Due to efficient load balancing and 

Fig. 9   Comparative perfor-
mance analysis on completion 
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task assignment processes, the CMODLB takes 6.65% and 2.12% less transmission 
time than PSO and TOPSIS-PSO, respectively, as shown in Table 16.

5.3.3 � Analysis of MakeSpan

This metric gives the overall completion time of all the tasks in VMs. The metric 
results are low when the load balancing method is well formulated. The calculation 
for MakeSpan is performed using Eq. (50). The performance of the proposed work 
is analyzed through three sets of tests in terms of MakeSpan:

(1)	 Test I: Experiment in Test I is performed for 15–60 numbers of tasks in 10 
numbers of VMs to analyze the performance of the CMODLB with respect to 
static algorithms such as MaxMin and Round Robin.

(2)	 Test II: 100–300 numbers of tasks are simulated for Test II. Results are compared 
with various dynamic algorithms such as FUGE [45], ACO, MACO, and TOP-
SIS-PSO [35] with the similar cloud setup configuration having 1000–20,000 
task length, 50 numbers of VMs with 500–1000 VM bandwidth, 256–2048 VM 
memory (RAM), and 10 numbers of data centers with 2–6 numbers of PM.

(3)	 Test III: To analyze the distributed nature of the proposed CMODLB algorithm, 
some grid computing-based algorithms [36] like SA, GA, GA-SA, GA-GELS, 
PSO, PSO-SA, and PSO-GELS are considered for performance evaluation. The 
experimental parameter values and simulation platform are kept similar for the 
proposed and existing algorithms for Test III.

Table 15   Comparison of 
completion time (in seconds) for 
CMODLB

#Tasks TaPRA BSO CMODLB

0 1 50 1
50 12 50 5
1000 20 50 15
1500 28 50 20
2000 42 50 30

0 0.5 1 1.5 2 2.5
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Fig. 10   Comparative performance analysis on transmission time



8831

1 3

CMODLB: an efficient load balancing approach in cloud computing…

5.3.3.1  Test I (MaxMin vs. R.R vs. CMODLB)  In the Test I experiment, the proposed 
CMODLB algorithm is compared with MaxMin and R.R algorithm for MakeSpan 
metric for 10 numbers of VMs and 15–60 numbers of tasks. Table 17 represents the 
obtained results for 15, 30, 45, and 60 tasks for MaxMin, R.R, and the CMODLB, 
respectively. Figure  11 shows that the proposed algorithm achieves 65.54% and 
68.26% lesser MakeSpan than MaxMin and R.R, respectively. This analysis shows 
that the proposed CMODLB algorithm provides better performance in a cloud envi-
ronment.

5.3.3.2  Test II: (TOPSIS‑PSO vs. FUGE vs. ACO vs. MACO vs. CMODLB)  Experiment is 
performed to check the performance of the proposed CMODLB method with respect 
to MakeSpan for dynamic nature-based algorithms. The comparative analysis is done 
with existing algorithms [35, 45] for 100, 200, and 300 tasks. Table 18 depicts the 
obtained values from the simulation. Algorithm FUGE and TOPSIS-PSO have per-
formed better than ACO and MACO, whereas CMODLB performed better among all 
the algorithms, as shown in Fig. 12.

5.3.3.3  Test III: (SA vs. GA vs. GA‑S vs. GA‑GELS vs. PSO vs. PSO‑SA vs. PSO‑GELS vs. 
CMODLB  The comparison of different algorithms is analyzed with similar simulation 
configurations. The MakeSpan for the proposed CMODLB and existing algorithms 
[36], i.e., SA, GA, GA-SA, GA-GELS, PSO, PSO-SA, and PSO-GELS, is depicted in 
Tables 19, 20, 21, and 22 for 100, 300, 500, and 1000 iterations, respectively, on 50, 
100, 300, and 500 number of tasks having 10 numbers of resources. From Fig. 13a–d, 
it may be seen that MakeSpan for the CMODLB method decreases as there is an 
increase in the number of tasks as compared to SA, GA, GA-SA, GA-GELS, PSO, 
PSO-SA, and PSO-GELS algorithms. Figure  13 clearly shows that the proposed 
CMODLB method is highly efficient compared to PSO-GELS and other methods. 

The involvement of efficient load balancing and task scheduling provides lower 
completion time and also helps in minimizing MakeSpan. The analysis shows that 
the proposed CMODLB algorithm is performing better in a cloud environment.

5.3.4 � Comparative analysis on number of VM migrations

Load balancing among PMs is carried out by VM migrations, which consumes 
energy and time due to migration. Hence, it is necessary to minimize the number 
of migrations in the system. Figure  14 demonstrates the comparative analysis of 
the number of VM migrations of the CMODLB method with various other existing 

Table 16   Comparison of 
transmission time (in seconds) 
for CMODLB

#Tasks PSO TOPSIS-PSO CMODLB

10 0.711 0.664 0.60
20 1.148 1.104 1.10
30 1.590 1.524 1.50
40 2.100 2.00 1.98
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methods, viz. HBB-LB, WRR, and utilization. The CMODLB method took only one 
VM migration, whereas the utilization method took 25 VM migrations. Since VMs 
are balanced in the CMODLB method, there is a smaller number of VM migration 
leading to less PM overloading. Hence, in the CMODLB method, the number of 
VM migrations is low.

5.3.5 � Analysis of resource utilization

In this section, the resource utilization performance of the CMODLB method is 
compared with DHCI and CESSC methods. Maximum utilization of resources indi-
cates minimum wastage of cloud system resources. The analysis of resource uti-
lization also illustrates the effectiveness of the cloud system to utilize bandwidth, 
energy, CPU, and memory.

Figure 15 demonstrates the comparative study on resource utilization with respect 
to time. From Fig. 15, it is clear that the wastage of resources in the CMODLB algo-
rithm is less that indicates utilization of resources is maximum due to the efficient 
task assignment process. CMODLB method provides resource utilization above 
50%, while the CESCC method is able to provide resource utilization between 28 
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Fig. 11   Comparative performance analysis for Test I

Table 17   Comparison of 
MakeSpan (in seconds) for 
Test I

#Tasks MaxMin R.R CMODLB

15 5.89 6.8 4.25
30 20.5 17.4 6.52
45 45.96 57.8 10.97
60 80.93 84.4 31.07

Table 18   Comparison of 
MakeSpan (in seconds) for 
Test II

#Tasks FUGE ACO MACO TOPSIS-PSO CMODLB

100 40 70 60 37.14 36.44
200 90 120 110 85.79 83.35
300 155 190 170 150.59 146.17
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Fig. 12   Comparative MakeSpan analysis for Test II

Table 19   CMODLB MakeSpan value for 100 iterations

ITERATIONS 100

TASKS SA GA GA-SA GA-GELS PSO PSO-SA PSO-GELS CMODLB

50 136.742 99.198 95.562 90 86.144 89.586 85.186 74.77
100 307.738 183.49 190.353 181.028 168.718 167.33 166.094 121.46
300 973.728 638.082 597.8 581.842 528.568 511.532 494.66 309.71
500 1837.662 1105.56 1072.362 1087.216 918.336 887.195 911.099 758.4

Table 20   CMODLB MakeSpan value for 300 iterations

ITERATIONS 300

TASKS SA GA GA-SA GA-GELS PSO PSO-SA PSO-GELS CMODLB

50 131.12 89.486 86.98 84.298 85.312 87.684 84.174 60.83
100 233.2 172.628 179.062 175.598 170.452 167.16 166.422 102.38
300 911.68 570.466 532.968 600.862 518.268 526.71 527.086 367.72
500 1492.616 1071.014 1037.942 1055.504 890.354 896.586 881.991 614.2

Table 21   CMODLB MakeSpan value for 500 iterations

ITERATION 500

TASKS GA GA-SA GA-GELS PSO PSO-SA PSO-GELS CMODLB

50 117.994 85.264 84.614 83.362 85.22 83.774 51.29
100 261.664 175.084 171.817 168.714 176.688 170.732 102.38
300 855.896 863.55 521.302 552.828 506.026 509.04 309.71
500 1640.528 993.964 1000.561 954.652 849.066 894.495 758.4
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and 50% for 50 min. The resource utilization of the DHCI method oscillates between 
30 and 60%. The CMODLB method achieves 75% utilization, which is much effec-
tive than DHCI and CESCC. Load balancing, scheduling of tasks, and migration 
of VMs are always concerned with resources; hence, it is clear that implementing 
the CMODLB method will achieve better resource utilization and reduce wastage of 
resources.

Table 22   CMODLB MakeSpan value for 1000 iterations

ITERATION 1000

TASKS SA GA GA-SA GA-GELS PSO PSO-SA PSO-GELS CMODLB

50 108.151 82.566 84.856 84.402 87.436 86.106 85.72 60.83
100 223.158 167.755 160.84 160.694 170.716 174.648 169.784 102.38
300 867.48 545.146 542.52 533.336 520.953 511.33 421.388 309.71
500 1495.312 933.798 935.794 932.23 856.9 888.534 851.614 614.2

Fig. 13   Comparative analysis on MakeSpan for various iterations
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5.3.6 � Load fairness

This metric measures the fairness of the system with respect to load and is calcu-
lated by using Eq. (51). This metric should be as high as possible to achieve better 
performance [17]. In Fig. 16, system load is taken on X-axis, while the fairness of 
the system is taken on Y-axis. Here, fairness signifies the presentation of the pro-
posed method in system load. The proposed CMODLB method is compared with 
the existing two-level method. The two-level method provides system fairness about 
1 as constant for different system loads. The task scheduling process is not effective 
in the two-level method, and hence it has constant load fairness for different system 
loads, which makes it less efficient in heavy-load systems. However, the CMODLB 
method attains better performance with a heavy system load. It offers up to 1.12 sys-
tem performance for 100% system load. It shows that the proposed method is reli-
able for heavy system load. Hence, the performance of load balancing is improved in 
the CMODLB method compared to the existing load balancing methods.

6 � Conclusion

In this paper, to resolve load balancing issues in both VMs and PMs, a novel hybrid 
clustering, multi-criteria and VM migration-based approach (CMODLB) is pro-
posed. To achieve our objectives, the cloud environment is designed with three 
entities: VM clustering using a load balancer and VM manager, the TOPSIS-PSO 
method for efficient task scheduling, and IT2FL for selection of optimal PM for VM 
migration. The first two entities approached load balancing at VM level, whereas 
the third entity maintains PM-level load balance. VM manager groups the VMs into 
underloaded and overloaded VMs, and balancer manages the clusters in order to pre-
serve the uniqueness. For this purpose, BOEK-means with ANN algorithm is used. 
Task scheduling process allocates tasks to optimal underloaded VM using multi-
objective-based existing TOPSIS-PSO algorithm. Optimal VM for task assignment 
is selected based on significant metrics such as execution time, transmission time, 
and CPU utilization.

The above two processes balance load among VMs, while VM migration intends 
to balance load across the PMs. VM migration aims to minimize load and energy 
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consumption on PMs. Soft computing-based IT2F logic is incorporated to select 
optimal destination PM for VM migration to maintain PM load and energy-efficient 
cloud. The obtained experimental results show that the proposed CMODLB load 
balancing technique manages improved load balancing along with effective com-
pletion time, transmission time, MakeSpan, resource utilization, and load fairness. 
This IT2F logic method for calculating optimal destination PM for VM migration 
is novel and remarkable. In the future, we aim to cover load balancing with various 
machine learning tools and methods to improve energy efficiency which is lacking 
in the current proposed model. This will include storage intensive tasks and storage 
IOPS/transfer-based VM capacity in real-time cloud environment.
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