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Abstract

A hybrid of supervised (artificial neural network), unsupervised (clustering)
machine learning, and soft computing (interval type 2 fuzzy logic system)-based
load balancing algorithm, i.e., clustering-based multiple objective dynamic load bal-
ancing technique (CMODLB), is introduced to balance the cloud load in the present
work. Initially, our previously introduced artificial neural network-based dynamic
load balancing (ANN-LB) technique is implemented to cluster the virtual machines
(VM) into underloaded and overloaded VMs using Bayesian optimization-based
enhanced K-means (BOEK-means) algorithm. In the second stage, the user tasks
are scheduled for underloading VMs to improve load balance and resource utiliza-
tion. Scheduling of tasks is supported by multi-objective-based technique of order
preference by similarity to ideal solution with particle swarm optimization (TOP-
SIS-PSO) algorithm using different cloud criteria. To realize load balancing among
PMs, the VM manager makes decisions for VM migration. VM migration decision
is done based on the suitable conditions, if a PM is overloaded, and if another PM
is minimum loaded. The former condition balances load, while the latter condition
minimizes energy consumption in PMs. VM migration is achieved through inter-
val type 2 fuzzy logic system (IT2FS) whose decisions are based on multiple sig-
nificant parameters. Experimental results show that the CMODLB method takes
31.067% and 71.6% less completion time than TaPRA and BSO, respectively. It has
maintained 65.54% and 68.26% less MakeSpan than MaxMin and R.R algorithms,
respectively. The proposed method has achieved around 75% of resource utilization,
which is highest compared to DHCI and CESCC. The use of novel and innovative
hybridization of machine learning, multi-objective, and soft computing methods in
the proposed algorithm offers optimum scheduling and migration processes to bal-
ance PMs and VMs.

Keywords Machine learning - Interval type 2 fuzzy set - Load balancing - ANN -
K-mean clustering - VM migration
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1 Introduction

The ubiquitous nature of cloud computing has attracted tremendous users in recent
years [1]. Cloud computing has the ability to handle an expanded volume of tasks
by providing an adaptive online environment. The ability of the cloud is to support
numerous users and tasks that provide many advantages. It introduces a new con-
cern, known as load balancing [2]. The involvement of numerous users requires an
efficient load balancing mechanism to maintain an unmanaged cloud environment
system. Numerous load balancing methods are studied and examined in the previous
work [3]. Here, the authors provided a clear view of the performances of different
cloud load balancing techniques with their pros and cons. Figure la shows a bal-
anced cloud environment in which user tasks are distributed to all virtual machines
(VMs) in each physical machine (PM) to maintain load balancing. Similarly, Fig. 1b
illustrates an unbalanced cloud in which user tasks are assigned to a particular PM
to make it overloaded. The efficient utilization of resources makes a significant and
balanced cloud.

Several researchers have shown interest in other clouds-related research such
as task scheduling and VM scheduling process to achieve efficient load balancing,
high utilization of resources, energy efficiency, improvement in quality of service
(Q0S), etc. [4]. In task scheduling, many optimization algorithms such as particle
swarm optimization (PSO), fuzzy logic (FL), and genetic algorithm (GA) are used
to achieve optimized solutions. Author [4] has analyzed various task and resource
scheduling processes in different layers. Adaptive multi-objective task scheduling
(AMTS) strategy was introduced for efficient resource utilization and energy effi-
ciency [5]. The PSO algorithm is adapted for the task scheduling process. Tempo-
ral task scheduling algorithm (TTSA) deals with cost minimization problem in a
hybrid cloud [6], where the solution for cost minimization problem is derived from
hybrid simulated annealing PSO algorithm. VM-based task scheduling proves that
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Fig. 1 a Balanced cloud, b Unbalanced cloud
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load balancing and resource utilization can be improved jointly by a proper schedul-
ing process [7]. To achieve this, greedy PSO (GPSO) algorithm in which particle
initialization is better than traditional PSO is employed. In order to reduce the large
consumption of energy and improve load balancing, resource pre-allocation and task
scheduling were employed [8] in the process. Here, scheduling of tasks and alloca-
tion of resources are performed by the matching probabilistic and simulated anneal-
ing (SA) algorithms (CESCC).

MakeSpan is minimized by performing suitable load adjustment in a multi-data
center cloud [9], in which a static load balancing strategy, namely the Multi-Rumen
Anti-Grazing algorithm, is presented for load adjustment. Autonomous agent-based
load balancing (A2LB) algorithm balances load among VMs in the cloud with the
help of three agents as load, channel, and migration [10]. These three agents are
incorporated in each data center (DC) to migrate VM from overloaded DC to under-
loaded DC. Another agent-based load balancing scheme is included with front-end
agent (FA), server manager agent (SMA), and virtual machine agent (VMA) [11].
FA is responsible for routing VM requests, while VMA and SMA are responsible
for load monitoring in VM and PM, respectively. Load balancing in a dynamic
multi-service scenario in centralized hierarchical cloud-based multimedia system is
considered as an integer linear programming problem [12]. The problem is solved
by an efficient GA with an immigrant scheme. The load balancer is responsible for
task migration, whereas load balancing is achieved using efficient task scheduling
in DC [13]. Here, the tasks are scheduled by an improved weighted round robin
(WRR) algorithm, which considers the current load on VM for scheduling. Dynamic
Hadoop cluster on [aaS (DHCI) architecture has involved modules of VM migra-
tion, VM management, scheduling, and monitoring to achieve well-behaved load
balancing for cloud system environment [14]. Parallel computing entropy is utilized
for dynamic VM migration-based data locality scheme. Continuous VM migration
is supported by named data networking (NDN) in order to balance load among DCs
in the cloud [15]. In NDN, VMs and services are provided with a unique name to
provide uninterrupted services during VM migration.

Though the above-discussed works improve load balancing, it is still a pri-
mary concern due to the increasing demand of cloud-based environment in every
advanced computing field. Thus, it is necessary and demanding to design novel
algorithms for load balancing in the cloud system environment. The major strength
of the proposed method is that it includes the machine learning-based supervised
and unsupervised technique to train the cloud systems to identify the loads on VMs
and clusters them into underloaded and overloaded VMs. Once cluster formation
is achieved, it would be easier for the cloud system to assign cloud tasks to under-
loaded VMs. Task assignments are performed using a mathematical multi-criteria-
based TOPSIS-PSO method which will reduce the system complexity by introduc-
ing relative closeness for cloud performance metrics, execution time, transmission
time, and CPU utilization to the PSO method. Further, a fuzzy-based technique is
incorporated to identify the destination PM for the migration of overloaded VMs
to achieve PM-level load balancing. The use of these soft computing based-tech-
niques gives more realistic results than the previously existing work and enhances
the proposed method strength. However, the proposed method does not focus on
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storage-intensive tasks and storage IOPS/transfer-based VM capacity which makes
the work less advanced in a real-time-based cloud environment.

The significant contributions of this paper in cloud computing are summarized as
follows:

¢ Efficient CMODLB load balancing method is the hybridization of artificial neu-
ral network-based load balancing (ANN-LB), technique of order preference by
similarity to ideal solution with particle swarm optimization (TOPSIS-PSO), and
interval type 2 fuzzy logic system (IT2FLS) methods in order to balance load
among VMs and PMs in the cloud environment. The objective of CMODLB is
to improve multiple objectives such as MakeSpan, resource utilization, comple-
tion time, transmission time, energy consumption, and load fairness.

e The proposed CMODLB is initiated by Stage 1 where the ANN-LB technique
is applied using Bayesian optimization-based K-means (BOK-means) with ANN
algorithm to create clusters of VMs into underloaded VMs and overloaded VMs.
Runtime tasks are scheduled to underloaded VM to maintain the load balance.

e In Stage 2, runtime tasks are scheduled by applying the TOPSIS-PSO algorithm,
which supports three objectives for scheduling. The multiple objectives taken
into account are execution time, transmission time, and CPU utilization.

e In Stage 3, the VM manager monitors the load on PMs and migrates optimal
VM from the overloaded PM. VM migration decision is also made if a PM has a
minimum load in order to minimize energy consumption.

e In the VM migration process, optimal destination PM is selected by decision
making interval type 2 fuzzy logic system (IT2FL), which achieves efficiency in
uncertainties. Fuzzy logic assures that the destination PM is underloaded based
on significant parameters.

The rest of this paper is prepared as follows: Sect. 2 debates previous related lit-
erature on cloud environment-based load balancing. In Sect. 3, existing problems in
the previous work are highlighted. Section 4 explains the proposed CMODLB load
balancing algorithm working structure, while Sect. 5 examines the experimental
evaluation of implemented work. Finally, Sect. 6 gives a glimpse of the contribution
of the work and concludes with future scope.

2 Related work

The adaptive cost-based task scheduling (ACTS) method was introduced to mini-
mize the completion time of a task to maximize its QoS [16]. Completion time on
each VM has been taken as the cost of the data access path, and tasks were given a
priority based on a deadline. The minimum cost path was allocated for a low-prior-
ity task, which had a minimum deadline. Here, VMs are selected based on comple-
tion time only, which has introduced unbalanced load and resource underutilization.
Hence, this approach degrades the performance of the cloud when the selection of
VMs is made only by completion time.
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A two-level task scheduling technique was presented in a multimedia cloud [17].
In this mechanism, first-level scheduling was performed between users to DCs and
second-level scheduling was performed among DCs to servers. Both scheduling
levels followed the M/M/1 queuing system. However, M/M/lqueue supports only
a single server and also limits waiting space for tasks. This limitation makes it less
efficient.

Li et al. attempted to reduce the heavy consumption of energy in the cloud by
minimizing job completion time (JCT) [18]. For this purpose, task placement and
resource allocation (TaPRA) and TaPRA-fast algorithm were developed. However,
these algorithms are able to solve only a single-task placement problem and not suit-
able to handle multiple tasks.

Energy-aware dynamic task scheduling (EDTS) algorithm was involved with two
algorithms, namely data flow graph critical path (DFGCP) and critical path assign-
ment (CPA) [19]. Here, DFGCP was used to obtain a near-optimal solution, while
the CPA algorithm was employed to find an optimal solution. This method fails to
provide efficient resource utilization with lower energy consumption.

Load balancing was performed through VM scheduling in the cloud [20]. VM
scheduling was carried out by combining two optimization algorithms, resulting in
a new meta-heuristic algorithm named ant colony optimization with particle swarm
(ACOPS). The workload for new requests was predicted based on historical infor-
mation in ACOPS. A pre-rejection module was incorporated to minimize scheduling
time. Maintaining historical information increases space complexity, and due to the
pre-rejection module, user tasks do not experience better QoS.

Hybrid particle swarm optimization (HPSO) was applied for load balancing in
centralized cloud-based multimedia storage [21]. In HPSO, each particle’s weight
was computed by multi-kernel support vector machine (MKL-SVM) and fuzzy
simple additive weight (FSAW) methods. The involvement of three simultane-
ous and dynamic algorithms increases both load balancing time and computational
complexity.

Honey bee behavior-inspired load balancing (HBB-LB) algorithm was presented
to balance load across VMs and minimize the tasks’ waiting time [22]. Load bal-
ancing was performed by the task transfer process in which tasks from overloaded
VMs are migrated to underloaded VMs. Here, load balancing during initial task
assignment is not considered and tasks are assigned to random VM, which increases
MakeSpan and resource underutilization.

PSO algorithm and bacterial foraging optimization (BFO) algorithm were com-
bined and introduced bacterial swarm optimization (BSO) to perform load balancing
in DCs [24]. In a hybrid bacterial algorithm, the global solution over search space
was determined by the PSO algorithm, and local search was performed by the BFO
algorithm. This algorithm focused on only allocating optimal VM for incoming
tasks; however, load on PMs was not considered.

Dragonfly optimization algorithm-based load balancing method was introduced
to balance load among VMs [25]. Initially, each VM’s load and capacity were cal-
culated, and tasks were assigned to VMs randomly. If the load on VM was greater
than the threshold, then optimal underloaded VM for each task was selected. This
method increases MakeSpan for user tasks and suffers from high processing time.
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Load balancing via optimal task deployment strategy was realized in [26]. Bayes
theorem was introduced to find probabilities of physical host for optimal task
deployment. Based on the probabilities, physical hosts were clustered to detect opti-
mal PM for user task. In this way, the load across PMs was balanced. However, this
method is not suitable to balance load across VMs.

VM migration was performed by using a distributed network of brokers [27].
Migration decision was made based on RAM and CPU state of VMs, and migration
was performed by deriving policies by hypervisor. This method increases complex-
ity and does not perform well in terms of resource utilization.

Firefly optimization—energy-aware virtual machine migration (FFO-EVMM)
algorithm was presented to attain both load balancing and energy efficiency [28].
FFO-EVMM algorithm also utilizes the concept of artificial bee colony (ABC) algo-
rithm for load monitoring on VMs. If a migration decision was made, then optimal
VM for migration and optimal destination for migration were determined by FFO
algorithm. This method increases migration time because time constraint is not con-
sidered in the migration process.

Energy-aware utility prediction model was introduced for VM consolidation in a
cloud [29]. Here, VM consolidation model was applied periodically to optimize VM
placement. VM migration was enabled if any resource of VM exceeds total capac-
ity. Consideration of a single parameter for migration increases the number of VM
migrations, which results in higher energy consumption.

Thus, the previous works seem to be insufficient to achieve efficient load balanc-
ing. The majority of the works focus on either task scheduling or load balancing in a
cloud. However, introducing an effective task scheduling and load balancing (among
VMs and PMs) method is a key concern in cloud computing. This work introduces
an algorithm with the aim to increase load balancing performance by using effective
clustering, task scheduling, and VM migration process.

3 Problem definition

An enhanced Min-Min algorithm, which involves two phases, was presented for
load balancing in a cloud [30]. In the first phase, tasks were assigned to VMs based
on execution time, and in the second phase, tasks were rescheduled to utilize unused
resources. Since tasks are assigned to VMs, which provide minimum execution time.
In the first phase, rescheduling of tasks increases execution time. Involvement of two
scheduling processes increases overall MakeSpan, which degrades its performance.

In multi-objective tasks scheduling algorithm, tasks were given priority based
on QoS, and VMs were sorted based on MIPS values [31]. Tasks and VMs were
assigned as per the task and VM list. In this process, resource utilization is poor
since VMs are sorted based on MIPS values. The VM list which is prepared ini-
tially is processed with all task set. After assigning a task to VM, the parameters of
VM may change. This change is not considered in the presented method. Hence, the
scheduling process is not much efficient.

Two-stage strategy for task scheduling includes Bayes classifier for classifica-
tion of VMs in the first stage and scheduling algorithm in the second stage [32].
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In this method, task queue, waiting queue, and ready queue were maintained, and
tasks were put in a waiting queue until a suitable VM became idle. Maintenance of
multiple queues and databases increases space complexity. This method allows wait-
ing queue tasks to move into the ready queue only if the ready queue is free. Hence,
waiting time for tasks in the waiting queue is increased significantly.

The self-adaptive learning PSO (SLPSO) algorithm was included with four
update strategies to update the velocity of particles [33]. The best update strategy
was detected in each iteration based on execution probability and used in the SLPSO
algorithm. In SLPSO, frequent selection of update strategy leads to higher time con-
sumption and higher complexity.

Load balancing mutation using PSO (LBMPSO) algorithm was introduced to
schedule tasks and load balancing in which objective function was formulated based
on expected execution time, transmission time, and round trip time [34]. All three
times were computed for each task on each VM to find the optimal VM. If the num-
ber of VMs and tasks are large, then this method presents a large MakeSpan and
high complexity. Hence, it motivates to introduce an effective idea to balance cloud
loads without reducing execution time and resource utilization.

An efficient novel task scheduling algorithm called technique of order prefer-
ence by similarity to ideal solution with particle swarm optimization (TOPSIS-PSO)
algorithm has been introduced [35]. TOPSIS-PSO solves task scheduling issues
using multiple objective-based technique i.e., TOPSIS. The TOPSIS algorithm gen-
erates fitness value for PSO technique using three multi-criteria, viz. execution time,
transmission time, and cost. The algorithm has been found suitable for task schedul-
ing approaches with less computational complexity but lacks load balancing issues.
Hence, to get an efficient outcome, we performed a multi objective-based TOPSIS-
PSO algorithm (using four objectives) for scheduling of the tasks in our dynamic
load balancing approach.

A new hybrid task scheduling technique named PSO with gravitational emulation
local search (PSO-GELS) has been introduced for grid computing [36]. The algo-
rithm PSO-GELS perfectly examines its role with respect to MakeSpan. We com-
pared it with our proposed CMODLB load balancing algorithm with respect to the
obtained MakeSpan values for the same configurations set because of its dynamic
nature. Previously, authors [36] have compared their work with various other exist-
ing algorithms such as SA, GA, GA-SA, GA-GELS (genetic algorithm—gravitational
emulation local search), PSO, and PSO-SA.

Authors of [49] have introduced a crow—penguin optimizer which is the fusion
of the crow search optimization algorithm (CSA) and the penguin search optimiza-
tion algorithm (PeSOA) for the execution of multi-objective task scheduling strat-
egy (CPO-MTS). The introduced CPO-MTS algorithm performed the execution of
tasks in a minimal time by a converging problem to a global optimal solution rather
than the local optima. Authors have compared their work with various other existing
algorithms such as CPO, CSA, PSO, ABC, GA, ACO, and PeSOA. The introduced
work is suitable for load balancing in a static cloud environment which makes the
algorithm less effective.

A novel task scheduling technique named threshold-based multi-objective
memetic optimized round robin scheduling (T-MMORRS) is presented to offer

@ Springer



8794 S.Negi et al.

high-quality services and maintains bursty user demands [50]. Initially, some user
requests are transferred to the server where the proposed algorithm performed a
quick scan for workload conditions through a burst detector. Furthermore, if the
obtained result by burst detector has a normal load, then T-MMORRS chooses
threshold multi-objective memetic optimization (TMMO) else T-MMORRS
will choose weighted multi-objective memetic optimized round robin scheduling
(WMMORRS) for burstiness load. T-MMORRS technique is compared with the
multi-objective genetic algorithm (MGA) and dynamic power-saving resource allo-
cation (DPRA). T-MMORRS achieves higher efficiency and lower time consump-
tion. However, the algorithm offers high complexity to the cloud system.

An efficient load balancing system using an adaptive dragonfly algorithm was
proposed by the authors of [51]. Completion time, processing costs, and load param-
eters are used to develop the multi-objective function. Authors have compared their
work with dragonfly optimization algorithm (DA) and firefly algorithm (FA) and
claim that the proposed method has better performance than the respective algo-
rithms. The limitation of this work was that the author has not focused on load
fairness and resource utilization cloud parameters which makes the algorithm less
efficient. For more detailed survey comparison of various existing load balancing
algorithms have been discussed in Table 1.

4 Proposed work
4.1 System overview

The proposed work focuses on load balancing among PMs and VMs in a cloud
environment through hybrid supervised (with target attribute, i.e., ANN) and unsu-
pervised (without target attribute, i.e., BOK-means clustering) machine learning
techniques for efficient load calculation and VM clustering process. The proposed
cloud environment consists of M numbers of PMs as:P = {PM,,PM,, ...,PM,, }
. In each PM, L numbers of VMs are included as: VM = {VMl, VM,, ... ., VML}.
The cloud environment is involved with S number of users tasks represented as
T = {Tl, T,,..., TS}. To balance load among M PMs and L VMs, two entities, VM
manager (VM,,,,) and cloud balancer (Cg,), are involved.

an

4.1.1 4.1.1 Contribution methods

The proposed cluster-based multi-objective dynamic load balancing (CMODLB)
method is introduced for an efficient load balancing without the loss of resource uti-
lization. Figure 2 depicts the overall functioning of CMODLB method. To achieve
the goal, machine learning- and soft computing-based techniques have been used for
each stage to learn the behavior of the cloud to develop the effectiveness and better
performance of the cloud environment. The CMODLB method comprises the fol-
lowing three stages:
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CMODLB: an efficient load balancing approach in cloud computing... 8801

4.1.1.1 Stage |: Grouping of VMs using BOEK-means with ANN 1In this stage, the load
of cloud VMs under PMs is calculated using Bayesian optimization-based K-means
with artificial neural network as shown in Fig. 3. The reason behind using ANN is
to support multiple VMs simultaneously to get the current load with the objective to
reduce the total clustering method. In our previous work [23], we investigated that the
K-means clustering algorithm offers a major shortcoming in the initialization of the
centroid which makes it more expensive to evaluate the functions. To overcome this
problem, Bayesian optimization (BO) algorithm which builds a probabilistic model
for the problem and finds posterior predictive distribution for that problem [37, 38] is
introduced with the K-means algorithm.

4.1.1.2 Stage ll: Task scheduling using TOPSIS-PSO method For efficient task sched-
uling, the technique of order preference by similarity to ideal solution with particle
swarm optimization (TOPSIS-PSO) algorithm [35] is performed with different cloud
objectives. A VM is allocated to a task which minimizes execution time and transmis-
sion time and maximizes CPU utilization. Here, PSO algorithm is combined with a
multi-objective-based TOPSIS algorithm in order to remove the PSO’s weak local
search ability and to find optimal fitness function by considering three criteria. The
relative closeness is formulated by the TOPSIS algorithm which is the objective func-
tion for PSO. All underutilized VMs are taken in PSO algorithm, and fitness value
is calculated using multi-objective TOPSIS algorithm. The use of multi-objective
TOPSIS method introduces the most efficient task scheduling outcome. PSO algo-
rithm is set with tasks on underloaded VMs (T}, = {Tu1s Tyss---s TUQ}), and at each
iteration, the fitness value for a particle is calculated. The fitness value gives particle
local best (LBest) and global bbest (GBest) values, and both values are updated.

A VM Manager

User T(GR [ | N R [ e M| M
;.‘ (T3, T PM; PM; PMas LIST | LIST /

\ ~
| VM | M | | ™M | | M | VM: ‘ 1 VM ] | VM ‘ M | | VML |

BOK-Meahs with ANN based
""" clustering

E;

T . VMu
1 TOPSIS-PSO v Underloaded Overloaded
: Task v VMs VMs
T [~  Scheduling e
e : Algorithm
- VMg
-

Opnmal PVI selccled by Overloaded
PM

VM Migration Load balancing and Task scheduling

Fig.2 CMODLB method

Load
balancer
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Fig. 3 BOK-Means with ANN-based clustering

4.1.1.3 Stage lll: VM migration using Iterative Type 2 Fuzzy Logic (IT2FL) method For
PM-level load balance, it is necessary to maintain destination PM with a balanced
load even after VM migration. Available resources are also important in destination
PM selection which provides better performance for user tasks. Therefore, a selection
of optimal destination PM should be performed in an efficient manner. To realize this
fact, interval type 2 fuzzy logic (IT2FL) is incorporated in VM migration process as
shown in Fig. 4 that illustrates the flow diagram of IT2F logic for PM selection. Here,
rule base follows rules to obtain fuzzy output. PM with high output is taken as PM
(destination PM). Lotfi A. Zadehi introduced IT2FL set to extend the functional
properties of Typel and general fuzzy logic systems. IT2 FL gives the possibility to

Fuzzy Controller
Input Non Fuzzy Output
Knowledge
Base Rule
Available PM 4
Memory Rule combination output processing
Low, Medium
Available PM Fuzzyfier 6 Type . and High
CPU _,| Fuzzy Reduction Defuzzification Possibility of
Inference Using Using Optimal
Mods (CoS) (Centroid) Destination PM
5 8
Available PM " 3 ’
Load
i :
1 Input
IT2Fuzzy Set
3

Fig.4 IT2 FL logic for PM selection
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provide more parameters to describe membership functions (MF) and handles more
uncertainty [40]. It is the first-order uncertainty fuzzy set model.

The overall process of the CMODLB method includes a grouping of under-
loaded and overloaded VMs using supervised ANN-LB technique, scheduling of
tasks by TOPSIS-PSO multi-criteria-based technique, and VM migration using
iterative type 2 fuzzy logic (IT2FL) method is depicted in Fig. 2 where as Table 2
explains description of used notations in the manuscript. Each significant stage has
been discussed in detail in the following sections.

4.2 BOEK-means with ANN-based clustering (Stage I)

Knowledge of the currently available load on VMs will improve task scheduling,
thus reducing the unbalanced DCs and decreasing resource underutilization. To
achieve this, we have introduced VM,,,, that will perform clustering of VMs based
on their current available load in each PM; VM,,,, maintains VM list with their load
information and PM list with their information. VMs are clustered as per their cur-
rent load given as follows:

Table 2 Notations and their description

Notation Description

VM Virtual machine

PM Physical machine

DC Data center

Tg Task from sth user

MIPS Million instructions per second
Ep Execution time of sth task on Lth VM
VMpan VM manager

Cgal Cloud balancer

NIE Number of processors in Lth VM
Nlbnps Number of MIPS in Lth VM
BW" Bandwidth of Lth VM

VMy Cluster with underloaded VMs
VM, Cluster with overloaded VMs
Wi, C(Vy).Ly. Weight, capacity, load of Lth VM

Er, Transy,, Ugpy

Execution time, transmission time, CPU utilization of
sth task on Lth VM

C C=(cy, ¢,,.., cg) is the set of centroid

y(c) Bayesian optimization for best centroid

G G={G,, G,} Cluster groups

PMg e Overloaded physical machine for VM migration process
PM,der Underloaded physical machine

PM, Destination physical machine for VM migration process
Vop Optimal VM for migration process

@ Springer



8804 S.Negi et al.

e Underloaded VMs: Set of VMs having load lower than the target value, and it is
denoted as VM,

e Overloaded VMs: Set of VMs having load greater than the target value, and it is
denoted as VM,

Group formation of VMs is realized by BOK-means with ANN algo-
rithm. In BOK-means with ANN algorithm, all VMs are fed into ANN to cal-
culate their current load. The load on each VM is considered as weight val-
ues and denoted as W = {WVI,WVQ,...,WVL}. Based on the weight value
of each VM, BOK-means algorithm forms clusters such as underloaded
VMs  with VM = {VMy,,VMy,,..VMy,} and overloaded VMs with
VM, = {VMOl, VMOZ,..,VMOR}. Weight value in terms of the load is calculated
using Eq. (1) as follows:

Ei Y EY assigned task on V;
J

W, =1, (1)
C(V.)

where W, and L; denote the weight and load on Lth VM, while E; | represents the
execution time of Sth assigned tasks on VM; . C(V,) provides the capacity of VM|,
and computed as:
C(Vy) = (Ny X Nyps + BWH) x ﬁ. )
The capacity of each Lth VM (C (VL )) is calculated by considering the number of
processors (Np), the number of million instructions per second (MIPS), and band-
width (BW) of Lth VM. Figure 3 illustrates BOK-means with ANN algorithm-based
clustering process. The optimal centroid maximizes the performance of the K-means
clustering algorithm. For a given function f{c) that represents optimization problem
and c represents the attribute of user task belonging to the compact set of centroids
(c € C), the probability of clustering improvement is expressed as:

Improvement = @(y(c)) 3)

wherey(c) is obtained from

oy L) 2 e @
o(c)
Here, yu, is the predictive mean function and o(c) is a predictive marginal function.
Improvement in an optimal solution is obtained from Eq. (3). After the initialization
of the optimal centroid, all VMs are initialized with their weight values. Then BOK-
means method was performed to find optimal clusters.

@ Springer
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Algorithm:1 BOK-means with ANN algorithm (stage 1)
Input: Set of VMs, V={vi, v2,..,vr}, Number of clusters k, Maximum iteration I.
Output: Set of K groups, G={G1, Ga,..,Gk}

Begin

//ANN

Initialize V

Fed V into ANN

Foreachv €V,

Compute L by Eq.(1)

Assign W « L

Find W={wy,1, Wy, Wy3,.., Wy}

//BOEK-means

for1=1,2....(Max iteration) do

Calculate (c;)=arg max f(c)

9 Problem Function y(c) = f(c"o’_i%;))_“‘fmm Eq.4

11: Augment new point to the ¢;

12: Update current location of optimum K-centroid
13:  Apply Eq.(3) to the updated optimum K-centroid
14: end for

15: Initialize k-centroid C=(c1, c2,.., ck) by Eq. (3)
16: Initialize W

17: foreachc € C do

18: v, EV

19;: end

20: foreachveV

21: Compute d(v,) < argminDistance(vy,cy)
21: end

22:  While (iteration<I)

23:  Repeat

24: foreachc; € C do

25: Update cluster

26: foreach v, €V do

27: minDistance « argminDistance(vy,c;)
28: If (minDistance # d(v,))

29: d(v,) < minDistance

30: changed «true

31:  endif

32:  end for

33: iteration ++

34:  until changed=true

35:  end while

36: end

37:  until the maximum of iteration reached or a solution found
38:  return cluster formation (best solution found)

Algorithm 1 depicts the complete process of clustering of VMs using the BOK-
means method ANN algorithm. The obtained cluster includes g, and g, where

g1 =VMy ={VMy,,VMy,,....VMyp} 8, = VMo = {VMy,, VM, ..., VMg }.

Here,g, includes a cluster of underloaded VMs and g, includes a cluster of over-
loaded VMs. In the cloud, each VM is able to execute different tasks having dis-
similar execution times. This process of execution of different tasks in different VMs
may dynamically vary the current load of VMs. Because of this dynamic execu-
tion nature, it may happen that a VM in g, may achieve heavy load or a VM in g,
may lead to achieve less load. Such factor motivates to introduce a balancer that
will maintain each cluster group without losing their uniqueness. The key role of
the balancer is to make a decision on load balancing by assigning its each VM to a

@ Springer



8806 S.Negi et al.

suitable cluster location. For example, if any VM in g, has changed its current load,
then it is the responsibility of the balancer to remove that VM from g, and put it
into a suitable cluster location in g,. Hence, each cluster maintains optimal VMs. To
understand its concept more deeply, let us consider four VMs in the cloud system
having VM_ID from 0 to 3. Each VM initially assigned some tasks to their specific
IDs (0 to 3). Using ANN, the obtained VM loads are VML, = 0.19, VML, = 0.19,
and VML, = 0.20. Further, assume that using ANN the obtained values are clus-
tered into the underloaded and overloaded clusters using the BOK-means method.
To classify VM, and VM,,, a threshold is set from which g, = { VML, andVML,} is
obtained as an underloaded and g, = {VMLlandVML3} is obtained as an overloaded
cluster. The threshold is calculated using Eq. (6) and Eq. (7), respectively. Obtained
VM loads are depicted in Table 3.

g n
Dist= ) M VML —m? Vj=1,2,....p Vk=1,2,..,m )
j=1 i=1
J

g = ), VML 6)

VM=1
& = 2 VML, @)

VM=1

if [g] < gz] then g, is Underloaded. else g, is overloaded. if [gl = gz] then Lg,
will assign tasks to VM having minimum load among VMs of g, and g, both. The
obtained underloaded VMs are further being used for task assignment execution
using a multi-objective-based TOPSIS-PSO scheduling algorithm.

4.3 Multi-objective-based TOPSIS-PSO scheduling algorithm (Stage )

The next step is task scheduling process in which each task is allocated to the
optimum underloaded VM of cluster g;. The task scheduling process aims to bal-
ance the load between VMs and to make the best use of resource utilization. In
this process, to preserve load among VMs, the set of VMU determined by BOK-
means with ANN algorithm is taken and other VMs have been excluded. Incom-
ing user tasks T = {Tl,Tz, ...,TS} are assigned to optimal underloaded VM in

Table 3 Obtained VM loads VM _Id VM Task_Id VML
0 1 0 0.19
1 2 1 0.19
2 3 2 0.20
3 4 3 0.19

@ Springer
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VM, = {VMUl, VM, ..., VMUQ}. Based on multiple parameters such as the exe-
cution time of task, the transmission time of the task, and CPU utilization, an opti-
mal VM is selected.

The execution time (E;) of Sth task on Lth VM is given by

lengthg
MIPS, ®

To be Minimized, E; =

Execution time is computed by obtaining the ratio of the length of the Sth task
lengthg and MIPS of Lth VM. Optimal VM is nominated for Sth task that reduces
E;.

The transmission time (77) for a task 7 on VM V; is computed as

Sizeg

To be Minimized, T = B_WL )

The transmission time of the S task on a specific VM is obtained by taking the
ratio of task size Sizeg and bandwidth of VM BW; . Similarly, CPU utilization of VM
is calculated by

Total CPU usage of processes

To be maximized, Upy = (10)

Number of processes

The TOPSIS algorithm is initiated by assigning some weight values for every
three criteria which are signified by [ET, Ty, UCPU] = [H E,H,mm,HU] and includes
the following steps:

Stepl Construction of Decision Matrix (DM). The decision matrix is constructed
using multiple alternatives and multiple criteria.

Here, Ty, Ty, Tyss Tys, and Tyys are called alternatives (tasks) and E, T, and
Ucpy are known as multiple criteria. Ev};, Tyy;, and Ugpyy; represent the execu-
tion time, transmission time, and CPU utilization of T, on VMUQ, respectively. The
obtained DM values for five tasks Ty, Ty, T3, Tys, and Tyys on underloaded VM,
(vmID =0) with E1, T, and Ugpy; are expressed in Table 4.

Step2 Construction of Standard DM. In this step, each criterion is compared with
each column alternative to transform into non-dimensional attributes. In this stand-
ardization, each row of DM is divided by the root of the sum of the square of respec-
tive row as follows:

Table 4 Decision table of multiple alternatives and criteria

Multiple alternatives

TU] TUZ TU3 TU4 TUS
Multiple criteria By 0256 0282  0.307 0333 0359
Tr 1150 1100 1200 1300 1.400
Uepy 0800 0800  1.000 1.000 1000
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8808 S.Negi et al.

¢ __ DM,

N an

where each element in DMrepresents in a alternative and c™ criteria for DM,

Step3 Construction of Weighted standard DM. To get weighted standard DM,
each attribute weight value is multiplied by each element in standard DM. The
weight values for execution time, transmission time, and CPU utilization criteria are
evaluated as

E; = Epp X Hy (12)
TT = TTQ X HTrans (13)
Ucpy = Erg X Hy (14)

where Hg, H,,,,.and Hy; are the weight values for E;, TrandUp,;, respectively, and
Erp, TrpandUcpyp on Qth VM. The weight values should be a positive integer.
Step4 Evaluation of ideal and negative solution. In this step, an extremely posi-
tive ideal solution that maximizes benefit criteria and a negative ideal solution that
minimizes benefit criteria are determined. E; and Ty are considered as performance
criteria which are to be minimized, and Upy; is taken as benefit criteria which are to

be maximized. Positive (A™) and negative (A™) ideal solutions are given by

At = (V5 Vi Vi) (15)
A™ = (Vo1 Vi - Vi) (16)

where V:;a and V, represent the positive and negative solutions for a™ alternative,
respectively.

Step5 Determination of separation measures. In this step, each alternative is sep-
arated from A* and A~ which is measured as

a7

(18)

Equations (17) and (18) calculate the distance between each alternative positive and
negative solution, respectively. Here, the number of criteria is 3.

Step6 Calculation of relative closeness. The value of relative closeness (RC) is
achieved from the positive and negative separation measures (fér and fQ_ ) of tasks on

Q" VM with respect to positive ideal solution A™ and is defined as

@ Springer
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FV,=RC fQ_
0 0 o+ f 19)
The role of RC is to perform as a fitness value for the PSO algorithm. The ability
of particle swarm reaction introduces solutions to optimization problems [36]. In
PSO, a swarm comprises individual particles that fly on search space, and these par-
ticles handle solutions to the problems. By the experience of a particle and its neigh-
boring particles, the position may be influenced by the best local position (LBest).
However, if the neighborhood of a particle has the best position in the swarm, it
would be the best global position (GBest). Once particle has been initialized, in each
repetition particle is placed near to GBest and velocity using Eq. (20) and FV is cal-
culated. The velocity of a particle is expressed as

iQ+] Vel = w * iQVel + L' % ran' * (LBest - iQPar> + L% % ran? * (GBest - iQPar)
(20)
i+1 i i+1
’Q Par = ’QPar + ’Q Vel 1)

where g Vel signifies existing velocity and L)Vel denotes the earlier velocity of Q.

iQJrlParandiQPar are the current and earlier position of Q. Two learning factors L', L?

and the random numbers ran', ran? are involved in velocity computation with respect

to the values depicted in Table 4. Each user task performs this process and is then
scheduled to an optimal underloaded VM. The obtained relative closeness for each
task T from TOPSIS is initialized to compute the fitness value for each particle. Ini-
tially, for each task, TOPSIS calculates a decision matrix for the given multiple
alternatives (tasks) and three criteria (execution time, transmission time, and CPU
utilization) using Egs. (8), (9), and (10), respectively. The algorithm recalculates the
standard decision matrix by a root of the sum of squares of respective rows using
Eq. (11). Weighted standard DM is calculated using Eq. (12), Eq. (13), and Eq. (14)
for E;, Transy, andUcp;, respectively. Next, positive and negative ideal solutions
are performed to check maximum and minimum benefit from the criteria using
Eq. (15) and Eq. (16). Separation of alternatives from fg and fQ‘ using Eq. (17) and
Eq. (18) is performed. Relative closeness (fitness value) is obtained for each task
with respect to each alternative as a particle using Eq. (19). The obtained FV value
is further compared to the current local best particle value, which is calculated in the
initial steps of PSO. If the current FV is larger than the current local best particle,
then update the value of LBest with the current FV value updated, else the value of
LBest will remain the same. Once the algorithm gets the value of all LBest, the larg-
est LBest is found by comparing them with each other. The largest LBest will be
considered as the global best particle GBest. Similarly, if the current GBest is larger
than the previous GBest, then the value of GBest is updated with the current GBest
value; else, the value of LBest will remain. The process is iteratively performed until
the maximum number of iterations is reached. During each iteration, particle veloc-
ity and position are updated using Eq. (20) and Eq. (21). The final particle solution
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having the largest GBest will be assigned to the most optimal underloaded
VM Vo piima fOr mapping.

By assigning each task to optimal VM, MakeSpan, completion time, and trans-
mission time of tasks are reduced significantly. TOPSIS-PSO method assigns user
tasks only to VM. Therefore, TOPSIS-PSO-based task scheduling process with
ANN-LB technique introduces load balancing and efficient tasks scheduling among
VM. Further, it reduces MakeSpan, completion time, and transmission time of
tasks without reducing resource utilization. The overall procedure of the TOPSIS-
PSO algorithm is shown in Algorithm 2. Finally, each task in the user task set is
scheduled to optimal VM in the underloaded VM set, which can be expressed as

[T\, T, Ty, .. Tg| = [VMy,y, VM, VM, ..., VM, ). (22)

Tasks which are assigned to VM, ,,and VM, are denoted in Table 5 where tasks
T, T;, and T, are mapped to VMy, and Tasks T and T, are mapped to VM.
The given task assignment matrix table represents task mapping according to the
increased number of tasks and VMs. The calculation is executed for both less and a
considerable number of tasks, and related effects are observed for both cases. In this
observation, a small number of VMs and runtime tasks are used.

The assignment of the best VM for user task results in better performance and
better resource utilization. Therefore, MakeSpan, which is the overall completion
time for all assigned tasks for a particular VM, is minimized significantly. Involve-
ment of LBal efficiently monitors the load on grouped VMs and reassigns VM after
task assignment to prevent VMs from overloading. Hence, balanced load among all
VMs is maintained by efficient clustering and task scheduling processes. It is also
necessary to balance load among PMs. PSO parameters are depicted in Table 6.
Load balancing among PMs is realized by the VM migration process, which is elab-
orated in the next section.

Table 5 Tasks assignment Tasks

matrix to VMs Resources
VM, VM,
TO 1 0
T, 0 1
T, 0 |
T 1 0
T, 1 0
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Table 6 PSO parameters

Parameters Values Description

Swarm size No. of particles Problem space in terms of swarm size

Particle(Q) 5 Particles or population in swarm

Tterations 50-1000 Number of swarm iterations

Constant factor (L1)  1.49445 Self-consciousness study factor [35] or cognitive
parameter [36]

Constant factor (L2)  1.49445 Swarm consciousness study factor [35] or social
parameter [36]

Max (V) (No. of resources or 1)  Maximum velocity of a particle

Min(V) (0-1) Minimum velocity of a particle

rand (0-1) Uniformly distributed random number

Algorithm:2 TOPSIS-PSO Scheduling Algorithm (Stage II)

Input: User tasks, T={t, t,, ts, .., ts}, VMu={VMui, VMu>,..,VMuo}
Output: Optimal VM for user Tasks

Begin
Obtain T
1: Initialize particles with LBest & GBest
2:  |foreacht€eT
3: Construct DM
4: Standardize DM by Eq. (11)
5: Construct DM using Eq.(8),(9),(10)
6: Construct S;; standard DM using Eq.(11)
7: Evaluate Weighted standard DM by Eq.(12),(13),(14)
8: Calculate (A") and (A) ideal solutions using Eq.(15),(16)
9: Evaluate separation Measures fi and f; using Eq. (17) (18)
10: 1 ywhile (iteration>t) do
11 for each particle //Compute FV
12: T/Calculate relative closeness as FV using Eq. (19)
13: end for
14: if (FV>LBest)
15: Update LBest « FV
16: else
17: Keep LBest
18: end if
19: Compare all LBest
20: Assign high LBbest « GBest
2L if{current GBest>previous GBest)
g Update current GBest « GBest
. else
24 Keep previous GBest
2 lendif
52: Particle with high GBest < Vyoptimar
28; Assign t < Vyoptimat
29: Compute particle velocity and position using Eq. (20) and (21 )
30: Iteration ++
31 end while
3p. end for
33 end

34.  wntil the maximum number of iterations reached or a solution found
35.  return cfficient scheduling of tasks to VMs (best solution)

4.4 VM migration based on fuzzy Logic (Stage Ill)

Both VM clustering and task scheduling are involved in load balancing across VMs,
whereas VM migration is involved in load balancing among PMs. Load on each PM
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is monitored by the VM manager, which maintains PM information. PM load is cal-
culated in terms of load on VMs that are presented in that PM as follows:

L

L(PM,) = L, (23)

i=1

Equation (23) computes load on mth PM in terms of load L of all VMs (L;) pre-
sented in that PM. VM migration also enables energy efficiency along with load
balancing. VM manager takes VM migration decision in the following conditions:

1. If a PM becomes overloaded (for load balancing)
2. 1If a PM has less load (for energy efficiency).

When a PM attains one of the above conditions, optimal VM is migrated from that
PM to optimal destination PM. Consider PM,, with {VM 1, VM,, .., VM,, ..., VM L}
and load on VMs as {Ll,Lz,. L, .. LL} If PM,, is overloaded, then the optlmal
VM is selected and migrated from that PM to another PM. The optimal VM for
migration is selected based on migration time, and it is computed for L™ VM as

RAM (VM
MT(VM,) = RAM(VM,) (24)
BW,
Here, RAM VM, ) represents RAM of VM, and BW, denotes the bandwidth of VM, .
Condition for a VM to be selected as an optimal VM for migration is formulated as

optimalVM = min{MT(VM)}. 25)

A VM that satisfies the above condition is selected for migration and denoted
as V,,. The next important step is to find an optimal destination PM for migration.
Important mathematical definitions, terminology, and well-explained concepts that
explain how IT2FL is set and the system is evaluated in the proposed research work
are discussed in the following subsections. Detailed IT2FL set and system process
are explained as follows (Fig. 4).

4.4.1 Interval type 2 fuzzy logic set (IT2FL)

Definition 1 A T2 FS is denoted as S’ and expressed by its T2 degree of member-
ship function (DoMF) and pg (x, f) is defined as follows:

s = /xeX/feD”il();{) hg (e f) < 1 26)

where expression x € X, f € D, is the domain of x in C [0, 1].The primary variable
x of §’ can be denoted as X. The use of [[ is to represent the union over, all correct
values of x and f. If the universe of discourse (UoD) is discrete in nature, then it will
be expressed as
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, )
=3 —Hixje) : @7)

xEX feD,

In discrete UoD, [[ is simply replaced with ), Y'to represent the values of vari-
ables x and f. In this research, the continuous UoD approach is being focused on
MF. The value of the fuzzy set S is expressed as:

8" = {(G.f), ugx./))|x € X.f € D, [0, 1] }. (28)

where S'is the fuzzy set defined over a UoD of primary variable x with T2 DoMF
Hy ('x’f )

Definition 2 If the value of gy (x,f)=1in Eq. (24), then S’ is said to be IT2 FLS.

1
N X D ——, D.C[0,1
/xe /fe o) 1011 29

Definition 3 The vertical slice of ug(x,f) is the representation of value x" in x
having 2d-plane with axes f and ug (x',f). Secondary MF is the vertical slice of
,us/(x,f) [40], i.e.,

ws(e=2.) = s (¥) = [ 7 €D L D10 G30)

wherepyg, (x’ ) is the secondary MF of S’. Equation (30) is used when all second-
ary MF values of IT2 FLS are 1, otherwise f, (f) will be replaced with value 1. The
value of f,,(f) lies between 0 < f,(f) < 1.

Definition 4 The representation of ug (x,f) in IT2 FLS is achieved by footprint of
uncertainty (FoU). The union of primary membership (D,) is the FoU of S’ as

FoU(S') = UDX={(x,f)leDXQ[0,1]} (31)
xeX

where FoU for lower member function L(MF) Lug (x) and upper member function
UMF) U g (x) are expressed as follows:

Lug (x) = infi(f | f € [0, 1], pg (x, /) > 0) (32)
and
Upg(x) = sup(f | f € [0, 1], pg (x,f) > 0) (33)

where infi and Sup are the infimum and supermum of the support of pg (x).

Figure 5 shows the presentable image of IT2 FLS triangular MF for S” with its
two bounded T1 FSs. Lug(x) and Upg (x) are the L(MF) and U(MF), respectively.
The region between L(MF) and U(MF) is the footprint of uncertainty (FoU) [40]
which is the primary membership that consists of bounded region for IT2 FLS. Any
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4 Primary MF (uS‘(x))
) S
L(MF) of LuS*(x)
g
2
g
g Support of Secondary f
: MF((uS*(x))
ih
a
fi Embedded Fuzzy
System E(S‘(x))
UQMF) of Un$*(x)
o | x x B X !

Universe of Discourse

Fig.5 IT2 FL set MF and FoU

T1 FS within the FoU is the embedded T1 FS, and such sets are represented as L ()
and U ($'). Each input value in continuous UoD maintains DoMF that ranges the
value between L(MF) and U(MF). In this work, triangular MF is used to character-
ize the fuzzy set. The expression of triangular MF is as follows:

-

0, x<a
xX—a
b—a a<x<b
Alx :a,b,c)=1 1, x=b (34)
C_Z, b<x<c
8_ xX>c

A triangular MF A(a, b, c) is the collection of optimistic boundary or lower limit
(a), an expected value or middle value (b), and pessimistic boundary or upper limit

(©).
4.4.2 Interval type 2 fuzzy logic system (IT2FLS)

IT2FLS is comprised of five stages, i.e., fuzzification, creation of knowledge base
rule, fuzzy inference mechanism, type reduction, and defuzzification. The only dif-
ference between IT2 FLS and T1 FLS is that T1 FLS does not perform the type
reduction stage. Type reduction is the central most part in IT2 FLS in which it trans-
fers the fuzzy output set to T1 fuzzy set. The computational process includes input
vectors x; € S'l, ceiin X, € S;n and single output y € Y. Knowledge base rules are
characterized as Q fuzzy rules (FR) and expressed as [46]:
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FR; Dif x s Ll.l and x, is L? and ... x,, is L then y is O' for i € FR,m € input
(35)

where FR; is the i™ fuzzy rule that consists of a set of universe of discourses
(x;,%, ... x,andy) and linguistic variables ( L}, L?..L;”andOi). The part of FR (x, is Li1
and x, is Lf and .....x,, is L") is said to be the antecedent or premise, whereas rule
statement (y is O') is the consequence or conclusion. The execution process of an
IT2 FLS and its mathematical terminology is discussed in the following steps:

Stepl Obtain the membership function of x,,, on each S:n using Eq. (26) which is
represented as:

[Lﬂs’ (xm) U,us; (xm)] form=1,2...M (36)

m

where Lug (x,,) and Upg (x,,) are the L(MF) and U(MF) functions of UoD x,, on

fuzzy set S, . The value of L(MF) always must be less than or equal to the value of
UMF).
Step2 Compute the firing interval of the mth rule, FoUQ(x),

FoUy(x) = [f".f] (37)

where /" andf;} are the upper bound and lower bound firing interval of mth fuzzy
rule, respectively. Symbol X denotes the product t-norm operation and expressed as:

= {L,uS/l (xl) X L,uS; (xz) . X Lpg (xm) } (38)

1 = { Un; (1) X Un (32) . X Ui, (x,) | &

Step3 Compute the type reduction step with the defined rule and firing interval
FoUy(x) using the center of set (CoS) reducer method.

M
Teso= J I3 = ool
m=1

fm c f’”(x)
y" e on

(40)

Perform Karnik—Mendel (KM) algorithm [47] to compute the left- and rightmost
points y*(x)andy®(x), respectively. The KM algorithm is used to obtain the switch
points for y*(x) andy®(x). The function of y’(x) is to perform the firing interval
switching from upper bound to lower bound. It is the minimum of Y,¢(x) and can be
computed as

L M
Lot JOVE + D 1YL
L M :
zm:lf(rjn + zm=L+1on

The function of yR(x) is to perform the switching firing interval from lower bound
to upper bound, and it gets maximum of Y,¢(x). It is computed as

yhx) =

(41)
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R M
et TVG + Zomerit SO0

R
yix) = R i (42)
Zm:lfLm + Zm=R+1flrJn
where Ly’ < yE(x) < Lyl UyR < yR(x) < UyR+1L
Step4 Calculate the defuzzified output from [48],
Y = [0 +y () /2. (43)

The above equations will be used, in finding the best possible optimal destina-
tion PM. IT2 FLS has unique characteristics that provide better performance even
in uncertain abound conditions and work well with missing components. The Java-
based toolkit Juzzy [39] library files have been imported to input the IT2 FLS-based
VM migration results in CloudSim. Configuration parameters for the fuzzy sys-
tem are shown in Table 7. To understand the working approach of IT2 FLS in the
proposed CMODLB method, a descriptive example is discussed. In our proposed
method, we present a model for the possibility of selection of the optimal destination
PM for VM migration, which depends on available memory (Avi_Mem), available
CPU (AvI_CPU), and available load (Avi_Load) of destination PM. It is assumed
that the selection of optimal destination PM takes input variable Avi_Mem, Avi_
CPU, and Avi_Load having linguistic terms low and high and output variable Pos-
sibility with linguistic terms low, medium, and high. The input and output linguistic
variables are defined by their fuzzy values. The Avi_Mem of m™ PM is said to be
low and high as defined in Eq. (44). Similarly, Avi_CPU and Avi_Load are defined
in Eq. (45) and Eq. (46), respectively (Table 6).

. . 0<j<5, Low
if AV, j is { 5.1 5§' < 10, High (44)
. . [05<j<52, Low
if Av_CPU; ’s{ 53 < < 10, High (45)
Tatl? Simiaion T e
Fuzzy type Interval type 2 fuzzy
Input Available memory in PM, available
CPU in PM, and load in PM
Membership function type Triangular with FoU
Linguistic term Low, medium, and high
Defuzzification method Centroid of sum
Type reduction method Center of sets (using KM algorithms)
Representation Vertical slices
Output Possibility
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. . .0<j<35, Low
if Avi_Load, ls{ 2.2 ;§. < i (i High (46)
The number of rules in the rule base is set by the product of the maximum num-
ber of linguistic terms in each input fuzzy set, i.e., 2 X 2 X 2 = 8. The corresponding
eight fuzzy rules using Eq. (36) are elaborated in the following section. R! is rule#1
which states: If available memory, available CPU, and available current load of jth
PM are low, then there is a low possibility for this PM to be an optimal destination
PM for VM migration. Similarly, other rules are defined in the same manner. It is
shown that the highest possibility of being an optimal destination PM is achieved
when the input set matches Rule#7.
The rules are stated as

R' . If Avl_Mem is Low and Avi_CPU is Low and Avl_Load is Low THEN Possibility is Low
R®:If Avl_Mem is Low and Avi_CPU is Low and Avi_Load is High THEN Possibility is Low

R If Avl_Mem is Low and Avl_CPU is High and Avl_Load is Low THEN Possibility is Medium
R* : If Avl_Mem is Low and Avl_CPU is High and Avl_Load is High THEN Possibility is Low

R If Avl_Mem is High and Avi_CPU is Low and Avl_Load is Low THEN Possibility is Medium
RO : If Avl_Mem is High and Avi_CPU is Low and Avl_Load is High THEN Possibility is Medium
R’ : If Avl_Mem is High and Av_CPU is High and Avl_Load is Low THEN Possibility is High

RS 1 If Avi_Mem is High and Avi_CPU is High and Avl_Load is High THEN Possibility is Medium

Each input domain consists of two IT2 FS. Figure 6 a—c shows the UMF and
LMF of input fuzzy set Avi_Mem, Avl_CPU, and Avl_Load using vertical slice rep-
resentation by Eq. (26). Triangular MF has been used for the input crisp set given
in Eq. (34). The obtained MF graphs represent universe of disclosure on the x-axis
that ranges from O to 10, and the degree of MF on the y-axis which ranges between
0 and 1. Table 8 shows the FoU for upper and lower MF for each input and output
linguistic variable. Representation of Type 2 set can be achieved through vertical
slice, horizontal slice, wavy slice, zSliced, etc. However, in this experiment, vertical
slice representation is performed due to its simplicity and ease. The FoU L(MF) and
FoU U(MF) are the footprints of uncertainty for lower and upper membership func-
tions for each input and output linguistic variable. Table 8 depicts FoU L(MF) and
FoU U(MF) for low PM memory having triangular MF values A(x : 1.0,3.0,3.0)
and A(x : 0.0,1.0,5.0), respectively. Similarly, other values are obtained. A fuzzy
set is fed into the inference model which combines fuzzy set and rule base. Based on
rules provided in the rule base, IT2 FLS provides single output for multiple inputs.

To wunderstand its working nature, let the value of the input vector
(x; = AVl Xy = AVlcpy, X3 = Avl_Load) be (1.5, 3.8, 7.5). The input value of
Avly,,,, is 1.5 which is low as given in Eq. (41), Avip;is3.8 which represents low
from Eq. (42) and Avl,; ,is 7.5 which is high in range as per Eq. (43). The input
value matches with rule number two (R? : If Avl_Mem is Low and Avi_CPU is Low
and Avl_Load is High THEN Possibility is Low). Using Eq. (36), the obtained lower
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[l 72MF for low_memory_PM_upper [l T2MF for low_memory_PM_lower [l 2MF for Low_cPu_PM_upper [l T2MF for Low_CPU_PM_lower
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(a) Triangular fuzzy set MF for input available memory

(b) Triangular fuzzy set MF for input available CPU

v

.T’2MF for Low_Load_PM_upper .T‘ZMF for Low_Load_PM_lower
|1 T2MF for High_Load_PM_upper [l T2MF for High_Load_PM_lower

(c) Triangular fuzzy set MF for input PM load

Fig.6 Member function (MF) for T1 FLS is shown in a, b and ¢

Table 8 FoU MF upper and lower bounds

S. No. Low-memory PM High-memory PM

FoU L(MF) A(x : 1.0,3.0,3.0) A(x : 7.5,8.0,10.0)

FoU U(MF) A(x : 0.0,1.0,5.0) A(x : 5.1,8.0,10.0)

S. No. Low available CPU PM High-memory PM
FoU L(MF) A(x : 1.5,3.0,4.0) A(x 1 6.0,8.0,9.0)
FoU U(MF) Ax : 0.5,3.0,5.0) A(x : 5.1,8.0,10.0)
S. No. Low available load PM High-memory PM
FoU L(MF) A(x : 0.5,2.53.0) A(x : 4.5,6.0,10)
FoU U(MF) A(x : 0.0,2.5,3.5) A(x : 3.6,6.0,10.0)

and upper membership functions for Avl,,,,..Avl-p,andAvl; ,, on each low and high
linguistic variables are represented in Table 9. These bounds will be used in fuzzy
inference rules for firing intervals IT2 FSs.
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Table 9 FoU MF upper and lower bounds

Lower MF Upper MF

[uLow (Avly,,, = 0.30) uLowy(Avly,,, = 0.52)]
LuHigh; (Avly,,, = 0.70) uHighy (Avly,,, = 0.96)]
[uLow (Avigp, = 0.28) uLowy (Avigpy = 0.60)]
[uHigh, (Avicpy = 0.84) uHighy (Avigpy = 0.93)]
[uLow (Avl 4,y = 0.50) uLowy (Avl 4, = 0.60)]
[uHigh, (Avl},., = 0.31) uHighy (Avly .y = 0.59)]

Firing Interval MF for R#2
2 —[£2 £2
uLowy (Aviyem = 0.52) fGszere = U, ]

7
i uLowy (Avipem = 0.3)
YA

W 72145 for low_memory_PM_upper [l T2MF for low_memory_PM_lower
I 721 for High_Memory_PM_upper [ll T2MF for High_Memory_PM_lower

fé=0.001

uLowy (Avicpy = 0.6)
‘ 0.52%0.60%0.59
v
0.30%0.28x0.31 [ *
fi2 =0.026

wo e 7o se eo we | uLowy(Avicpy = 0.28)

Fired Rule#2 (FoU)
Wl 72MF for Low_cPu_Pm_upper [l T2MF for Low_CPU_PM_lower
1 T2MF for High_CPU_PM_upper Il TZMF for High_CPU_PM_lower

wuHighy (Avlpgaq = 0.59)

uHighy(Avlioaq = 0.31)

W21 for Low_Load_PM_upper IIT2MF for Low_Load_PM_jower
W T2MF for High_Load_PM_upper [ll T2MF for High_Load_PM_lower

Fig. 7 Calculation of firing interval MF for rule#2

Figure 7 explains the comparable calculation for firing intervaal to a given input.
When x =1.5, the vertical line at 1.5 intersects FoU (for low Avl_Mem) in the inter-
val [uLowy (Avlyy,,,, = 0.30), uLow, (Avlyy,,, = 0.52)]. For x=3.8, the vertical line at
3.8 intersects FoU (for low Avl_CPU) in the interval
[uLow, (Avicpy = 0.28), uLow,, (Avlcpy = 0.60)], and for input x=7.8, the vertical
line at 7.8 intersects FoU (for low Avl_Load) in the interval
[uHigh; (Av, g = 0.31), uHighy (Avi, g = 0.59). From these inputs, two firing
levels are then computed, i.e., firing interval lower membership (f;") and upper
membership (f;}) for each rule using Eq. (35) and Eq. (36), respectively. The lower
firing intervals for rule#1 are obtained by multiplying each L(MF) of three inputs

@ Springer



8820 S.Negi et al.

(LowAvly,,,,, LowAvl -p,andLowAvl; ). Similarly, upper firing intervals for rule#1
are obtained by multiplying each UMF) of three inputs (LowAvi,,,,,, LowAvicp,andLowAvl, ;)
and hence f(1 53.878) [fL =0.042 fU = 0.187]. The fired rule interval FoU for

rule#2 is f7 5575 =l = 0.091,f5 = 0.091]. Similarly, each rule is performed in

.....

the same procedure to obtain rule FoU as given in Table 10. The centroid of the
rules consequent is calculated using the iterative KM procedure [48]. For each fuzzy
rule type 2 fuzzy set (FS) output, the centroid of the consequent is calculated for
lower and upper interval y;'and y7;. The total number of output FS for output possi-
bility is 3, i.e., low, medium, and high. From Eq. (40), the obtained centroid of the
low, medium, and high output FS is [0.5,3.45], [4.45,6.75], and [7.5,9.5], respec-
tively. The centroid of each rule consequent for the output possibility is shown in
Table 6. Type reduction is performed using KM algorithm, and we find left point
(L)=3 and right point (R)=2. So, the value of y*(x) is obtained to perform the firing
interval switching from upper bound to lower bound, whereas the value of yY(x)
required to perform the switching firing interval from lower bound to upper bound
using Eq. (41) and Eq. (42), respectrvely It is needed to reorder yé "and yU in an
ascending manner where yL < yL < yL < yL < yL yL and
vy <yh <y <g <y, <38 <yl <)% Hence, reordered output p0551b111ty for
lower bound is [0.5, 3.45, 3.45, 4.45, 4.45, 4.45, 6.75, 7.5] and for upper bound is
[0.5,0.5, 3.45, 6.75, 6.75, 6.75, 6.75, 9.50].

b= xoy) + (G xyg) + (ffrx)'i)+(ff><Y2)+(ffny_)*(fnyi)*(fzXYZ)*(fLBX-"i)/w’+fg+f3+fz+fz+f2+f2+fzs)

 (0.187 X 0.5) + (0.091 X 0.5) + (0.290 X 3.45) + (0.078 X 4.45) + (0.980 X 4.45) + (0.061 X 4.45) + (0.294 X 6.75) + (0.182 X 7.50)
- (0.187 + 0.091 + 0.290 + 0.078 + 0.980 + 0.061 + 0.294 + 0.182)

yh= 9.74 _ 225
: 2.16

)'R = (fL‘ Xyi) + (ff X)'i) + (fl) Xy‘;’/) + («fz' X)'z') + (fli/ Xyi’) + (fﬁ ><y?/) + (ny XW’L) + (fbs X‘%/)/(fLI +fL2 +f5 +ft4/ +fL5/ +f5 +fL7 +f§)

(0042 X 0.5) + (0.026 X 3.45) + (0.290 X 3.45) + (0.285 X 6.75) + (0.346 X 6.75) + (0.340 X 6.75) + (0.546 X 6.75) + (0.537 X 9.50)
- (0.042 + 0.026 + 0.290 + 0.285 + 0.346 + 0.340 + 0.546 + 0.537)

< 1638
® = 1638 _ 99
A YT

Defuzzification is needed to calculate the crisp output of possibility using
Eq. (43). The possibility crisp output is the average summation of y* and y®. The
final crisp output y? with respect to rule#2 is:

y2 = 225+6.79 _ 450
2

The obtained crisp output value suggests a cloud system that the PM with its
input values for rule# maintains a low possibility for destination optimal PM for VM
migration. It clearly shows that the output value 4.52 has a low possibility for VM
migration. Figure 8 shows a graphical representation of triangular MF for output
possibility using Eq. (31). The x-axis shows the possibility with respect to the input
fuzzy set, and the y-axis shows the DoM between O and 1. The Low, Medium, and
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Table 11 FoU MF upper and lower bounds

Low PM Possibility Medium PM Possibility High PM Possibility
FoU L(MF) A(y : 0.5,2.5,4.0) Ay : 4.7,5.5,7.0) Ay :7.1,85,9.5)
FoU U(MF) Ay : 0.0,2.5,4.6) A(y : 47,5.55,6.5) Ay : 7.6,8.5,10)

High linguistic variables for possibility are obtained by using Eq. (47). Low possibil-
ity is considered when the value of y is between 0 and 4.6. Similarly, Medium and
High are obtained using Eq. (47). Table 11 depicts the lower and upper MF bounds
for output possibility for its linguistic variables.

0<Y<46, Low
if Possibilityp,, isq 4.7 <Y <7.0, Medium 47)
" |71<v<10, High

Similarly, to check the performance of IT2FLS with other rule bases similar math-
ematical steps have been performed for each set of rules by the obtained values of Mth
PM properties. Table 12 shows the overall obtained rule# with their respective input
values of three sets (memory, CPU, and load) and their respective output (possibil-
ity). It is explained that rule#1 has an output possibility of 1.3 which results in a low
possibility for PM,,, for VM migration from Eq. (47). Similarly, rule#2 and rule#4
have obtained low possibilities with values 4.52 and 4.23. Rule# 3, 5, 6, and 8 have
achieved 4.98, 5.91, 6.84, and 7.0 crisp output values for medium possibility, respec-
tively. The selection of PM,,, for migration is to be made only when PM has high
available memory, high available CPU, and low load. Finally, Rule#8 with its crisp
output 8.99 has obtained high possibility to become optimal PM_,, for VM migration.

The algorithm checks for VM, in PM once PM,, is identified. If any PM has
VM, then that VM, will be turned off after migration in order to save energy. Hence,
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Sotsined criop otput afer Rl AvMem(x) Inpus Outpu
defuzzification Avl_CPU(x,) Avl_Load (x;) Possibility(O)

R': 1.0 2 3 1.3

R2: 15 3.8 7.8 4.52

R : 19 7 5.8 4.98

R*: 25 8 6.2 4.23

RS : 172 1 4.2 591

R6 : 6.1 1 6 6.84

R": 8 8 2 8.99

RS . 7 6.1 5.1 7.0

this VM migration process results in load balancing among PMs along with energy
efficiency. The complete working steps of VM migration-based IT2FLS algorithm
are given in Algorithm 3.

Algorithm:3 IT2FL for optimal PM and VM migration (Stage III)

Crisp Input : Avi_Mem, Avi_CPU, Avl_Load
Crisp Output: Possibility (optimal PMues for migration)
1.Compute load on PM using Eq.(23)

2:If anyone of PM overloaded(PMover)

3 for each VMs in PMover

4:Compute MT(VM) using Eq.(24)

5:Select Vop that satisfies Eq.(25)

6:Initialize IT2F logic algorithm
7:Fuzzifier«Crisp Input (Fuzzy input Set)

8: for each PM

9: Calculate,

Avail_Mem_PM=broker.getVmList().get(i).getHost().getStorage();
Avail_CPU_PM=broker.getVmList().get(i).getMips();
Load_PM=broker.getVmList().get(i).getCloudletScheduler().runningCloudlets();
10: Set up the lower and upper membership functions making up the overall IT2F sets for each input and output using Eq.(36).
11: Set up the antecedents and consequents to associates inputs.
12: Set up the rulebase and perform lower and upper firing interval using Eq.(37) and Eq.(38).
13: Inference «—Rules and Fuzzifier
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{LowMem, LowCPU,lowLoad}, lowPossibility));
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{LowMem, LowCPU.highLoad}, lowPossibility));
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{LowMem, HighCPU,lowLoad}, mediumPossibility));
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{LowMem, HighCPU,highLoad}, lowPossibility));
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{HighMem, LowCPU,lowLoad}, mediumPossibility));
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{HighMem, LowCPU,highLoad}, mediumPossibility));
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[] {HighMem, HighCPU,lowLoad}, highpossibility));
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{HighMem, HighCPU,highLoad}, mediumPossibility));
14: Rule_Combination_Output_Processing«IT2_Fuzzy_Sets (from) inference
15: for each IT2_Fuzzy_Sets Perform Type Reduction using Eq.(40).
17: Evaluate centre of sets type reduction to compute the left and right most points using Eq.(41) and Eq.(42).
Avail_Memory PM.setInput(Avail_Memory);
Avail_CPU_PM.setInput(Avail_CPU);
Load_PM.setInput(Load);
18:Perform Defuzzification Centroid method using Eq.(43)
19:Obtain non-fuzzy crisp output values
20: If output possibility is high then select PM as optimal PMaes for migration
21: Move PMaes € Vop
22:If anyone of PM has VMy
23:Goto step3
24:Turn off VMy in PMunder
25:end for
26:end for
27:end for
28:until destination PM found or maximum iteration reached
29:return destination PM for VM migration or feasible solution
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4.5 Computational complexity

The proposed CMODLB algorithm is a hybridization of ANN-LB, TOPSIS-PSO,
and VM migration using IT2FLS technique, which may get high computational
complexity. The complexity of the complete algorithm is calculated for each work-
ing stage. The ANN-based backpropagation neural method takes 0(n4) complexity
for feedforward and 0(n5) for backpropagation where ‘n’ is the number of inputs
(VMs). VM load is calculated with the complexity of O(n® + n*) [41]. The compu-
tational complexity of BOK-means is of O(NZ), where N is the number of iterations
[42] for Bayesian optimization. K-mean clustering algorithm takes the complexity
of O(n) for computing distance between items. The reassigning cluster has the com-
plexity of O(km). For centroid, it takes the complexity of O(mn); each of the above
steps takes t iterations with O(tkmn) complexity, where ‘k’ is the number of clusters,
‘m’ is the objects, and ‘n’ is the dimensionality of the vector. In PSO-TOPSIS algo-
rithm, PSO has the complexity of O(ntlog(n)) in which ‘n’ is the number of popu-
lations and ¢ is the number of iterations. Besides this, the complexity of the TOP-
SIS algorithm is O(n? + n + 1) for FV computation [35]. (4p + 1)M is the required
design degree of freedom for IT2FL [43] where p is the number of antecedents cor-
responding to each M rule.

5 Experimental evaluation

This section explains the experimental evaluation of the proposed CMODLB load
balancing method in a cloud system environment. This section also comprises sub-
sections. In the simulation environment, the details about the proposed cloud envi-
ronment are provided, while in the performance matrices, each significant matric is
explained. Comparison of the CMODLB method with existing task scheduling and
load balancing methods is shown in the comparative analysis section. Our proposed
work is compared with other existing algorithms CESCC strategy [8], WRR method
[13], DHCI [14], two-level mechanism [17], TaPRA method [18], HBB-LB [22],
BSO algorithm [24], utilization model [29], TOPSIS-PSO [35], SA, GA, GA-SA,
GA-GELS, PSO, PSO-SA and PSO-GELS [36] and FUGE [45] for its performance
analysis.

Table13 explores the shortcomings that occurred in former scheduling and load
balancing techniques. These shortcomings are taken as essential features for the
experimental evaluation of the CMODLB proposed method.

5.1 Simulation setup

The proposed CMODLB in cloud environment uses JAVA (JDK 1.7) including
Java runtime environment, Java class libraries, and Java tools. NetBeans 7.4 and
eclipse are used for simulation. The essential classes for DCs, VMs, and computa-
tional resources are provided by the CloudSim tool [44], which supports modeling
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Table 13 Limitations of previous works

Existing method Demerits

Two-level mechanism [17] Supports only a single server for task scheduling

Increases waiting time for user tasks

TaPRA method [18] Only suitable for the single-task assignment problem
BSO algorithm [24] Load balancing among PMs is not achieved
Utilization model [29] Increases number of VM migrations

TOPSIS-PSO [35] Load balancing is required

and replication of datacenters, virtualized server hosts, energy-aware computational
resources, federated cloud, etc., of large-scale environment.

In Table 14, significant parameters considered in the simulation of CMODLB are
depicted with their corresponding values. The values of parameters are categorized
into physical machines, virtual machines, and tasks. Two to six numbers of PM hav-
ing up to four processing units have been used with 4 GB RAM and 11 TB storage
capacity with a maximum of 9600 MIPS. Around 10-50 numbers of VMs are used
having a MIPS of up to 2400.

5.2 Performance metrics

This section discusses the significant performance metrics which are considered
in the experimental evaluation. Definition of each metric is provided along with
its importance. Significant metrics considered in this section are: completion time,
transmission time, MakeSpan, number of VM migrations, resource utilization, and
system load fairness.

5.2.1 Completion time

Completion time for a task that is assigned to a VM is a metric which is the sum-
mation of execution time (Ey), transmission time (Ty), and waiting time (W) of Sth
task on Lth VM and is expressed as follows:

Completion time = Ep + Ty + Wi (48)

If the load on a particular VM is more, then the tasks assigned to it suffer from
high waiting time, leading to large completion time and overall high MakeSpan.
Therefore, this metric should be as low as possible.

5.2.2 Transmission time
The purpose of these metrics is to calculate the transmission time, a task needs to
reach a particular VM. Transmission time is the proportion of Sth task size by the

bandwidth of Lth VM [35]. T must be less to achieve better resource utilization and
MakeSpan.
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Table 14 Simulation parameters for cloud environment

Parameter Value
Physical machine Number of PMs 2-6

Number of processing units in one PM 4

MIPS 9600

Storage capacity 11 TB

RAM 4GB

Scheduling interval 30 ms

Monitoring interval 180 ms
Virtual machine Number of VMs in each PM 10-50

MIPS 2400

Number of processing units 4
Task Number of tasks 50-2000

Maximum task length 20,000

Task size 500

MIPS required 10,000

Average RAM 512 MB

Average bandwidth 100,000 Mbps

Ty = Size of 1K)y vvicdih of VML (49)

5.2.3 MakeSpan

MakeSpan is the total amount of time required by a VM to execute the assigned
tasks [35]. It is also defined as the time difference between completion time of last
job (C,,) and starting time of first job (Sg,,) and is expressed as,

Make span = (Clast - Sﬁrst)' (50)

This metric should be as low as possible. MakeSpan can be minimized by assign-
ing optimal VM to user task, which can be achieved by task scheduling. Balanced
VMs achieve minimum MakeSpan. It is also defined as the sum of completion time
of tasks assigned on a particular VM and is given as

R

Makespan = Z Completion time,,.
pP=1

Here, R represents the number of tasks assigned to VM, whereas completion
time,, represents the completion time of pth task on that VM.
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5.2.4 Number of VM migrations

Since VM migration consumes energy, CPU, bandwidth, and time, it is necessary
to control the number of migrations performed in the system. This metric provides
the number of migrations carried out in the system. VM migration takes place fre-
quently if the system is unbalanced. Hence, this metric plays a vital role in the eval-
uation of load balancing.

5.2.5 Resource utilization

In a cloud infrastructure, resources are pooled to serve multiple consumers simulta-
neously. It is important to utilize these resources efficiently. An efficient task assign-
ment process can achieve this by assigning each task to the optimal underloaded
VM. Resource utilization can be calculated in terms of CPU utilization, memory
utilization, and bandwidth utilization.

5.2.6 Load fairness

To analyze the performance of the proposed method having a large system load. The
metric provides load fairness using its system load. The calculation of load fairness
depends on the completion time of each task. It has been included that if a cloud
system has a better completion time of tasks, then it has the potential to achieve
higher load fairness. This analysis will predict the efficiency of system load with
respect to the number of user tasks. System load fairness LF is given as [17],

2
LF = (Zi\il CTI) /NZi\;l (CTt)2 (51)

where CT, is the completion time of ¢ tasks and N represents the total number of
tasks.

5.3 Comparative analysis

In this section, the proposed CMODLB method has been compared with some of
the state-of-the-art methods.

5.3.1 Analysis of completion time

This metric estimates the total execution time that comprises the waiting time of
each task given in Eq. (48). The metric value should be low for an efficient cloud
system. Figure 9 shows the comparative analysis among TaPRA method, BSO algo-
rithm, and the proposed CMODLB method in terms of completion time. Here, com-
pletion time increases as the number of tasks increases. It is quite clear that BSO
algorithm has maximum completion time as compared to TaPRA and CMODLB
algorithm. This is for an imbalanced load on PMs in DCs. Hence, a large number of
tasks cannot be accomplished in PM. In TaPRA method, completion time is slightly

@ Springer



CMODLB: an efficient load balancing approach in cloud computing... 8829

increased with the increase in the set of tasks. It completes 2000 tasks in approx-
imately 42 s which the CMODLB does in 30 s. The average completion time of
TaPRA method is 20.6 s, whereas the average completion time of the CMODLB
method is 14.2 s. But BSO algorithm provides the average completion time of
around 50 s which is higher than TaPRA method and the CMODLB method. Since
TaPRA method allows a single-task assignment in each step, it takes more time than
the CMODLB method. In TaPRA method, task assignment process is not able to
consider execution time in order to minimize completion time. Clustering of VMs
approach reduces the complexity of finding appropriate VM for the execution of
tasks with respect to its current load. If the VM having less load executes the task,
then the waiting time of tasks on that VM will be very less. This approach offers the
lowest execution and transmission time. Due to the involvement of efficient load bal-
ancing and task assignment processes, the CMODLB method achieves 31.067% and
71.6% less completion time compared to TaPRA and BSO, respectively, as shown in
Table 15. Therefore, load balancing-based CMODLB method reduces task comple-
tion time significantly.

5.3.2 Analysis of transmission time

The transmission time metric evaluates the actual transfer time of a task to reach
the assigned VM. It includes the size of tasks and bandwidth of a VM as given in
Eq. (49). For a well-organized cloud system environment, this metric must remain
minimum. Figure 10 shows the comparative analysis among the PSO method,
TOPSIS-PSO algorithm, and proposed CMODLB method in terms of transmission
time. The experimental analysis is performed for 10 to 40 numbers of tasks having
10 numbers of VMs. Here, transmission time increases the number of tasks. It is
noticeable that the PSO algorithm suffers from high transmission time compared
to TOPSIS-PSO and the CMODLB method because the task scheduling process in
PSO takes more time than TOSIS-PSO and CMODLB method. In PSO method, the
transmission time slightly increases with the increase in the number of tasks. It gives
nearly 0.711 s for 10 tasks, while TOPSIS-PSO takes 0.644 s and the CMODLB
method achieves 0.60 s for the same. The average transmission time of PSO and
TOPSIS-PSO method is 1.39 and 1.32 s, respectively, whereas the average trans-
mission time of the CMODLB method is 1.30 s. The PSO and TOPSIS-PSO algo-
rithms provide average transmission time around 0.09 and 0.02 s, respectively,
which are higher than the CMODLB method. Due to efficient load balancing and

Fig.9 Comparative perfor- @TaPRA BC-MODLB ®BSO
lysis leti -
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Table 15 Comparison of #Tasks TaPRA BSO CMODLB
completion time (in seconds) for
CMODLB 0 1 50 1

50 12 50 5

1000 20 50 15

1500 28 50 20

2000 42 50 30

Transmission Time

No. of Tasks
o (] w L
c S & =

=
=
n

1 1.5 2 2.5
Transmission Time (sec.)

C-MODLB 1 TOPSIS-PSO = PSO

Fig. 10 Comparative performance analysis on transmission time

task assignment processes, the CMODLB takes 6.65% and 2.12% less transmission
time than PSO and TOPSIS-PSO, respectively, as shown in Table 16.

5.3.3 Analysis of MakeSpan

This metric gives the overall completion time of all the tasks in VMs. The metric
results are low when the load balancing method is well formulated. The calculation
for MakeSpan is performed using Eq. (50). The performance of the proposed work
is analyzed through three sets of tests in terms of MakeSpan:

(1) Test I: Experiment in Test I is performed for 15-60 numbers of tasks in 10
numbers of VMs to analyze the performance of the CMODLB with respect to
static algorithms such as MaxMin and Round Robin.

(2) Test II: 100-300 numbers of tasks are simulated for Test II. Results are compared
with various dynamic algorithms such as FUGE [45], ACO, MACO, and TOP-
SIS-PSO [35] with the similar cloud setup configuration having 1000-20,000
task length, 50 numbers of VMs with 500-1000 VM bandwidth, 256-2048 VM
memory (RAM), and 10 numbers of data centers with 2—6 numbers of PM.

(3) Test III: To analyze the distributed nature of the proposed CMODLB algorithm,
some grid computing-based algorithms [36] like SA, GA, GA-SA, GA-GELS,
PSO, PSO-SA, and PSO-GELS are considered for performance evaluation. The
experimental parameter values and simulation platform are kept similar for the
proposed and existing algorithms for Test I11.
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5.3.3.1 Test | (MaxMin vs. R.R vs. CMODLB) In the Test I experiment, the proposed
CMODLB algorithm is compared with MaxMin and R.R algorithm for MakeSpan
metric for 10 numbers of VMs and 15-60 numbers of tasks. Table 17 represents the
obtained results for 15, 30, 45, and 60 tasks for MaxMin, R.R, and the CMODLB,
respectively. Figure 11 shows that the proposed algorithm achieves 65.54% and
68.26% lesser MakeSpan than MaxMin and R.R, respectively. This analysis shows
that the proposed CMODLB algorithm provides better performance in a cloud envi-
ronment.

5.3.3.2 Test II: (TOPSIS-PSO vs. FUGE vs. ACO vs. MACO vs. CMODLB) Experiment is
performed to check the performance of the proposed CMODLB method with respect
to MakeSpan for dynamic nature-based algorithms. The comparative analysis is done
with existing algorithms [35, 45] for 100, 200, and 300 tasks. Table 18 depicts the
obtained values from the simulation. Algorithm FUGE and TOPSIS-PSO have per-
formed better than ACO and MACO, whereas CMODLB performed better among all
the algorithms, as shown in Fig. 12.

5.3.3.3 Test lll: (SA vs. GA vs. GA-S vs. GA-GELS vs. PSO vs. PSO-SA vs. PSO-GELS vs.
CMODLB The comparison of different algorithms is analyzed with similar simulation
configurations. The MakeSpan for the proposed CMODLB and existing algorithms
[36], i.e., SA, GA, GA-SA, GA-GELS, PSO, PSO-SA, and PSO-GELS, is depicted in
Tables 19, 20, 21, and 22 for 100, 300, 500, and 1000 iterations, respectively, on 50,
100, 300, and 500 number of tasks having 10 numbers of resources. From Fig. 13a—d,
it may be seen that MakeSpan for the CMODLB method decreases as there is an
increase in the number of tasks as compared to SA, GA, GA-SA, GA-GELS, PSO,
PSO-SA, and PSO-GELS algorithms. Figure 13 clearly shows that the proposed
CMODLB method is highly efficient compared to PSO-GELS and other methods.

The involvement of efficient load balancing and task scheduling provides lower
completion time and also helps in minimizing MakeSpan. The analysis shows that
the proposed CMODLB algorithm is performing better in a cloud environment.

5.3.4 Comparative analysis on number of VM migrations

Load balancing among PMs is carried out by VM migrations, which consumes
energy and time due to migration. Hence, it is necessary to minimize the number
of migrations in the system. Figure 14 demonstrates the comparative analysis of
the number of VM migrations of the CMODLB method with various other existing

-trrztr)llserr:i(:sigr? I:;&iri(si?lnszionds) #Tasks Pso TOPSIS PO cMOPLB
for CMODLB 10 0.711 0.664 0.60

20 1.148 1.104 1.10

30 1.590 1.524 1.50

40 2.100 2.00 1.98
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Fig. 11 Comparative performance analysis for Test I

methods, viz. HBB-LB, WRR, and utilization. The CMODLB method took only one
VM migration, whereas the utilization method took 25 VM migrations. Since VMs
are balanced in the CMODLB method, there is a smaller number of VM migration
leading to less PM overloading. Hence, in the CMODLB method, the number of
VM migrations is low.

5.3.5 Analysis of resource utilization

In this section, the resource utilization performance of the CMODLB method is
compared with DHCI and CESSC methods. Maximum utilization of resources indi-
cates minimum wastage of cloud system resources. The analysis of resource uti-
lization also illustrates the effectiveness of the cloud system to utilize bandwidth,
energy, CPU, and memory.

Figure 15 demonstrates the comparative study on resource utilization with respect
to time. From Fig. 15, it is clear that the wastage of resources in the CMODLB algo-
rithm is less that indicates utilization of resources is maximum due to the efficient
task assignment process. CMODLB method provides resource utilization above
50%, while the CESCC method is able to provide resource utilization between 28

If'[:l'; ;;afgr':‘f:(fzi’é‘s;’im #Tasks MaxMin RR CMODLB
Test I 15 5.89 6.8 425

30 20.5 174 6.52

45 45.96 57.8 10.97

60 80.93 84.4 31.07
Egiigzafgnmsig’(i;{m #Tasks FUGE ACO MACO TOPSIS-PSO CMODLB
Test IT 100 40 70 60 37.14 36.44

200 90 120 110 85.79 83.35

300 155 190 170 150.59 146.17
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Fig. 12 Comparative MakeSpan analysis for Test I
Table 19 CMODLB MakeSpan value for 100 iterations
ITERATIONS 100
TASKS SA GA GA-SA GA-GELS PSO PSO-SA  PSO-GELS CMODLB
50 136.742 99.198  95.562 90 86.144  89.586  85.186 74.77
100 307.738  183.49  190.353 181.028 168.718 167.33  166.094 121.46
300 973.728  638.082 597.8 581.842 528.568 511.532 494.66 309.71
500 1837.662 1105.56 1072.362 1087.216 918.336 887.195 911.099 758.4
Table 20 CMODLB MakeSpan value for 300 iterations
ITERATIONS 300
TASKS SA GA GA-SA  GA-GELS PSO PSO-SA PSO-GELS CMODLB
50 131.12 89.486 86.98 84.298 85312 87.684 84.174 60.83
100 2332 172.628 179.062  175.598 170.452 167.16  166.422 102.38
300 911.68 570.466  532.968 600.862 518.268 526.71  527.086 367.72
500 1492.616 1071.014 1037.942 1055.504 890.354 896.586 881.991 614.2
Table 21 CMODLB MakeSpan value for 500 iterations
ITERATION 500
TASKS GA GA-SA GA-GELS  PSO PSO-SA  PSO-GELS CMODLB
50 117.994 85.264 84.614 83.362 85.22 83.774 51.29
100 261.664 175.084 171.817 168.714  176.688 170.732 102.38
300 855.896  863.55 521.302 552.828  506.026 509.04 309.71
500 1640.528  993.964  1000.561 954.652  849.066 894.495 758.4
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Table 22 CMODLB MakeSpan value for 1000 iterations
ITERATION 1000
TASKS SA GA GA-SA GA-GELS PSO PSO-SA PSO-GELS CMODLB
50 108.151  82.566  84.856  84.402 87.436  86.106  85.72 60.83
100 223.158 167.755 160.84  160.694 170.716 174.648 169.784 102.38
300 867.48  545.146 542.52  533.336 520.953 511.33  421.388 309.71
500 1495312 933798 935.794 932.23 856.9 888.534 851.614 614.2
Iteration 100 Resources 10 Iteration 300 Resources 10
2000
1800 ~ 1600
~ 1600 3; 1400
g 1400 g 120
z 1200 & 1000
£ 1000 £ 00
g 800 = 60 >
g 600 400
400 4
200 .og
8 50 100 Tasks 300 500
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——saA ——GA ———GA-SA GA-GELS —— —CA e GA-GRLS
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(a) Comparative analysis on MakeSpan for 100 iteration

(b) Comparative analysis on MakeSpan for 300 iteration
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(c) Comparative analysis on MakeSpan for 500 iteration

(d) Comparative analysis on MakeSpan for 1000 iteration

Fig. 13 Comparative analysis on MakeSpan for various iterations

and 50% for 50 min. The resource utilization of the DHCI method oscillates between
30 and 60%. The CMODLB method achieves 75% utilization, which is much effec-
tive than DHCI and CESCC. Load balancing, scheduling of tasks, and migration
of VMs are always concerned with resources; hence, it is clear that implementing
the CMODLB method will achieve better resource utilization and reduce wastage of

resources.
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5.3.6 Load fairness

This metric measures the fairness of the system with respect to load and is calcu-
lated by using Eq. (51). This metric should be as high as possible to achieve better
performance [17]. In Fig. 16, system load is taken on X-axis, while the fairness of
the system is taken on Y-axis. Here, fairness signifies the presentation of the pro-
posed method in system load. The proposed CMODLB method is compared with
the existing two-level method. The two-level method provides system fairness about
1 as constant for different system loads. The task scheduling process is not effective
in the two-level method, and hence it has constant load fairness for different system
loads, which makes it less efficient in heavy-load systems. However, the CMODLB
method attains better performance with a heavy system load. It offers up to 1.12 sys-
tem performance for 100% system load. It shows that the proposed method is reli-
able for heavy system load. Hence, the performance of load balancing is improved in
the CMODLB method compared to the existing load balancing methods.

6 Conclusion

In this paper, to resolve load balancing issues in both VMs and PMs, a novel hybrid
clustering, multi-criteria and VM migration-based approach (CMODLB) is pro-
posed. To achieve our objectives, the cloud environment is designed with three
entities: VM clustering using a load balancer and VM manager, the TOPSIS-PSO
method for efficient task scheduling, and IT2FL for selection of optimal PM for VM
migration. The first two entities approached load balancing at VM level, whereas
the third entity maintains PM-level load balance. VM manager groups the VMs into
underloaded and overloaded VMs, and balancer manages the clusters in order to pre-
serve the uniqueness. For this purpose, BOEK-means with ANN algorithm is used.
Task scheduling process allocates tasks to optimal underloaded VM using multi-
objective-based existing TOPSIS-PSO algorithm. Optimal VM for task assignment
is selected based on significant metrics such as execution time, transmission time,
and CPU utilization.

The above two processes balance load among VMs, while VM migration intends
to balance load across the PMs. VM migration aims to minimize load and energy

VM Migration
25

[
<>

15

10

Number of VM
migration

HBB-LB WRR UTILIZATION CMODLB

Fig. 14 Comparative performance analysis on number of migrations
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Resource Utilization
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Fig. 15 Comparative performance analysis on resource utilization

=== TWO-LEVEL e=@== CMODLB Load

1.15
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1.05
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0.95
0.9
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System Load(%)

Fig. 16 Comparative performance analysis on load

consumption on PMs. Soft computing-based IT2F logic is incorporated to select
optimal destination PM for VM migration to maintain PM load and energy-efficient
cloud. The obtained experimental results show that the proposed CMODLB load
balancing technique manages improved load balancing along with effective com-
pletion time, transmission time, MakeSpan, resource utilization, and load fairness.
This IT2F logic method for calculating optimal destination PM for VM migration
is novel and remarkable. In the future, we aim to cover load balancing with various
machine learning tools and methods to improve energy efficiency which is lacking
in the current proposed model. This will include storage intensive tasks and storage
IOPS/transfer-based VM capacity in real-time cloud environment.
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