
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:8787–8839
https://doi.org/10.1007/s11227-020-03601-7

1 3

CMODLB: an efficient load balancing approach in cloud
computing environment

Sarita Negi, et al. [full author details at the end of the article]

Accepted: 24 December 2020 / Published online: 28 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
A hybrid of supervised (artificial neural network), unsupervised (clustering)
machine learning, and soft computing (interval type 2 fuzzy logic system)-based
load balancing algorithm, i.e., clustering-based multiple objective dynamic load bal-
ancing technique (CMODLB), is introduced to balance the cloud load in the present
work. Initially, our previously introduced artificial neural network-based dynamic
load balancing (ANN-LB) technique is implemented to cluster the virtual machines
(VMs) into underloaded and overloaded VMs using Bayesian optimization-based
enhanced K-means (BOEK-means) algorithm. In the second stage, the user tasks
are scheduled for underloading VMs to improve load balance and resource utiliza-
tion. Scheduling of tasks is supported by multi-objective-based technique of order
preference by similarity to ideal solution with particle swarm optimization (TOP-
SIS-PSO) algorithm using different cloud criteria. To realize load balancing among
PMs, the VM manager makes decisions for VM migration. VM migration decision
is done based on the suitable conditions, if a PM is overloaded, and if another PM
is minimum loaded. The former condition balances load, while the latter condition
minimizes energy consumption in PMs. VM migration is achieved through inter-
val type 2 fuzzy logic system (IT2FS) whose decisions are based on multiple sig-
nificant parameters. Experimental results show that the CMODLB method takes
31.067% and 71.6% less completion time than TaPRA and BSO, respectively. It has
maintained 65.54% and 68.26% less MakeSpan than MaxMin and R.R algorithms,
respectively. The proposed method has achieved around 75% of resource utilization,
which is highest compared to DHCI and CESCC. The use of novel and innovative
hybridization of machine learning, multi-objective, and soft computing methods in
the proposed algorithm offers optimum scheduling and migration processes to bal-
ance PMs and VMs.

Keywords  Machine learning · Interval type 2 fuzzy set · Load balancing · ANN ·
K-mean clustering · VM migration

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03601-7&domain=pdf

8788	 S. Negi et al.

1 3

1  Introduction

The ubiquitous nature of cloud computing has attracted tremendous users in recent
years [1]. Cloud computing has the ability to handle an expanded volume of tasks
by providing an adaptive online environment. The ability of the cloud is to support
numerous users and tasks that provide many advantages. It introduces a new con-
cern, known as load balancing [2]. The involvement of numerous users requires an
efficient load balancing mechanism to maintain an unmanaged cloud environment
system. Numerous load balancing methods are studied and examined in the previous
work [3]. Here, the authors provided a clear view of the performances of different
cloud load balancing techniques with their pros and cons. Figure 1a shows a bal-
anced cloud environment in which user tasks are distributed to all virtual machines
(VMs) in each physical machine (PM) to maintain load balancing. Similarly, Fig. 1b
illustrates an unbalanced cloud in which user tasks are assigned to a particular PM
to make it overloaded. The efficient utilization of resources makes a significant and
balanced cloud.

Several researchers have shown interest in other clouds-related research such
as task scheduling and VM scheduling process to achieve efficient load balancing,
high utilization of resources, energy efficiency, improvement in quality of service
(QoS), etc. [4]. In task scheduling, many optimization algorithms such as particle
swarm optimization (PSO), fuzzy logic (FL), and genetic algorithm (GA) are used
to achieve optimized solutions. Author [4] has analyzed various task and resource
scheduling processes in different layers. Adaptive multi-objective task scheduling
(AMTS) strategy was introduced for efficient resource utilization and energy effi-
ciency [5]. The PSO algorithm is adapted for the task scheduling process. Tempo-
ral task scheduling algorithm (TTSA) deals with cost minimization problem in a
hybrid cloud [6], where the solution for cost minimization problem is derived from
hybrid simulated annealing PSO algorithm. VM-based task scheduling proves that

(a)

DC

User tasks

VMs

PMs

Task assignment

DC

User tasks

VMs

PMs

Overloaded PM

Resource under
utilized

(b)

Fig. 1   a Balanced cloud, b Unbalanced cloud

8789

1 3

CMODLB: an efficient load balancing approach in cloud computing…

load balancing and resource utilization can be improved jointly by a proper schedul-
ing process [7]. To achieve this, greedy PSO (GPSO) algorithm in which particle
initialization is better than traditional PSO is employed. In order to reduce the large
consumption of energy and improve load balancing, resource pre-allocation and task
scheduling were employed [8] in the process. Here, scheduling of tasks and alloca-
tion of resources are performed by the matching probabilistic and simulated anneal-
ing (SA) algorithms (CESCC).

MakeSpan is minimized by performing suitable load adjustment in a multi-data
center cloud [9], in which a static load balancing strategy, namely the Multi-Rumen
Anti-Grazing algorithm, is presented for load adjustment. Autonomous agent-based
load balancing (A2LB) algorithm balances load among VMs in the cloud with the
help of three agents as load, channel, and migration [10]. These three agents are
incorporated in each data center (DC) to migrate VM from overloaded DC to under-
loaded DC. Another agent-based load balancing scheme is included with front-end
agent (FA), server manager agent (SMA), and virtual machine agent (VMA) [11].
FA is responsible for routing VM requests, while VMA and SMA are responsible
for load monitoring in VM and PM, respectively. Load balancing in a dynamic
multi-service scenario in centralized hierarchical cloud-based multimedia system is
considered as an integer linear programming problem [12]. The problem is solved
by an efficient GA with an immigrant scheme. The load balancer is responsible for
task migration, whereas load balancing is achieved using efficient task scheduling
in DC [13]. Here, the tasks are scheduled by an improved weighted round robin
(WRR) algorithm, which considers the current load on VM for scheduling. Dynamic
Hadoop cluster on IaaS (DHCI) architecture has involved modules of VM migra-
tion, VM management, scheduling, and monitoring to achieve well-behaved load
balancing for cloud system environment [14]. Parallel computing entropy is utilized
for dynamic VM migration-based data locality scheme. Continuous VM migration
is supported by named data networking (NDN) in order to balance load among DCs
in the cloud [15]. In NDN, VMs and services are provided with a unique name to
provide uninterrupted services during VM migration.

Though the above-discussed works improve load balancing, it is still a pri-
mary concern due to the increasing demand of cloud-based environment in every
advanced computing field. Thus, it is necessary and demanding to design novel
algorithms for load balancing in the cloud system environment. The major strength
of the proposed method is that it includes the machine learning-based supervised
and unsupervised technique to train the cloud systems to identify the loads on VMs
and clusters them into underloaded and overloaded VMs. Once cluster formation
is achieved, it would be easier for the cloud system to assign cloud tasks to under-
loaded VMs. Task assignments are performed using a mathematical multi-criteria-
based TOPSIS-PSO method which will reduce the system complexity by introduc-
ing relative closeness for cloud performance metrics, execution time, transmission
time, and CPU utilization to the PSO method. Further, a fuzzy-based technique is
incorporated to identify the destination PM for the migration of overloaded VMs
to achieve PM-level load balancing. The use of these soft computing based-tech-
niques gives more realistic results than the previously existing work and enhances
the proposed method strength. However, the proposed method does not focus on

8790	 S. Negi et al.

1 3

storage-intensive tasks and storage IOPS/transfer-based VM capacity which makes
the work less advanced in a real-time-based cloud environment.

The significant contributions of this paper in cloud computing are summarized as
follows:

•	 Efficient CMODLB load balancing method is the hybridization of artificial neu-
ral network-based load balancing (ANN-LB), technique of order preference by
similarity to ideal solution with particle swarm optimization (TOPSIS-PSO), and
interval type 2 fuzzy logic system (IT2FLS) methods in order to balance load
among VMs and PMs in the cloud environment. The objective of CMODLB is
to improve multiple objectives such as MakeSpan, resource utilization, comple-
tion time, transmission time, energy consumption, and load fairness.

•	 The proposed CMODLB is initiated by Stage 1 where the ANN-LB technique
is applied using Bayesian optimization-based K-means (BOK-means) with ANN
algorithm to create clusters of VMs into underloaded VMs and overloaded VMs.
Runtime tasks are scheduled to underloaded VM to maintain the load balance.

•	 In Stage 2, runtime tasks are scheduled by applying the TOPSIS-PSO algorithm,
which supports three objectives for scheduling. The multiple objectives taken
into account are execution time, transmission time, and CPU utilization.

•	 In Stage 3, the VM manager monitors the load on PMs and migrates optimal
VM from the overloaded PM. VM migration decision is also made if a PM has a
minimum load in order to minimize energy consumption.

•	 In the VM migration process, optimal destination PM is selected by decision
making interval type 2 fuzzy logic system (IT2FL), which achieves efficiency in
uncertainties. Fuzzy logic assures that the destination PM is underloaded based
on significant parameters.

The rest of this paper is prepared as follows: Sect. 2 debates previous related lit-
erature on cloud environment-based load balancing. In Sect. 3, existing problems in
the previous work are highlighted. Section 4 explains the proposed CMODLB load
balancing algorithm working structure, while Sect. 5 examines the experimental
evaluation of implemented work. Finally, Sect. 6 gives a glimpse of the contribution
of the work and concludes with future scope.

2 � Related work

The adaptive cost-based task scheduling (ACTS) method was introduced to mini-
mize the completion time of a task to maximize its QoS [16]. Completion time on
each VM has been taken as the cost of the data access path, and tasks were given a
priority based on a deadline. The minimum cost path was allocated for a low-prior-
ity task, which had a minimum deadline. Here, VMs are selected based on comple-
tion time only, which has introduced unbalanced load and resource underutilization.
Hence, this approach degrades the performance of the cloud when the selection of
VMs is made only by completion time.

8791

1 3

CMODLB: an efficient load balancing approach in cloud computing…

A two-level task scheduling technique was presented in a multimedia cloud [17].
In this mechanism, first-level scheduling was performed between users to DCs and
second-level scheduling was performed among DCs to servers. Both scheduling
levels followed the M/M/1 queuing system. However, M/M/1queue supports only
a single server and also limits waiting space for tasks. This limitation makes it less
efficient.

Li et al. attempted to reduce the heavy consumption of energy in the cloud by
minimizing job completion time (JCT) [18]. For this purpose, task placement and
resource allocation (TaPRA) and TaPRA-fast algorithm were developed. However,
these algorithms are able to solve only a single-task placement problem and not suit-
able to handle multiple tasks.

Energy-aware dynamic task scheduling (EDTS) algorithm was involved with two
algorithms, namely data flow graph critical path (DFGCP) and critical path assign-
ment (CPA) [19]. Here, DFGCP was used to obtain a near-optimal solution, while
the CPA algorithm was employed to find an optimal solution. This method fails to
provide efficient resource utilization with lower energy consumption.

Load balancing was performed through VM scheduling in the cloud [20]. VM
scheduling was carried out by combining two optimization algorithms, resulting in
a new meta-heuristic algorithm named ant colony optimization with particle swarm
(ACOPS). The workload for new requests was predicted based on historical infor-
mation in ACOPS. A pre-rejection module was incorporated to minimize scheduling
time. Maintaining historical information increases space complexity, and due to the
pre-rejection module, user tasks do not experience better QoS.

Hybrid particle swarm optimization (HPSO) was applied for load balancing in
centralized cloud-based multimedia storage [21]. In HPSO, each particle’s weight
was computed by multi-kernel support vector machine (MKL-SVM) and fuzzy
simple additive weight (FSAW) methods. The involvement of three simultane-
ous and dynamic algorithms increases both load balancing time and computational
complexity.

Honey bee behavior-inspired load balancing (HBB-LB) algorithm was presented
to balance load across VMs and minimize the tasks’ waiting time [22]. Load bal-
ancing was performed by the task transfer process in which tasks from overloaded
VMs are migrated to underloaded VMs. Here, load balancing during initial task
assignment is not considered and tasks are assigned to random VM, which increases
MakeSpan and resource underutilization.

PSO algorithm and bacterial foraging optimization (BFO) algorithm were com-
bined and introduced bacterial swarm optimization (BSO) to perform load balancing
in DCs [24]. In a hybrid bacterial algorithm, the global solution over search space
was determined by the PSO algorithm, and local search was performed by the BFO
algorithm. This algorithm focused on only allocating optimal VM for incoming
tasks; however, load on PMs was not considered.

Dragonfly optimization algorithm-based load balancing method was introduced
to balance load among VMs [25]. Initially, each VM’s load and capacity were cal-
culated, and tasks were assigned to VMs randomly. If the load on VM was greater
than the threshold, then optimal underloaded VM for each task was selected. This
method increases MakeSpan for user tasks and suffers from high processing time.

8792	 S. Negi et al.

1 3

Load balancing via optimal task deployment strategy was realized in [26]. Bayes
theorem was introduced to find probabilities of physical host for optimal task
deployment. Based on the probabilities, physical hosts were clustered to detect opti-
mal PM for user task. In this way, the load across PMs was balanced. However, this
method is not suitable to balance load across VMs.

VM migration was performed by using a distributed network of brokers [27].
Migration decision was made based on RAM and CPU state of VMs, and migration
was performed by deriving policies by hypervisor. This method increases complex-
ity and does not perform well in terms of resource utilization.

Firefly optimization–energy-aware virtual machine migration (FFO-EVMM)
algorithm was presented to attain both load balancing and energy efficiency [28].
FFO-EVMM algorithm also utilizes the concept of artificial bee colony (ABC) algo-
rithm for load monitoring on VMs. If a migration decision was made, then optimal
VM for migration and optimal destination for migration were determined by FFO
algorithm. This method increases migration time because time constraint is not con-
sidered in the migration process.

Energy-aware utility prediction model was introduced for VM consolidation in a
cloud [29]. Here, VM consolidation model was applied periodically to optimize VM
placement. VM migration was enabled if any resource of VM exceeds total capac-
ity. Consideration of a single parameter for migration increases the number of VM
migrations, which results in higher energy consumption.

Thus, the previous works seem to be insufficient to achieve efficient load balanc-
ing. The majority of the works focus on either task scheduling or load balancing in a
cloud. However, introducing an effective task scheduling and load balancing (among
VMs and PMs) method is a key concern in cloud computing. This work introduces
an algorithm with the aim to increase load balancing performance by using effective
clustering, task scheduling, and VM migration process.

3 � Problem definition

An enhanced Min-Min algorithm, which involves two phases, was presented for
load balancing in a cloud [30]. In the first phase, tasks were assigned to VMs based
on execution time, and in the second phase, tasks were rescheduled to utilize unused
resources. Since tasks are assigned to VMs, which provide minimum execution time.
In the first phase, rescheduling of tasks increases execution time. Involvement of two
scheduling processes increases overall MakeSpan, which degrades its performance.

In multi-objective tasks scheduling algorithm, tasks were given priority based
on QoS, and VMs were sorted based on MIPS values [31]. Tasks and VMs were
assigned as per the task and VM list. In this process, resource utilization is poor
since VMs are sorted based on MIPS values. The VM list which is prepared ini-
tially is processed with all task set. After assigning a task to VM, the parameters of
VM may change. This change is not considered in the presented method. Hence, the
scheduling process is not much efficient.

Two-stage strategy for task scheduling includes Bayes classifier for classifica-
tion of VMs in the first stage and scheduling algorithm in the second stage [32].

8793

1 3

CMODLB: an efficient load balancing approach in cloud computing…

In this method, task queue, waiting queue, and ready queue were maintained, and
tasks were put in a waiting queue until a suitable VM became idle. Maintenance of
multiple queues and databases increases space complexity. This method allows wait-
ing queue tasks to move into the ready queue only if the ready queue is free. Hence,
waiting time for tasks in the waiting queue is increased significantly.

The self-adaptive learning PSO (SLPSO) algorithm was included with four
update strategies to update the velocity of particles [33]. The best update strategy
was detected in each iteration based on execution probability and used in the SLPSO
algorithm. In SLPSO, frequent selection of update strategy leads to higher time con-
sumption and higher complexity.

Load balancing mutation using PSO (LBMPSO) algorithm was introduced to
schedule tasks and load balancing in which objective function was formulated based
on expected execution time, transmission time, and round trip time [34]. All three
times were computed for each task on each VM to find the optimal VM. If the num-
ber of VMs and tasks are large, then this method presents a large MakeSpan and
high complexity. Hence, it motivates to introduce an effective idea to balance cloud
loads without reducing execution time and resource utilization.

An efficient novel task scheduling algorithm called technique of order prefer-
ence by similarity to ideal solution with particle swarm optimization (TOPSIS-PSO)
algorithm has been introduced [35]. TOPSIS-PSO solves task scheduling issues
using multiple objective-based technique i.e., TOPSIS. The TOPSIS algorithm gen-
erates fitness value for PSO technique using three multi-criteria, viz. execution time,
transmission time, and cost. The algorithm has been found suitable for task schedul-
ing approaches with less computational complexity but lacks load balancing issues.
Hence, to get an efficient outcome, we performed a multi objective-based TOPSIS-
PSO algorithm (using four objectives) for scheduling of the tasks in our dynamic
load balancing approach.

A new hybrid task scheduling technique named PSO with gravitational emulation
local search (PSO-GELS) has been introduced for grid computing [36]. The algo-
rithm PSO-GELS perfectly examines its role with respect to MakeSpan. We com-
pared it with our proposed CMODLB load balancing algorithm with respect to the
obtained MakeSpan values for the same configurations set because of its dynamic
nature. Previously, authors [36] have compared their work with various other exist-
ing algorithms such as SA, GA, GA-SA, GA-GELS (genetic algorithm–gravitational
emulation local search), PSO, and PSO-SA.

Authors of [49] have introduced a crow–penguin optimizer which is the fusion
of the crow search optimization algorithm (CSA) and the penguin search optimiza-
tion algorithm (PeSOA) for the execution of multi-objective task scheduling strat-
egy (CPO-MTS). The introduced CPO-MTS algorithm performed the execution of
tasks in a minimal time by a converging problem to a global optimal solution rather
than the local optima. Authors have compared their work with various other existing
algorithms such as CPO, CSA, PSO, ABC, GA, ACO, and PeSOA. The introduced
work is suitable for load balancing in a static cloud environment which makes the
algorithm less effective.

A novel task scheduling technique named threshold-based multi-objective
memetic optimized round robin scheduling (T-MMORRS) is presented to offer

8794	 S. Negi et al.

1 3

high-quality services and maintains bursty user demands [50]. Initially, some user
requests are transferred to the server where the proposed algorithm performed a
quick scan for workload conditions through a burst detector. Furthermore, if the
obtained result by burst detector has a normal load, then T-MMORRS chooses
threshold multi-objective memetic optimization (TMMO) else T-MMORRS
will choose weighted multi-objective memetic optimized round robin scheduling
(WMMORRS) for burstiness load. T-MMORRS technique is compared with the
multi-objective genetic algorithm (MGA) and dynamic power-saving resource allo-
cation (DPRA). T-MMORRS achieves higher efficiency and lower time consump-
tion. However, the algorithm offers high complexity to the cloud system.

An efficient load balancing system using an adaptive dragonfly algorithm was
proposed by the authors of [51]. Completion time, processing costs, and load param-
eters are used to develop the multi-objective function. Authors have compared their
work with dragonfly optimization algorithm (DA) and firefly algorithm (FA) and
claim that the proposed method has better performance than the respective algo-
rithms. The limitation of this work was that the author has not focused on load
fairness and resource utilization cloud parameters which makes the algorithm less
efficient. For more detailed survey comparison of various existing load balancing
algorithms have been discussed in Table 1.

4 � Proposed work

4.1 � System overview

The proposed work focuses on load balancing among PMs and VMs in a cloud
environment through hybrid supervised (with target attribute, i.e., ANN) and unsu-
pervised (without target attribute, i.e., BOK-means clustering) machine learning
techniques for efficient load calculation and VM clustering process. The proposed
cloud environment consists of M numbers of PMs as:P =

{
PM1,PM2,… ,PMM

}
. In each PM, L numbers of VMs are included as: VM =

{
VM1,VM2,… .,VML

}
.

The cloud environment is involved with S number of users tasks represented as
T =

{
T1, T2,… , TS

}
 . To balance load among M PMs and L VMs, two entities, VM

manager ( VMMan ) and cloud balancer (CBal), are involved.

4.1.1 � 4.1.1 Contribution methods

The proposed cluster-based multi-objective dynamic load balancing (CMODLB)
method is introduced for an efficient load balancing without the loss of resource uti-
lization. Figure 2 depicts the overall functioning of CMODLB method. To achieve
the goal, machine learning- and soft computing-based techniques have been used for
each stage to learn the behavior of the cloud to develop the effectiveness and better
performance of the cloud environment. The CMODLB method comprises the fol-
lowing three stages:

8795

1 3

CMODLB: an efficient load balancing approach in cloud computing…

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f p
re

vi
ou

s e
xi

sti
ng

 lo
ad

 b
al

an
ci

ng
 a

lg
or

ith
m

s

Ye
ar

/re
fe

re
nc

es
W

or
k

hi
gh

lig
ht

s
M

et
ho

do
lo

gy
Si

m
ul

at
or

B
en

efi
ts

Tr
ib

ul
at

io
ns

20
16

 [1
6]

A
da

pt
iv

e
co

st-
ba

se
d

ta
sk

sc

he
du

lin
g

(A
C

TS
)

Pr
io

rit
y

is
 u

se
d

fo
r t

he
 ta

sk
s

ba
se

d
on

 th
ei

r d
ea

dl
in

e.

C
os

t o
f d

at
a

ac
ce

ss
 p

at
h

is

m
ea

su
re

d
fro

m
 th

e
co

m
-

pl
et

io
n

tim
e

on
 e

ac
h

V
M

C
lo

ud
Si

m
Re

du
ce

s e
xe

cu
tio

n
tim

e,

co
m

pu
ta

tio
n

co
st,

 c
om

-
m

un
ic

at
io

n
co

st,
 a

nd

ba
nd

w
id

th
. I

nc
re

as
es

 C
PU

ut

ili
za

tio
n

In
tro

du
ce

s u
nd

er
ut

ili
ze

d
re

so
ur

ce
s a

nd
 lo

ad
 u

nb
al

-
an

ce

20
16

 [1
7]

D
ist

rib
ut

ed
 tw

o-
le

ve
l c

lo
ud

-
ba

se
d

m
ul

tim
ed

ia
 ta

sk

sc
he

du
lin

g
(C

M
S)

M
ul

tim
ed

ia
 c

lo
ud

-b
as

ed

ta
sk

 sc
he

du
lin

g
ap

pr
oa

ch

is
 p

ro
po

se
d

us
in

g
co

op
er

at
e

ga
m

e
th

eo
ry

 to

en
ha

nc
e

m
ul

tim
ed

ia
 c

lo
ud

Q

oS

Si
m

Py
En

ha
nc

es
 fa

irn
es

s t
o

m
ul

ti-
cl

as
s m

ul
tim

ed
ia

ap

pl
ic

at
io

n

It
lim

its
 w

ai
tin

g
sp

ac
e

fo
r

ta
sk

s

20
17

 [1
8]

En
er

gy
-a

w
ar

e
sc

he
du

lin
g

of

em
ba

rr
as

si
ng

ly
 p

ar
al

le
l

jo
bs

 a
nd

 re
so

ur
ce

 a
llo

ca
-

tio
n

in
 th

e
cl

ou
d

(T
aP

R
A

an

d
Ta

PR
A

-F
as

t)

In
tro

du
ce

s a
n

an
al

yt
ic

al
 ta

sk

pl
ac

em
en

t a
nd

 re
so

ur
ce

ac

tio
n

str
at

eg
y

fo
r

no
nl

in
ea

r m
ix

ed
 in

te
ge

r
pr

og
ra

m
m

in
g

pr
ob

le
m

O
ffl

in
e

si
m

ul
at

io
n

M
in

im
iz

e
en

er
gy

 c
on

su
m

p-
tio

n
an

d
jo

b
co

m
pl

et
io

n
tim

e

Th
e

al
go

rit
hm

 is
 n

ot
 e

ffi
ci

en
t

fo
r m

ul
tip

le
 ta

sk
s

20
17

 [1
9]

En
er

gy
 o

pt
im

iz
at

io
n

w
ith

dy

na
m

ic
 ta

sk
 sc

he
du

lin
g

m
ob

ile
 c

lo
ud

 c
om

pu
tin

g
(E

D
TS

)

In
tro

du
ce

s a
 d

yn
am

ic
 v

ol
t-

ag
e

sc
al

in
g-

ba
se

d
D

FG
C

P
an

d
C

PA
 a

lg
or

ith
m

 to

ac
ce

le
ra

te
 p

ow
er

 c
on

-
su

m
pt

io
n

A
nd

ro
id

 e
m

ul
at

or
M

in
im

iz
e

th
e

to
ta

l e
ne

rg
y

co
ns

um
pt

io
n

fo
r s

m
ar

t-
ph

on
es

Re
so

ur
ce

 u
til

iz
at

io
n

ne
ed

s
to

 b
e

in
cr

ea
se

d
fo

r l
ow

er

en
er

gy
 c

on
su

m
pt

io
n

20
15

 [2
0]

A
 h

yb
rid

 m
et

a-
he

ur
ist

ic

al
go

rit
hm

 fo
r V

M
 sc

he
du

l-
in

g
w

ith
 lo

ad
 b

al
an

c-
in

g
in

 c
lo

ud
 c

om
pu

tin
g

(A
CO

PS
)

H
yb

rid
iz

at
io

n
of

 A
CO

an

d
PS

O
 in

co
rp

or
at

es

to
 h

ist
or

ic
al

 in
fo

rm
at

io
n

to
 p

re
di

ct
 th

e
up

co
m

in
g

w
or

kl
oa

d
of

 re
qu

es
ts

C
 c

om
pi

le
r,

Te
stb

ed
@

N
CK

U
EE

Th
e

co
m

pu
tin

g
tim

e
of

 th
e

sc
he

du
lin

g
is

 re
du

ce
d

by

re
je

ct
in

g
re

qu
es

ts
 th

at
 a

re

no
t s

ui
ta

bl
e

In
cr

ea
se

s s
pa

ce
 c

om
pl

ex
ity

du

e
to

 h
ist

or
ic

al
 in

fo
rm

a-
tio

n
m

ai
nt

en
an

ce

8796	 S. Negi et al.

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ye
ar

/re
fe

re
nc

es
W

or
k

hi
gh

lig
ht

s
M

et
ho

do
lo

gy
Si

m
ul

at
or

B
en

efi
ts

Tr
ib

ul
at

io
ns

20
17

 [2
1]

M
ul

ti-
se

rv
ic

e
lo

ad
 b

al
an

ci
ng

w

ith
 h

yb
rid

 p
ar

tic
le

 sw
ar

m

op
tim

iz
at

io
n

in
 a

 c
lo

ud
-

ba
se

d
m

ul
tim

ed
ia

 st
or

ag
e

sy
ste

m
 w

ith
 Q

oS
 p

ro
vi

si
on

(M

K
L-

SV
M

)

Th
e

pr
op

os
ed

 a
lg

or
ith

m

re
ct

ifi
es

 th
e

di
stu

rb
an

ce
 in

th

e
ut

ili
za

tio
n

of
 m

ul
tip

le

re
so

ur
ce

s.
Th

e
pr

op
os

ed

m
od

el
 C

M
Sd

yn
M

LB

se
rv

es
 th

e
lo

ad
 b

al
an

ci
ng

C
lo

ud
 sy

ste
m

En
ha

nc
es

 re
so

ur
ce

 u
til

iz
a-

tio
n

In
cr

ea
se

s c
om

pu
ta

tio
na

l
co

m
pl

ex
ity

 a
nd

 lo
ad

 b
al

an
c-

in
g

tim
e

20
13

 [2
2]

H
on

ey
 b

ee
 b

eh
av

io
r-i

ns
pi

re
d

lo
ad

 b
al

an
ci

ng
 o

f t
as

ks
 in

cl

ou
d

co
m

pu
tin

g
en

vi
ro

n-
m

en
t (

H
B

B
-L

B
)

H
B

B
-L

B
 p

er
fo

rm
ed

 lo
ad

ba

la
nc

e
us

in
g

m
ig

ra
tio

n
op

er
at

io
n.

 A
lg

or
ith

m

m
ig

ra
te

s o
ve

rlo
ad

ed
 V

M

to
 u

nd
er

lo
ad

ed
 V

M

C
lo

ud
Si

m
Th

e
al

go
rit

hm
 w

or
ks

 w
el

l
in

 h
et

er
og

en
eo

us
 c

lo
ud

sy

ste
m

s

In
cr

ea
se

s M
ak

eS
pa

n
an

d
un

de
ru

til
iz

at
io

n
of

re

so
ur

ce
s

20
13

 [2
3]

A
rti

fic
ia

l n
eu

ra
l n

et
w

or
k-

ba
se

d
lo

ad
 b

al
an

ci
ng

 in

cl
ou

d
en

vi
ro

nm
en

t

A
N

N
-L

B
 p

er
fo

rm
s c

lu
ste

r-
in

g
of

 V
M

s i
nt

o
un

de
r-

lo
ad

ed
 a

nd
 o

ve
rlo

ad
ed

 so

th
at

 u
nd

er
lo

ad
ed

 V
M

 is

us
ed

 fo
r f

ur
th

er
 ta

sk
 m

ap
-

pi
ng

 p
ro

ce
ss

C
lo

ud
Si

m
In

cr
ea

se
s M

ak
eS

pa
n

an
d

re
du

ce
s l

oa
d

ov
er

he
ad

V
M

 m
ig

ra
tio

n,
 e

ffi
ci

en
t t

as
k

sc
he

du
lin

g,
 a

nd
 P

M
 le

ve
l

lo
ad

 a
re

 n
ot

 c
on

si
de

re
d,

w

hi
ch

 le
ad

 to
 le

ss
 e

ffi
ci

en
t

lo
ad

 b
al

an
ci

ng

20
17

 [2
4]

A
 h

yb
rid

 st
ra

te
gy

 fo
r

re
so

ur
ce

 a
llo

ca
tio

n
an

d
lo

ad
 b

al
an

ci
ng

 in
 v

irt
ua

l-
iz

ed
 d

at
a

ce
nt

er
s u

si
ng

B

SO
 a

lg
or

ith
m

s

Th
e

al
go

rit
hm

 is
 th

e
hy

br
id

iz
at

io
n

of
 P

SO
 a

nd

B
SO

 a
lg

or
ith

m
 to

 a
ch

ie
ve

lo

ad
 b

al
an

ce
 in

 D
C

C
lo

ud
Si

m
In

cr
ea

se
s s

ch
ed

ul
in

g
effi

ci
en

cy
, M

ak
eS

pa
n

an
d

ut
ili

za
tio

n

Lo
ad

 o
n

PM
 is

 n
ot

 c
on

si
de

re
d

w
hi

ch
 m

ak
es

 in
effi

ci
en

t
lo

ad
 b

al
an

ce

20
16

 [2
5]

D
ra

go
nfl

y
op

tim
iz

at
io

n
an

d
co

ns
tra

in
t m

ea
su

re
-b

as
ed

lo

ad
 b

al
an

ci
ng

 in
 c

lo
ud

co

m
pu

tin
g

A
 th

re
sh

ol
d

is
 se

t t
o

ca
te

go
-

riz
e

ov
er

lo
ad

ed
 V

M
 a

nd

un
de

rlo
ad

ed
 V

M

C
lo

ud
Si

m
M

ig
ra

tio
n

of
 ta

sk
s i

s l
es

s i
n

nu
m

be
rs

Su
ffe

rs
 fr

om
 h

ig
h

pr
oc

es
si

ng

tim
e

an
d

M
ak

eS
pa

n

8797

1 3

CMODLB: an efficient load balancing approach in cloud computing…

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ye
ar

/re
fe

re
nc

es
W

or
k

hi
gh

lig
ht

s
M

et
ho

do
lo

gy
Si

m
ul

at
or

B
en

efi
ts

Tr
ib

ul
at

io
ns

20
17

 [2
6]

A
 h

eu
ris

tic
 c

lu
ste

rin
g-

ba
se

d
ta

sk
 d

ep
lo

ym
en

t a
pp

ro
ac

h
fo

r l
oa

d
ba

la
nc

in
g

us
in

g
B

ay
es

 th
eo

re
m

 in
 c

lo
ud

en

vi
ro

nm
en

t

Ph
ys

ic
al

 h
os

t w
ith

 th
ei

r
pr

ob
ab

ili
ty

 is
 in

tro
du

ce
d

by
 B

ay
es

 th
eo

re
m

 fo
r t

as
k

m
ap

pi
ng

C
lo

ud
Si

m
En

ha
nc

es
 lo

ad
 b

al
an

ce

w
ith

in
 d

at
ac

en
te

rs
N

ot
 e

ffi
ci

en
t t

o
ba

la
nc

e
lo

ad

ac
ro

ss
 V

M
s

20
17

 [2
7]

Li
ve

 V
M

 m
ig

ra
tio

n
un

de
r

tim
e

co
ns

tra
in

ts
 in

 sh
ar

ed

no
th

in
g

Ia
aS

 c
lo

ud
s

M
ig

ra
tio

n
de

ci
si

on
 w

as

m
ad

e
ba

se
d

on
 R

A
M

 a
nd

C

PU
 st

at
e

of
 V

M
s,

an
d

m
ig

ra
tio

n
w

as
 p

er
fo

rm
ed

by

 d
er

iv
in

g
po

lic
ie

s b
y

hy
pe

rv
is

or

X
en

 3
.2

1
an

d
O

pe
nN

eb
ul

a
O

ffe
rs

 ti
m

e-
co

ns
tra

in
ed

 V
M

m

ig
ra

tio
n

re
qu

es
ts

 a
nd

re

du
ce

s S
LA

 v
io

la
tio

n

C
om

pl
ex

ity
 is

 h
ig

he
r

20
16

 [2
8]

En
er

gy
-a

w
ar

e
vi

rtu
al

m

ac
hi

ne
 m

ig
ra

tio
n

fo
r

cl
ou

d
co

m
pu

tin
g—

a
fir

efl
y

op
tim

iz
at

io
n

ap
pr

oa
ch

FF
O

-E
V

M
M

 a
lg

or
ith

m

al
so

 u
til

iz
es

 th
e

co
nc

ep
t

of
 a

rti
fic

ia
l b

ee
 c

ol
on

y
(A

B
C

) a
lg

or
ith

m
 fo

r l
oa

d
m

on
ito

rin
g

on
 V

M
s

C
lo

ud
Si

m
En

ha
nc

es
 b

et
te

r a
ve

ra
ge

en

er
gy

 c
on

su
m

pt
io

n
Ta

ke
s m

or
e

m
ig

ra
tio

n
tim

e

20
16

 [2
9]

En
er

gy
-a

w
ar

e
V

M
 c

on
-

so
lid

at
io

n
in

 c
lo

ud
 d

at
a

ce
nt

er
s u

si
ng

 u
til

iz
at

io
n

pr
ed

ic
tio

n
m

od
el

V
M

 c
on

so
lid

at
io

n
m

od
el

w

as
 a

pp
lie

d
pe

rio
di

ca
lly

 to

op
tim

iz
e

V
M

 p
la

ce
m

en
t,

an
d

V
M

 m
ig

ra
tio

n
w

as

en
ab

le
d

if
an

y
re

so
ur

ce
 o

f
V

M
 e

xc
ee

ds
 to

ta
l c

ap
ac

ity

C
lo

ud
Si

m
A

vo
id

s u
nn

ec
es

sa
ry

 V
M

m

ig
ra

tio
n

an
d

SL
A

 v
io

la
-

tio
n.

 E
ne

rg
y

co
ns

um
pt

io
n

is
 re

du
ce

d

C
on

su
m

pt
io

n
of

 e
ne

rg
y

is

hi
gh

er
 a

s t
he

 n
um

be
r o

f
m

ig
ra

tio
n

is
 h

ig
h

20
15

 [3
0]

En
ha

nc
ed

 lo
ad

-b
al

an
ce

d
m

in
-m

in
 a

lg
or

ith
m

 fo
r

st
at

ic
 m

et
a

ta
sk

 sc
he

du
lin

g
in

 c
lo

ud
 c

om
pu

tin
g

Ta
sk

s w
er

e
as

si
gn

ed
 to

 V
M

s
ba

se
d

on
 e

xe
cu

tio
n

tim
e,

an

d
ta

sk
s w

er
e

re
sc

he
d-

ul
ed

 to
 u

til
iz

e
un

us
ed

re

so
ur

ce
s

C
lo

ud
Si

m
B

et
te

r M
ak

eS
pa

n
an

d
re

so
ur

ce
 u

til
iz

at
io

n
N

ot
 su

ita
bl

e
fo

r d
yn

am
ic

cl

ou
d

8798	 S. Negi et al.

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ye
ar

/re
fe

re
nc

es
W

or
k

hi
gh

lig
ht

s
M

et
ho

do
lo

gy
Si

m
ul

at
or

B
en

efi
ts

Tr
ib

ul
at

io
ns

20
15

 [3
1]

M
ul

ti-
ob

je
ct

iv
e

ta
sk

s s
ch

ed
-

ul
in

g
al

go
rit

hm
 fo

r c
lo

ud

co
m

pu
tin

g
th

ro
ug

hp
ut

op

tim
iz

at
io

n

V
M

s a
re

 so
rte

d
on

 th
e

ba
si

s
of

 M
IP

S
va

lu
es

. T
he

 V
M

lis

t w
hi

ch
 is

 p
re

pa
re

d
in

iti
al

ly
 is

 p
ro

ce
ss

ed
 w

ith

al
l t

as
k

se
t

C
lo

ud
Si

m
Re

du
ce

s o
ve

ra
ll

ex
ec

ut
io

n
tim

e
Th

e
sc

he
du

lin
g

pr
oc

es
s i

s n
ot

effi

ci
en

t

20
17

 [3
2]

D
yn

am
ic

 c
lo

ud
 ta

sk
 sc

he
d-

ul
in

g
ba

se
d

on
 a

 tw
o-

st
ag

e
str

at
eg

y

Ta
sk

 q
ue

ue
, w

ai
tin

g
qu

eu
e,

an

d
re

ad
y

qu
eu

e
w

er
e

m
ai

nt
ai

ne
d,

 a
nd

 th
e

ta
sk

s
w

er
e

pu
t i

n
w

ai
t q

ue
ue

un

til
 a

 su
ita

bl
e

V
M

be

ca
m

e
id

le

C
lo

ud
Si

m
Effi

ci
en

t t
as

k
sc

he
du

lin
g

an
d

ex
ec

ut
io

n
M

ai
nt

ai
ni

ng
 m

ul
tip

le
 q

ue
ue

s
an

d
da

ta
ba

se
s i

nc
re

as
e

sp
ac

e
co

m
pl

ex
ity

20
14

 [3
3]

Se
lf-

ad
ap

tiv
e

le
ar

ni
ng

 P
SO

-
ba

se
d

de
ad

lin
e

co
ns

tra
in

ed

ta
sk

 sc
he

du
lin

g
fo

r h
yb

rid

Ia
aS

 C
lo

ud

Th
e

pr
op

os
ed

 fr
am

ew
or

k
pe

rfo
rm

s r
es

ou
rc

e
al

lo
ca

-
tio

n
fo

r I
aa

S
pr

ov
id

er
s

w
ith

 th
e

fle
xi

bi
lit

y
to

 se
nd

ta

sk
s t

o
ex

te
rn

al
 c

lo
ud

s t
o

ge
t s

uffi
ci

en
t r

es
ou

rc
es

M
A

TL
A

B
 7

.0
C

PU
 a

nd
 m

em
or

y
ut

ili
za

-
tio

n
ar

e
be

tte
r

Ti
m

e
co

m
pl

ex
ity

 a
nd

 ti
m

e
co

ns
um

pt
io

n
ar

e
hi

gh
er

20
15

 [3
4]

En
ha

nc
ed

 p
ar

tic
le

 sw
ar

m

op
tim

iz
at

io
n

fo
r t

as
k

sc
he

du
lin

g
in

 c
lo

ud
 c

om
-

pu
tin

g
en

vi
ro

nm
en

ts

Pr
op

os
ed

 lo
ad

 b
al

an
ci

ng

al
go

rit
hm

 L
B

M
PS

O
 d

is
-

tri
bu

te
s t

as
ks

 to
 re

so
ur

ce
s

an
d

fin
is

he
s t

as
ks

 a
s e

ar
ly

as

 p
os

si
bl

e.
 A

lg
or

ith
m

s
al

so
 re

sc
he

du
le

 fa
ilu

re

ta
sk

s

C
lo

ud
Si

m
Ro

un
d

tri
p

tim
e

is
 b

es
t

ac
hi

ev
ed

 b
y

th
e

LB
M

PS
O

Th
e

m
et

ho
d

pr
om

is
es

 la
rg

e
M

ak
eS

pa
n

an
d

co
m

pl
ex

ity

fo
r a

 h
ig

he
r n

um
be

r o
f V

M
s

an
d

ta
sk

s

8799

1 3

CMODLB: an efficient load balancing approach in cloud computing…

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ye
ar

/re
fe

re
nc

es
W

or
k

hi
gh

lig
ht

s
M

et
ho

do
lo

gy
Si

m
ul

at
or

B
en

efi
ts

Tr
ib

ul
at

io
ns

20
19

 [3
5]

TO
PS

IS
–P

SO
-in

sp
ire

d
no

n-
pr

ee
m

pt
iv

e
ta

sk
s

sc
he

du
lin

g
al

go
rit

hm
 in

 a

cl
ou

d
en

vi
ro

nm
en

t

A
 m

at
he

m
at

ic
al

 m
ul

ti-
cr

ite
ria

-b
as

ed
 te

ch
ni

qu
e

TO
PS

IS
 is

 u
se

d
to

 g
et

ob

je
ct

iv
e

fu
nc

tio
n

fo
r

PS
O

. F
itn

es
s f

un
ct

io
n

is

ob
ta

in
ed

 fr
om

 th
re

e
m

ul
ti-

cr
ite

ria
, i

.e
.,

ex
ec

ut
io

n
tim

e,
 tr

an
sm

is
si

on
 ti

m
e

an
d

co
st

C
lo

ud
Si

m
A

ch
ie

ve
s b

et
te

r M
ak

eS
pa

n
an

d
tra

ns
m

is
si

on
 ti

m
e.

Re

du
ce

s c
os

t

N
ot

 e
ffi

ci
en

t f
or

 lo
ad

 b
al

an
c-

in
g

20
15

 [3
6]

A
n

effi
ci

en
t m

et
a-

he
ur

ist
ic

al

go
rit

hm
 fo

r g
rid

 c
om

pu
t-

in
g

A
 P

SO
 a

nd
 G

EL
S

co
m

bi
ne

d
str

at
eg

y
is

 in
tro

du
ce

d
fo

r
sc

he
du

lin
g

ta
sk

s i
n

gr
id

co

m
pu

tin
g

JA
VA

 S
of

tw
ar

e
B

et
te

r e
xe

cu
tio

n
co

st
an

d
to

ta
l e

xe
cu

tio
n

tim
e

PS
O

-G
EL

S
is

 in
effi

ci
en

t o
n

lo
ad

 b
al

an
ci

ng
 is

su
es

20
13

 [4
5]

FU
G

E:
 A

 jo
in

t m
et

a-
he

u-
ris

tic
 a

pp
ro

ac
h

to
 c

lo
ud

jo

b
sc

he
du

lin
g

al
go

rit
hm

us

in
g

fu
zz

y
th

eo
ry

 a
nd

 a

ge
ne

tic
 m

et
ho

d

A
 g

en
et

ic
 a

lg
or

ith
m

 a
nd

fu

zz
y-

ba
se

d
ap

pr
oa

ch

ca
lle

d
FU

G
E

is
 im

pl
e-

m
en

te
d

to
 p

er
fo

rm
 jo

b
as

si
gn

m
en

t t
o

th
e

ap
pr

o-
pr

ia
te

 re
so

ur
ce

C
lo

ud
Si

m
B

et
te

r e
xe

cu
tio

n
co

st
an

d
to

ta
l e

xe
cu

tio
n

tim
e

FU
G

E
do

es
 n

ot
 w

or
k

w
el

l o
n

lo
ad

 b
al

an
ci

ng
 is

su
es

20
20

 [4
9]

C
ro

w
–p

en
gu

in
 o

pt
im

iz
er

fo

r m
ul

ti-
ob

je
ct

iv
e

ta
sk

sc

he
du

lin
g

str
at

eg
y

in

cl
ou

d
co

m
pu

tin
g

C
PO

-M
TS

 a
lg

or
ith

m
 is

us

ed
 fo

r m
ul

ti-
ob

je
ct

iv
e

ba
se

d
m

et
ho

d.
 It

 g
iv

es
 a

n
im

pr
ov

ed
 c

on
ve

rg
en

ce

ra
te

 a
nd

 c
on

ve
rg

es
 to

 th
e

gl
ob

al
 o

pt
im

al
 so

lu
tio

n

C
lo

ud
Si

m
M

ax
im

iz
es

 Q
oS

 a
nd

 m
in

i-
m

iz
es

, r
es

ou
rc

e
ut

ili
za

tio
n

co
st,

 M
ak

eS
pa

n
an

d
lo

ad

Lo
ad

 fa
irn

es
s a

nd
 re

so
ur

ce

ut
ili

za
tio

n
ar

e
no

t d
is

cu
ss

ed

w
hi

ch
 m

ak
es

 w
or

k
le

ss

effi
ci

en
t

8800	 S. Negi et al.

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ye
ar

/re
fe

re
nc

es
W

or
k

hi
gh

lig
ht

s
M

et
ho

do
lo

gy
Si

m
ul

at
or

B
en

efi
ts

Tr
ib

ul
at

io
ns

20
19

 [5
0]

Th
re

sh
ol

d-
ba

se
d

m
ul

ti-
ob

je
ct

iv
e

m
em

et
ic

op

tim
iz

ed
 ro

un
d

ro
bi

n
sc

he
du

lin
g

fo
r r

es
ou

rc
e-

effi
ci

en
t l

oa
d

ba
la

nc
in

g
in

 c
lo

ud

T-
M

M
O

R
R

S
te

ch
ni

qu
e

im
pr

ov
es

 ta
sk

 sc
he

du
lin

g
to

 b
al

an
ce

 th
e

bu
rs

ty
 a

nd

no
n-

bu
rs

ty
 V

M
 w

or
kl

oa
ds

C
lo

ud
Si

m
Re

du
ce

s e
ne

rg
y

ut
ili

za
tio

n
M

ak
eS

pa
n,

 re
so

ur
ce

 u
til

iz
a-

tio
n,

 d
eg

re
e

of
 im

ba
la

nc
e

pe
rfo

rm
an

ce
 m

et
ric

es
 a

re

no
t c

on
ce

rn
ed

20
20

 [5
1]

A
n

effi
ci

en
t l

oa
d

ba
la

nc
in

g
sy

ste
m

 u
si

ng
 a

da
pt

iv
e

dr
ag

on
fly

 a
lg

or
ith

m
 in

cl

ou
d

co
m

pu
tin

g

Effi
ci

en
t l

oa
d

ba
la

nc
in

g
is

ac

hi
ev

ed
 u

si
ng

 A
da

p-
tiv

e
D

ra
go

nfl
y

al
go

rit
hm

(A

D
A

) h
av

in
g

m
ul

ti-
ob

je
ct

iv
e

fu
nc

tio
n

fo
r

co
m

pl
et

io
n

tim
e,

 p
ro

ce
ss

-
in

g
co

sts
 a

nd
 lo

ad

C
lo

ud
Si

m
B

et
te

r e
xe

cu
tio

n
tim

e
an

d
ex

ec
ut

io
n

co
st

N
ot

 e
ffi

ci
en

t t
o

ba
la

nc
e

lo
ad

in

 d
yn

am
ic

 c
lo

ud
 e

nv
iro

n-
m

en
t

8801

1 3

CMODLB: an efficient load balancing approach in cloud computing…

4.1.1.1  Stage I: Grouping of VMs using BOEK‑means with ANN  In this stage, the load
of cloud VMs under PMs is calculated using Bayesian optimization-based K-means
with artificial neural network as shown in Fig. 3. The reason behind using ANN is
to support multiple VMs simultaneously to get the current load with the objective to
reduce the total clustering method. In our previous work [23], we investigated that the
K-means clustering algorithm offers a major shortcoming in the initialization of the
centroid which makes it more expensive to evaluate the functions. To overcome this
problem, Bayesian optimization (BO) algorithm which builds a probabilistic model
for the problem and finds posterior predictive distribution for that problem [37, 38] is
introduced with the K-means algorithm.

4.1.1.2  Stage II: Task scheduling using TOPSIS‑PSO method  For efficient task sched-
uling, the technique of order preference by similarity to ideal solution with particle
swarm optimization (TOPSIS-PSO) algorithm [35] is performed with different cloud
objectives. A VM is allocated to a task which minimizes execution time and transmis-
sion time and maximizes CPU utilization. Here, PSO algorithm is combined with a
multi-objective-based TOPSIS algorithm in order to remove the PSO’s weak local
search ability and to find optimal fitness function by considering three criteria. The
relative closeness is formulated by the TOPSIS algorithm which is the objective func-
tion for PSO. All underutilized VMs are taken in PSO algorithm, and fitness value
is calculated using multi-objective TOPSIS algorithm. The use of multi-objective
TOPSIS method introduces the most efficient task scheduling outcome. PSO algo-
rithm is set with tasks on underloaded VMs ( TU =

{
TU1, TU2,… , TUQ

}
 ), and at each

iteration, the fitness value for a particle is calculated. The fitness value gives particle
local best (LBest) and global bbest (GBest) values, and both values are updated.

Fig. 2   CMODLB method

8802	 S. Negi et al.

1 3

4.1.1.3  Stage III: VM migration using Iterative Type 2 Fuzzy Logic (IT2FL) method  For
PM-level load balance, it is necessary to maintain destination PM with a balanced
load even after VM migration. Available resources are also important in destination
PM selection which provides better performance for user tasks. Therefore, a selection
of optimal destination PM should be performed in an efficient manner. To realize this
fact, interval type 2 fuzzy logic (IT2FL) is incorporated in VM migration process as
shown in Fig. 4 that illustrates the flow diagram of IT2F logic for PM selection. Here,
rule base follows rules to obtain fuzzy output. PM with high output is taken as PMdes
(destination PM). Lotfi A. Zadehi introduced IT2FL set to extend the functional
properties of Type1 and general fuzzy logic systems. IT2 FL gives the possibility to

Fig. 3   BOK-Means with ANN-based clustering

Fig. 4   IT2 FL logic for PM selection

8803

1 3

CMODLB: an efficient load balancing approach in cloud computing…

provide more parameters to describe membership functions (MF) and handles more
uncertainty [40]. It is the first-order uncertainty fuzzy set model.

The overall process of the CMODLB method includes a grouping of under-
loaded and overloaded VMs using supervised ANN-LB technique, scheduling of
tasks by TOPSIS-PSO multi-criteria-based technique, and VM migration using
iterative type 2 fuzzy logic (IT2FL) method is depicted in Fig. 2 where as Table 2
explains description of used notations in the manuscript. Each significant stage has
been discussed in detail in the following sections.

4.2 � BOEK‑means with ANN‑based clustering (Stage I)

Knowledge of the currently available load on VMs will improve task scheduling,
thus reducing the unbalanced DCs and decreasing resource underutilization. To
achieve this, we have introduced VMMan that will perform clustering of VMs based
on their current available load in each PM; VMMan maintains VM list with their load
information and PM list with their information. VMs are clustered as per their cur-
rent load given as follows:

Table 2   Notations and their description

Notation Description

VM Virtual machine
PM Physical machine
DC Data center
TS Task from sth user
MIPS Million instructions per second
EL Execution time of sth task on Lth VM
VMMan VM manager
CBal Cloud balancer
NL

P
Number of processors in Lth VM

NL
MIPS

Number of MIPS in Lth VM

BWL Bandwidth of Lth VM
VMU Cluster with underloaded VMs
VMO Cluster with overloaded VMs
WL , C(VL),LL Weight, capacity, load of Lth VM
ET , TransT,, UCPU Execution time, transmission time, CPU utilization of

sth task on Lth VM
C C = (c1, c2,.., cK) is the set of centroid
γ(c) Bayesian optimization for best centroid
G G = {G1, G2} Cluster groups
PMOver Overloaded physical machine for VM migration process
PMunder Underloaded physical machine
PMdes Destination physical machine for VM migration process
Vop Optimal VM for migration process

8804	 S. Negi et al.

1 3

•	 Underloaded VMs: Set of VMs having load lower than the target value, and it is
denoted as VMU.

•	 Overloaded VMs: Set of VMs having load greater than the target value, and it is
denoted as VMO.

Group formation of VMs is realized by BOK-means with ANN algo-
rithm. In BOK-means with ANN algorithm, all VMs are fed into ANN to cal-
culate their current load. The load on each VM is considered as weight val-
ues and denoted as W =

{
WV1,WV2,… ,WVL

}
. Based on the weight value

of each VM, BOK-means algorithm forms clusters such as underloaded
VMs with VMU =

{
VMU1,VMU2, ..,VMUQ

}
 and overloaded VMs with

VMO =
{
VMO1,VMO2, ..,VMOR

}
 . Weight value in terms of the load is calculated

using Eq. (1) as follows:

where WL and LL denote the weight and load on Lth VM, while Ej s represents the
execution time of Sth assigned tasks on VML. C(VL) provides the capacity of VML
and computed as:

The capacity of each Lth VM ( C
(
VL

)
 ) is calculated by considering the number of

processors (NP), the number of million instructions per second (MIPS), and band-
width (BW) of Lth VM. Figure 3 illustrates BOK-means with ANN algorithm-based
clustering process. The optimal centroid maximizes the performance of the K-means
clustering algorithm. For a given function f(c) that represents optimization problem
and c represents the attribute of user task belonging to the compact set of centroids
(c ∈ C), the probability of clustering improvement is expressed as:

where�(c) is obtained from

Here, �c is the predictive mean function and �(c) is a predictive marginal function.
Improvement in an optimal solution is obtained from Eq. (3). After the initialization
of the optimal centroid, all VMs are initialized with their weight values. Then BOK-
means method was performed to find optimal clusters.

(1)Wi = Li

1

Ej

∑
Ej∀ assigned task on VL

C
�
VL

�

(2)C
(
VL

)
=
(
NL
P
× NL

MIPS
+ BWL

)
×

1

100
.

(3)Improvement = �(�(c))

(4)�(c) =
f
(
cbest

)
− �c

�(c)
.

8805

1 3

CMODLB: an efficient load balancing approach in cloud computing…

Algorithm 1  depicts the complete process of clustering of VMs using the BOK-
means method ANN algorithm. The obtained cluster includes g1 and g2 where

Here,g1 includes a cluster of underloaded VMs and g2 includes a cluster of over-
loaded VMs. In the cloud, each VM is able to execute different tasks having dis-
similar execution times. This process of execution of different tasks in different VMs
may dynamically vary the current load of VMs. Because of this dynamic execu-
tion nature, it may happen that a VM in g1 may achieve heavy load or a VM in g2
may lead to achieve less load. Such factor motivates to introduce a balancer that
will maintain each cluster group without losing their uniqueness. The key role of
the balancer is to make a decision on load balancing by assigning its each VM to a

g1 = VMU =
{
VMU1,VMU2,… ,VMUQ

}
g2 = VMO =

{
VMO1,VMO2,… ,VMOR

}
.

8806	 S. Negi et al.

1 3

suitable cluster location. For example, if any VM in g1 has changed its current load,
then it is the responsibility of the balancer to remove that VM from g1 and put it
into a suitable cluster location in g2 . Hence, each cluster maintains optimal VMs. To
understand its concept more deeply, let us consider four VMs in the cloud system
having VM_ID from 0 to 3. Each VM initially assigned some tasks to their specific
IDs (0 to 3). Using ANN, the obtained VM loads are VML1 = 0.19 , VML2 = 0.19,
and VML3 = 0.20 . Further, assume that using ANN the obtained values are clus-
tered into the underloaded and overloaded clusters using the BOK-means method.
To classify VMU and VMO , a threshold is set from which g1 =

{
VML2 andVML4

}
 is

obtained as an underloaded and g2 =
{
VML1andVML3

}
 is obtained as an overloaded

cluster. The threshold is calculated using Eq. (6) and Eq. (7), respectively. Obtained
VM loads are depicted in Table 3.

if
[
g1 < g2

]
then g1 is Underloaded. else g1 is overloaded. if

[
g1 = g2

]
 then LBal

will assign tasks to VM having minimum load among VMs of g1 and g2 both. The
obtained underloaded VMs are further being used for task assignment execution
using a multi-objective-based TOPSIS-PSO scheduling algorithm.

4.3 � Multi‑objective‑based TOPSIS‑PSO scheduling algorithm (Stage II)

The next step is task scheduling process in which each task is allocated to the
optimum underloaded VM of cluster g1 . The task scheduling process aims to bal-
ance the load between VMs and to make the best use of resource utilization. In
this process, to preserve load among VMs, the set of VMU determined by BOK-
means with ANN algorithm is taken and other VMs have been excluded. Incom-
ing user tasks T =

{
T1, T2,… , TS

}
 are assigned to optimal underloaded VM in

(5)Dist =

g∑
j=1

n∑
i=1

VML
(j)

i
− m2

j
∀j = 1, 2,… , p ∀k = 1, 2,… ,m

(6)g1 =

j∑
VM=1

VMLj

(7)g2 =

i∑
VM=1

VMLi

Table 3   Obtained VM loads VM_Id VM Task_Id VML

0 1 0 0.19
1 2 1 0.19
2 3 2 0.20
3 4 3 0.19

8807

1 3

CMODLB: an efficient load balancing approach in cloud computing…

VMU =
{
VMU1,VMU2,… ,VMUQ

}
 . Based on multiple parameters such as the exe-

cution time of task, the transmission time of the task, and CPU utilization, an opti-
mal VM is selected.

The execution time (ET) of Sth task on Lth VM is given by

Execution time is computed by obtaining the ratio of the length of the Sth task
lengthS and MIPS of Lth VM. Optimal VM is nominated for Sth task that reduces
ET.

The transmission time (TT) for a task TS on VM VL is computed as

The transmission time of the Sth task on a specific VM is obtained by taking the
ratio of task size SizeS and bandwidth of VM BWL . Similarly, CPU utilization of VM
is calculated by

The TOPSIS algorithm is initiated by assigning some weight values for every
three criteria which are signified by

[
ET , TT ,UCPU

]
=
[
HE,Htrans,HU

]
 and includes

the following steps:
Step1 Construction of Decision Matrix (DM). The decision matrix is constructed

using multiple alternatives and multiple criteria.
Here, TU1, TU2, TU3, TU4, and TU5 are called alternatives (tasks) and ET, TT, and

UCPU are known as multiple criteria. ET1i, TT1i, and UCPU1i represent the execu-
tion time, transmission time, and CPU utilization of Ti on VMUQ, respectively. The
obtained DM values for five tasks TU1, TU2, TU3, TU4, and TU5 on underloaded VMU
(vmID = 0) with ET, TT, and UCPU are expressed in Table 4.

Step2 Construction of Standard DM. In this step, each criterion is compared with
each column alternative to transform into non-dimensional attributes. In this stand-
ardization, each row of DM is divided by the root of the sum of the square of respec-
tive row as follows:

(8)To be Minimized, ET =
lengthS

MIPSL
.

(9)To be Minimized, TT =
SizeS

BWL

.

(10)To be maximized,UCPU =
Total CPU usage of processes

Number of processes
.

Table 4   Decision table of multiple alternatives and criteria

Multiple alternatives

TU1 TU2 TU3 TU4 TU5

Multiple criteria ET 0.256 0.282 0.307 0.333 0.359
TT 1.150 1.100 1.200 1.300 1.400
UCPU 0.800 0.800 1.000 1.000 1.000

8808	 S. Negi et al.

1 3

where each element in DMrepresents in ath alternative and cth criteria for DMac.
Step3 Construction of Weighted standard DM. To get weighted standard DM,

each attribute weight value is multiplied by each element in standard DM. The
weight values for execution time, transmission time, and CPU utilization criteria are
evaluated as

where HE,Htransand HU are the weight values for ET , TTandUCPU , respectively, and
ETQ, TTQandUCPUQ on Qth VM. The weight values should be a positive integer.

Step4 Evaluation of ideal and negative solution. In this step, an extremely posi-
tive ideal solution that maximizes benefit criteria and a negative ideal solution that
minimizes benefit criteria are determined. ET and TT are considered as performance
criteria which are to be minimized, and UCPU is taken as benefit criteria which are to
be maximized. Positive (A+) and negative (A−) ideal solutions are given by

where V+
Ua

 and V−
Ua

 represent the positive and negative solutions for ath alternative,
respectively.

Step5 Determination of separation measures. In this step, each alternative is sep-
arated from A+ and A− which is measured as

Equations (17) and (18) calculate the distance between each alternative positive and
negative solution, respectively. Here, the number of criteria is 3.

Step6 Calculation of relative closeness. The value of relative closeness (RC) is
achieved from the positive and negative separation measures (f +

Q
 and f −

Q
 ) of tasks on

Qth VM with respect to positive ideal solution A+ and is defined as

(11)Sac =
DMac�∑m

i=1
DM2

ac

(12)ET = ETQ × HE

(13)TT = TTQ × HTrans

(14)UCPU = ETQ × HU

(15)A+ =
(
V+
U1
,V+

U2
, ..,V+

Ua

)

(16)A− =
(
V−
U1
,V−

U2
, ..,V−

Ua

)

(17)f +
Q
=

√√√√ 3∑
c=1

(
Vac − V+

c

)2

(18)f −
Q
=

√√√√ 3∑
c=1

(
Vac − V−

c

)2
a ∈ alternatives c ∈ criteria.

8809

1 3

CMODLB: an efficient load balancing approach in cloud computing…

The role of RC is to perform as a fitness value for the PSO algorithm. The ability
of particle swarm reaction introduces solutions to optimization problems [36]. In
PSO, a swarm comprises individual particles that fly on search space, and these par-
ticles handle solutions to the problems. By the experience of a particle and its neigh-
boring particles, the position may be influenced by the best local position (LBest).
However, if the neighborhood of a particle has the best position in the swarm, it
would be the best global position (GBest). Once particle has been initialized, in each
repetition particle is placed near to GBest and velocity using Eq. (20) and FV is cal-
culated. The velocity of a particle is expressed as

where i+1
Q

Vel signifies existing velocity and i
Q
Vel denotes the earlier velocity of Q .

i+1
Q

Parandi
Q
Par are the current and earlier position of Q . Two learning factors L1, L2

and the random numbers ran1, ran2 are involved in velocity computation with respect
to the values depicted in Table 4. Each user task performs this process and is then
scheduled to an optimal underloaded VM. The obtained relative closeness for each
task T from TOPSIS is initialized to compute the fitness value for each particle. Ini-
tially, for each task, TOPSIS calculates a decision matrix for the given multiple
alternatives (tasks) and three criteria (execution time, transmission time, and CPU
utilization) using Eqs. (8), (9), and (10), respectively. The algorithm recalculates the
standard decision matrix by a root of the sum of squares of respective rows using
Eq. (11). Weighted standard DM is calculated using Eq. (12), Eq. (13), and Eq. (14)
for ET , TransT , andUCPU , respectively. Next, positive and negative ideal solutions
are performed to check maximum and minimum benefit from the criteria using
Eq. (15) and Eq. (16). Separation of alternatives from f +

Q
 and f −

Q
 using Eq. (17) and

Eq. (18) is performed. Relative closeness (fitness value) is obtained for each task
with respect to each alternative as a particle using Eq. (19). The obtained FV value
is further compared to the current local best particle value, which is calculated in the
initial steps of PSO. If the current FV is larger than the current local best particle,
then update the value of LBest with the current FV value updated, else the value of
LBest will remain the same. Once the algorithm gets the value of all LBest , the larg-
est LBest is found by comparing them with each other. The largest LBest will be
considered as the global best particle GBest . Similarly, if the current GBest is larger
than the previous GBest , then the value of GBest is updated with the current GBest
value; else, the value of LBest will remain. The process is iteratively performed until
the maximum number of iterations is reached. During each iteration, particle veloc-
ity and position are updated using Eq. (20) and Eq. (21). The final particle solution

(19)FVQ = RCQ =
f −
Q

f −
Q
+ f +

Q

.

(20)

i+1
Q

Vel = � ∗ i
Q
Vel + L1 ∗ ran1 ∗

(
LBest − i

Q
Par

)
+ L2 ∗ ran2 ∗

(
GBest − i

Q
Par

)

(21)i+1
Q

Par = i
Q
Par + i+1

Q
Vel

8810	 S. Negi et al.

1 3

having the largest GBest will be assigned to the most optimal underloaded
VM VUoptimal for mapping.

By assigning each task to optimal VM, MakeSpan, completion time, and trans-
mission time of tasks are reduced significantly. TOPSIS-PSO method assigns user
tasks only to VMU. Therefore, TOPSIS-PSO-based task scheduling process with
ANN-LB technique introduces load balancing and efficient tasks scheduling among
VMS. Further, it reduces MakeSpan, completion time, and transmission time of
tasks without reducing resource utilization. The overall procedure of the TOPSIS-
PSO algorithm is shown in Algorithm 2. Finally, each task in the user task set is
scheduled to optimal VM in the underloaded VM set, which can be expressed as

Tasks which are assigned to VMU2and VMU4 are denoted in Table 5 where tasks
T0, T3, and T4 are mapped to VM

U2 and Tasks T1 and T2 are mapped to VM
U4 .

The given task assignment matrix table represents task mapping according to the
increased number of tasks and VMs. The calculation is executed for both less and a
considerable number of tasks, and related effects are observed for both cases. In this
observation, a small number of VMs and runtime tasks are used.

The assignment of the best VM for user task results in better performance and
better resource utilization. Therefore, MakeSpan, which is the overall completion
time for all assigned tasks for a particular VM, is minimized significantly. Involve-
ment of LBal efficiently monitors the load on grouped VMs and reassigns VM after
task assignment to prevent VMs from overloading. Hence, balanced load among all
VMs is maintained by efficient clustering and task scheduling processes. It is also
necessary to balance load among PMs. PSO parameters are depicted in Table 6.
Load balancing among PMs is realized by the VM migration process, which is elab-
orated in the next section.

(22)
[
T1, T2, T3, ..,TS

]
=
[
VMUt1,VMUt2,VMUt3,… ,VMUts

]
.

Table 5   Tasks assignment
matrix to VMs

Tasks Resources

VM
2

VM
4

T0 1 0
T1 0 1
T2 0 1
T3 1 0
T4 1 0

8811

1 3

CMODLB: an efficient load balancing approach in cloud computing…

4.4 � VM migration based on fuzzy Logic (Stage III)

Both VM clustering and task scheduling are involved in load balancing across VMs,
whereas VM migration is involved in load balancing among PMs. Load on each PM

Table 6   PSO parameters

Parameters Values Description

Swarm size No. of particles Problem space in terms of swarm size
Particle(Q) 5 Particles or population in swarm
Iterations 50–1000 Number of swarm iterations
Constant factor (L1) 1.49445 Self-consciousness study factor [35] or cognitive

parameter [36]
Constant factor (L2) 1.49445 Swarm consciousness study factor [35] or social

parameter [36]
Max(V) (No. of resources or 1) Maximum velocity of a particle
Min(V) (0–1) Minimum velocity of a particle
rand (0–1) Uniformly distributed random number

8812	 S. Negi et al.

1 3

is monitored by the VM manager, which maintains PM information. PM load is cal-
culated in terms of load on VMs that are presented in that PM as follows:

Equation (23) computes load on mth PM in terms of load L of all VMs ( Li ) pre-
sented in that PM. VM migration also enables energy efficiency along with load
balancing. VM manager takes VM migration decision in the following conditions:

1.	 If a PM becomes overloaded (for load balancing)
2.	 If a PM has less load (for energy efficiency).

When a PM attains one of the above conditions, optimal VM is migrated from that
PM to optimal destination PM. Consider PMm with

{
VM1,VM2, ..,VMi,… ,VML

}

and load on VMs as
{
L1, L2, ..,Li,… , LL

}
 . If PMm is overloaded, then the optimal

VM is selected and migrated from that PM to another PM. The optimal VM for
migration is selected based on migration time, and it is computed for Lth VM as

Here, RAM
(
VML

)
 represents RAM of VML and BWL denotes the bandwidth of VML.

Condition for a VM to be selected as an optimal VM for migration is formulated as

A VM that satisfies the above condition is selected for migration and denoted
as Vop . The next important step is to find an optimal destination PM for migration.
Important mathematical definitions, terminology, and well-explained concepts that
explain how IT2FL is set and the system is evaluated in the proposed research work
are discussed in the following subsections. Detailed IT2FL set and system process
are explained as follows (Fig. 4).

4.4.1 � Interval type 2 fuzzy logic set (IT2FL)

Definition 1  A T2 FS is denoted as S′ and expressed by its T2 degree of member-
ship function (DoMF) and �S� (x, f) is defined as follows:

where expression x ∈ X, f ∈ Dx is the domain of x in ⊆ [0, 1].The primary variable
x of S′ can be denoted as X . The use of ʃʃ is to represent the union over, all correct
values of x and f. If the universe of discourse (UoD) is discrete in nature, then it will
be expressed as

(23)L
(
PMm

)
=

L∑
i=1

Li.

(24)MT
(
VML

)
=

RAM
(
VML

)
BWL

.

(25)optimalVM = min{MT(VM)}.

(26)S� = � x ∈ X � f ∈ Dx

�S� (x, f)

(x, f)
�S� (x, f) ≤ 1

8813

1 3

CMODLB: an efficient load balancing approach in cloud computing…

In discrete UoD, ʃʃ is simply replaced with
∑∑

 to represent the values of vari-
ables x and f. In this research, the continuous UoD approach is being focused on
MF. The value of the fuzzy set S′ is expressed as:

where S′ is the fuzzy set defined over a UoD of primary variable x with T2 DoMF
�s� (x, f).

Definition 2  If the value of �S� (x, f) = 1 in Eq. (24), then S′ is said to be IT2 FLS.

Definition 3  The vertical slice of �S� (x, f) is the representation of value x′ in x
having 2d-plane with axes f and �S′

(
x′, f

)
 . Secondary MF is the vertical slice of

�S� (x, f) [40], i.e.,

where�S′

(
x′
)
 is the secondary MF of S′ . Equation (30) is used when all second-

ary MF values of IT2 FLS are 1, otherwise fx� (f) will be replaced with value 1. The
value of fx� (f) lies between 0 ≤ fx� (f) ≤ 1.

Definition 4  The representation of �S� (x, f) in IT2 FLS is achieved by footprint of
uncertainty (FoU). The union of primary membership (Dx) is the FoU of S′ as

where FoU for lower member function L(MF) L�S� (x) and upper member function
U(MF) U�S� (x) are expressed as follows:

and

where infi and Sup are the infimum and supermum of the support of �S� (x).
Figure 5 shows the presentable image of IT2 FLS triangular MF for S′ with its

two bounded T1 FSs. L�S� (x) and U�S� (x) are the L(MF) and U(MF), respectively.
The region between L(MF) and U(MF) is the footprint of uncertainty (FoU) [40]
which is the primary membership that consists of bounded region for IT2 FLS. Any

(27)S� =
∑
x∈X

∑
f∈Dx

�S� (x, f)

(x, f)
.

(28)S� =
{(

(x, f),𝜇S� (x, f)
)||x ∈ X, f ∈ Dx ⊆ [0, 1]

}
.

(29)S� = ∫ x ∈ X ∫ f ∈ Dx

1

(x, f)
, Dx ⊆ [0, 1]

(30)𝜇S�

(
x = x�, f

) ≡ 𝜇S�

(
x�
)
= � f ∈ Dx�

1

f
, Dx ⊆ [0, 1]

(31)FoU
(
S�
)
=
⋃
x∈X

Dx = {(x, f)|f ∈ Dx ⊆ [0, 1]}

(32)L𝜇S� (x) = infi(f | f ∈ [0, 1],𝜇S� (x, f) > 0)

(33)U𝜇S� (x) = sup(f | f ∈ [0, 1],𝜇S� (x, f) > 0)

8814	 S. Negi et al.

1 3

T1 FS within the FoU is the embedded T1 FS, and such sets are represented as L (S�

)
and U

(
S′
)
 . Each input value in continuous UoD maintains DoMF that ranges the

value between L(MF) and U(MF). In this work, triangular MF is used to character-
ize the fuzzy set. The expression of triangular MF is as follows:

A triangular MF Δ(a, b, c) is the collection of optimistic boundary or lower limit
(a) , an expected value or middle value (b), and pessimistic boundary or upper limit
(c).

4.4.2 � Interval type 2 fuzzy logic system (IT2FLS)

IT2FLS is comprised of five stages, i.e., fuzzification, creation of knowledge base
rule, fuzzy inference mechanism, type reduction, and defuzzification. The only dif-
ference between IT2 FLS and T1 FLS is that T1 FLS does not perform the type
reduction stage. Type reduction is the central most part in IT2 FLS in which it trans-
fers the fuzzy output set to T1 fuzzy set. The computational process includes input
vectors x1 ∈ S

�

1
,… .., xm ∈ S

�

m
 and single output y ∈ Y  . Knowledge base rules are

characterized as Q fuzzy rules (FR) and expressed as [46]:

(34)Δ(x ∶ a, b, c) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0, x ≤ a
x − a

b − a
,

1,
c − x

c − b
,

0,

a ≤ x ≤ b

x = b

b ≤ x ≤ c

x ≥ c

Fig. 5   IT2 FL set MF and FoU

8815

1 3

CMODLB: an efficient load balancing approach in cloud computing…

where FR′

i
 is the ith fuzzy rule that consists of a set of universe of discourses

( x1, x2 … xmandy) and linguistic variables (L1
i
, L2

i
..Lm

i
andOi). The part of FR (x1 is L1

i

and x2 is L2
i
 and …..xm is Lm

i
) is said to be the antecedent or premise, whereas rule

statement (y is Oi) is the consequence or conclusion. The execution process of an
IT2 FLS and its mathematical terminology is discussed in the following steps:

Step1 Obtain the membership function of xm , on each S′

m
 using Eq. (26) which is

represented as:

where L�S
′
m

(
xm
)
 and U�S

′
m

(
xm
)
 are the L(MF) and U(MF) functions of UoD xm on

fuzzy set S′

m
 . The value of L(MF) always must be less than or equal to the value of

U(MF).
Step2 Compute the firing interval of the mth rule, FoUQ(x),

where f m
L
andf m

U
 are the upper bound and lower bound firing interval of mth fuzzy

rule, respectively. Symbol × denotes the product t-norm operation and expressed as:

Step3 Compute the type reduction step with the defined rule and firing interval
FoUQ(x) using the center of set (CoS) reducer method.

Perform Karnik–Mendel (KM) algorithm [47] to compute the left- and rightmost
points yL(x)andyR(x), respectively. The KM algorithm is used to obtain the switch
points for yL(x) andyR(x) . The function of yL(x) is to perform the firing interval
switching from upper bound to lower bound. It is the minimum of YCoS(x) and can be
computed as

The function of yR(x) is to perform the switching firing interval from lower bound
to upper bound, and it gets maximum of YCoS(x) . It is computed as

(35)
FR

�

i
∶ if x1 is L

1
i
and x2 is L

2
i
and … xm is Lm

i
then y is Oi for i ∈ FR,m ∈ input

(36)
[
L�S

�
m

(
xm
)
,U�S

�
m

(
xm
)]

form = 1, 2… .M

(37)FoUQ(x) =
[
f m
L
, f m
U

]

(38)f m
L
=
{
L�S

�

1

(
x1
)
× L�S

�

2

(
x2
)
…× L�S

�
m

(
xm
)}

(39)f m
U
=
{
U�S

�

1

(
x1
)
× U�S

�

2

(
x2
)
…× U�S

�
m

(
xm
)}

(40)
YCoS(x) =

�
f m ∈ f m(x)
ym ∈ Om

M∑
m=1

f mym
�

M∑
m=1

f m =
�
yL(x), yR(x)

�

(41)yL(x) =

∑L

m=1
f m
U
ym
L
+
∑M

m=L+1
f m
L
ym
L∑L

m=1
f m
U
+
∑M

m=L+1
f m
L

.

8816	 S. Negi et al.

1 3

where LyL ≤ yL(x) ≤ LyL+1 UyR ≤ yR(x) ≤ UyR+1.
Step4 Calculate the defuzzified output from [48],

The above equations will be used, in finding the best possible optimal destina-
tion PM. IT2 FLS has unique characteristics that provide better performance even
in uncertain abound conditions and work well with missing components. The Java-
based toolkit Juzzy [39] library files have been imported to input the IT2 FLS-based
VM migration results in CloudSim. Configuration parameters for the fuzzy sys-
tem are shown in Table 7. To understand the working approach of IT2 FLS in the
proposed CMODLB method, a descriptive example is discussed. In our proposed
method, we present a model for the possibility of selection of the optimal destination
PM for VM migration, which depends on available memory (Avl_Mem), available
CPU (Avl_CPU), and available load (Avl_Load) of destination PM. It is assumed
that the selection of optimal destination PM takes input variable Avl_Mem, Avl_
CPU, and Avl_Load having linguistic terms low and high and output variable Pos-
sibility with linguistic terms low, medium, and high. The input and output linguistic
variables are defined by their fuzzy values. The Avl_Mem of mth PM is said to be
low and high as defined in Eq. (44). Similarly, Avl_CPU and Avl_Load are defined
in Eq. (45) and Eq. (46), respectively (Table 6).

(42)yR(x) =

∑R

m=1
f m
L
ym
U
+
∑M

m=R+1
f m
U
ym
U∑R

m=1
f m
L
+
∑M

m=R+1
f m
U

(43)Y =
[
yL(x) + yR(x)

]
∕2.

(44)if AvlMem j is

{
0 ≤ j ≤ 5, Low

5.1 ≤ j ≤ 10, High

(45)if Avl_CPUj is

{
0.5 ≤ j ≤ 5.2, Low

5.3 ≤ j ≤ 10, High

Table 7   Simulation parameters
for type 2 fuzzy system

Parameter Value

Fuzzy type Interval type 2 fuzzy
Input Available memory in PM, available

CPU in PM, and load in PM
Membership function type Triangular with FoU
Linguistic term Low, medium, and high
Defuzzification method Centroid of sum
Type reduction method Center of sets (using KM algorithms)
Representation Vertical slices
Output Possibility

8817

1 3

CMODLB: an efficient load balancing approach in cloud computing…

The number of rules in the rule base is set by the product of the maximum num-
ber of linguistic terms in each input fuzzy set, i.e., 2 × 2 × 2 = 8 . The corresponding
eight fuzzy rules using Eq. (36) are elaborated in the following section. R1 is rule#1
which states: If available memory, available CPU, and available current load of jth
PM are low, then there is a low possibility for this PM to be an optimal destination
PM for VM migration. Similarly, other rules are defined in the same manner. It is
shown that the highest possibility of being an optimal destination PM is achieved
when the input set matches Rule#7.

The rules are stated as

Each input domain consists of two IT2 FS. Figure 6 a–c shows the UMF and
LMF of input fuzzy set Avl_Mem, Avl_CPU, and Avl_Load using vertical slice rep-
resentation by Eq. (26). Triangular MF has been used for the input crisp set given
in Eq. (34). The obtained MF graphs represent universe of disclosure on the x-axis
that ranges from 0 to 10, and the degree of MF on the y-axis which ranges between
0 and 1. Table 8 shows the FoU for upper and lower MF for each input and output
linguistic variable. Representation of Type 2 set can be achieved through vertical
slice, horizontal slice, wavy slice, zSliced, etc. However, in this experiment, vertical
slice representation is performed due to its simplicity and ease. The FoU L(MF) and
FoU U(MF) are the footprints of uncertainty for lower and upper membership func-
tions for each input and output linguistic variable. Table 8 depicts FoU L(MF) and
FoU U(MF) for low PM memory having triangular MF values Δ(x ∶ 1.0, 3.0, 3.0)
and Δ(x ∶ 0.0, 1.0, 5.0), respectively. Similarly, other values are obtained. A fuzzy
set is fed into the inference model which combines fuzzy set and rule base. Based on
rules provided in the rule base, IT2 FLS provides single output for multiple inputs.

To understand its working nature, let the value of the input vector
( x1 = AvlMem, x2 = AvlCPU , x3 = Avl_Load ) be (1.5, 3.8, 7.5). The input value of
AvlMem is 1.5 which is low as given in Eq. (41), AvlCPUis3.8 which represents low
from Eq. (42) and AvlLoadis 7.5 which is high in range as per Eq. (43). The input
value matches with rule number two ( R2 ∶ If Avl_Mem is Low and Avl_CPU is Low
and Avl_Load is High THEN Possibility is Low). Using Eq. (36), the obtained lower

(46)if Avl_Loadj is

{
0.0 ≤ j ≤ 3.5, Low

3.6 ≤ j ≤ 10, High

R1 ∶ If Avl_Mem is Low and Avl_CPU is Low and Avl_Load is Low THEN Possibility is Low

R2 ∶ If Avl_Mem is Low and Avl_CPU is Low and Avl_Load is High THEN Possibility is Low

R3 ∶ If Avl_Mem is Low and Avl_CPU is High and Avl_Load is Low THEN Possibility is Medium

R4 ∶ If Avl_Mem is Low and Avl_CPU is High and Avl_Load is High THEN Possibility is Low

R5 ∶ If Avl_Mem is High and Avl_CPU is Low and Avl_Load is Low THEN Possibility is Medium

R6 ∶ If Avl_Mem is High and Avl_CPU is Low and Avl_Load is High THEN Possibility is Medium

R7 ∶ If Avl_Mem is High and Avl_CPU is High and Avl_Load is Low THEN Possibility is High

R8 ∶ If Avl_Mem is High and Avl_CPU is High and Avl_Load is High THEN Possibility is Medium

8818	 S. Negi et al.

1 3

and upper membership functions for AvlMem,AvlCPUandAvlLoad on each low and high
linguistic variables are represented in Table 9. These bounds will be used in fuzzy
inference rules for firing intervals IT2 FSs.

Fig. 6   Member function (MF) for T1 FLS is shown in a, b and c 

Table 8   FoU MF upper and lower bounds

S. No. Low-memory PM High-memory PM

FoU L(MF) Δ(x ∶ 1.0,3.0,3.0) Δ(x ∶ 7.5,8.0,10.0)

FoU U(MF) Δ(x ∶ 0.0,1.0,5.0) Δ(x ∶ 5.1,8.0,10.0)

S. No. Low available CPU PM High-memory PM

FoU L(MF) Δ(x ∶ 1.5,3.0,4.0) Δ(x ∶ 6.0,8.0,9.0)

FoU U(MF) Δ(x ∶ 0.5,3.0,5.0) Δ(x ∶ 5.1,8.0,10.0)

S. No. Low available load PM High-memory PM

FoU L(MF) Δ(x ∶ 0.5,2.5,3.0) Δ(x ∶ 4.5,6.0,10)

FoU U(MF) Δ(x ∶ 0.0,2.5,3.5) Δ(x ∶ 3.6,6.0,10.0)

8819

1 3

CMODLB: an efficient load balancing approach in cloud computing…

Figure 7 explains the comparable calculation for firing intervαal to a given input.
When x = 1.5, the vertical line at 1.5 intersects FoU (for low Avl_Mem) in the inter-
val

[
�LowL

(
AvlMem = 0.30

)
,�LowU

(
AvlMem = 0.52

)]
 . For x = 3.8, the vertical line at

3.8 intersects FoU (for low Avl_CPU) in the interval
[ �LowL

(
AvlCPU = 0.28

)
,�LowU

(
AvlCPU = 0.60

)
], and for input x = 7.8, the vertical

line at 7.8 intersects FoU (for low Avl_Load) in the interval
[�HighL

(
AvlLoad = 0.31

)
,�HighU

(
AvlLoad = 0.59

)
 . From these inputs, two firing

levels are then computed, i.e., firing interval lower membership ( f m
L
) and upper

membership ( f m
U
) for each rule using Eq. (35) and Eq. (36), respectively. The lower

firing intervals for rule#1 are obtained by multiplying each L(MF) of three inputs

Table 9   FoU MF upper and lower bounds

Lower MF Upper MF

[�LowL

(
AvlMem = 0.30

)
�LowU(AvlMem = 0.52)]

[�HighL
(
AvlMem = 0.70

)
�HighU(AvlMem = 0.96)]

[�LowL

(
AvlCPU = 0.28

)
�LowU

(
AvlCPU = 0.60

)
]

[�HighL
(
AvlCPU = 0.84

)
�HighU

(
AvlCPU = 0.93

)
]

[�LowL

(
AvlLoad = 0.50

)
�LowU

(
AvlLoad = 0.60

)
]

[�HighL
(
AvlLoad = 0.31

)
�HighU

(
AvlLoad = 0.59

)
]

Fig. 7   Calculation of firing interval MF for rule#2

8820	 S. Negi et al.

1 3

( LowAvlMem, LowAvlCPUandLowAvlLoad ). Similarly, upper firing intervals for rule#1
are obtained by multiplying each U(MF) of three inputs ( LowAvl

Mem
,LowAvl

CPU
andLowAvl

Load
 )

and hence f 1
(1.5,3.8,7.8)

= [f 1
L
= 0.042, f 1

U
= 0.187] . The fired rule interval FoU for

rule#2 is f 2
(1.5,3.8,7.8)

 = 
[
f 1
L
= 0.091, f 2

U
= 0.091

]
 . Similarly, each rule is performed in

the same procedure to obtain rule FoU as given in Table 10. The centroid of the
rules consequent is calculated using the iterative KM procedure [48]. For each fuzzy
rule type 2 fuzzy set (FS) output, the centroid of the consequent is calculated for
lower and upper interval ym

L
and ym

U
 . The total number of output FS for output possi-

bility is 3, i.e., low, medium, and high. From Eq. (40), the obtained centroid of the
low, medium, and high output FS is [0.5,3.45], [4.45,6.75], and [7.5,9.5], respec-
tively. The centroid of each rule consequent for the output possibility is shown in
Table 6. Type reduction is performed using KM algorithm, and we find left point
(L) = 3 and right point (R) = 2. So, the value of yL(x) is obtained to perform the firing
interval switching from upper bound to lower bound, whereas the value of yU(x)
required to perform the switching firing interval from lower bound to upper bound
using Eq. (41) and Eq. (42), respectively. It is needed to reorder ym

L
and ym

U
 in an

ascending manner where y1
L
≤ y2

L
≤ y3

L
≤ y4

L
≤ y5

L
≤ y6

L
≤ y7

L
≤ y8

L
 and

y1
U
≤ y2

U
≤ y3

U
≤ y4

U
≤ y5

U
≤ y6

U
≤ y7

U
≤ y8

U
 . Hence, reordered output possibility for

lower bound is [0.5, 3.45, 3.45, 4.45, 4.45, 4.45, 6.75, 7.5] and for upper bound is
[0.5, 0.5, 3.45, 6.75, 6.75, 6.75, 6.75, 9.50].

Defuzzification is needed to calculate the crisp output of possibility using
Eq. (43). The possibility crisp output is the average summation of yL and yR . The
final crisp output y2 with respect to rule#2 is:

The obtained crisp output value suggests a cloud system that the PM with its
input values for rule# maintains a low possibility for destination optimal PM for VM
migration. It clearly shows that the output value 4.52 has a low possibility for VM
migration. Figure 8 shows a graphical representation of triangular MF for output
possibility using Eq. (31). The x-axis shows the possibility with respect to the input
fuzzy set, and the y-axis shows the DoM between 0 and 1. The Low, Medium, and

yL =
(
f 1
U
× y1

U

)
+
(
f 2
U
× y2

U

)
+
(
f 3
U
× y3

U

)
+
(
f 4
L
× y4

L

)
+
(
f 5
L
× y5

L

)
+
(
f 6
L
× y6

L

)
+
(
f 7
L
× y7

L

)
+
(
f 8
L
× y8

L

)/(
f 1
U
+ f 2

U
+ f 3

U
+ f 4

L
+ f 5

L
+ f 6

L
+ f 7

L
+ f 8

L

)

=
(0.187 × 0.5) + (0.091 × 0.5) + (0.290 × 3.45) + (0.078 × 4.45) + (0.980 × 4.45) + (0.061 × 4.45) + (0.294 × 6.75) + (0.182 × 7.50)

(0.187 + 0.091 + 0.290 + 0.078 + 0.980 + 0.061 + 0.294 + 0.182)

yL =
9.74

2.16
= 2.25

yR =
(
f 1
L
× y1

L

)
+
(
f 2
L
× y2

L

)
+
(
f 3
U
× y3

U

)
+
(
f 4
U
× y4

U

)
+
(
f 5
U
× y5

U

)
+
(
f 6
U
× y6

U

)
+
(
f 7
U
× y7

U

)
+
(
f 8
U
× y8

U

)/(
f 1
L
+ f 2

L
+ f 3

U
+ f 4

U
+ f 5

U
+ f 6

U
+ f 7

U
+ f 8

U

)

=
(0.042 × 0.5) + (0.026 × 3.45) + (0.290 × 3.45) + (0.285 × 6.75) + (0.346 × 6.75) + (0.340 × 6.75) + (0.546 × 6.75) + (0.537 × 9.50)

(0.042 + 0.026 + 0.290 + 0.285 + 0.346 + 0.340 + 0.546 + 0.537)

yR =
16.38

2.41
= 6.79

Y2 =
2.25 + 6.79

2
= 4.52.

8821

1 3

CMODLB: an efficient load balancing approach in cloud computing…

Ta
bl

e 
10

  
Fi

rin
g

In
te

rv
al

 o
f t

he
 e

ig
ht

 ru
le

s

Ru
le

#
Fi

rin
g

in
te

rv
al

Ru
le

 c
on

se
qu

en
t

R
1
∶

[f
1 L
,f

1 U
]
=

[�
L
o
w
L

(A
vl
M
em

) ×
�
L
o
w
L

(A
vl
C
P
U

) ×
�
L
o
w
L

(A
vl
L
o
a
d

) ,�
L
o
w
U

(A
vl
M
em

) ×
�
L
o
w
U

(A
vl
C
P
U

) ×
�
L
o
w
U

(A
vl
L
o
a
d

)]

[0
.3
0
×
0
.2
8
×
0
.5
,0
.5
2
×
0
.6
0
×
0
.6
0
]
=
[0
.0
4
2
,0
.1
8
7

[0
.5

, 3
.4

5]

R
2
∶

[f
2 L
,f

2 U
]
=

[�
L
o
w
L

(A
vl
M
em

) ×
�
L
o
w
L

(A
vl
C
P
U

) ×
�
H
ig
h
(A

vl
L
o
a
d

) ,�
L
o
w
U

(A
vl
M
em

) ×
�
L
o
w
U

(A
vl
C
P
U

) ×
�
H
ig
h
U

(A
vl
L
o
a
d

)]

[0
.3
0
×
0
.2
8
×
0
.3
1
,0
.5
2
×
0
.6
0
×
0
.2
9
]
=
[0
.0
2
6
,0
.0
9
1
]

[0
.5

 ,3
.4

5]

R
3
∶

[f
3 L
,f

3 U
]
=

[�
L
o
w
L

(A
vl
M
em

) ×
�
H
ig
h
L

(A
vl
C
P
U

) ×
�
L
o
w
L

(A
vl
L
o
a
d

) ,�
L
o
w
U

(A
vl
M
em

) ×
�
H
ig
h
U

(A
vl
C
P
U

) ×
�
L
o
w
U

(A
vl
L
o
a
d

)]

[0
.3
0
×
0
.8
4
×
0
.5
,0
.5
2
×
0
.9
3
×
0
.6
0
]
=
[0
.0
1
4
,0
.2
9
0
]

[0
.4

5
,6

.7
5]

R
4
∶

[f4 L
,f

4 U

] =
[�
L
o
w
L

(A
vl
M
em

) ×
�
H
ig
h
L

(A
vl
C
P
U

) ×
�
H
ig
h
L

(A
vl
L
o
a
d

) ,�
L
o
w
U

(A
vl
M
em

) ×
�
H
ig
h
U

(A
vl
C
P
U

) ×
�
H
ig
h
U

(A
vl
L
o
a
d

)]

[0
.3
0
×
0
.8
4
×
0
.3
1
,0
.5
2
×
0
.9
3
×
0
.5
9
]
=
[0
.0
7
8
,0
.0
.2
8
5
]

[0
.5

, 3
.4

5]

R
5
∶

[f
5 L
,f

5 U
]
=

[�
H
ig
h
L

(A
vl
M
em

) ×
�
L
o
w
L

(A
vl
C
P
U

) ×
�
L
o
w
L

(A
vl
L
o
a
d

) ,�
H
ig
h
U

(A
vl
M
em

) ×
�
L
o
w
U

(A
vl
C
P
U

) ×
�
L
o
w
U

(A
vl
L
o
a
d

)]

[0
.7
0
×
0
.2
8
×
0
.5
,0
.9
6
×
0
.6
0
×
0
.6
0
]
=
[0
.9
8
,0
.3
4
6
]

[0
.4

5,
 6

.7
5]

R
6
∶

[f
6 L
,f

6 U
]
=

[�
H
ig
h
L

(A
vl
M
em

) ×
�
L
o
w
L

(A
vl
C
P
U

) ×
�
H
ig
h
L

(A
vl
L
o
a
d

) ,�
H
ig
h
U

(A
vl
M
em

) ×
�
L
o
w
U

(A
vl
C
P
U

) ×
�
H
ig
h
U

(A
vl
L
o
a
d

)]

[0
.7
0
×
0
.2
8
×
0
.3
1
,0
.9
6
×
0
.6
0
×
0
.5
9
]
=
[0
.0
6
1
,0
.3
4
0
]

[0
.4

5,
 6

.7
5]

R
7
∶

[f7 L
,f

7 U

] =
[�
H
ig
h
L

(A
vl
M
em

) ×
�
H
ig
h
L

(A
vl
C
P
U

) ×
�
L
o
w
L

(A
vl
L
o
a
d

) ,�
H
ig
h
U

(A
vl
M
em

) ×
�
H
ig
h
U

(A
vl
C
P
U

) ×
�
L
o
w
U

(A
vl
L
o
a
d

)]

[0
.7
0
×
0
.8
4
×
0
.5
,0
.9
6
×
0
.9
3
×
0
.6
0
]
=
[0
.2
9
4
,0
.5
4
6
]

[7
.5

, 9
.5

]

8822	 S. Negi et al.

1 3

Ta
bl

e 
10

  (
co

nt
in

ue
d)

Ru
le

#
Fi

rin
g

in
te

rv
al

Ru
le

 c
on

se
qu

en
t

R
8
∶

[f8 L
,f

8 U

] =
[�
H
ig
h
L

(A
vl
M
em

) ×
�
H
ig
h
L

(A
vl
C
P
U

) ×
�
H
ig
h
L

(A
vl
L
o
a
d

) ,�
H
ig
h
U

(A
vl
M
em

) ×
�
H
ig
h
U

(A
vl
C
P
U

) ×
�
H
ig
h
U

(A
vl
L
o
a
d

)]

[0
.7
0
×
0
.8
4
×
0
.3
1
,0
.9
6
×
0
.9
3
×
0
.5
9
]
=
[0
.1
8
2
,0
.5
3
7
]

[0
.4

5,
 6

.7
5]

8823

1 3

CMODLB: an efficient load balancing approach in cloud computing…

High linguistic variables for possibility are obtained by using Eq. (47). Low possibil-
ity is considered when the value of y is between 0 and 4.6. Similarly, Medium and
High are obtained using Eq. (47). Table 11 depicts the lower and upper MF bounds
for output possibility for its linguistic variables.

Similarly, to check the performance of IT2FLS with other rule bases similar math-
ematical steps have been performed for each set of rules by the obtained values of Mth
PM properties. Table 12 shows the overall obtained rule# with their respective input
values of three sets (memory, CPU, and load) and their respective output (possibil-
ity). It is explained that rule#1 has an output possibility of 1.3 which results in a low
possibility for PMdes for VM migration from Eq. (47). Similarly, rule#2 and rule#4
have obtained low possibilities with values 4.52 and 4.23. Rule# 3, 5, 6, and 8 have
achieved 4.98, 5.91, 6.84, and 7.0 crisp output values for medium possibility, respec-
tively. The selection of PMdes for migration is to be made only when PM has high
available memory, high available CPU, and low load. Finally, Rule#8 with its crisp
output 8.99 has obtained high possibility to become optimal PMdes for VM migration.

The algorithm checks for VMU in PM once PMdes is identified. If any PM has
VMU , then that VMU will be turned off after migration in order to save energy. Hence,

(47)if PossibilityPMj
is

⎧⎪⎨⎪⎩

0 ≤ Y ≤ 4.6, Low

4.7 ≤ Y ≤ 7.0, Medium

7.1 ≤ Y ≤ 10, High

Fig. 8   Member function (MF) for otput possibility

Table 11   FoU MF upper and lower bounds

Low PM Possibility Medium PM Possibility High PM Possibility

FoU L(MF) Δ(y ∶ 0.5, 2.5, 4.0) Δ(y ∶ 4.7, 5.5, 7.0) Δ(y ∶ 7.1, 8.5, 9.5)

FoU U(MF) Δ(y ∶ 0.0, 2.5, 4.6) Δ(y ∶ 4.7, 5.5.5, 6.5) Δ(y ∶ 7.6, 8.5, 10)

8824	 S. Negi et al.

1 3

this VM migration process results in load balancing among PMs along with energy
efficiency. The complete working steps of VM migration-based IT2FLS algorithm
are given in Algorithm 3.

Table 12   Crisp input and
obtained crisp output after
defuzzification

Rule Avl_Mem(x
1
) Input Output

Avl_CPU(x
2
) Avl_Load (x

3
) Possibility(O)

R1 ∶ 1.0 2 3 1.3

R2 ∶ 1.5 3.8 7.8 4.52

R3 ∶ 1.9 7 5.8 4.98

R4 ∶ 2.5 8 6.2 4.23

R5 ∶ 7.2 1 4.2 5.91

R6 ∶ 6.1 1 6 6.84

R7 ∶ 8 8 2 8.99

R8 ∶ 7 6.1 5.1 7.0

8825

1 3

CMODLB: an efficient load balancing approach in cloud computing…

4.5 � Computational complexity

The proposed CMODLB algorithm is a hybridization of ANN-LB, TOPSIS-PSO,
and VM migration using IT2FLS technique, which may get high computational
complexity. The complexity of the complete algorithm is calculated for each work-
ing stage. The ANN-based backpropagation neural method takes O

(
n4
)
 complexity

for feedforward and O
(
n5
)
 for backpropagation where ‘ n ’ is the number of inputs

(VMs). VM load is calculated with the complexity of O
(
n5 + n4

)
 [41]. The compu-

tational complexity of BOK-means is of O
(
N2

)
 , where N is the number of iterations

[42] for Bayesian optimization. K-mean clustering algorithm takes the complexity
of O(n) for computing distance between items. The reassigning cluster has the com-
plexity of O(km) . For centroid, it takes the complexity of O(mn) ; each of the above
steps takes t iterations with O(tkmn) complexity, where ‘ k ’ is the number of clusters,
‘ m ’ is the objects, and ‘ n ’ is the dimensionality of the vector. In PSO-TOPSIS algo-
rithm, PSO has the complexity of O(ntlog(n)) in which ‘ n ’ is the number of popu-
lations and t is the number of iterations. Besides this, the complexity of the TOP-
SIS algorithm is O

(
n2 + n + 1

)
 for FV computation [35]. (4p + 1)M is the required

design degree of freedom for IT2FL [43] where p is the number of antecedents cor-
responding to each M rule.

5 � Experimental evaluation

This section explains the experimental evaluation of the proposed CMODLB load
balancing method in a cloud system environment. This section also comprises sub-
sections. In the simulation environment, the details about the proposed cloud envi-
ronment are provided, while in the performance matrices, each significant matric is
explained. Comparison of the CMODLB method with existing task scheduling and
load balancing methods is shown in the comparative analysis section. Our proposed
work is compared with other existing algorithms CESCC strategy [8], WRR method
[13], DHCI [14], two-level mechanism [17], TaPRA method [18], HBB-LB [22],
BSO algorithm [24], utilization model [29], TOPSIS-PSO [35], SA, GA, GA-SA,
GA-GELS, PSO, PSO-SA and PSO-GELS [36] and FUGE [45] for its performance
analysis.

Table13 explores the shortcomings that occurred in former scheduling and load
balancing techniques. These shortcomings are taken as essential features for the
experimental evaluation of the CMODLB proposed method.

5.1 � Simulation setup

The proposed CMODLB in cloud environment uses JAVA (JDK 1.7) including
Java runtime environment, Java class libraries, and Java tools. NetBeans 7.4 and
eclipse are used for simulation. The essential classes for DCs, VMs, and computa-
tional resources are provided by the CloudSim tool [44], which supports modeling

8826	 S. Negi et al.

1 3

and replication of datacenters, virtualized server hosts, energy-aware computational
resources, federated cloud, etc., of large-scale environment.

In Table 14, significant parameters considered in the simulation of CMODLB are
depicted with their corresponding values. The values of parameters are categorized
into physical machines, virtual machines, and tasks. Two to six numbers of PM hav-
ing up to four processing units have been used with 4 GB RAM and 11 TB storage
capacity with a maximum of 9600 MIPS. Around 10–50 numbers of VMs are used
having a MIPS of up to 2400.

5.2 � Performance metrics

This section discusses the significant performance metrics which are considered
in the experimental evaluation. Definition of each metric is provided along with
its importance. Significant metrics considered in this section are: completion time,
transmission time, MakeSpan, number of VM migrations, resource utilization, and
system load fairness.

5.2.1 � Completion time

Completion time for a task that is assigned to a VM is a metric which is the sum-
mation of execution time (ET), transmission time (TT), and waiting time (WT) of Sth
task on Lth VM and is expressed as follows:

If the load on a particular VM is more, then the tasks assigned to it suffer from
high waiting time, leading to large completion time and overall high MakeSpan.
Therefore, this metric should be as low as possible.

5.2.2 � Transmission time

The purpose of these metrics is to calculate the transmission time, a task needs to
reach a particular VM. Transmission time is the proportion of Sth task size by the
bandwidth of Lth VM [35]. TT must be less to achieve better resource utilization and
MakeSpan.

(48)Completion time = ET + TT +WT .

Table 13   Limitations of previous works

Existing method Demerits

Two-level mechanism [17] Supports only a single server for task scheduling
Increases waiting time for user tasks

TaPRA method [18] Only suitable for the single-task assignment problem
BSO algorithm [24] Load balancing among PMs is not achieved
Utilization model [29] Increases number of VM migrations
TOPSIS-PSO [35] Load balancing is required

8827

1 3

CMODLB: an efficient load balancing approach in cloud computing…

5.2.3 � MakeSpan

MakeSpan is the total amount of time required by a VM to execute the assigned
tasks [35]. It is also defined as the time difference between completion time of last
job (Clast) and starting time of first job (Sfirst) and is expressed as,

This metric should be as low as possible. MakeSpan can be minimized by assign-
ing optimal VM to user task, which can be achieved by task scheduling. Balanced
VMs achieve minimum MakeSpan. It is also defined as the sum of completion time
of tasks assigned on a particular VM and is given as

Here, R represents the number of tasks assigned to VM, whereas completion
timep represents the completion time of pth task on that VM.

(49)TT = Size of taskS
/
Bandwidth of VML.

(50)Make span =
(
Clast − Sfirst

)
.

Makespan =

R∑
P=1

Completion timep.

Table 14   Simulation parameters for cloud environment

Parameter Value

Physical machine Number of PMs 2–6
Number of processing units in one PM 4
MIPS 9600
Storage capacity 11 TB
RAM 4 GB
Scheduling interval 30 ms
Monitoring interval 180 ms

Virtual machine Number of VMs in each PM 10–50
MIPS 2400
Number of processing units 4

Task Number of tasks 50–2000
Maximum task length 20,000
Task size 500
MIPS required 10,000
Average RAM 512 MB
Average bandwidth 100,000 Mbps

8828	 S. Negi et al.

1 3

5.2.4 � Number of VM migrations

Since VM migration consumes energy, CPU, bandwidth, and time, it is necessary
to control the number of migrations performed in the system. This metric provides
the number of migrations carried out in the system. VM migration takes place fre-
quently if the system is unbalanced. Hence, this metric plays a vital role in the eval-
uation of load balancing.

5.2.5 � Resource utilization

In a cloud infrastructure, resources are pooled to serve multiple consumers simulta-
neously. It is important to utilize these resources efficiently. An efficient task assign-
ment process can achieve this by assigning each task to the optimal underloaded
VM. Resource utilization can be calculated in terms of CPU utilization, memory
utilization, and bandwidth utilization.

5.2.6 � Load fairness

To analyze the performance of the proposed method having a large system load. The
metric provides load fairness using its system load. The calculation of load fairness
depends on the completion time of each task. It has been included that if a cloud
system has a better completion time of tasks, then it has the potential to achieve
higher load fairness. This analysis will predict the efficiency of system load with
respect to the number of user tasks. System load fairness LF is given as [17],

where CTt is the completion time of t tasks and N represents the total number of
tasks.

5.3 � Comparative analysis

In this section, the proposed CMODLB method has been compared with some of
the state-of-the-art methods.

5.3.1 � Analysis of completion time

This metric estimates the total execution time that comprises the waiting time of
each task given in Eq. (48). The metric value should be low for an efficient cloud
system. Figure 9 shows the comparative analysis among TaPRA method, BSO algo-
rithm, and the proposed CMODLB method in terms of completion time. Here, com-
pletion time increases as the number of tasks increases. It is quite clear that BSO
algorithm has maximum completion time as compared to TaPRA and CMODLB
algorithm. This is for an imbalanced load on PMs in DCs. Hence, a large number of
tasks cannot be accomplished in PM. In TaPRA method, completion time is slightly

(51)LF =

�∑N

t=1
CTt

�2�
N
∑N

t=1

�
CTt

�2

8829

1 3

CMODLB: an efficient load balancing approach in cloud computing…

increased with the increase in the set of tasks. It completes 2000 tasks in approx-
imately 42 s which the CMODLB does in 30 s. The average completion time of
TaPRA method is 20.6 s, whereas the average completion time of the CMODLB
method is 14.2 s. But BSO algorithm provides the average completion time of
around 50 s which is higher than TaPRA method and the CMODLB method. Since
TaPRA method allows a single-task assignment in each step, it takes more time than
the CMODLB method. In TaPRA method, task assignment process is not able to
consider execution time in order to minimize completion time. Clustering of VMs
approach reduces the complexity of finding appropriate VM for the execution of
tasks with respect to its current load. If the VM having less load executes the task,
then the waiting time of tasks on that VM will be very less. This approach offers the
lowest execution and transmission time. Due to the involvement of efficient load bal-
ancing and task assignment processes, the CMODLB method achieves 31.067% and
71.6% less completion time compared to TaPRA and BSO, respectively, as shown in
Table 15. Therefore, load balancing-based CMODLB method reduces task comple-
tion time significantly.

5.3.2 � Analysis of transmission time

The transmission time metric evaluates the actual transfer time of a task to reach
the assigned VM. It includes the size of tasks and bandwidth of a VM as given in
Eq. (49). For a well-organized cloud system environment, this metric must remain
minimum. Figure 10 shows the comparative analysis among the PSO method,
TOPSIS-PSO algorithm, and proposed CMODLB method in terms of transmission
time. The experimental analysis is performed for 10 to 40 numbers of tasks having
10 numbers of VMs. Here, transmission time increases the number of tasks. It is
noticeable that the PSO algorithm suffers from high transmission time compared
to TOPSIS-PSO and the CMODLB method because the task scheduling process in
PSO takes more time than TOSIS-PSO and CMODLB method. In PSO method, the
transmission time slightly increases with the increase in the number of tasks. It gives
nearly 0.711 s for 10 tasks, while TOPSIS-PSO takes 0.644 s and the CMODLB
method achieves 0.60 s for the same. The average transmission time of PSO and
TOPSIS-PSO method is 1.39 and 1.32 s, respectively, whereas the average trans-
mission time of the CMODLB method is 1.30 s. The PSO and TOPSIS-PSO algo-
rithms provide average transmission time around 0.09 and 0.02 s, respectively,
which are higher than the CMODLB method. Due to efficient load balancing and

Fig. 9   Comparative perfor-
mance analysis on completion
time

0

50

0 50 1000 1500 2000C
om

pl
et

io
n

T
im

e(
Se

c.
)

Tasks

TaPRA C-MODLB BSO

8830	 S. Negi et al.

1 3

task assignment processes, the CMODLB takes 6.65% and 2.12% less transmission
time than PSO and TOPSIS-PSO, respectively, as shown in Table 16.

5.3.3 � Analysis of MakeSpan

This metric gives the overall completion time of all the tasks in VMs. The metric
results are low when the load balancing method is well formulated. The calculation
for MakeSpan is performed using Eq. (50). The performance of the proposed work
is analyzed through three sets of tests in terms of MakeSpan:

(1)	 Test I: Experiment in Test I is performed for 15–60 numbers of tasks in 10
numbers of VMs to analyze the performance of the CMODLB with respect to
static algorithms such as MaxMin and Round Robin.

(2)	 Test II: 100–300 numbers of tasks are simulated for Test II. Results are compared
with various dynamic algorithms such as FUGE [45], ACO, MACO, and TOP-
SIS-PSO [35] with the similar cloud setup configuration having 1000–20,000
task length, 50 numbers of VMs with 500–1000 VM bandwidth, 256–2048 VM
memory (RAM), and 10 numbers of data centers with 2–6 numbers of PM.

(3)	 Test III: To analyze the distributed nature of the proposed CMODLB algorithm,
some grid computing-based algorithms [36] like SA, GA, GA-SA, GA-GELS,
PSO, PSO-SA, and PSO-GELS are considered for performance evaluation. The
experimental parameter values and simulation platform are kept similar for the
proposed and existing algorithms for Test III.

Table 15   Comparison of
completion time (in seconds) for
CMODLB

#Tasks TaPRA BSO CMODLB

0 1 50 1
50 12 50 5
1000 20 50 15
1500 28 50 20
2000 42 50 30

0 0.5 1 1.5 2 2.5

10

20

30

40

Transmission Time (sec.)

N
o.

 o
f T

as
ks

Transmission Time

C-MODLB TOPSIS-PSO PSO

Fig. 10   Comparative performance analysis on transmission time

8831

1 3

CMODLB: an efficient load balancing approach in cloud computing…

5.3.3.1  Test I (MaxMin vs. R.R vs. CMODLB)  In the Test I experiment, the proposed
CMODLB algorithm is compared with MaxMin and R.R algorithm for MakeSpan
metric for 10 numbers of VMs and 15–60 numbers of tasks. Table 17 represents the
obtained results for 15, 30, 45, and 60 tasks for MaxMin, R.R, and the CMODLB,
respectively. Figure 11 shows that the proposed algorithm achieves 65.54% and
68.26% lesser MakeSpan than MaxMin and R.R, respectively. This analysis shows
that the proposed CMODLB algorithm provides better performance in a cloud envi-
ronment.

5.3.3.2  Test II: (TOPSIS‑PSO vs. FUGE vs. ACO vs. MACO vs. CMODLB)  Experiment is
performed to check the performance of the proposed CMODLB method with respect
to MakeSpan for dynamic nature-based algorithms. The comparative analysis is done
with existing algorithms [35, 45] for 100, 200, and 300 tasks. Table 18 depicts the
obtained values from the simulation. Algorithm FUGE and TOPSIS-PSO have per-
formed better than ACO and MACO, whereas CMODLB performed better among all
the algorithms, as shown in Fig. 12.

5.3.3.3  Test III: (SA vs. GA vs. GA‑S vs. GA‑GELS vs. PSO vs. PSO‑SA vs. PSO‑GELS vs.
CMODLB  The comparison of different algorithms is analyzed with similar simulation
configurations. The MakeSpan for the proposed CMODLB and existing algorithms
[36], i.e., SA, GA, GA-SA, GA-GELS, PSO, PSO-SA, and PSO-GELS, is depicted in
Tables 19, 20, 21, and 22 for 100, 300, 500, and 1000 iterations, respectively, on 50,
100, 300, and 500 number of tasks having 10 numbers of resources. From Fig. 13a–d,
it may be seen that MakeSpan for the CMODLB method decreases as there is an
increase in the number of tasks as compared to SA, GA, GA-SA, GA-GELS, PSO,
PSO-SA, and PSO-GELS algorithms. Figure 13 clearly shows that the proposed
CMODLB method is highly efficient compared to PSO-GELS and other methods.

The involvement of efficient load balancing and task scheduling provides lower
completion time and also helps in minimizing MakeSpan. The analysis shows that
the proposed CMODLB algorithm is performing better in a cloud environment.

5.3.4 � Comparative analysis on number of VM migrations

Load balancing among PMs is carried out by VM migrations, which consumes
energy and time due to migration. Hence, it is necessary to minimize the number
of migrations in the system. Figure 14 demonstrates the comparative analysis of
the number of VM migrations of the CMODLB method with various other existing

Table 16   Comparison of
transmission time (in seconds)
for CMODLB

#Tasks PSO TOPSIS-PSO CMODLB

10 0.711 0.664 0.60
20 1.148 1.104 1.10
30 1.590 1.524 1.50
40 2.100 2.00 1.98

8832	 S. Negi et al.

1 3

methods, viz. HBB-LB, WRR, and utilization. The CMODLB method took only one
VM migration, whereas the utilization method took 25 VM migrations. Since VMs
are balanced in the CMODLB method, there is a smaller number of VM migration
leading to less PM overloading. Hence, in the CMODLB method, the number of
VM migrations is low.

5.3.5 � Analysis of resource utilization

In this section, the resource utilization performance of the CMODLB method is
compared with DHCI and CESSC methods. Maximum utilization of resources indi-
cates minimum wastage of cloud system resources. The analysis of resource uti-
lization also illustrates the effectiveness of the cloud system to utilize bandwidth,
energy, CPU, and memory.

Figure 15 demonstrates the comparative study on resource utilization with respect
to time. From Fig. 15, it is clear that the wastage of resources in the CMODLB algo-
rithm is less that indicates utilization of resources is maximum due to the efficient
task assignment process. CMODLB method provides resource utilization above
50%, while the CESCC method is able to provide resource utilization between 28

0
10
20
30
40
50
60
70
80
90

15 30 45 60

M
ak

eS
pa

n(
Se

c.
)

No. of Tasks

MaxMin R.R CMODLB

Fig. 11   Comparative performance analysis for Test I

Table 17   Comparison of
MakeSpan (in seconds) for
Test I

#Tasks MaxMin R.R CMODLB

15 5.89 6.8 4.25
30 20.5 17.4 6.52
45 45.96 57.8 10.97
60 80.93 84.4 31.07

Table 18   Comparison of
MakeSpan (in seconds) for
Test II

#Tasks FUGE ACO MACO TOPSIS-PSO CMODLB

100 40 70 60 37.14 36.44
200 90 120 110 85.79 83.35
300 155 190 170 150.59 146.17

8833

1 3

CMODLB: an efficient load balancing approach in cloud computing…

0

50

100

150

200

FUGE ACO MACO TOPSIS-PSO CMODLB

M
ak

eS
pa

n(
Se
c.
)

Algorithms

MakeSpan100 200 300

Fig. 12   Comparative MakeSpan analysis for Test II

Table 19   CMODLB MakeSpan value for 100 iterations

ITERATIONS 100

TASKS SA GA GA-SA GA-GELS PSO PSO-SA PSO-GELS CMODLB

50 136.742 99.198 95.562 90 86.144 89.586 85.186 74.77
100 307.738 183.49 190.353 181.028 168.718 167.33 166.094 121.46
300 973.728 638.082 597.8 581.842 528.568 511.532 494.66 309.71
500 1837.662 1105.56 1072.362 1087.216 918.336 887.195 911.099 758.4

Table 20   CMODLB MakeSpan value for 300 iterations

ITERATIONS 300

TASKS SA GA GA-SA GA-GELS PSO PSO-SA PSO-GELS CMODLB

50 131.12 89.486 86.98 84.298 85.312 87.684 84.174 60.83
100 233.2 172.628 179.062 175.598 170.452 167.16 166.422 102.38
300 911.68 570.466 532.968 600.862 518.268 526.71 527.086 367.72
500 1492.616 1071.014 1037.942 1055.504 890.354 896.586 881.991 614.2

Table 21   CMODLB MakeSpan value for 500 iterations

ITERATION 500

TASKS GA GA-SA GA-GELS PSO PSO-SA PSO-GELS CMODLB

50 117.994 85.264 84.614 83.362 85.22 83.774 51.29
100 261.664 175.084 171.817 168.714 176.688 170.732 102.38
300 855.896 863.55 521.302 552.828 506.026 509.04 309.71
500 1640.528 993.964 1000.561 954.652 849.066 894.495 758.4

8834	 S. Negi et al.

1 3

and 50% for 50 min. The resource utilization of the DHCI method oscillates between
30 and 60%. The CMODLB method achieves 75% utilization, which is much effec-
tive than DHCI and CESCC. Load balancing, scheduling of tasks, and migration
of VMs are always concerned with resources; hence, it is clear that implementing
the CMODLB method will achieve better resource utilization and reduce wastage of
resources.

Table 22   CMODLB MakeSpan value for 1000 iterations

ITERATION 1000

TASKS SA GA GA-SA GA-GELS PSO PSO-SA PSO-GELS CMODLB

50 108.151 82.566 84.856 84.402 87.436 86.106 85.72 60.83
100 223.158 167.755 160.84 160.694 170.716 174.648 169.784 102.38
300 867.48 545.146 542.52 533.336 520.953 511.33 421.388 309.71
500 1495.312 933.798 935.794 932.23 856.9 888.534 851.614 614.2

Fig. 13   Comparative analysis on MakeSpan for various iterations

8835

1 3

CMODLB: an efficient load balancing approach in cloud computing…

5.3.6 � Load fairness

This metric measures the fairness of the system with respect to load and is calcu-
lated by using Eq. (51). This metric should be as high as possible to achieve better
performance [17]. In Fig. 16, system load is taken on X-axis, while the fairness of
the system is taken on Y-axis. Here, fairness signifies the presentation of the pro-
posed method in system load. The proposed CMODLB method is compared with
the existing two-level method. The two-level method provides system fairness about
1 as constant for different system loads. The task scheduling process is not effective
in the two-level method, and hence it has constant load fairness for different system
loads, which makes it less efficient in heavy-load systems. However, the CMODLB
method attains better performance with a heavy system load. It offers up to 1.12 sys-
tem performance for 100% system load. It shows that the proposed method is reli-
able for heavy system load. Hence, the performance of load balancing is improved in
the CMODLB method compared to the existing load balancing methods.

6 � Conclusion

In this paper, to resolve load balancing issues in both VMs and PMs, a novel hybrid
clustering, multi-criteria and VM migration-based approach (CMODLB) is pro-
posed. To achieve our objectives, the cloud environment is designed with three
entities: VM clustering using a load balancer and VM manager, the TOPSIS-PSO
method for efficient task scheduling, and IT2FL for selection of optimal PM for VM
migration. The first two entities approached load balancing at VM level, whereas
the third entity maintains PM-level load balance. VM manager groups the VMs into
underloaded and overloaded VMs, and balancer manages the clusters in order to pre-
serve the uniqueness. For this purpose, BOEK-means with ANN algorithm is used.
Task scheduling process allocates tasks to optimal underloaded VM using multi-
objective-based existing TOPSIS-PSO algorithm. Optimal VM for task assignment
is selected based on significant metrics such as execution time, transmission time,
and CPU utilization.

The above two processes balance load among VMs, while VM migration intends
to balance load across the PMs. VM migration aims to minimize load and energy

5
2

21

10

5

10

15

20

25

HBB-LB WRR UTILIZATION CMODLB

N
um

be
r

of
 V

M

m
ig

ra
tio

n

VM Migration

Fig. 14   Comparative performance analysis on number of migrations

8836	 S. Negi et al.

1 3

consumption on PMs. Soft computing-based IT2F logic is incorporated to select
optimal destination PM for VM migration to maintain PM load and energy-efficient
cloud. The obtained experimental results show that the proposed CMODLB load
balancing technique manages improved load balancing along with effective com-
pletion time, transmission time, MakeSpan, resource utilization, and load fairness.
This IT2F logic method for calculating optimal destination PM for VM migration
is novel and remarkable. In the future, we aim to cover load balancing with various
machine learning tools and methods to improve energy efficiency which is lacking
in the current proposed model. This will include storage intensive tasks and storage
IOPS/transfer-based VM capacity in real-time cloud environment.

Acknowledgment  The first author (Sarita Negi) acknowledges Prof. Man Mohan Singh Ruthann, Dr.
Rohit Mahar, and the Department of Computer Science and Engineering, H N B Garhwal University (Sri-
nagar Garhwal), Uttarakhand, for their immense support and resources.

0

20

40

60

80

5 10 15 20 25 30 35 40 45 50

U
til

iz
at

io
n

(%
)

Time (Minute)

Resource Utilization

CMODLB DHCI CESCC

Fig. 15   Comparative performance analysis on resource utilization

1 1 1 1 11 1 1.01

1.08
1.12

0.9
0.95

1
1.05
1.1

1.15

0 25 50 75 100

L
oa

d
Fa

ir
ne

ss

System Load(%)

LoadTWO-LEVEL CMODLB

Fig. 16   Comparative performance analysis on load

8837

1 3

CMODLB: an efficient load balancing approach in cloud computing…

References

	 1.	 Sadiku NOM, Musa M, S, D Momoh, O, (2014) Cloud computing: Opportunities and challenges.
IEEE Potentials 3(1):34–36

	 2.	 Diaz M, Martin C, Rubio B (2016) State-of-the-art challenges, and open issues in an integration of
internet of things and cloud computing. J Netw Comput Appl 67:99–117. https​://doi.org/10.1016/j.
jnca.2016.01.010

	 3.	 Milani AS, Navimipour NJ (2016) Load balancing mechanisms and techniques in the cloud environ-
ments: systematic literature review and future trends. J Netw Comput Appl 71:86–98. https​://doi.
org/10.1016/j.jnca.2016.06.003

	 4.	 Zhi-H Zhan, Xiao-F Liu, Yue-Jiao Gong, Zhang J (2015) Cloud computing resource schedul-
ing and a survey of its evolutionary approaches. ACM Comput Surv 47(4):1–33. https​://doi.
org/10.1145/27883​97

	 5.	 Hua H, Guangquan X, Shanchen P, Zenghua Z (2016) AMTS: adaptive multi-objective task
scheduling strategy in cloud computing. China Commun 13(4):162–171. https​://doi.org/10.1109/
CC.2016.74641​33

	 6.	 Yuan H, Bi J, Tan W, Zhou M, Li BH, Li J (2017) TTSA: an effective scheduling approach for delay
bounded tasks in hybrid clouds. IEEE Trans Cybern 47(11):3658–3668. https​://doi.org/10.1109/
TCYB.2016.25747​66

	 7.	 Zhong Z, Chen K, Zhai X, Zhou S (2016) Virtual machine-based task scheduling algorithm in a
cloud computing environment. Tsinghua Sci Technol 21(6):660–667. https​://doi.org/10.1109/
TST.2016.77870​08

	 8.	 Xu X, Cao L, Wang X (2016) Resource pre-allocation algorithms for low-energy task scheduling of
cloud computing. J Syst Eng Electron 27(2):457–469. https​://doi.org/10.1109/JSEE.2016.00047​

	 9.	 Sharma SCM, Rath AK (2017) Multi-Rumen Anti-Grazing approach of load balancing in cloud
network. Int J Info Technol 9(2):129–138. https​://doi.org/10.1007/s4187​0-017-0022-y

	10.	 Singha A, Junejab D, Malhotra M (2015) Autonomous agent based load balancing algorithm in
cloud computing. Procedia Comput Sci 45:832–841. https​://doi.org/10.1016/j.procs​.2015.03.168

	11.	 Gutierrez-Garcia JO, Ramirez-Nafarrate A (2015) Agent-based load balancing in cloud data centers.
Cluster Comput 18(3):1041–1062. https​://doi.org/10.1007/s1058​6-015-0460-x

	12.	 Chun-C L, Hui-H C, Der-J D (2014) Dynamic multiservice load balancing in cloud-based multime-
dia system. IEEE Syst J 8(1):225–234. https​://doi.org/10.1109/JSYST​.2013.22563​20

	13.	 Chitra DD, Uthariaraj VR (2016) Load balancing in cloud computing environment using improved
weighted round robin algorithm for nonpreemptive dependent tasks. Sci World J 2016:1–14. https​://
doi.org/10.1155/2016/38960​65

	14.	 Tao D, Lin Z, Wang B (2017) Load feedback-based resource scheduling and dynamic migration-
based data locality for virtual Hadoop clusters in OpenStack-based clouds. Tsinghua Sci Technol
22(2):149–159.https​://doi.org/10.23919​/TST.2017.78896​37

	15.	 Xie R, Wen Y, Jia X, Xie H (2015) Supporting seamless virtual machine migration via named data
networking in cloud data center. IEEE Trans Parallel Distrib Syst 26(12):3485–3497. https​://doi.
org/10.1109/TPDS.2014.23771​19

	16.	 Mosleh Mohammed AS, Radhamani G, Hazber Mohamed AG, Hasan SH (2016) Adap-
tive cost-based task scheduling in cloud environment. Sci Program 2016:1–9. https​://doi.
org/10.1155/2016/82392​39

	17.	 Liu Y, Li C, Li L (2016) Distributed two-level cloud-based multimedia task scheduling. Automat
Contr Comput Sci 50(3):41–150. https​://doi.org/10.3103/S0146​41161​60300​44

	18.	 Shi L, Zhang Z, Robertazzi T (2017) Energy-aware scheduling of embarrassingly parallel jobs
and resource allocation in cloud. IEEE Trans Parallel Distrib Syst 28(6):1607–1620. https​://doi.
org/10.1109/TPDS.2016.26252​54

	19.	 Li Y, Chen M, Dai W, Qiu M (2017) Energy optimization with dynamic task scheduling mobile
cloud computing. IEEE Syst J 11(1):96–105. https​://doi.org/10.1109/JSYST​.2015.24429​94

	20.	 Keng-M C, Pang-W T, Chun-W T, Chu-S Y (2015) A hybrid meta-heuristic algorithm for VM
scheduling with load balancing in cloud computing. Neural Comput Appl 26(6):297–1309. https​://
doi.org/10.1007/s0052​1-014-1804-9

	21.	 Eswaran S, Rajakannu M (2017) Multiservice load balancing with hybrid particle swarm optimiza-
tion in cloud-based multimedia storage system with QoS provision. Mobile Netw Appl 22(4):760–
770. https​://doi.org/10.1007/s1103​6-017-0840-y

https://doi.org/10.1016/j.jnca.2016.01.010
https://doi.org/10.1016/j.jnca.2016.01.010
https://doi.org/10.1016/j.jnca.2016.06.003
https://doi.org/10.1016/j.jnca.2016.06.003
https://doi.org/10.1145/2788397
https://doi.org/10.1145/2788397
https://doi.org/10.1109/CC.2016.7464133
https://doi.org/10.1109/CC.2016.7464133
https://doi.org/10.1109/TCYB.2016.2574766
https://doi.org/10.1109/TCYB.2016.2574766
https://doi.org/10.1109/TST.2016.7787008
https://doi.org/10.1109/TST.2016.7787008
https://doi.org/10.1109/JSEE.2016.00047
https://doi.org/10.1007/s41870-017-0022-y
https://doi.org/10.1016/j.procs.2015.03.168
https://doi.org/10.1007/s10586-015-0460-x
https://doi.org/10.1109/JSYST.2013.2256320
https://doi.org/10.1155/2016/3896065
https://doi.org/10.1155/2016/3896065
https://doi.org/10.23919/TST.2017.7889637
https://doi.org/10.1109/TPDS.2014.2377119
https://doi.org/10.1109/TPDS.2014.2377119
https://doi.org/10.1155/2016/8239239
https://doi.org/10.1155/2016/8239239
https://doi.org/10.3103/S0146411616030044
https://doi.org/10.1109/TPDS.2016.2625254
https://doi.org/10.1109/TPDS.2016.2625254
https://doi.org/10.1109/JSYST.2015.2442994
https://doi.org/10.1007/s00521-014-1804-9
https://doi.org/10.1007/s00521-014-1804-9
https://doi.org/10.1007/s11036-017-0840-y

8838	 S. Negi et al.

1 3

	22.	 Dhinesh Babu LD, Venkata Krishna P (2013) Honey bee behavior inspired load balancing of tasks
in cloud computing environments. Appl Soft Comput 13:2292–2303. https​://doi.org/10.1016/j.
asoc.2013.01.025

	23.	 Negi S, Panwar N, Vaisla K S, Rauthan MMS (2020) Artificial Neural Network Based Load Balanc-
ing in Cloud Environment. Advances in Data and Information Sciences. Lecture Notes in Networks
and Systems, 94. /https​://doi.org/10.1007/978-981-15-0694-9_20.

	24.	 Jeyakrishnan V, Sengottuvelan P (2017) A Hybrid Strategy for Resource Allocation and Load Bal-
ancing in Virtualized Data Centers Using BSO Algorithms. Wireless Pers Commun 94(4):2363–
2375. https​://doi.org/10.1007/s1127​7-016-3481-8

	25.	 Polepally V K, Chatrapati K S (2017) Dragonfly optimization and constraint measure-based
load balancing in cloud computing. Cluster Computing. Springer.https​://doi.org/10.1007/s1058​
6-017-1056-4

	26.	 Zhao J, Yang K, Wei X, Ding Y, Hu L, Xu G (2016) A Heuristic Clustering-based Task Deployment
Approach for Load Balancing Using Bayes Theorem in Cloud Environment. IEEE Trans Parallel
Distrib Syst 27(2):305–316. https​://doi.org/10.1109/TPDS.2015.24026​55

	27.	 Tsakalozos K, Verroios V, Roussopoulos M, Delis A (2017) Live VM Migration under Time-Con-
straints in Share-Nothing IaaS-Clouds. IEEE Trans Parallel Distrib Syst 28(8):2285–2298. https​://
doi.org/10.1109/TPDS.2017.26585​72

	28.	 Kansal Nidhi J, Chana I (2016) Energy-aware Virtual Machine Migration for cloud computing—
a firefly optimization approach. J Grid Comput 14(2):327–345. https​://doi.org/10.1007/s1072​
3-016-9364-0

	29.	 Farahnakian F, Pahikkala T, Liljeberg P, Plosila J, TrungHieu N, Tenhunen H (2016) Energy-aware
VM Consolidation in Cloud Data Centers Using Utilization Prediction Model. IEEE Transactions
on Cloud Computing (99).https​://doi.org/10.1109/TCC.2016.26173​74

	30.	 Patel G, Mehta R, Bhoi U (2015) Enhanced Load Balanced Min-Min algorithm for Static Meta-task
Scheduling in Cloud Computing. Procedia Computer Science (Elsevier). https​://doi.org/10.1016/j.
procs​.2015.07.385

	31.	 Lakraa AV, Yadav DK (2015) Multi-Objective Tasks Scheduling Algorithm for Cloud Comput-
ing Throughput Optimization. Procedia Computer Science, Elsevier 48:107–113. https​://doi.
org/10.1016/j.procs​.2015.04.158

	32.	 Zhang P, Zhou Meng C (2017) Dynamic Cloud Task Scheduling Based on a Two-Stage Strategy.
IEEE Trans Autom Sci Eng 99:1–12. https​://doi.org/10.1109/TASE.2017.26936​88

	33.	 Zuo X, Zhang G, Tan W (2014) Self-Adaptive Learning PSO-Based Deadline Constrained Task
Scheduling for Hybrid IaaS Cloud. IEEE Trans Autom Sci Eng 11(2):564–573. https​://doi.
org/10.1109/TASE.2013.22727​58

	34.	 Awada AI, El-Hefnawyb NA, Abdelkader HM (2015) Enhanced Particle Swarm Optimization for
Task Scheduling in Cloud Computing Environments. Procedia Comput Sci Elsevier 65:920–929.
https​://doi.org/10.1016/j.procs​.2015.09.064

	35.	 Panwar N, Negi S, Rauthan MMS, Vaisla KS (2019) TOPSIS–PSO inspired non-preemptive tasks
scheduling algorithm in cloud environment. Clust Comput. https​://doi.org/10.1007/s1058​6-019-
02915​-3

	36.	 Pooranian Z, Shojafar M, Abawajy Jemal H, Abraham A (2013) An efficient meta-heuristic algo-
rithm for grid computing. J Comb Optim, Springer 30(3):413–434. https​://doi.org/10.1007/s1087​
8-013-9644-6

	37.	 Brochu E, Cora Vlad M, Freitas Nando D (2013) A Tutorial on Bayesian Optimization of Expensive
Cost Functions with Application to Active User Modeling and Hierarchical Reinforcement Learn-
ing. https​://arxiv​.org/abs/1012.2599

	38.	 Nyikosa F M, Osborne M A, Roberts S J (2018) Bayesian Optimization for Dynamic Problems.
https​://arxiv​.org/abs/1803.03432​

	39.	 Wagner C (2013) Juzzy – A Java based Toolkit for Type-2 Fuzzy Logic. IEEE. Symposium on
Advances in Type-2 Fuzzy Logic Systems (T2FUZZ). https​://doi.org/10.1109/T2FZZ​.2013.66132​
98

	40.	 Mendel JM, John RI, Liu F (2006) Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE Trans
Fuzzy Syst 14(6):808–821

	41.	 Kasper Fredenslund (2018) March 25. https​://kaspe​rfred​.com/serie​s/intro​ducti​on-to-neura​l-netwo​
rks/compu​tatio​nal-compl​exity​-of-neura​l-netwo​rks

https://doi.org/10.1016/j.asoc.2013.01.025
https://doi.org/10.1016/j.asoc.2013.01.025
https://doi.org/10.1007/978-981-15-0694-9_20
https://doi.org/10.1007/s11277-016-3481-8
https://doi.org/10.1007/s10586-017-1056-4
https://doi.org/10.1007/s10586-017-1056-4
https://doi.org/10.1109/TPDS.2015.2402655
https://doi.org/10.1109/TPDS.2017.2658572
https://doi.org/10.1109/TPDS.2017.2658572
https://doi.org/10.1007/s10723-016-9364-0
https://doi.org/10.1007/s10723-016-9364-0
https://doi.org/10.1109/TCC.2016.2617374
https://doi.org/10.1016/j.procs.2015.07.385
https://doi.org/10.1016/j.procs.2015.07.385
https://doi.org/10.1016/j.procs.2015.04.158
https://doi.org/10.1016/j.procs.2015.04.158
https://doi.org/10.1109/TASE.2017.2693688
https://doi.org/10.1109/TASE.2013.2272758
https://doi.org/10.1109/TASE.2013.2272758
https://doi.org/10.1016/j.procs.2015.09.064
https://doi.org/10.1007/s10586-019-02915-3
https://doi.org/10.1007/s10586-019-02915-3
https://doi.org/10.1007/s10878-013-9644-6
https://doi.org/10.1007/s10878-013-9644-6
https://arxiv.org/abs/1012.2599
https://arxiv.org/abs/1803.03432
https://doi.org/10.1109/T2FZZ.2013.6613298
https://doi.org/10.1109/T2FZZ.2013.6613298
https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-of-neural-networks
https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-of-neural-networks

8839

1 3

CMODLB: an efficient load balancing approach in cloud computing…

	42.	 Baptista R, Poloczek M (2018) Bayesian optimization of combinatorial structures. In: Proceedings
of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR. 80. https​://
arxiv​.org/abs/1806.08838​

	43.	 Ren Q, Balazinski M, Baron L (2011) Type-2 TSK fuzzy logic system and its type-1 counterpart.
Int J Comput Appl 20(6):0975–8887. https​://doi.org/10.5120/2440-3292

	44.	 Buyya R, Ranjan R, Calheiros R N (2019) Modeling and Simulation of Scalable Cloud Computing
Environments and the CloudSim Toolkit: Challenges and Opportunities. High Performance Com-
puting & Simulation HPCS’09. 1–11. https​://doi.org/10.1109/HPCSI​M.2009.51926​85

	45.	 Shojafar M, Javanmardi S, Saeid A, Nicola C (2015) FUGE: a joint meta-heuristic approach to cloud
job scheduling algorithm using fuzzy theory and a genetic method. Clust Comp 18(2):829–844

	46.	 Chen Y (2019) Study on Centroid Type-Reduction of Interval Type-2 Fuzzy Logic Systems Based
on Noniterative Algorithms. Compl Hindwai 2019:1–12. https​://doi.org/10.1155/2019/73250​53

	47.	 Mendel JM (2013) On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans Fuzzy
Syst 21(3):426–446

	48.	 Liang Q, Mendel J (2000) Interval Type-2 fuzzy logic systems: theory and design. IEEE Trans
Fuzzy Syst 8:535–550

	49.	 Singh H, Tyagi S, Kumar P (2020) Crow–penguin optimizer for multiobjective task scheduling
strategy in cloud computing. Int J Commun Syst 33(5):e4467. https​://doi.org/10.1002/dac.4467

	50.	 Prassanna J, Venkataraman N (2019) Threshold based multi-objective memetic optimized round
robin scheduling for resource efficient load balancing in cloud. Mobile Netw Appl 24:1214–1225.
https​://doi.org/10.1007/s1103​6-019-01259​-x

	51.	 Neelima P, Rama Mohan Reddy A (2020) An efficient load balancing system using adaptive drag-
onfly algorithm in cloud computing. Cluster Comput 23:2891–2899. https​://doi.org/10.1007/s1058​
6-020-03054​-w

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Sarita Negi1  · Man Mohan Singh Rauthan2 · Kunwar Singh Vaisla3 ·
Neelam Panwar2

 *	 Sarita Negi
	 sarita.negi158@gmail.com

	 Man Mohan Singh Rauthan
	 mms_rauthan@rediffmail.com

	 Kunwar Singh Vaisla
	 vaislaks@rediffmail.com

	 Neelam Panwar
	 neelam.panwar001@gmail.com

1	 Computer Science and Engineering, Uttarakhand Technical University, Dehradun 248007,
Uttarakhand, India

2	 Computer Science and Engineering, Hemvati Nandan Bahuguna Garhwal University, Garhwal,
Srinagar 249161, Uttarakhand, India

3	 Computer Science and Engineering, Bipin Tripathi Kumaon Institute of Technology,
Dwarahat, Almora 263653, Uttarakhand, India

https://arxiv.org/abs/1806.08838
https://arxiv.org/abs/1806.08838
https://doi.org/10.5120/2440-3292
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1155/2019/7325053
https://doi.org/10.1002/dac.4467
https://doi.org/10.1007/s11036-019-01259-x
https://doi.org/10.1007/s10586-020-03054-w
https://doi.org/10.1007/s10586-020-03054-w
http://orcid.org/0000-0002-7457-1880

	CMODLB: an efficient load balancing approach in cloud computing environment
	Abstract
	1 Introduction
	2 Related work
	3 Problem definition
	4 Proposed work
	4.1 System overview
	4.1.1 4.1.1 Contribution methods
	4.1.1.1 Stage I: Grouping of VMs using BOEK-means with ANN
	4.1.1.2 Stage II: Task scheduling using TOPSIS-PSO method
	4.1.1.3 Stage III: VM migration using Iterative Type 2 Fuzzy Logic (IT2FL) method

	4.2 BOEK-means with ANN-based clustering (Stage I)
	4.3 Multi-objective-based TOPSIS-PSO scheduling algorithm (Stage II)
	4.4 VM migration based on fuzzy Logic (Stage III)
	4.4.1 Interval type 2 fuzzy logic set (IT2FL)
	4.4.2 Interval type 2 fuzzy logic system (IT2FLS)

	4.5 Computational complexity

	5 Experimental evaluation
	5.1 Simulation setup
	5.2 Performance metrics
	5.2.1 Completion time
	5.2.2 Transmission time
	5.2.3 MakeSpan
	5.2.4 Number of VM migrations
	5.2.5 Resource utilization
	5.2.6 Load fairness

	5.3 Comparative analysis
	5.3.1 Analysis of completion time
	5.3.2 Analysis of transmission time
	5.3.3 Analysis of MakeSpan
	5.3.3.1 Test I (MaxMin vs. R.R vs. CMODLB)
	5.3.3.2 Test II: (TOPSIS-PSO vs. FUGE vs. ACO vs. MACO vs. CMODLB)
	5.3.3.3 Test III: (SA vs. GA vs. GA-S vs. GA-GELS vs. PSO vs. PSO-SA vs. PSO-GELS vs. CMODLB

	5.3.4 Comparative analysis on number of VM migrations
	5.3.5 Analysis of resource utilization
	5.3.6 Load fairness

	6 Conclusion
	Acknowledgment
	References

