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Abstract
Packet classification is a fundamental function to support several services of soft-
ware defined networking (SDN). Increasing complexity of the flow tables in SDN 
leads to challenges for packet classification on update and classification time. In this 
paper, we propose KDB, a hybrid decision tree classifier, to achieve fast update and 
high speed packet classification. Experimental results show that KDB is faster in 
update time compared with SmartSplit and PartitionSort, two state-of-the-art deci-
sion tree classifiers, and achieves comparable classification time. Compared with 
Tuple Search Space (TSS), a classifier used in Open vSwitch, KDB is faster in clas-
sification time and achieves comparable update time.

Keywords  Packet classification · Software defined networking (SDN) · Decision 
tree

1  Introduction

Software defined networking (SDN) defines a new paradigm that separates the data 
plane and control plane. It makes a programmable network using the network applica-
tions running in the control plane. To inform the applications of the events that occur 
in the networks, the central controller interacts with network devices of different archi-
tectures through common interfaces. OpenFlow [1] is a standard protocol of SDN that 
defines the communication between the central controller and network devices. Open-
Flow uses flow tables, the data structures that consist of a number of flow entries, and a 
set of standard feathers to perform instructions of the controller. Flow tables allow the 
network devices for choosing how to deal with incoming packets. Flows are defined as 
an equivalence class of packets that contain a subset of packet header fields [2]. The 
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ultimate target of the controller is to specify flows and write into hardware and software 
flow tables. The flow’s behaviors are determined by the controller in the form of rules.

Packet classification is a key function to specify a matching rule on the incoming 
packet and apply the appropriate action to the packet. It is beyond simple forwarding 
and provides the requirements of services in SDN [3]. The rule update and classifica-
tion time are two challenges in the packet classification [4]. The rule updates frequently 
occur by the controller to perform requirements of network applications such as con-
figuring the forwarding behavior [5]. It is necessary to reduce the update time since 
it can impact upon the network utilization. The classification time is also important to 
be minimized to perform a fast process of the services requirements, such as quality of 
service.

Some proposals focus on reducing update time, such as Tuple Space Search (TSS) 
[6], or minimizing classification time, such as SmartSplit [7], or simultaneously sup-
porting fast update and classification like PartitionSort [8]. TSS is a fast update method 
and is used in Open vSwitch [9]. It focuses on minimizing update time while sacrific-
ing classification time. SmartSplit is a high speed classification method which is built 
upon the state-of-the-art decision trees. It focuses on minimizing classification time 
while sacrificing memory consumption and update time. SmartSplit gets special atten-
tion to keep the tree as balanced as possible to take logarithmic search time. Partition-
Sort is a state-of-the-art decision tree classifier that develops Multi-dimensional Inter-
val Tree (MITree) to support fast update and high speed classification. PartitionSort 
partitions a rule set into smaller sortable rule sets and then stores each sortable rule set 
into MITree. PartitionSort outperforms TSS and SmartSplit in terms of classification 
speed and update time, respectively [8].

In this paper, we propose a packet classification method called KDB Classifier, 
which is a hybrid data structure based on KD-tree [10] and B-tree [11]. The motiva-
tion of using KD-tree and B-tree is stated as follows. The KD-tree partitions a large 
search space into a small number of regions. It passes nodes in the tree and returns a 
region that rule is contained. Each region contains a small number of rules which are 
stored into a B-tree. The rules can be stored into B-tree in any order and need not to be 
rebuilt for rule updates. We evaluated our approach using comparisons between other 
methods: TSS, SmartSplit and PartitionSort. Our results show that KDB achieves fast 
update and high speed classification. The maximum update time in KDB is 1.33 μ s that 
is comparable to that of TSS and 1.5 times faster than PartitionSort while SmartSplit 
does not support update. In the worst case, KDB’s classification time is 0.75 μ s that is 
comparable to that of PartitionSort, 5.6 times faster than TSS and 3.4 times larger than 
SmartSplit.

The rest of the paper is organized as follows. Section 2 presents related work. We 
introduce the proposed algorithm in Sect. 3. In Sect.4, we provide experimental results. 
Section 5 concludes the paper.
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2 � Related work

Previous work on packet classification can be divided into three categories: TCAM-
based approaches, algorithmic and partitioning methods. TCAMs [12, 13] are not 
scalable with respect to the rule set size. They can only be utilized in small clas-
sifiers. Furthermore, the update time of the TCAM is large because, for example, 
inserting a new rule in TCAM usually entails rearranging the existing entries. It is 
also an expensive and power-hungry resource.

Algorithmic methods, such as decision trees and hash-based solutions, can be a 
viable alternative to overcome the limitations of TCAM. Among algorithmic meth-
ods, decision trees are widely studied. These methods partition the search space into 
regions until each region includes a small number of rules. In decision tree, the root 
covers the whole searching space and use the packet header for traversing from root 
to leaf. HiCuts [14] and HyperCuts [15] are two classical decision tree-based meth-
ods that work by cutting the total space into several equal-size sub-spaces. These 
methods suffer from poor uniformity of the sub-space distribution. Indeed, the 
equal-size cutting inflicts several unneeded sub-spaces that can result in rule dupli-
cation. HyperSplit [16] uses the unequal-size splitting to avoid the nonuniformity of 
the sub-spaces. However, this splitting increases the height of the decision tree and 
results in a high memory access compared to HiCuts and HyperCuts. SmartSplit [7] 
initially categorizes the rules into small and large ranges based on the same fields 
and then produces a HyperSplit tree for each of them. SmartSplit tries to minimize 
the classification time by using different algorithms, but it cannot be quickly updated 
and suffers from inefficient rule update.

Partitioning methods such as Tuple Space Search (TSS) [6] partition the large 
rule set into a collection of small rule sets for easier management. TSS reduces the 
scope of exhaustive search by grouping a rule set to smaller rule groups based on the 
prefix lengths. For each group, one hash table is constructed to insert and delete the 
rules quickly. TSS supports fast update, but it is slow in classification since a large 
number of groups must be searched for each packet. In addition, a variety of hash 
tables for different types of rule sets yields performance variability.

PartitionSort [8] is a hybrid method that is proposed based on the algorithmic and 
partitioning methods. Similar to partitioning methods, it initially partitions the rule 
set into smaller subsets and, similar to algorithmic methods, produces a balanced 
search tree for each subset. PartitionSort is not memory efficient, and its memory 
consumption increases dramatically with the size of the rule set.

3 � The proposed algorithm

In this section, we describe our KDB classifier that focuses on fast update and high 
speed classification. Our approach can be summarized in the following steps:
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–	 Step 1: partitioning the search space to achieve fast classification. In order to 
reduce classification time, a partitioning technique is used for separating the 
search space into smaller regions (sub-spaces).

–	 Step 2: constructing an efficient data structure to achieve fast update. After par-
titioning the search space, we get several regions that include a set of rules. In 
order to achieve logarithmic time complexity and decrease the difficulties of 
updates, we consider an efficient data structure for representing the rules of each 
region.

We next describe the KD-tree and B-tree that will be used in our approach, and fol-
lowing that we introduce KDB.

3.1 � KD‑tree

In this section, we describe KD-tree [10] as a partitioning technique to separate the 
searching space into several small regions. A KD-tree is a type of binary tree with 
the following properties:

–	 Each node X has k keys that will be called K0(X), ...,Kk−1(X).
–	 Each internal node contains two pointers, which are either null or reference to 

their children.
–	 There is one discriminator associated with each level of the tree that is an integer 

between 0 to k − 1 . It is utilized to specify the comparison element in each node 
of the tree.

Let j be the discriminator of node X in KD-tree. If Lch is the left child of X, then 
Kj(Lch) < Kj(X) . If Rch is right child of X, then Kj(Rch) > Kj(X) . Each level of the 
KD-tree includes a same discriminator. The top level of the tree (root node) has dis-
criminator 0, the next level down has discriminator 1, and so the kth level has dis-
criminator k − 1 . In the k + 1 th level of the tree, the discriminator 0 is considered 
again. This process is carried out recursively. In general, the next discriminator for 
the level i can be defined as ( i + 1 ) mod k. Figure 1 shows a 2D-tree for a 2-dimen-
sional search space. The range of regions in the search space is stored as nodes in a 
2D-tree. The root node partitions the search space into two subregions based on the 
discriminator 0. For each subtree of the root, the partitioning is carry out based on 
the corresponding discriminator recursively.

The search in KD-tree is performed depending on the comparison element in each 
node. This element is specified by the node’s discriminator. The traversal direction 
of the tree will be forwarded to its left child when the arriving data packet’s header 
is smaller than the comparison element, and to the right child of the tree otherwise. 
For example, in Fig.  1, assume that a packet P(f0, f1) = (27, 45) arrives, where f0 
and f1 are two fields of the packet’s header. In the first step, f0 is compared with the 
discriminator “0” of the root node, which is smaller. Thus, the traversal direction is 
forwarded to the left child of the root node (B node). The next step, f1 is compared 
with the discriminator “1”, which is smaller again, and the direction is forwarded to 
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the left node (D node). In the node D, the comparison between the discriminator “0” 
and f0 yields the final result. In this case, the region ID that contains the incoming 
packet will be returned. The time complexity of the search and insertion algorithm 
in KD-tree is O(log n) , where n is the total number of the node in KD-tree . Steps to 
search and insert a node into KD-tree are described in Algorithm 1.

Fig. 1   An example 2-dimensional search space and its 2D-tree
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3.2 � B‑tree

In this section, we describe B-tree [11] as a balance search data structure. B-tree has 
the following properties:

–	 Each node contains n keys that are stored in nondecreasing order, so that 
key 1 ≤ key 2 ≤ ... ≤ key n.

–	 Each internal node includes n + 1 pointers to its children.
–	 The leaf nodes have no children and are at the same depth in the tree.

The details of the operations B-TREE-SEARCH, B-TREE-INSERT, and B-TREE-
DELETE are presented in [17]. The time complexity of the search, insertion and 
deletion algorithms of the B-tree is O(t logt n�) , where n′ is the number of keys and t 
is the minimum degree of the tree.

The search in B-tree is performed like a binary search tree, except that instead of 
2-way, a multi-way branching decision at each node is made. The search is based on 
the range of the keys stored in each node. To insert a new key into B-tree, traverse 
the tree to reach the leaf node where the new key should be added. If the leaf node is 
not full, then insert a new key in it and update the order of the keys. If the leaf node 
is full, then split the node into two new nodes (left and right nodes) based on the 
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median key. Afterward, move up the median key to its parent to identify the dividing 
point. If the parent node is full and it is not the root, then promote the median key 
of the parent. If the node is root, then create a new root node from the median key 
to its parent node. The deletion algorithm in B-tree is similar to the insertion, with 
merging instead of splitting. During the deletion process, it may be needed to rear-
range the children of the internal node. Also, a node should not be too small due to 
deletion.

3.3 � KDB classifier

Consider a flow-table contains N flow entries {Fi|i = 0, 1, ...,N − 1} , each flow is 
defined on K fields. Using the geometrical view, these flows can be viewed as points 
in a K-dimensional space. Figure 2 shows an example of the switch’s flow table that 
each flow with two 3-bit fields is located in a 2-dimensional space. The flows are 
accessible over the search space by the values of their fields. An efficient technique 
to find flows in a large search space is to partition it into several smaller regions 
until the number of flows in each region is significantly reduced, and construct an 
efficient data structure for each region separately. The overall design of the KDB 
is shown in Fig. 3. When a packet arrives, KD-tree is traversed to return a region, 
which includes a small number of flows that are stored into a B-tree. Then, a search 
among these flows leads to the desired matching.

KDB utilizes the KD-tree as a partitioning approach to organize the flows in a 
k-dimensional space. Figure  4 shows the space partitioning and its corresponding 
KD-tree for the searching space in Fig. 2. The space partitioning is based on une-
qual-size sub-spaces that contain as equal number of flows as possible. A region R is 
a limited range over the search space. We say that a flow F is mapped to R if the ith 
filed of F, ∀i�{0, ..., k − 1} , is found in the R. For example in Fig. 4, the flow F(3, 6) 
will map to range R3 which is limited by two conditions: Field 1 < 4 and Field 2 > 5

.

Fig. 2   An example of the switch’s flow table and its 2-dimensional space
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B-tree is used as an efficient updatable data structure to represent the flows of 
each region where the flows can be stored in any order and need not to be rebuilt for 
new updates. To classify packets in KDB, the first step is to specify the region of 
the incoming packet by traversing over KD-tree, and then refer to the corresponding 
B-tree that represents the flows of this region. Steps to KDB search are described 
in Algorithm 2. The update operations (insertion and deletion) are performed over 
the corresponding B-tree by B-TREE-INSERT/DELETE algorithms. The time com-
plexity in KDB is O(KD − tree time complexity + B − tree time complexity) . 

Fig. 3   The overall design of the KDB

Fig. 4   the space partitioning and its KD-tree in Fig. 2
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4 � Experimental results

We compare KDB to three classification methods: SmartSplit, TSS and Partition-
Sort. We evaluate our method based on standard metrics: classification time, update 
time, memory consumption and construction time. We use ClassBench [18] to 
mimic the characteristics of the real rule sets because we do not have access to real 
rule sets. It includes 12 seed files that are divided into three different categories: 
access control list (ACL), firewall (FW), and IP chain (IPC). Table 1 shows the prop-
erties of the different seeds. For experimental evaluation, we generate the lists of 1K, 
2K, 4K, 8K, 16K, 32K and 64K rules. The classification time is the time required 
for classifying the packets. We measure the classification time for 1,000,000 pack-
ets after constructing the corresponding classifier. To make a fair comparison, we 
avoid caching in our implementation. The update time is the time required for per-
forming one rule insertion or deletion. We measure this time for 1,000,000 updates 
for each classifier so that 500,000 insertions are intermixed with 500,000 deletions. 
Each classifier contains half of the rules. Selecting the rules is random for rule inser-
tion or deletion. We implemented our method in C++. The three methods used in 
the experiments are hosted on GitHub.1 We run 10 trials for each metric and report 
its values. All experiments are run on a machine with Intel Core i7 CPU@4.00GHz, 
8MB Cache and 32G DRAM. The operating system is Windows 7.

1  https​://githu​b.com.

https://github.com
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4.1 � Comparison With TSS

We compare KDB with TSS using the metrics of classification time, update time, 
construction time, and memory consumption. Figure 5 shows the classification time 
for KDB and TSS. Experimental results show that KDB is a faster classifier for 
each size of the rule set compared with TSS. In the worst case, KDB’s classifica-
tion time is 5.6 times faster than TSS. The reason for these results is the large area 
of TSS since it requires querying a large number of tables. In KDB, a large search 
space is partitioned into a small number of regions, which include a small number 

Table 1   The properties of the different rule sets

Set Scale Specifications

ACL1 733 Security standard format for firewalls and routers (high wildcard)
ACL2 623
ACL3 2400
ACL4 3061
ACL5 4557
FW1 288 Security rules format for firewalls (medium wildcard)
FW2 68
FW3 184
FW4 264
FW5 160
IPC1 1702 Decision tree format for software-based systems (low wildcard)
IPC2 192

Fig. 5   KDB’s classification time versus TSS
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of rules that are stored into a B-tree. B-tree is a balanced, multi-way search tree that 
reduces the overall tree height and leads to the reduction in the classification time. 
Figure 6 shows the update time for KDB and TSS. KDB achieves a fast update with 
a maximum update time of 1.33 μ s. TSS’s update is faster than our approach, but it 
is comparable, and the difference is small. Our experimental results for the largest 
classifiers show that the construction of KDB is fast with a maximum time of 46 
ms. The construction time of TSS is 44 ms that is faster than KDB, but the differ-
ence is slightly small. Both KDB and TSS construct all rules of the rule set fast. 
Figure 7 shows the memory consumption for KDB and TSS. As shown in Fig. 7, for 
the small classifiers, TSS requires less memory than KDB. As the rule set increases 
in size, the memory consumption in KDB will be less than TSS. Thus, KDB is more 
efficient for the larger classifiers compared with TSS.

4.2 � Comparison with SmartSplit

We compare KDB with SmartSplit using the metrics of classification time, construc-
tion time, and memory consumption. As smartSplit does not support the cases to 
update rules, we do not consider it in the comparison. Figure 8 shows the classifica-
tion time for KDB and SmartSplit. Experimental results show that, in the worst case, 
KDB’s classification time is 0.75 μ s, that is 3.4 times larger than SmartSplit. As 
expected, SmartSplit classifies packets faster than KDB. The reason for this result is 
that SmartSplit uses fewer trees and also it reduces the overall height of the trees by 
the HyperCuts tree’s branching features.

Figure 9 shows the construction time for KDB and SmartSplit. Experimental 
results show that the construction time of KDB is very fast compared with Smart-
Split. SmartSplit’s construction time is increased dramatically with the growing 

Fig. 6   KDB’s update time versus TSS
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of the rules. The construction time for SmartSplit is almost 10 min, while in KDB 
it is less than a second.

Figure 10 shows the memory consumption for KDB and SmartSplit. The mem-
ory consumption in KDB is less than SmartSplit. SmartSplit’s memory consump-
tion is very variable. In SmartSplit, depending on the number of rules, type of 
the tree is different. If the number of rules is small, SmartSplit decides to select 
single HyperCuts trees. Otherwise, it considers multiple HyperSplit trees.

Fig. 7   KDB’s memory consumption versus TSS

Fig. 8   KDB’s classification time versus SmartSplit
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4.3 � Comparison with PartitionSort

We compare KDB with PartitionSort using the metrics of classification time, update 
time, construction time, and memory consumption. Figure 11 shows the classifica-
tion time for KDB and PartitionSort. In the worst case, KDB’s classification time is 
about 1.2 times larger than PartitionSort. The reason for these results is the small 
area of the PartitionSort. PartitionSort requires to query fewer tables compared with 
KDB.

Fig. 9   KDB’s construction time versus SmartSplit

Fig. 10   KDB’s memory consumption versus SmartSplit
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Figure  12 shows the update time for KDB and PatitionSort. KDB achieves a 
faster update time compared with PartitionSort. In the worst case, KDB’s update 
time is 1.5 times faster than PartitionSort.

Figure 13 shows the construction time for KDB and PartitionSort. As shown in 
this figure, KDB’s construction is faster than PartitionSort. In the worst case, KDB 
is built 1.8 times faster than PartitionSort.

In terms of memory consumption, experimental results for the largest classifier 
show that KDB requires less memory than PartitionSort. Both PartitionSort and TSS 

Fig. 11   KDB’s classification time versus PartitionSort

Fig. 12   KDB’s update time versus PartitionSort
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are almost the same in memory consumption. Finally, we compare the performance 
metrics of our approach with the existing methods in Table 2.

5 � Conclusion

In this paper, we proposed KDB classifier, a hybrid approach based on KD-tree and 
B-tree. First, we developed KD-tree as a partitioning technique to separate the large 
search space into several smaller regions until the scop of search space is significantly 
reduced. Second, we utilized B-tree as an efficient data structure to decrease the dif-
ficulties of updates and support fast classification. Experimental results show that KDB 
is a fast update and high speed classifier. The maximum update time and classification 
time in KDB are 1.33 μ s and 0.75 μ s, respectively.

Fig. 13   KDB’s construction time versus PartitionSort

Table 2   Comparison with prior art

Approach Classification 
( μs)

Update ( μs) Construction (ms) Memory (MB)

TSS 6.1 1.21 44 3.4
SmartSplit 0.22 500 (s) 500 (s) 4.0
PartitionSort 0.63 2.1 82.9 3.5
KDB 0.75 1.33 46 1.8
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